
Charr truth: sympatric differentiation in Salvelinus species

David L. G. Noakes

Received: 12 May 2008 /Accepted: 29 May 2008 / Published online: 3 July 2008
# Springer Science + Business Media B.V. 2008

Abstract Charrs, Salvelinus species, are characteris-
tic fishes of northern freshwater lakes and rivers.
They are highly variable in almost every aspect of
their behaviour, morphology and life history. Several
possible explanations have been proposed to account
for this variability and resolve the taxonomic confu-
sion in this genus. I propose that sympatric trophic
polymorphism, in the ecological context of these
species, can make sense of this variability. I use
examples from charr in Canada and Iceland to
construct an evolutionary scenario for this genus.
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Introduction

A great deal of attention continues to be directed to
the question of sympatric speciation, after an extend-
ed period of time when the subject was almost
universally dismissed. Mayr (1963) gave perhaps the
most detailed and forceful rejection of sympatric
speciation as either a theoretical or empirical possi-
bility. Since then the concept has been revisited and a

number of credible theoretical models (e.g., Maynard
Smith 1966; Wimberger 1994; Foster et al. 1998;
Dieckmann and Doebeli 1999; Bolnick 2004) and
empirical examples (e.g., Taylor and McPhail 1985;
Swain and Holtby 1989; Schluter 1994, 1995; Dynes
et al. 1999; Wilson 1999) have been published. I will
not review those studies nor do I intend to test any of
those models with experimental data. Rather I will
summarize my comparative approach and present a
model to stress the importance of sympatric process
rather than pattern in the evolution of Salvelinus
species. The interesting matter is not how many
species there might be, but how those species arise.

Charrs are enigmatic fishes. They have long
plagued taxonomists as the “charr problem” because
of the high degree of variability within species
(Kawanabe et al. 1989). They are the focus of the
continuing series of international charr conferences
(Johnson and Burns 1984; Kawanabe et al. 1989;
Magnan et al. 2002). They are important as food for
aboriginal peoples (Power 2002), as the favoured
species of recreational anglers (Curry et al. 1995,
1997), and as indicators of environmental quality
(Gunn and Noakes 1987; Gunn et al. 1987). They are
native to north temperate and arctic environments
(Gunn and Keller 1985), most are landlocked but
some are anadromous (Kawanabe et al. 1989). The
two features that initially attracted me to them as
research subjects were the high degree of variability
within and between species (Fig. 1), combined with
the virtually unlimited fertility of artificially produced
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crosses between different species (Noakes 1986,
1989).

Salmonids have commonly been used in studies of
physiology, endocrinology, ecology, nutrition and
genetics (e.g., Brett 1965; Beamish 1978; Carl and
Healey 1984; Ferguson 1986; Leatherland 1994) so
there is a wealth of data available on these aspects of
their biology. There is also a long history of

laboratory and field studies on salmonids as their
native ranges coincide with the north temperate
distribution of universities, research institutions and
management agencies (Scott and Crossman 1973;
Magnan at el. 2002). Populations of many species are
readily accessible for studies within their native
habitats (Magnan 1988). Many species attract signif-
icant research support as a consequence of their
economic importance to aboriginal, recreational or
commercial harvest.

My research interests have always been in devel-
opment and social behaviour (Noakes 1978a, b, c).
My initial choice of charrs as study species was
motivated by all these considerations, plus some
added features of three key species available to me.
Brook, S. fontinalis, lake, S. namaycush, and arctic, S.
alpinus, charr differ strikingly in their native habitats,
biology and behaviour (Noakes 1989, 1994; Noakes
et al. 1989). However, they are all characterized by a
number of features that I believe are important for
their evolution. They are native to northern lakes &
rivers, including many that have been recently
deglaciated, on a geological time scale. They are
native to areas with few species, particularly few
competitor species. They appear to be suited as recent
invaders to habitats created by melting of glaciers
(Fig. 2). As mentioned, they are known to be highly

Fig. 1 Four sympatric morphs of arctic charr, Salvelinus alpinus,
from Thingvallavatn, Iceland. From top to bottom they are:
piscivore, small benthivore, planktivore and large benthivore. All
these fish were caught in the same set of one gill net during the
evening of 1 July 2003 (photograph by David Noakes)

Fig. 2 Melting water from
a glacier in Iceland running
off through rocks, sand and
gravel deposited by the
melting glacier to form a
glacial river (photograph by
David Noakes)
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variable species, but the basis for that variability has
seldom gone beyond speculation and description of
the various morphs, or forms, or subspecies encoun-
tered (Frost and Kipling 1980; Partington and Mills
1988). Certainly one possibility is that these fishes are
examples of pure phenotypic plasticity. I will argue
that a more likely hypothesis to account for their
variability is resource polymorphism (Fig. 1).

The Ontario Ministry of Natural Resources con-
ducted a management program with hybrids between
brook and lake charr for a number of years (Berst and
Spangler 1970; Berst et al. 1980; 1981). That program
regularly produced large numbers of hybrids, and
backcrosses up to the F-9 backcross generation. We
utilized those in a productive series of studies of
behavior genetics (Ferguson and Noakes 1981, 1983a,
b, c). Our studies showed a significant genetic basis
for the behavioral differences between these species.
Those and subsequent studies of these species
elaborated on the adaptive nature of the behavior of
the species, including the differences between the
species in their responses to environmental factors
(Ferguson et al. 1983; McNicol and Noakes 1984;
Noakes and Grant 1986, 1992; Noakes and Curry
1995; Biro et al. 1997).

The foraging and social behavior of juvenile brook
charr is particularly interesting and we have devoted
considerable study to the details of that system (Grant
and Noakes 1986, 1987a, b, c, 1988; Grant et al. 1989;
Imre et al. 2001; McLaughlin 2001; McLaughlin and
Grant 1994, 2001; McLaughlin et al. 1992, 1994;
1995a, b, 1999, 2000; McLaughlin and Noakes 1998).
The important conclusion that I want to note from
these studies is that young brook charr in streams tend
to behave in one of two alternate tactics. We labeled
those as “movers” or “stayers”, respectively. Individual
fish behaving as movers show low levels of agonistic
behavior. They move relatively frequently and forage
mostly on prey taken from the water surface or on the
substrate. Individual fish behaving as stayers move
much less frequently. They show high levels of
agonistic behavior and forage primarily on prey carried
to them as drift by the water current (Noakes 1994). A
good deal of earlier literature of the behavior of
juvenile salmonids in streams had described similar
differences in behavior and had assumed that stayers
represented the only successful tactic. Movers were
generally assumed to be making the best of a bad lot,
as a consequence of their smaller size, failure to obtain

or hold a territory or late emergence from the redd after
all suitable territories had been taken (Noakes 1978a).
Detailed studies of foraging activities, growth rates and
social interactions of these juvenile brook charr clearly
showed that this is not the case. We used a
combination of observations and measurements of
behavior and growth in both the field and the
laboratory to compare growth rates of individual fish
showing a range of social and foraging activities.
Juvenile stream salmonids must grow rapidly and
accumulate somatic energy resources or they will not
survive their first winter (McNicol and Noakes 1981,
1984). The fitness payoffs of the behavioral tactics are
such that movers and stayers have comparable high
fitness, as estimated by growth rate (McLaughlin et al
1999). Individual fish showing other behavioral tactics,
or some combination of moving and staying, have
significantly lower growth rates, and hence lower
fitness.

Furthermore, there is a significant correlation
between these behavioral tactics and morphology of
the young brook charr, and the microhabitats charac-
teristic for the individuals (McLaughlin et al 1992;
McLaughlin and Grant 1994; McLaughlin 2001).
Stayers tend to hold position in faster water current
and they have significantly narrower caudal peduncles
and larger caudal fins. Both of these features are
associated with higher swimming efficiency in fast
water current (Brett 1965). Young brook charr reared
in faster water currents develop some of these
morphological differences (Imre et al. 2002), showing
that at least of the differences are the result of
phenotypic plasticity. We have used this evidence as
an important part of the more general hypothesis of
evolution within the genus, as I will elaborate below.

Our concurrent studies of the details of social and
foraging behavior in juvenile lake charr showed a
striking contrast to the situation with juvenile brook
char. In general, juvenile lake charr behave as movers.
They rarely show any agonistic behavior, they move
frequently and they forage opportunistically on prey
they encounter during their movements. All individ-
uals are consistent in their social and foraging
behavior, and variations in water current velocity
have no significant effect on social or foraging
behavior (Ferguson et al. 1983). There is a strong
genetic basis for the differences in species–typical
behavior (Ferguson and Noakes 1981), including a
significant maternal effect on inheritance (Ferguson
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and Noakes 1983a). The differences between the
species correspond to the typical habitats of these
species (Noakes 1989), juvenile brook charr most
commonly live in the flowing waters of streams and
juvenile lake charr most commonly live in the lentic
waters of lakes. We can understand the behavior of
these two species as a consequence of the adaptive
nature of the species–typical behavior, including the
degree of plasticity of that behavior in response to
environmental variability. The most important envi-
ronmental factor is water current, both directly as a
physical factor and indirectly through its effects on
spatial and temporal predictability of food supply for
the fish. The predictable, directional flow of water in
streams ensures that potential food items will be
delivered predictably in time and space as drift from
the upstream direction, and is an increasing function
of current velocity. Consequently a central place
foraging territory becomes increasingly profitable
(net benefit increases), given limitations of competitor
density and extreme water current velocity (Grant and
Noakes 1987c). Juvenile brook charr respond adap-
tively to water current velocity, the faster the current
the more likely the fish will behave as stayers.
Juvenile brook charr exposed to low water current
velocity are more likely to behave as movers, since
the net benefit (food delivered as drift by the water
current) from the territory decreases. In contrast,
juvenile lake charr do not show any consistent change
in behavior across the same range of water current
velocities (Ferguson et al. 1983). Juvenile charr in
lakes will rarely if ever encounter the consistent,
directional water current found in streams, so there is
no advantage to defend a fixed, central place foraging
territory, or to evolve plasticity in their response to
water current velocity (Noakes 1989). In contrast,
juvenile brook charr will certainly encounter a range
of water current velocities in streams, so it is not
surprising that they show plasticity in their response
to water current.

Interestingly, the behavior of juvenile brook charr
in lakes confirms the generality of these findings.
Juvenile brook charr in lakes, where directional water
currents do not exist, behave as movers (Biro et al.
1997). They behave essentially as juvenile lake charr
would in that situation. Thus we concluded that the
species–typical behavior of each species, including
the plasticity of that behavior, can be understood as
adaptive to the characteristic habitat of the species.

We extended this background to the behavior and
ecology of Arctic char, through our studies of that
species in Iceland (Skulason et al. 1996). This
species, particularly in Iceland, epitomizes the “charr
problem” in terms of the bewildering range of
variability in morphology, behavior, life history and
ecology (Fig. 1). We demonstrated that those differ-
ences are genetically based (Perrault et al. 1990;
Skulason et al. 1989a, b, 1993, 1996, 1999; Snorrason
et al. 1994). Individuals produced by artificial crosses
between adults of different morphs develop interme-
diate phenotypes in common garden experiments
(Skulason et al. 1996; Eiríksson et al. 1999). The
genetic differences between sympatric morphs are
small (Danzmann et al. 1991; Ferguson et al. 1990;
Noakes et al. 1989) but they correspond well with
ecological and morphological differences (Gislason et
al. 1999). Furthermore, and most importantly, it is
clear that these differences have arisen sympatrically,
almost certainly as a result of resource polymorphism
(Skulason and Smith 1995; Skulason et al. 1999;
Snorrason and Skulason 2004). It is clear that
morphologically similar morphs have evolved repeat-
edly and independently in different lakes (Gislason et
al. 1999). For example, small benthic Arctic charr are
found in a number of locations throughout Iceland
(Sigursteinsdottir and Kristjansson 2005), most likely
in response to specific lava habitats (Fig. 3). This
evidence discounts the most likely alternative hypoth-
esis, which proposes repeated invasions of genetically
different arctic charr populations into the lakes.

Fig. 3 A small benthic artic charr, Salvelinus alpinus, from
Thingvallavatn, Iceland to show details of dark body colora-
tion, rounded head shape and subterminal position of the mouth
(photograph by David Noakes)
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Differentiation within the species is sympatric (intra-
lacustrine), and occurs repeatedly, independently and
(probably) convergently in different lakes. Phenotypic
plasticity certainly seems to be a part of this process
(Riddell and Leggett 1981; Wimberger 1994; DeWitt
et al. 1998; Price et al. 2003; Sih et al. 2004a, b), but
the extent of that is yet to be determined.

We have proposed a model (DeKerckove et al.
2006) with a mechanism for sympatric differentiation,
based on initial behavioral differences. Those behav-
ioral differences reinforce morphological (and other)
differences, leading eventually to reproductive isola-
tion between morphs with alternative foraging and
social tactics. A critical feature of the model is the
pattern of fitness benefits (=growth) for juveniles. We
have established by a series of laboratory and field
studies that young brook charr behave in one of two
ways, “movers” or “stayers”, based upon foraging and
social behavior. Movers forage while swimming
about and show low levels of agonistic behavior.
Stayers are central place foragers and show high
levels of agonistic behavior. The fitness distribution
of these young brook charr is bimodal, in that fitness
of movers and stayers appears to be about equal. The
bimodal pattern we observed in young brook charr is
produced by the model only if it incorporates the full
set of variables, suggesting that this is a consequence
of multiple, subtle mechanisms. We see the initial
stages of this process in the alternative foraging and
social tactics of juvenile brook char, with consequent
benefits to the growth of the young behaving either as
movers or stayers. Those differences do not progress
beyond those initial stages in brook charr in streams
(Imre et al. 2001, 2002), because the environmental
conditions encountered by brook charr in streams are
too variable and unpredictable from year to year
(Curry et al. 1994, 1995, 1997, Noakes and Curry
1995; McLaughlin and Grant 2001). This means that
the initial behavioral differences cannot be reinforced
by reproductive isolation between those tactics select-
ed to reproduce in unique spawning locations.
Streams are inherently unstable in both space and
time, with fluctuations in spawning site characteristics
and locations as a result of changes in water flow,
erosion, sediment transport and bedload changes
(Curry et al. 1994; Clément 2003). Fish within a
stream can encounter a wide range of water current
velocities, temperature and prey availability over very
small spatial and temporal scales.

The conditions found in lakes, in contrast, provide
relatively greater long-term stability of the physical
habitat. Charrs, like many salmonid fishes, are
characterized by philopatry in their spawning behav-
ior (Noakes and Curry 1995). Spawning habitats in
lakes are often site-specific, with significant conse-
quences for early development, including behavior
(Gunn and Noakes 1986, 1987; Curry et al. 1995).
For example, the presence and specific qualities of
groundwater at spawning sites can produce particular
physico-chemical conditions for the developing em-
bryos. Those conditions will have significant effects
on early development and emergence time of the
young at each site. The spawning segregation of
polymorphic charr to site-specific sites would lead to
enhanced differentiation among the morphs within the
lake, and eventually the increasing degrees of repro-
ductive isolation seen in different Icelandic lakes
(Skulason et al. 1989b; Gislason et al. 1999).

Fig. 4 a Piscivorous morph of lake charr, Salvelinus namay-
cush, from Great Bear Lake, Northwest Territories, Canada.
Note the large terminal mouth, uniform gray coloration and
relatively narrow caudal peduncle. (photo by Craig Blackie). b
Benthivorous morph of lake charr, S. namaycush, from Great
Bear Lake, Northwest Territories, Canada. Note the relatively
small, somewhat subterminal mouth and red coloration on the
fins and body. (photo by Craig Blackie)
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This would certainly lead us to predict that we
should find sympatric trophic polymorphism in charr
species living in lakes, but not in streams. Tests of this
prediction are still very much in progress, but the
results thus far are entirely in agreement with the
prediction. Lake charr in Great Bear Lake, a large,
relatively undisturbed lake in arctic Canada show
clear evidence of sympatric trophic morphs (Fig. 4)
(Blackie et al. 2003; Alfonso 2004). There is also
evidence, although it is less clear as a consequence of
human disturbances, of similar polymorphism of lake
charr in Lake Superior in the Laurentian Great Lakes.
The multitude of populations of various charr species
in lakes and rivers provides a wealth of opportunities
to further test the predictions of our model in these
and other species.
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