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Abstract The feeding habits of co-occurring gadid spe-
cies Atlantic cod (Gadus morhua) and Greenland cod
(Gadus ogac) in coastal Newfoundland waters, exam-
ined using stable isotope (δ13C and δ15N) and stomach
content analysis, indicated little dietary niche overlap
and interspecific competition for food resources despite
similar trophic levels. Both species consumed a variety
of invertebrates and fish but showed a preference for
different prey items. Polychaetes, fish and small crusta-
ceans dominated G. ogac stomach contents while
small crustaceans, in particular hyperiid amphipods
and fish, dominated those of G. morhua. In general,
G. morhua consumed more pelagic prey and had a
significantly more pelagic (more negative) δ13C signa-
ture whileG. ogac consumed primarily benthic prey and
had a more benthic (more positive) δ13C signature. δ15N
levels were similar in these species suggesting similar
trophic positions, with levels increasing with fish length
in both species. Dietary overlap was not significant in
both stomach and stable isotope analyses. We conclude
that interspecific competition for food is low between
G. ogac and G. morhua and is unlikely to be a factor
in the slow rebuilding of Atlantic cod in this region.

Keywords Gadus . Cod . Niche partitioning . Diet
overlap . Stable isotopes . Stomach contents

Introduction

Despite the coexistence of similar species across many
taxa, the basic principles of niche theory suggest that
complete niche overlap is not evolutionarily possible
(Gause 1934; Hutchinson 1957; Hardin 1960). Niche
partitioning (Levins 1968;MacArthur 1972) (also termed
niche differentiation or niche segregation), the process by
which competing species evolve different forms of re-
source use is a fundamental process in community ecol-
ogy and has been widely used to explain the coexistence
of similar species (Schoener 1974; Giller 1984; Ross
1986). Coexistence may arise from the segregation of
specific resources (classical resource partitioning) or
from differences inwhen (temporal resource partitioning)
and where (spatial resource partitioning) resources are
utilized (Pianka 1969; Schoener 1974; Ross 1986). In
fish assemblages, partitioning of food resources is often
the principal mechanism of niche segregation (Gascon
and Leggett 1977; Gerking 1994).

In coastal Newfoundland, the closely related
gadids Greenland cod (Gadus ogac) and Atlantic
cod (Gadus morhua) are opportunistic predators with
overlapping geographic distributions (Scott and Scott
1988). Juveniles of both species are common near-
shore inhabitants and found intermixed in most bays
(Rose 2007) and there is a long-standing view that
competition is likely between the two species (Cohen
et al. 1990). Since the early 1990s, G. morhua stocks
around Newfoundland have been in a depleted state
(for much longer further north off Labrador) (Rose 2007).
There is little data to assess changes in G. ogac stocks,
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but a priori inference would suggest less or no change,
as unlike G. morhua, G. ogac is a cold water species
(Kearley 2012) and would not have been negatively
influenced by the cold conditions of the early 1990s.
In addition, G. ogac were never commercially
harvested. Local knowledge of fishermen along the
Newfoundland coast tends to support this inference
(pers. comms.). Feeding competition between these
species in inshore waters, where most juvenile G.
morhua (Lear et al. 1980; Dalley and Anderson 1997;
Methven and Schneider 1998) and all G. ogac reside
(Scott and Scott 1988; Mikhail and Welch 1989), could
help explain the slow rebuilding of depleted G. morhua
stocks over the past decades, but few data existed to
test this hypothesis.

Despite its historic commercial importance, the
feeding ecology of older G. morhua juveniles (ages-2-4)
in coastal areas of Newfoundland is poorly known. Clark
and Green (1990) examined their diel activity patterns in
Conception Bay using sonic telemetry and inferred that
the higher activity rates observed were related to feeding,
but provided no information on prey selection. Studies on
age 1–2 juveniles in Conception Bay yielded differing
results: Keats et al. (1987) found small (<12.5 cm) juve-
niles fed on pelagic prey and larger (16–23.5 cm) juve-
niles fed on benthic organisms whereas Keats and Steele
(1992) reported that all juveniles (<23.5 cm) consumed
mainly pelagic crustaceans.

Previous studies of diet overlap between G. morhua
and G. ogac further north have yielded conflicting re-
sults. Feeding patterns from two inshore locations in
southern Labrador suggested that the two species had
dissimilar diets (Chaput 1981). In contrast, substantial
overlap in diets was reported from West Greenland by
Nielsen and Andersen (2001). In coastal Newfoundland,
no comparisons of diet overlap have been made.

Studies of dietary resource partitioning in co-occurring
or closely related fish have typically used stomach con-
tent analysis to examine dietary overlap (e.g., Grossman
1986; Garrison 2000; Corrêa et al. 2009). This method
offers several benefits: stomachs samples are relatively
easy to collect and prey items can be identified often to
species and life stage. However, stomach analyses pro-
vide only a “snapshot” of dietary habits, often with many
empty stomachs, and may also show bias toward prey
items with lower digestion rates (Hyslop 1980). In con-
trast, stable isotope (δ13C and δ15N) signatures reflect
biologically integrated nutrients in the diet over a long
time period—up to several months for muscle tissue

(Peterson and Fry 1987; Lorrain et al. 2002). Hence,
isotope analysis identifies the longer term feeding habits
of an individual, no matter their last meal. Used in con-
junction, these methods provide a more complete repre-
sentation of an organism’s dietary habits.

In this study, our objective was to compare the feeding
habits ofG.morhua andG. ogac in coastal Newfoundland
and quantify dietary overlap using both stomach content
and stable isotope analyses. The degree of overlap in
dietary resources was expected to reflect the amount
of interspecific feeding competition between these co-
occurring species. Working null hypotheses were that
G. morhua and G. ogac would not differ in: 1) diet, 2)
pelagic and benthic oriented feeding, and 3) trophic
position within the coastal ecosystem.

Methods

Collection of samples

Forty-seven mostly juvenile Gadus morhua and 42
Gadus ogac of comparable sizes (17–63 cm)were caught
by hook and line over several (2–7) days in July of 2009
and 2010 from a small research vessel (RV Gecho II)
within an area of approximately 2.5 ha near Petley
Beach in Smith Sound, Trinity Bay, Newfoundland
(Figs. 1 and 2). Forty-one fish (20G. ogac and 21G.
morhua) were collected in 2009 and 48 fish (22G. ogac
and 26G. morhua) were collected in 2010. Water depths
at the site varied from <1 m to >40 m; most fish were
caught within 1–2 m of the bottom. All fish were put on
ice onboard the vessel and later sampled for total length,
weight, sex, and reproductive stage. Stomachs were re-
moved, weighed and frozen for later analysis and a small
sample (1–2 cm2) of dorsal muscle tissue posterior to the
head was removed and frozen for stable isotope analysis.

Stomach contents analysis

Stomachs contents were sorted and identified to species
or nearest taxonomic level, with weights recorded to the
nearest 0.01 g. Cumulative prey curves were used to
judge if n was sufficient to effectively describe diet com-
positions (Hoffman 1979; Cailliet et al. 1986; Cortés
1997). The order in which stomachs were analyzed was
randomized 10 times and the mean number of new prey
items found consecutively in the stomachs plotted against
the number of stomachs that contained prey. Linear
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regressions were then performed on the last four
points of the curve to assess if an asymptote had
been reached (sensu Bizzarro et al. 2007). If the slope
did not differ significantly from 0 (i.e., p>0.05), the
curve was considered to have reached an asymptote with
n adequate to describe diet.

The relative quantity of stomach contents and relative
importance of individual prey types were assessed using
the following indices: 1) relative frequency of occur-
rence (FO%) = number of stomachs with prey item, i,
as a percentage of the total number of stomachs, 2)
relative gravimetric abundance (W%) = total weight

Fig. 1 Map of the Eastern portion Newfoundland showing location of sampling area (black star) within Smith Sound. Inset shows
position of enlarged map relative to the Island of Newfoundland and NAFO Divisions 2 J, 3 K and 3 L
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of prey item i, as a percentage of the weight of total
stomach contents summed for all fish, 3) mean total full-

ness index TFIð Þ ¼ 1
n∑ f¼1

n
weight of stomach contentsð

of fish f = length of fish fð Þ3Þ � 104 , and 4) mean partial

fullness index PFIð Þ ¼ 1
n∑ f¼1

n
weight of prey item; i; inð

fish f = length of fish fð Þ3Þ � 104; where n is the number
of stomachs examined, weight is in 0.1 g and fish
length is in cm. Niche breadths for each species were
estimated using Levins’ standardized index (Levins
1968; Hurlbert 1978; Krebs 1989): B ¼ 1= n∑pxi2ð Þ ,
where pxi is the proportion of species x using prey
item i, and n is the number of prey items available.
Prey items available included all prey species identified
in the study and availability was assumed to be the same
for both species and size classes. B ranges from 1/n (use
of a single resource) to 1 (equal usage of resources).
Dietary niche overlap between species was assessedwith
Schoener’s (1970) overlap index: C=1–0·5(∑|pix–piy|),
where pix and piy are the proportions by weight of
prey item i in the diets of species x and species y,
respectively. Index values range from 0 to 1, with 0
representing no overlap and 1 representing complete
overlap and values ≥0.6 generally considered biologi-
cally significant (Wallace 1981).

Food items were also classified into pelagic, supra-
benthic and benthic categories based on studies of the
prey taxa and previous cod diet studies (e.g., Scott and
Scott 1988; Parrish et al. 2009). To compare the relative
importance of prey categories, the gravimetric abun-
dance (W%) for each prey category was calculated for
all individuals and tested statistically for differences
between species using a Kruskal-Wallis test.

A one-way analysis of similarity (ANOSIM)
(Clarke 1993) of gravimetric abundance (W%) and

frequency of occurrence (FO%) of prey items for each
individual was used to assess dietary differences be-
tween species. The proportion by mass of each prey
item in the stomach contents of each individual was
used to calculate gravimetric abundance (W%) while
the presence or absence of each prey item was used to
determine frequency of occurrence (FO%). Prior to
analysis, data were square-root transformed and used
to construct a Bray-Curtis similarity matrix. Similarity
percentages (SIMPER) analysis was used to identify
which prey categories contributed most to dissimilar-
ities between species (Clarke 1993). Both ANOSIM
and SIMPER were performed using PRIMER 6 soft-
ware (Clarke and Gorley 2006).

Stable isotope analysis

Dorsal muscle tissue samples were thawed, dried to
constant weight (48 h at ~80 ° C in a drying oven),
crushed to a fine powder using a mortar and pestle and
sent to the CREAIT Network Stable Isotope Lab
Facility at Memorial University of Newfoundland.
Stable carbon and nitrogen isotope ratios and elemental
determinations for each sample were determined by
analysis of CO2 and N2, respectively, produced by
combustion using a Carlo Erba NA1500 Series II
Elemental Analyser followed by gas chromatograph
separation and online analysis by continuous-flow
mass spectrometer. Stable carbon and nitrogen ratios
were expressed in delta (δ) notation, defined as the
parts per thousand (‰) differences from a standard
material: δX=[(Rsample/Rstandard)−1]×103, where δ =
the measure of heavy to light isotope in the sample,
X=13C or 15N and R = the corresponding ratio

Fig. 2 Size frequency distri-
bution of sampled fish.
Black bars = G. ogac; open
bars = G. morhua
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Table 1 Importance of all prey items based on frequency of occurrence (FO%), relative weight (W%), and mean partial fullness (PFI) for
G. ogac and G. morhua. Prey types: B = benthic; SB = suprabenthic; P = pelagic. Bold values indicate maximums for each index

Gadus ogac Gadus morhua

(n=42; size range=17–60 cm) (n=47; size range=21–63 cm)

Prey Item Prey type FO (%) W (%) Mean PFI FO (%) W (%) Mean PFI

Invertebrates

Ophiuroidea B 0.0 0.0 0.000 2.1 0.3 0.005

Polychaeta B 28.6 36.5 0.797 8.3 0.3 0.011

other annelids B 0.0 0.0 0.000 4.2 19.1 0.136

All annelids B 28.6 36.5 0.797 12.5 19.4 0.148

Bivalvia B 2.4 0.0 0.000 0.0 0.0 0.000

Hyperiidae P 2.4 0.1 0.002 62.5 38.7 0.406

other amphipods P 4.8 0.9 0.021 6.3 0.0 0.000

All amphipods P 7.1 1.0 0.023 68.8 38.7 0.406

Idotea balthica (Isopoda) B 2.4 0.1 0.001 0.0 0.0 0.000

Mysidae SB 2.4 2.9 0.071 8.3 0.1 0.002

Euphausidae SB 11.9 8.6 0.165 37.5 5.4 0.114

Mysidae and/or Euphausiidae SB 35.7 1.8 0.026 20.8 2.5 0.066

All mysids/euphausiids SB 50.0 13.3 0.262 66.7 8.0 0.182

Pandalus montagui B 0.0 0.0 0.000 2.1 0.1 0.002

Eualus fabricii B 2.4 0.4 0.010 0.0 0.0 0.000

Spirontocaris sp B 0.0 0.0 0.000 2.1 0.1 0.001

Sabinea sarsi B 2.4 4.8 0.034 0.0 0.0 0.000

Hyas coarctatus B 0.0 0.0 0.000 2.1 0.2 0.010

Hyas sp B 0.0 0.0 0.000 0.0 0.0 0.000

Pagurus sp B 0.0 0.0 0.000 6.3 0.4 0.016

All decapods B 4.8 5.2 0.043 12.5 0.8 0.029

Fish

Clupea harengus P 0.0 0.0 0.000 2.1 0.0 0.000

Mallotus villosus P 0.0 0.0 0.000 2.1 0.2 0.002

Gadus morhua B 4.8 20.0 0.107 4.2 16.5 0.104

Gadus ogac B 0.0 0.0 0.000 2.1 7.2 0.040

Gadus sp B 0.0 0.0 0.000 2.1 2.1 0.012

Myoxocephalus sp B 4.8 5.8 0.075 0.0 0.0 0.000

Myoxocephalus scorpius B 2.4 0.1 0.001 0.0 0.0 0.000

Ulvaria subbifurcata B 4.8 2.3 0.024 2.1 0.5 0.012

Stichaeus punctatus B 2.4 0.1 0.001 2.1 1.2 0.033

Lumpenus maculatus B 2.4 0.7 0.002 0.0 0.0 0.000

Unidentified fish - 9.5 3.4 0.022 12.5 5.1 0.045

All fish - 31.0 32.3 0.232 29.2 32.8 0.248

Other

Stone - 7.1 1.4 0.013 2.1 0.0 0.000

Unidentified organic material - 2.4 9.1 0.064 2.1 0.0 0.001

Plant material/seaweed - 9.5 1.0 0.010 4.2 0.0 0.000

N (%) of empty stomachs 10 (23.8 %) 2 (0.04 %)
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(13C/12C or 15N/14N). International Standard references
are Vienna Pee Dee Belemnite (VPDB) for carbon, and
atmospheric N2 for nitrogen.

To estimate trophic niche breadth and structure,
quantitative metrics based on the position of individuals
in trophic niche space developed by Layman et al.
(2007) and described by Jackson et al. (2011) were
applied at the population level using individuals as
measurement units. Metrics were calculated using the
Stable Isotope Analysis in R (SIAR) package (Parnell
et al. 2008) for R statistical computing package (R
Development Core Team 2007) and are briefly defined
as follows: 1) δ15N Range (NR): a measure of degree of
trophic diversity calculated as the distance between the
most enriched andmost depleted δ15N values for a given
species or group; 2) δ13C Range (CR): distance between
the highest and lowest δ13C which indicates the vari-
ability of food sources consumed; 3) Standard Ellipse
Area (SEA): a measure of the total trophic niche breadth
for a given species or group; 4) Mean distance to cen-
troid (CD): average Euclidean distance of each individ-
ual to the mean δ13C and δ15N value which provides a
measure of the average degree of trophic diversity with-
in a species or group; 5) Mean nearest neighbour dis-
tance (MNND): mean of the Euclidean distances to each
species’ nearest neighbour in bi-plot space which pro-
vides a measure of the overall density of species packing
(i.e., a group comprised of many individuals with sim-
ilar trophic ecologies would show a smaller MNND
than a group in which individuals are more varied in
terms of their trophic niche); 6) Standard deviation of

nearest neighbour distance (SDNND): a measure of the
evenness of species packing in bi-plot space with lower
SDNND values suggesting a more even distribution of
trophic niches.

Stable isotope ratios (δ13C and δ15N) and metric
data (CD, MNND, and SDNND) were tested for nor-
mal (Gaussian) distribution using probability plots and
frequency distributions and non-normal data were
transformed using the Johnson transformation tool in
Minitab 16. Between species differences in metrics and
effect of body size on δ13C and δ15N values were
evaluated using t-tests and regression analysis, respec-
tively. Trophic niche overlap was estimated as the
percent of overlapping SEA between species.

Results

Stomachs of G. morhua and G. ogac contained a sub-
stantial variety of prey items (Table 1). Cumulative prey
curve regressions on the last four measures for both
species had slopes that did not differ from 0 (regression,
t=3.66, p=0.07 for G. morhua and t=2.54, p=0.13 for
G. ogac) (Fig. 3).

Stomach contents

Indices of relative importance (FO%, W%, and PFI)
for all prey items (Table 1) indicated that for G. ogac,
polychaetes and mysids/euphausiids were the dominant
prey items, occurring in 28.6 % and 50 % of stomachs

Fig. 3 Cumulative prey curves forG. ogac (filled circle) andG. morhua (filled diamond). Symbols show the mean cumulative number of
prey items per stomach sampled and error bars indicate SD
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and making up 36.5 % and 13.3 % of the total diet by
weight. Polychaetes and mysids/euphausiids also had
the highest PFI values at 0.797 and 0.262, respectively.
Unidentified bony fish was the next most important
prey item by frequency of occurrence (9.5 %) while

G. morhua had the next highest relative weight (20 %)
and PFI value (0.107).

In the stomachs ofG.morhua, mysids/euphausiids and
hyperiids had the highest frequency of occurrence (FO%)
(mysids/euphausiids=66.7 %; hyperiids=62.5 %) and PFI

Fig. 4 Plots of relative
gravimetric abundance
(W%) of pelagic,
suprabenthic and benthic
prey categories by fish
length (cm) for G. ogac
and G. morhua
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values (mysids/euphausiids=0.182; hyperiids=0.406)
while hyperiids and polychaetes had the highest relative
weights at 38.7 % and 19.4 %, respectively. Annelids
(12.5 %) and polychaetes (12.5 %) had the next
highest frequency of occurrence while G. morhua
had the next highest relative weight (16.5 %) and
PFI (0.104) values.

G. morhua had significantly higher proportions by
weight of pelagic prey items in their diet than G. ogac
(Kruskal-Wallis, H=28.8, p<0.01) (Fig. 4). This was
attributed almost entirely to the high relative weight of
hyperiids in the stomachs of G. morhua (Table 1). In
comparison, G. ogac had a higher relative abundance
of benthic prey items (Kruskal-Wallis, H=5.25,
p=0.02) (Fig. 4). No significant difference between
species was found for the suprabenthic prey category
(Kruskal Wallis, H=1.27, p=0.26) (Fig. 4).

Total fullness (TFI) values were somewhat higher
for G. ogac than for G. morhua but did not differ
significantly between species (Kruskal Wallis,
H=0.13, p=0.72) (Table 2). G. ogac had a significantly

lower niche breadth index than G. morhua (Kruskal
Wallis, H=11.25, p<0.01) and low (C=0.28) overlap in
diet was found between species (Table 2).

ANOSIMs showed significant differences in diet
composition between G. ogac and G. morhua by both
gravimetric abundance (W%) (R=0.243 p<0.01) and
frequency of occurrence (FO%) (R=0.227, p |<0.01)
(Table 3). Results from SIMPER analyses revealed high
average dissimilarity between species (W%: 93.3 % dis-
similarity; FO%: 90.3 %) with hyperiids, euphausiids,
mysids/eupausiids and polychaetes contributing most to
the dissimilarity for both dietary indices (Table 3).

Stable isotopes

Carbon isotope (δ13C) levels in tissues of G. ogac were
significantly more positive, or enriched in 13C, as com-
pared to those of G. morhua, which were relatively
depleted in 13C (t-test, t=4.82, p<0.01) (Table 4,
Fig. 5). In contrast, no significant difference in mean
δ15N values was found between species (t-test, t=1.59,
p=0.12) (Table 4). A significant positive relationship
between body size (TL) and isotopic δ13C values was
evident in both species (regression, t=3.52, p<0.01 and
t=2.13, p=0.04 forG. morhua andG. ogac, respectively)
(Fig. 6). No significant relationship between body size
and isotopic δ15N values was observed for either species.

Neither mean distance to centroid (CD) or mean
nearest neighbour distance (MNND) differed between

Table 2 Mean total fullness index (TFI), dietary niche breadth
(B) (Levins 1968) and dietary overlap (Schoener 1970) for G.
ogac and G. morhua

Species n Mean TFI
(± SE)

Dietary
breadth (B)

Niche
overlap (C)

G. ogac 42 1.45±0.34 0.14 0.28

G. morhua 47 1.02±0.31 0.06

Table 3 Percent contribution to
average dissimilarity by prey
item and dietary index for G.
ogac and G. morhua

FO% W%

Prey Item % contribution Prey Item % contribution

Hyperiids 24.9 Hyperiids 27.2

Euphausiids 16.8 Euphausiids 16.5

Mysids/Euphausiids 16.0 Mysids/Euphausiids 14.7

Polychaetes 9.9 Polychaetes 12.0

Unidentified fish 5.9 Unidentified fish 4.9

Mysids 3.5 Gadus morhua 3.3

other amphipods 3.3 Other amphipods 2.4

Gadus morhua 2.4 Ulvaria subifurcata 2.3

Ulvaria subifurcata 2.3 Myoxocephalus sp 2.1

Pagurus sp 1.8 Pagurus sp 2.0

Myoxocephalus sp 1.8 Mysids 1.8

Stichaeuspunctatus 1.3 Myoxocephalus scorpius 1.2

other annelids 1.3
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species (CD: t-test, t=−1.16, p=0.25; MNND: t=−1.30,
p=0.20). SDNND was lower for G. ogac than for G.
morhua (Table 4). The percentages of SEA overlap
between G. ogac and G. morhua were moderate at
43.3 % and 24.7 %, respectively (Table 4; Fig. 5).

Discussion

Results from both stable isotope and stomach analyses
provide support for dietary niche partitioning between
G. ogac and G. morhua and suggest only minor com-
petition for food resources between species during the
summer. This conclusion is based on rejection of the
working null hypotheses on diet similarity and benthic-
pelagic prey similarity. Stomach analyses indicated
differing prey and a higher proportion of benthic items
for G. ogac and pelagic items for G. morhua. In support
of these conclusions, isotopic signatures for G. ogac
were significantly more enriched in 13C, indicatingmore
benthic feeding, whereas signatures forG. morhuawere

relatively depleted in 13C, indicative of more pelagic
feeding (Davenport and Bax 2002; Hobson et al. 2002;
Sherwood and Rose 2005).

Consistent with the present study, Chaput (1981)
concluded that diets of G. morhua and G. ogac were
dissimilar based on low correlation coefficients for major
prey items identified from stomachs from specimens
caught in shallow (<25 m) water at two nearshore sites
in Labrador (NAFO Div 2 J). The authors attributed
these differences to the high frequency of occurrence
and contribution to total fullness of pelagic invertebrates
for G. morhua and shrimp, fish and polychaetes for G.
ogac. In contrast, Nielsen and Andersen (2001) found no
difference in the diet of G. morhua and G. ogac in West
Greenland and concluded the two species compete for
food where their ranges overlap.

The differing results between the present and Labrador
study and the Greenland study may relate to timing and
differing prey fields. The present results indicate that
larger G. ogac feed primarily on fish (capelin, Mallotus
villosus, when available), crustaceans and polychaetes,

Fig. 5 δ15N - δ13C bi-plots
and group means (± 2 SE) of
sampled G. ogac (filled
circle) and G. morhua
(empty circle). Enclosed
areas represent the standard
ellipse trophic niche area
(SEA) occupied by each
group (dashed line =G. ogac;
solid line = G. morhua)

Table 4 Summary of isotopic metrics by species. NR=δ15N range; CR=δ13C; SEA = standard ellipse area; CD = distance to centroid;
MNND = mean nearest neighbour distance; SDNND = standard deviation of nearest neighbour distances

Species n Mean δ15N±SE (‰) Mean δ13C±SE (‰) NR CR SEA (units2) SEA overlap
(units2 (%))

CD NND SDNND

G. ogac 42 14.71±0.08 −17.91±0.15 2.06 4.15 1.50 0.65 (43.3) 0.96 0.22 0.16

G. morhua 47 14.50±0.11 −18.99±0.17 2.47 4.50 2.63 0.65 (24.7) 1.11 0.29 0.31
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which is consistent with previous reports (Jensen 1948;
Chaput 1981; Mikhail and Welch 1989; Morin et al.
1991; Nielsen and Andersen 2001). The main prey items
for G. morhua found in the present study were in accor-
dance with results from numerous feeding studies
from Newfoundland waters (e.g., Templeman 1965;
Lilly et al. 1984; Paz et al. 1991; Sherwood et al.
2007; Krumsick and Rose 2012) with the exception
that capelin was found in only a single stomach.
Capelin are only available seasonally in coastal
Newfoundland, and have had depressed stock levels
since 1990 (DFO 2010). In the present study, very
few capelin were observed during daily echosounding
of the study area, and none spawned on the beach
prior to or during the course of the study. When capelin

are available, they are likely to be preyed on heavily by
both species, and this predation is likely to temporarily
influence the degree of diet overlap. Nonetheless,
competition may still be limited, as a consequence
of the typical high density of spawning capelin.
Similar increases in resource sharing at times of very
high prey abundance has been demonstrated across
several taxa (reviewed by Schoener 1982) including
among co-occurring gadid species in south-western
Norway (Høines and Bergstad 1999). Furthermore,
in West Greenland, in contrast to Newfoundland,
capelin have a quasi-continuous distribution along
the coast and undergomore limited spawningmigrations
(Friis-Rødel and Kanneworff 2002). West Greenland G.
morhua and G. ogac both had capelin as their dominant

Fig. 6 Plots of δ13C versus
TL and regression slopes for
a G. ogac and b G. morhua.
Both regressions were
significant at p<0.05
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prey (Nielsen and Andersen 2001) but it remains unclear
if feeding competition exists there.

Large G. ogac did show evidence of feeding on
juvenile G. morhua, as did larger G. morhua to a lesser
extent. Although the present study did not attempt to
evaluate predation as a potential impact on either spe-
cies, largeG. ogacwere relatively rare in our study area,
hence despite their predatory habits they may be too few
to impact the overall abundance of G. morhua.

The present stable isotope results were consistent with
the wider ranging records for G. morhua from northeast
Newfoundland (NAFO Division 3KL) (Sherwood and
Rose 2005; Sherwood et al. 2007) and represent the first
records of stable isotope signatures (δ15N and δ13C) for
G. ogac in Newfoundland waters. For both gadids, iso-
tope values shifted from pelagic (more negative δ13C
values) to more benthic (more positive δ13C values) with
increasing body size. This shift is consistent with diet
transitions from invertebrates to fish as gape size in-
creases and young gadids are able to exploit the higher
energy content of piscivorous prey (e.g., Høines and
Bergstad 1999; Nielsen and Andersen 2001; Link and
Garrison 2002; Sherwood et al. 2007).

Although no significant differences were found,
mean total fullness indices for G. ogacwere higher than
for G. morhua, a pattern previously reported by Chaput
(1981), who suggested that in the absence of capelin,G.
ogac are more efficient predators (in terms of prey
weight consumed per predator body weight). It is pos-
sible that slight differences in relative stomach fullness
between species may be due to differences in preferred
prey availability or from differential habitat utilization.
It may also be that G. ogac has a more generalist (less
discriminate) feeding approach than G. morhua. This
theory is supported by dietary breadth indices that were
more than twice as high forG. ogac as forG. morhua of
the same size. However, it should be noted that in the
absence of prey availability data indices of niche breadth
must be interpreted with caution (Hurlbert 1978;
Feinsinger et al. 1981; López et al. 2009).

Differences in diet between G. morhua and G. ogac
could also reflect differences in pelagic habitat use that
lead to differences in prey availability (e.g., Baker and
Ross 1981; Shpigel and Fishelson 1989; Helland et al.
2008). Specifically, G. morhua could occupy a broader
vertical distribution that encompasses both benthic and
pelagic environments while G. ogac maintain a closer
association with the bottom (Scott and Scott 1988).
This hypothesis will be tested in a further study. In

addition, the more slender body and lighter colouration
ofG. morhua, is suggestive of more pelagic behaviour,
whereas the stouter form and darker colouration of G.
ogac is consistent with more demersal habits.

In contrast to the competition hypotheses, the trophic
position null hypothesis was not rejected, as 15N signa-
tures were similar between species (Minagawa andWada
1984; Post 2002). These results suggest that despite
differing diets, G. morhua and G. ogac occupy similar
trophic positions within the coastal Newfoundland eco-
system. However, it should be noted that in the absence
of measured isotope values for specific prey items some
degree of cautionmust be used in the interpretation of the
results.

In conclusion,G. morhua andG. ogac, that co-occupy
much of the coastal zone of Newfoundland and Labrador
and other areas of the north Atlantic, appear to have
similar trophic positions but limited diet competition.
Our evidence provides little support for the notion
that feeding competition could be limiting G. morhua
recovery in these waters.
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