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Abstract Estuarine systems play a critical role as nurs-
ery areas for some fish species. Nursery function, nev-
ertheless, is likely to vary among estuaries, mostly due
to differences in habitat quality. High quality nursery
habitats are those in which growth and survival of early
stages of fish are enhanced. The nutritional condition of
larval fishes has vital implications for their mortality and
growth, and thereby their recruitment. This study aimed
to compare the nutritional condition of Gichristella
aestuaria larvae, using individual RNA-DNA ratios
and growth rates in the upper reaches of six estuaries
in South Africa to find the environmental factors that
better determine the nutritional condition of fish larvae.
Physico-chemical factors as well as calorific value of
zooplankton were used to correlate to fish body condi-
tion. Results showed that the larvae ofG. aestuaria from
the freshwater rich Gamtoos and the Sundays estuaries
were in better nutritional condition than the larvae from
other estuaries, while larvae from the Swartkops Estu-
ary, a highly eutrophic system, presented the worst
nutritional condition of all studied larvae. Salinity and

the abundance of zooplankton were the major factors
determining the nutritional condition of G. aestuaria
larvae in these warm temperate estuaries. In addition,
our results suggest that the match-mismatch hypothesis
might also be important in estuarine systems. This study
represents one of the few studies worldwide that applied
a multispecies growth model for fish larvae in warm
temperate estuaries.
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Introduction

Estuarine systems play a critical role in the dynamics of
coastal environments and are particularly important for
some fish species that are widely tolerant of the high
environmental variability that characterizes estuaries
(Whitfield 1998; Beck et al. 2001; Able et al. 2006;
Vasconcelos et al. 2010). The ecological dynamics of
these fish species in southern Africa has been a
longstanding focus of research (Whitfield 2010). As a
result, southern African estuaries act as essential nursery
habitats for several coastal fish species (Whitfield 1999;
Strydom et al. 2003; Harrison 2005; Harrison and
Whitfield 2012; Strydom 2014). Nursery function, nev-
ertheless, is likely to vary among estuaries, mostly due
to differences in habitat quality (Gibson 1994;
Vasconcelos et al. 2011).
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High quality nursery habitats are those in which
growth and survival of early stages of fish are enhanced
(Gibson 1994; Heck et al 2003; Vasconcelos et al.
2010). However, the effects of the major agents deter-
mining habitat quality are not well studied in estuarine
systems. For example, the availability of food is a crit-
ical link to the growth and survival of larval fishes
(O’Connell and Raymond 1970; Buckley and Durbin
2006; Baumann et al. 2007). The quality or nutritional
value of the available prey also affects the condition of
fish larvae (Cruz-Rivera and Hay 2000; Vos et al. 2000)
and is often expressed in terms of energetic value or
caloric content of the prey (Davis 1993). Other impor-
tant factors that might influence the quality of a nursery
are abiotic traits, particularly temperature, salinity, oxy-
gen and turbidity (Beck et al. 2001; Summers et al.
1995).

The most common approaches used to evaluate nurs-
ery quality compare the habitat-specific growth and/or
mortality rates of selected fish species (Able et al. 1999;
Beck et al. 2001). The study of the condition of early
stages of fish has important implications for the predic-
tion of their mortality and growth, and therefore their
recruitment success (Houde 2008). Condition indices
based on biochemical parameters are generally a very
effective method of evaluating the condition status of
aquatic animals (Ferron and Leggett 1993; Suthers
1992; Catalán et al. 2007). Amidst the biochemical
methods available, the RNA-DNA ratio has been exten-
sively used for the assessment of the nutritional condi-
tion of fish larvae in the ocean especially because of its
high sensitivity, and because it allows for individual
quantifications and responds to changes in feeding
levels in a short period (Buckley 1984; Ferron and
Leggett 1993; Clemmesen 1994; Catalán et al. 2007;
Costalago et al. 2014).

Whilst the concentration of DNA is considered con-
stant in somatic tissues, and is directly related to the
numbers of cells of an individual, the amount of RNA is
linked to the protein synthesis, and thereby to growth
(Catalán et al. 2007). Thus, RNA/DNA serves as a
proxy of the cell’s protein synthetic capacity and of
individual growth (Buckley et al. 1999, 2008). Conse-
quently, nutritional condition of fish larvae, assessed
through the analysis of nucleic acids, can be used as
an indicator of habitat quality (Amara et al. 2009). In
addition, some of the most recent studies of larval fish
condition (Chícharo et al. 2012; Grote et al. 2012;
Paulsen et al. 2014) relate the RNA-DNA ratio with

individual growth rates and environmental temperature
through a multispecies larval fish growth model (Buck-
ley et al. 2008). This approach allows for comparisons
of larval fish RNA-DNA ratio among habitat types at
different temperatures.

Many South African estuarine systems are being
increasingly altered by global and regional environmen-
tal disturbances, such as declining freshwater inflows,
fishing, agricultural and industrial practices, pollution or
climate change (Whitfield 1992, 2010). Thus, it is im-
perative to understand the consequences of these chang-
es for feeding young fishes, particularly changes that
affect food productivity (Strydom and Whitfield 2002).
Mesohaline zones (salinity ranging 5–18) occurring in
the middle and upper reaches of temperate South Afri-
can estuaries have been suggested as important feeding
areas for larval fishes based on zooplankton and larval
fish density maxima in these areas (Strydom 2014).
Freshwater rich estuaries have prominent mesohaline
zones but the implications of richer zooplankton stocks
on body condition of fish larvae has not been explored
in South Africa. It was therefore necessary to explore the
relationship between the value of zooplankton (density
and calorific value) and its effect on instantaneous body
condition of the larvae in the estuary at that time. Given
that estuarine productivity and freshwater supply are
positively correlated (Strydom and Whitfield 2002),
the abovementioned relationship could only be explored
by selecting estuaries ranging in freshwater supply and
therefore zooplankton productivity.

The estuarine round-herring, Gilchristella aestuaria
(Family Clupeidae) was selected as a candidate species
to examine the quality of these ecosystems as nursery
habitats through the assessment of the nutritional con-
dition of the larvae. This species is an estuary resident
species and the most abundant fish in southern African
estuaries. It is an important forage fish and plays a key
ecological role as mid-trophic species (Harrison 2005).
The species occurs all along the coast of southern Africa
(Smith 1965) and completes its entire life cycle in estu-
aries (Haigh and Whitfield 1993), feeding primarily on
zooplankton (Coetzee 1982; Strydom et al. 2014).
Gilchristella aestuaria spawn in the middle reaches of
estuaries, with peak larval abundance typically in
mesohaline zones of estuaries (Strydom 2014).

The present study thus aimed to compare the nutri-
tional condition and growth rates of G. aestuaria larvae
in six well studied estuarine systems in South Africa
(Harrison 2005; Whitfield 2010; Strydom 2014) using
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the RNA/DNA method in order to ascertain which
environmental factors best correlate with the nutritional
condition of larvae. In addition, this study provides
RNA-DNA ratio-based growth rates that allow for
comparison of fish larvae from environments with dif-
ferent temperature regimes. This is one of the few
studies worldwide that has applied the multispecies
growth model to fish larvae at temperatures over
20 °C (Buckley et al. 2008).

Materials and methods

Study sites and field sampling

Samples were collected from knownG. aestuaria breed-
ing areas in the upper reaches of six permanently open
estuaries with varying freshwater supply along the warm
temperate coast of South Africa (Fig. 1). The Kromme
and Kariega estuaries are classified as freshwater poor
estuaries; the Swartkops receives a moderate supply of
freshwater and the Gamtoos, Sundays and Great Fish
estuaries are classified as freshwater rich (Strydom and
Whitfield 2002). Further in-depth information about the
physico-chemical and geomorphological characteristics
of these systems can be found in Strydom (2014). Sam-
ples were collected after dark on six consecutive nights
in November 2013. Physico-chemical parameters (tem-
perature, salinity, turbidity and dissolved oxygen) were
measured at each station in the upper reaches where
larvae were collected. Measurements were recorded
from surface to bottom every 0.5 m of depth with a
YSI 6600 multi-parameter probe (Strydom and

Whitfield 2002). Averaged values from the stations
where fish larvae were found were used for analyses.
To provide an estimation of the average depth of the
estuaries at the sampling stations where larvae were
collected, the last (closest to the bottom) measurements
of the probe were taken at 2, 1, 2.5, 2, 2 and 1.5 m in the
Kromme, Gamtoos, Swartkops, Sundays, Kariega and
Great Fish Estuaries, respectively.

Fish larvae and zooplankton were collected at a
similar time in each estuary, to avoid diel variations in
RNA contents (Bergeron 1997), from the subsurface
waters (<4 m) by means of two modified WP2 plankton
nets (570 mm mouth diameter and 0.2 mm mesh aper-
ture) fitted with Kahlsico 005 WA 130 flowmeters.
Both nets were lowered simultaneously with two short
booms (1.5 m length) fixed on either side of the bow of
a single-hulled boat and towed horizontally. Sampling
speed was approximately 2 knots and each tow lasted
5–10 min (Strydom et al. 2003). Samples (zooplankton
and fish larvae) from one net were preserved in 5 %
buffered formalin for quantitative analyses. Zooplank-
ton from the other net were kept on ice until arrival at
the laboratory, where it was frozen at −20 °C until
calorimetric analysis was performed. Gilchristella
aestuaria larvae were preserved individually in vials
containing RNAlater (Sigma-Aldrich) for nucleic acids
analysis. Once in the laboratory, all fish larvae were
stored at −80 °C.

Zooplankton analyses

Quantification and identification of major groups of
zooplankton were carried out under a Leica M80 stereo
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Fig. 1 Locations of the six sampled estuaries in the South East coast of South Africa and bar graph showing the mean annual runoff
(×106 m3) in each estuary to illustrate the differences in freshwater richness
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microscope at×100 magnification. Zooplankton sam-
ples were analyzed in three aliquots representing each
about 10 % of the total volume and individuals identi-
fied to the lowest possible taxonomical level until
counting at least 400 copepods and mysids were count-
ed. For the calorimetric analysis, frozen zooplankton
samples were thawed and sieved to separate organisms
larger than 355 μm, which are not feasible prey for
G. aestuaria larvae because of their size (Strydom
et al. 2014). Copepods were also separated from the
samples. Three replicates of zooplankton and copepod
samples from each estuary were dried in an oven at
60 °C over 24 h and homogenized using mortar and
pestle. Dry weight of replicates ranged from 55 to
131 mg. Calorimetry analyses of dried replicates were
performed with a Parr 1425 semi-micro bomb calorim-
eter. Zooplankton and copepod energy contents are re-
ported as cal/g dry weight.

Nucleic acids extraction

Once thawed, the standard length of 80 larvae from each
estuary was measured to the nearest 0.01 mm with a
Mitutoyo digital calliper. Individual samples were
freeze-dried and then homogenized using the protocol
of Caldarone et al. (2001) adapted by Costalago et al.
(2014). 1.50 ml of sarcosil Tris-EDTA buffer pH 8.0
(containing 0.1 % of N-lauroylsarcosine sodium salt in
0.05 M Tris, 0.01 M EDTA, and 0.1 M NaCl) and three
glass beads (3mm diameter) were added to each RNase-
DNase free vial containing the larvae. After 5–6 min for
rehydration of the larvae, vials were vortexed in a bal-
anced box for 10 min, sonicated for 1 min at 4 °C and
then vortexed for an additional 20–30 min. After total
homogenization, samples were centrifuged in a cooled
centrifuge at 4 °C for 20 min at 4000 rpm (12.3 g) in an
Eppendorf 5804R centrifuge. Supernatant was collected
and stored at −80 °C for nucleic acids quantification.

Nucleic acids quantification

RNA and DNA quantification was completed using the
procedure described by Berdalet et al. (2005) and
adapted by Costalago et al. (Costalago et al. 2014).
SYBR Green II fluorochrome (Lonza) and standards
DNA from herring sperm and RNA from baker’s yeast
(Sigma-Aldrich) were used. Standards were diluted at
six different concentrations, ranging from 0.38 to
6.06 μg/ml, to obtain the standard curve. Enzymes

RNase and RNase-free DNase were acquired from
Qiagen. Duplicate (50 μL) samples, standards and blank
(containing 0.01 % sarcosil Tris-EDTA) were pipetted
into black 96-well plates (Greiner Bio-One). Fifty mi-
croliter of SYBR Green II were added to each well and
the fluorescence (Ex492nm:Em520nm) were measured
using a BioTek PowerWave XS microplate reader
linked to the Gen5 2.0 Data Analysis software. In a
second plate, 7.5 μL RNase per well was added; and
5 μL DNase per well in the third plate. These plates
were incubated for 30 min at 37 °C until enzymes
degraded nucleic acids completely, then 50μL of SYBR
Green II per well added and fluorescence measured. The
amounts of DNA and RNAwere calculated, respective-
ly, as the difference between the total nucleic acids in the
first plate (without enzymes) and the amount of nucleic
acids in the second plate (which contained RNase) and
in the third plate (which contained DNase). The RNA-
DNA ratios were then standardized (sRD) using this
information and the reference slope ratio of 3.9, accord-
ing to Caldarone et al. (2006).

Growth rate calculation

To minimize possible bias due to the differences in
temperature and mean larval size among estuaries, the
larval instantaneous growth rates were calculated ac-
cording to Buckley et al. (2008). The best-fit multi-
species growth model that was chosen for further
calculation was:

Gi ¼ 0:0145� sRDþ 0:0044� sRD�Tð Þ − 0:078;

where Gi is the instantaneous growth rate, sRD the stan-
dardized RNA-DNA ratio and T the temperature at the
given site. Results have to be interpreted in the way that a
value of 0 would mean no growth at all and a value of 1
would be a doubling of the weight of the larva per day.

Statistical analysis

After testing whether data fit to normal distribution with
a Shapiro-Wilks test, one-way analysis of variance was
performed in order to identify significant differences
among estuaries in the zooplankton caloric content and
in the standard length of fish larvae, which were the only
variables following a normal distribution. Differences in
abiotic variables (temperature, salinity, turbidity and
oxygen) among estuaries were analysed using a
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Kruskal-Wallis test and, when significant (** p<0.05),
Mann–Whitney U post-hoc was applied on pairs of
estuaries, with a new value of significance of α=
0.003. A non-parametric test (Kruskal-Wallis) was ap-
plied in order to determine if there were statistically
significant differences in the sRD among estuaries.
Spearman’s rank-order correlation analysis was per-
formed to identify and select relevant correlations be-
tween the mean sRD in each estuary and the studied
variables (i.e., temperature, salinity, turbidity, oxygen
concentration, density of zooplankton, density of cope-
pods, caloric content of zooplankton and density of
G. aestuaria larvae). All the statistical analyses were
performed using the OpenStat free software.

Results

Physical-chemical variables

Mean temperature in the areas of highest density of
larval G. aestuaria was significantly lower (p<0.003)
in the Swartkops Estuary (range 20.77–21.56 °C) than
in the Sundays Estuary (21.88–24.36 °C) and showed
high variability within the Gamtoos Estuary (Fig. 2a).
Mean salinity was significantly higher in the Kromme
Estuary (30.07–34.83) than in the other estuaries, and
also was significantly higher in the Sundays Estuary
(11.12–24.24) than in the Kariega (7.92–10.86) and
Great Fish (1.47–7.03) estuaries. Variability of salinity
in the water column in the Gamtoos Estuary was very
high, as with temperature, but not within the other
estuaries (Fig. 2b). Mean dissolved oxygen concentra-
tion (Fig. 2c) was significantly higher in the Kromme
Estuary (7.47–8.25mg/L) than in the Swartkops Estuary
(3.49–8.83 mg/L). Turbidity (Fig. 2d) in the Kromme
Estuary (0) was significantly lower than in all the other
estuaries, it was also significantly lower in the
Swartkops Estuary (1.6–3.9), and the highest significant
turbidity was measured in the Great Fish Estuary (42.3–
72.9). Other significant differences in the abiotic vari-
ables among estuaries were not found (Table 1).

Plankton analyses

Sundays (77878.90 ind/m3) and Kromme estuaries
(36764.00 ind/m3) presented the highest densities of
zooplankton (Table 1), and also of copepods
(38367.99 ind/m3 and 5789.50 ind/m3, respectively)

(Table 1). Gilchristella aestuaria larvae were more
abundant in the Sundays Estuary (371.11 ind/m3),
followed by the Gamtoos Estuary (33.59 ind/m3) and
the Kromme Estuary (15.72 ind/m3); lower densities of
G. aestuaria larvae were found in the Kariega Estuary
(10.82 ind/m3), the Swartkops Estuary (4.50 ind/m3)
and the Great Fish Estuary (1.56 ind/m3).

Significant differences (α=0.05) were identified in
the zooplankton caloric content among estuaries
(Table 1), with the mean value in the Great Fish Estuary
(5628.23 cal/g) being significantly higher than in the
Gamtoos (4772.64 cal/g), Swartkops (3549.26 cal/g)
and Kariega (1722.14 cal/g) estuaries, while in the
Kariega Estuary zooplankton caloric content was signif-
icantly lower than in the other estuaries (Table 1).

Nucleic acids quantification and growth rates

Mean standard length of G. aestuaria larvae was signif-
icantly different (p<0.05) among all estuaries except
between the Kromme and the Gamtoos estuaries and
between the Swartkops and the Kariega estuaries
(Table 1).

The sRD was higher in the larvae of the Gamtoos
(1.41) and the Sundays (1.44) estuaries than in the other
estuaries, with intermediate values in the Kromme
(1.29) and Kariega (1.11). The lowest values were re-
corded in the Swartkops Estuary (0.79) and the Great
Fish Estuary (0.97) (Fig. 3, Table 1). There were signif-
icant differences in the sRD between the Gamtoos Es-
tuary and the Swartkops and Kariega estuaries (Fig. 3).

The Spearman-ranks correlations did not show sig-
nificant correlation between the sRD and any of the
environmental variables (Table 2) except with larval
fish density, for which a positive correlation was
found (rs = 0.943, p< 0.05). Among the non-
significant correlations, the highest one was the posi-
tive correlation between sRD and salinity (rs=0.66)
and between oxygen, and copepod and zooplankton
densities (rs=0.37) (Table 2).

Larvae from the Gamtoos and the Sundays estuaries
had the highest sRD and instantaneous growth rates
(ranging from −0.05 to 0.23 d−1 and −0.02 to 0.22 d−1,
respectively) and larvae from the Swartkops Estuary
presented the lowest sRD instantaneous growth rate
(−0.07 – 0.46 d−1) (Table 1). Ranges of instantaneous
growth rates of larvae from the Kariega, Kromme and
Great Fish Estuaries were −0.04 – 0.26 d−1, −0.07 –
0.25 d−1 and −0.08 – 0.50 d−1, respectively.
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Discussion

The environmental factors affecting nutritional condi-
tion, estimated through the RNA-DNA ratio of
G. aestuaria larvae, were determined in nursery areas
of G. aestuaria in the upper reaches of six warm tem-
perate South African estuaries during the peak summer
breeding season (Wooldridge and Bailey 1982; Cyrus
et al. 1993). The values of the environmental variables
measured in the six estuaries during this study were all
within the normal ranges for the summer season in these
estuaries (Strydom 2014). Concurrently, the values of
sRD obtained in this study are also within an acceptable
range for the development and survival of G. aestuaria,
according to the work of Meyer et al. (2012), which
shows that, with water temperatures above 20 °C, the
survival threshold of sRD (the lowest possible

biochemical condition sustaining life) for the fish larvae
is around 0.5, a value that is lower than what we have
found for G. aestuaria larvae at temperatures of 21–
24 °C in our study.

Temperature influences the growth of fish larvae
(Buckley 1984; Buckley et al. 2008; Costalago et al.
2011; Strydom et al. 2014), but only extreme tempera-
tures have a direct impact on the mortality of fish.
However, some authors (Thiel et al. 1995; Esteves
et al. 2000) found significant correlations between water
temperature and larval fish abundance in estuaries.
Since the temperature in the Kariega Estuary was the
highest of all estuaries, but the larval condition in this
system was significantly lower than in the Gamtoos
Estuary, the relationship between temperature and larval
fish condition appears especially complex and
constrained by other factors such as food availability.
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Fig. 2 Box-plots showing the ranges and median of the abiotic
parameters: (a) Temperature, (b) Salinity, (c) Dissolved oxygen and
(d) Turbidity, in the stations where Gilchristella aestuaria larvae

were collected in each of the six estuaries. Estuaries sharing a
common superscript (1–8) differ significantly (see Table 1)
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Therefore, in our study, although a particular range of
water temperature might be important for larval fish
occurrence in estuaries linked with summer spawning
adults (Strydom 2014), when it comes to explaining the
nutritional condition and growth of fish larvae, it is
likely that coupled factors play a more determinant role.

Salinity in the areas where G. aestuaria larvae were
collected was higher in the Kromme (29.74–30.2),
Gamtoos (3.91–32.37) and Sundays (11.12–24.24) es-
tuaries, where G. aestuaria presented the highest sRD
and mean growth rates, although the average salinities
for the Gamtoos and the Sundays estuaries were within
the normal ranges of the highly productive mesohaline
zone (5–18), which is where the highest densities of
G. aestuaria larvae are known to occur (Strydom
2014). Similarly, in the Swartkops and the Great Fish
estuaries, with the lowest sRD and growth rates, salinity
was comparatively low (ranging 6.61–12.45 and 1.47–
7.03, respectively). The correlation analysis has shown a
positive correlation (rs=0.66) between salinity and sRD.
The correlation is non-significant likely because salinity
has limited direct effects on fish growth (Gibson 1994).
However, it is one of the main physico-chemical vari-
ables structuring fish communities in open estuaries,
affecting the distribution of several species (Strydom
et al. 2003; Harrison 2005) and influencing productivity
in estuaries (Wooldridge and Bailey 1982; Strydom
et al. 2003). Salinity is known to be positively correlated
with the abundance and biomass of G. aestuaria in
several South African estuaries (Strydom and Whitfield
2000; Harrison and Whitfield 2006). In this study, the
strongest correlations were between sRD and salinity
and between sRD and larval abundance. Therefore our
results support the hypothesis of salinity as an important
regulator of the estuarine ecological structure. Interest-
ingly, the only significant correlation reported in this
study was between sRD and larval abundance, suggest-
ing that higher salinity is associated with a higher pres-
ence of G. aestuaria larvae and that this positively
affects the condition of the individual larvae.

Strydom et al. (2002) concluded that larvae of
G. aestuaria are more likely than juveniles to be flushed
down to the lower, more saline reaches of the Great Fish
Estuary. Therefore, G. aestuaria larvae have difficulty
maintaining their position in this highly turbid freshwa-
ter rich estuary, and feeding for early larvae may be
difficult under strong flow conditions as a result of the
inter basin water transfer scheme. Some studies have
shown that the patchiness and habitat selection of larvalT
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fish are adaptive to assure optimum larval survival
(Vlymen 1977; Hewitt 1981; McGurk 1986). If condi-
tions are unfavourable for movement in a highly flushed
system like the Great Fish, this may affect feeding
opportunities and account for lower body condition.

The values of dissolved oxygen in the Sundays Es-
tuary was among the highest of the six estuaries; how-
ever, mean dissolved oxygen did not seem to play a key
role in explaining the nutritional condition of larvae, as
demonstrated with the Spearman correlation analysis. In
line with this, Able et al. (1999) also claimed that low
dissolved oxygen was probably not a critical factor for
larval fish growth in estuaries, while Gibson (1994)
stated that only in highly vegetated and shallow estuar-
ies, or in systems affected by pollution, as is the case in
the eutrophic Swartkops Estuary (Lord and Thompson
1998), some fish may suffer oxygen depletion. Al-
though none of the sampled stations presented low
levels of dissolved oxygen, it has been reported that fish
can easily avoid patches of anoxic areas (Rogers and
Lockwood 1990); consequently, even when low oxygen
patches are detected, this is not a reason to expect poor
nutritional condition in fish.

It is known that larvae of planktivorous fish species
rely on their vision for particulate feeding more than the
larger individuals due to the lack of well-developed gill
rakers –the filtrating apparatus- in the early life stages
(Costalago and Palomera 2014; Costalago et al. 2015)
Thus, the nutritional condition of planktivorous fish
larvae like G. aestuaria would likely be also affected
by turbidity, partly explaining why the larvae in the
Great Fish Estuary, where the turbidity was significant-
ly higher, were in relatively low condition, in spite of
being a very rich fresh water estuary. This hypothesis is
also in agreement with Peck et al. (2012), who
reviewed the factors that affect the fish larval dynamics
and claimed that turbidity affects foraging success of
fish larvae, reducing food consumption rates at higher
turbidity levels.

In terms of food availability, the freshwater rich
Sundays Estuary had very high zooplankton densities.
This was supported by good condition larval stage
Gilchristella in this study. Sundays River catchment is
extensively used for agriculture, a relatively high input
of inorganic nutrients, particularly of nitrate, is received
by the estuary (Scharler and Baird 2003). Although the

Fig. 3 Box-plots showing the
median, the interquartile, the
minimum and maximum values
and the outliers (black dots) of the
sRD of each estuary. **Gamtoos
Estuary significantly higher than
Swartkops and Kariega Estuaries,
p<0.05

Table 2 Spearman correlations of the studied variables with sRD (rs) and level of significance of the correlations (p)

Copepod density Zooplankton caloric content G.aestuaria density Temperature Salinity Oxygen Turbidity

rs 0.37 0.08 0.94 0.08 0.66 0.37 0.20

p 0.49 0.92 0.02 0.92 0.17 0.49 0.71
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extent of the effect of this supply of nutrients on the
condition of fish larvae in the Sundays Estuary needs to
be further investigated, our results suggest that this input
of nitrates might be enhancing the energy flow, through
a trophic cascade from plankton to fish.

In South African estuaries, the peak of zooplankton
abundance normally occurs between November and
February (Wooldridge and Bailey 1982), coinciding
with the peak of G. aestuaria larvae. This can be
interpreted as an adaptation of G. aestuaria to spawn
at the beginning of the period of highest zooplankton
abundance [i.e., in October-November (Blaber 1979;
Wooldridge and Bailey 1982; Cyrus et al. 1993)] in
order for the larvae to have access to a greater food
supply, resulting in a better nutritional condition, thus
supporting the match-mismatch hypothesis (Cushing
1990) might also be important in estuarine systems,
contrarily to what has been previously thought (Newton
1996). While the density of G. aestuaria larvae and the
abundance of prey are not correlated, the highest larval
densities, in the Gamtoos and, especially, in the Sundays
Estuaries, were coinciding with the highest sRD of the
larvae. In particular, the larval density in the Sunday
Estuary was very high in comparison with what has
been found in other studies (Whitfield 1998, 1999;
Strydom 2014), and seems to imply that the survival
of G. aestuaria larvae is not density dependent, con-
trarily to what happens to marine species in the ocean,
which is a less productive system (Cowan et al. 2000).

Food consumption in G. aestuaria adults has been
reported to be highest in October-December in the Sun-
days Estuary (Whitfield and Harrison 1996) and the
Swartkops Estuary (Talbot and Baird 1985). Therefore,
parental contributions to the condition of larvae might
be playing an important role in these estuaries. Howev-
er, has been poorly studied in estuarine systems world-
wide (Gao and Munch 2013). Some studies in coral
reefs (Donelson et al. 2008; Green 2008) and others
with reared fish (Clemmesen et al. 2003; Probst et al.
2006) concluded that the size of preflexion larvae was
significantly positively related with parental body con-
dition. From these studies, it can be suggested that good
condition in adult estuarine planktivorous fish might
translate into faster growth and higher survival rates of
larvae. Although this seems to be the case in the studied
estuaries, further research on the adult condition should
be performed.

The caloric content of the zooplankton in the studied
estuaries did not contribute to the condition of the fish

larvae. The Kromme Estuary, whereG. aestuaria larvae
had the highest sRD and growth rates, was
characterised by an elevated value of zooplankton ca-
loric content. On the other hand, the Great Fish Estuary
had a significantly higher zooplankton caloric content
than any other estuary, but the larvae in this estuary
were in relatively poor condition. Copepods are known
to be an important source of calories for their predators
in comparison with other types of potential prey
(Salonen et al. 1976; Davis 1993).

The Sundays Estuary also had G. aestuaria larvae
with high sRD and, although the zooplankton caloric
content was not as high as in the Kromme or the Great
Fish estuaries, likely due to the smaller proportion of
copepods in the Sundays Estuary, the total density of the
zooplankton was more than twice that of the Kromme
Estuary, supporting the hypothesis that food availability
plays a very important role in determining the condition
of fish larvae in estuaries.

In the Swartkops Estuary, where an important input
of nutrients derived from sewage and agricultural activ-
ities also takes place, this additional supply of nitrates is
accompanied by a variety of pollutants and inorganic
dissolved nutrients from the highly industrialized and
urbanized catchment area, thus, compromising the water
quality in the system (Lord and Thompson 1998) and
negatively affecting the condition of the fish larvae.
Moreover, this estuary, as explained above, had a very
low density of G. aestuaria larvae. As stated by
Whitfield and Elliot (2002), new knowledge on larval
fish dynamics in estuaries will be extremely useful for
future ecological and environmental health indices,
which are, as particularly seen with the Swartkops Es-
tuaries, highly impacted systems that might show clear
effects on important fish species like G. aestuaria.

In conclusion, larvae of G. aestuaria were in better
nutritional condition in the freshwater rich Gamtoos and
Sundays estuaries than the larvae from other estuaries.
Larvae from the Swartkops Estuary presented the worst
nutritional condition of all studied larvae. This estuary
receives a moderate supply of freshwater and has his-
torically been a good fish nursery area (Strydom et al.
2003), but on-going eutrophication from sewerage spills
may be altering water quality. The Great Fish Estuary is
characterized by particularly large volumes of fresh
water derived via an inter-basin transfer. Strydom et al.
(2002) demonstrated that G. aestuaria larvae spawned
and residing in the upper reaches of a high-flow estuary,
like the Great Fish Estuary, are at a much greater risk of
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being flushed out to sea as a result of the excessive
amount of river. Although freshwater inputs into estua-
rine systems are vital for the nursery function of South
African estuaries (Whitfield 1994), excessive supply,
and the high turbulence associated with it, can poten-
tially alter the larval composition and the larval feeding
success in the upper reaches.

Food quantity was an important was positively cor-
related with the nutritional condition of G. aestuaria
larvae in these warm temperate estuaries. This supports
findings from marine studies where the RNA-DNA
ratios of fish larvae have also been related to food
density (Buckley 1984; Clemmesen 1994; Rooker and
Holt 1996; Clemmesen et al. 2003; Catalán et al. 2007).
This study thus suggests that G. aestuaria larvae can
survive and thrive in particularly variable environments,
and especially within very wide ranges of salinity (4.46–
30.07) and turbidity (0–52.62), inferring that estuarine
fish species have remarkable adaptive capabilities
(Whitfield 2015). This work is the first of its kind in
South Africa and much is still needed to fully under-
stand the drivers of a successful nursery. Food patch
dynamics are poorly studied in South Africa and further
research is required. Cost of biochemical analyses are
however an impediment for larger sample sizes and
longer term studies but the use of RNA-DNA ratio
derived body condition assessment appears to be a step
in the right direction to fully understand food patch
dynamics in estuaries and larval fish survival.
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