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Abstract
Between 2002 and 2017, concentrations of fine particulate matter (PM2.5) decreased 37% 
in the United States. Environmental economic theory generally assumes that environmental 
improvement is associated with a decrease in the marginal damage of emissions. In this 
case, the marginal damages of PM2.5 precursor emissions (NH3, NOX, primary PM2.5, and 
SO2) increased substantially. I calculate the change in the marginal damages of emissions 
between 2002 and 2017, finding increases, on average, of 30% for NH3, 46% for NOX, 61% 
for primary PM2.5, and 36% for SO2. The increase in marginal damages is especially large 
in the southeastern United States, with values more than double over this time period. The 
key factors that influence this change in marginal damages are the shape of the concentra-
tion-response (C-R) function that was adopted for these calculations between PM2.5 expo-
sure and mortality (positive effect), the increase in the real value of a statistical life (posi-
tive effect), the increased population (positive effect), the aging of the population (positive 
effect), the decreased age-specific mortality rates (negative effect), and the geographic 
distribution of emissions (mixed effect). Between 32 and 65% of the increase in marginal 
damages is attributable to the shape of the C-R function and the decreased concentration 
of PM2.5. The C-R function adopted here indicates that the marginal effect of concentra-
tion reductions is higher at lower concentrations. Thus, at the lower PM2.5 concentrations 
resulting from improvements over 15 years, there would be a larger reduction in mortality 
from each additional unit of pollution reduction.

Keywords  Air pollution · Air quality · Marginal damages · Concentration-response 
function

1  Introduction

Air quality in the United States (US) has improved substantially since 2000, with fine 
particulate matter (PM2.5) concentrations reduced, on average, 37% (US Environmental 
Protection Agency 2022b). Corresponding to this improvement, emissions of all criteria 
air pollutants have decreased between 2000 and 2021, most notably with sulfur dioxide 
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(SO2) and nitrogen oxides (NOX) declining by 89% and 66%, respectively (US Environ-
mental Protection Agency 2022a). The benefits of these air quality improvements, in terms 
of improved health and reduced mortality, are enormous, and estimates from regulatory 
impact analyses from the Environmental Protection Agency (EPA) show that these benefits 
greatly outweigh the costs of pollution abatement (US EPA 2011, 2013).

In the traditional economic model of environmental degradation, the marginal benefits 
of abatement are declining as environmental quality improves, generally leading to an opti-
mal environmental quality in which the marginal benefits equal the marginal costs of addi-
tional abatement. Following the improvements in air quality of the magnitude observed 
over the past 20 years, one may expect the marginal benefits today of additional pollution 
reductions to be much lower than in the past. Here, the change in the marginal benefits 
of abatement (or alternatively, the marginal damages of emissions) are calculated between 
2002 and 2017 using air pollution modelling and concentration-response (C-R) functions 
from the epidemiological literature, and show, for a variety of reasons, that the marginal 
benefits of abatement were substantially higher in 2017 than they were 15 years prior when 
air quality was much worse. I explore and discuss the reasons why, using standard methods 
for calculating air pollution damages, that the marginal damages increased over time. If the 
marginal benefits of additional air pollution reductions are greater today than in the past, 
then it suggests that it may be optimal to achieve even more pollution reductions—poten-
tially substantial reductions.

Our focus is on PM2.5 pollution, and the emission of those pollutants that contribute to 
PM2.5 concentrations. PM2.5 is composed of small solid particles and liquid droplets, less 
than 2.5 microns in diameter (US EPA 2021a). This fine particulate matter is distinguished 
from coarse particulate matter, less than 10 microns in diameter (PM10), in being able to 
travel much greater distances from the sources of emission and potentially penetrate more 
deeply into the lungs when inhaled, causing serious health effects (US EPA 2021a). Ambi-
ent exposure to PM2.5 is associated with several detrimental health effects, including pre-
mature mortality from ischemic heart disease, stroke, and upper respiratory tract infections 
(Krewski et al. 2009; Lepeule et al. 2012; Thurston et al. 2016; Burnett et al. 2018), and is 
estimated to be responsible for between 100,000–200,000 deaths in the US per year (Good-
kind et al. 2019; Burnett et al. 2018).

The emission of several pollutants contributes to ambient PM2.5 concentrations. 
These pollutants can be either emitted as primary PM2.5 (emitted already in the form 
of fine particulate matter), or as other pollutants: SO2, NOX, ammonia (NH3) or vola-
tile organic compounds (VOC), which form into secondary PM2.5 in the atmosphere. 
The ambient PM2.5 concentration combines primary and secondary PM2.5. Because the 
mechanism for regulating PM2.5 concentrations is at the sources of emissions of the 
contributing pollutants, the focus of the analysis is on the changes in the marginal dam-
ages of emissions over time of four pollutants (primary PM2.5, SO2, NOX, and NH3) that 
contribute to PM2.5 concentrations. Due to changes in the methodology of calculating 
quantities of emissions of VOCs over this time period, it is not possible to provide accu-
rate calculations of the change in marginal damages of VOCs. Therefore, VOCs were 
excluded from the analysis.1

1  While there are large quantities of VOC emissions, the marginal damages of VOCs are generally substan-
tially lower per unit of mass than emissions of the other four pollutants, and thus make up a relatively small 
share of total damages from PM2.5 air pollution—by one estimate, VOC emissions were responsible for 
11.6% of total PM2.5 air pollution damages in 2011 (Goodkind et al. 2019).
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Why have the marginal damage of emissions increased between 2002 and 2017? 
There are two key factors: (i) a positive shift in the marginal damage function due to 
demographic changes and increases in the value of mortality risk reductions, and (ii) a 
movement up along the marginal damage function resulting from concentration reduc-
tions and the relationship between PM2.5 and health effects.

The key demographic changes are to the total population of the US, the age distribu-
tion of the population, and the age-specific mortality rates. Between 2002 and 2017, 
the contiguous US adult population increased 16%. All else equal, the more people that 
are exposed to pollution, the larger the marginal damages per unit of emission. During 
this time period, the population got older on average, with a much larger share of the 
population represented by the oldest age groups. Studies suggest that older populations 
are at much higher risk of mortality from exposure to PM2.5 than younger populations 
(Burnett et al. 2018; Yin et al. 2021; Shumake et al. 2013). With an older, more pollu-
tion-vulnerable population, the marginal impact of emissions is larger. However, over 
this period, the age-group specific mortality rates decreased substantially, suggesting an 
overall healthier population, diminishing the effect of an older population.

Another factor leading to a shift in the marginal damages is that over time, with a 
wealthier population, one would expect the marginal willingness-to-pay for mortality 
risk reductions, the so-called value of a statistical life (VSL), to increase. An increased 
VSL is likely to contribute to a relatively small increase in the marginal damages of 
emissions.

These demographic and VSL changes led to a positive shift in the marginal damage func-
tion. As a simplified illustration of this effect, Fig. 1 demonstrates the marginal damages 
of a one-unit PM2.5 concentration change for the city of Charlotte, NC, which experienced 
a large population increase and a large PM2.5 concentration decrease. The blue line shows 
the marginal damages given 2002 conditions, and the red line shows the increased marginal 
damages after the demographic and VSL changes by 2017. This shift led to a 38% increase 
in the marginal damages (as shown by the vertical distance: ΔMDshift ). Thus, if PM2.5 con-
centrations had remained constant at 2002 levels—approximately 14  µg  m−3—marginal 
damages of PM2.5 would have increased 38% due to the demographic and VSL changes.

Our second factor, leading to the movement left and up the marginal damage function, is 
the result of the shape of the relationship between air pollution and mortality—i.e., the C-R 
function. The epidemiological research suggests that the relative risk of mortality from expo-
sure to PM2.5 is concave (Krewski et al. 2009; Pope et al. 2011; Crouse et al. 2012; Burnett 
et  al. 2014, 2018; Vodonos et  al. 2018; Christidis et  al. 2019). This relationship indicates 
that the marginal increase in the risk of mortality from exposure to more PM2.5 is higher 
at lower concentrations. This means that a one-unit reduction in PM2.5 to a population with 
relative clean air will save more lives than a similar reduction for a population with relatively 
dirty air. Thus, the population in 2017, with relatively cleaner air than in 2002, should exhibit 
more, not less, marginal benefit from an additional unit of pollution reduction.

The C-R function adopted for the present analysis is illustrated by the shape of the mar-
ginal damage functions in Fig. 1, which are declining with higher PM2.5 concentrations. 
In Fig.  1, and throughout this paper, I use the C-R function from Burnett et  al. (2018) 
[also called the Global Exposure Mortality Model (GEMM)]. Figure 1 shows that along 
the 2017 marginal damage function (red curve), the marginal damages at the higher PM2.5 
concentration in 2002 (14.2  µg  m−3) are substantially lower than the marginal damages 
with the lower PM2.5 concentration in 2017 (7.8 µg m−3). By reducing the concentration by 
45% in Charlotte, the marginal benefit of an additional unit of reduction increased by 36% 
(as shown by the vertical distance: ΔMDΔPM).
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This effect illustrated for Charlotte, NC is representative of an effect experienced 
across the US between 2002 and 2017. This example is a simplification of the analysis 
by examining a single location and the exposure to PM2.5 concentrations, whereas the 
analysis that follows traces the pollution back to the sources of all emissions across the 
contiguous US. Using emission inventories between 2002 and 2017, air pollution model-
ling, and the GEMM C-R function, the marginal damages of emissions from all sources in 
the US over this period were calculated, identifying key trends and factors explaining the 
changes. Section 2 describes the methods used, Sect. 3 presents the results of the analysis, 
and Sect. 4 concludes.
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Fig. 1   Marginal damage functions for Charlotte, NC example. The solid-blue curve represents the marginal 
damages of an additional unit of PM2.5 concentration exposure for the city, given 2002 conditions. The 
solid-red curve represents the marginal damages given 2017 conditions. The dashed blue lines show the 
PM2.5 concentration in 2002 and the mapping to marginal damages in 2002. The dashed red lines show the 
lower PM2.5 concentration in 2017 and the mapping to increased marginal damages in 2017. The vertical 
distance (ΔMDshift) represents the positive shift in the marginal damage function due to demographic and 
VSL changes. The vertical distance (ΔMDΔPM) represents the increased marginal damages in 2017 com-
pared with 2002 due to the reduction in PM2.5 concentration (ΔPM) over this period
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2 � Methods

2.1 � Marginal damages

The primary indicator to be calculated are the marginal damages of emissions from a particu-
lar source of emissions. This is calculated for all sources of emissions in the contiguous US, 
for four pollutants, and for six different years of emission inventories (2002, 2005, 2008, 2011, 
2014, and 2017). I start by deriving the marginal damage of emissions equation. The only health 
endpoint included is adult premature mortality. This is likely to result in an underestimate of the 
total damages from emissions, but only slightly, as other calculations of air pollution damages 
indicate that the damages from other health endpoints and environmental consequences of air 
pollution are small in comparison to premature mortality (Muller and Mendelsohn 2007).

Before calculating the marginal damages of emissions, we need to derive the total mor-
tality ( Mi ) in location i , which is exposed to ambient PM2.5 concentrations ( Ci).

where pi is the population, and �i is the mortality rate, which is some function of the ambi-
ent PM2.5 concentration.2 The relationship that explains how the mortality rate changes 
with different PM2.5 concentrations is the C-R function or relative-risk ( RR ) function. Tak-
ing the observed mortality rate, �0

i
 , given the observed PM2.5 concentration, C0

i
 , as the base-

line risk ( RR = 1), then the mortality rate at any other concentration, Ci , can be calculated 
as �i

(

Ci

)

= �
0

i
⋅ RR

(
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)

 . Total mortality, in Eq. (1), becomes Mi

(
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)
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0

i
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(

Ci

)

.

Next, the equation for the marginal increase in mortality from a one-unit increase in the 
PM2.5 concentration in location i is,

For this derivative ( RR′ ), I adopt an estimate from the epidemiological literature—the 
GEMM C-R function in Burnett et al. (2018). The GEMM is a series of meta-regressions 
using 15 independent individual-level cohort studies combined with an additional 26 rel-
ative-risk estimates from the literature of the C-R function between ambient PM2.5 and 
cause- and age-specific morality. Using the estimated GEMM functions, the change in the 
relative risk of mortality for any one-unit change in PM2.5 concentration is obtained.

The marginal mortality estimate can be converted into marginal damages at the baseline 
concentrations by multiplying by the VSL ( V)3:

Equation (2) are the marginal damages of a change in PM2.5 concentration at any loca-
tion. Next, is the equation for the marginal damages of emissions from a source. Any 
source of emissions is likely to impact many downwind locations. Therefore, the marginal 
damages of emissions of pollutant s from source j are the sum of the marginal damages 
of a concentration increase in all locations i shown in Eq. (2), weighted by the marginal 
increase in concentrations at i resulting from increased emissions at j:

(1)Mi

(

Ci

)

= pi ⋅ �i
(

Ci

)

dMi

(

Ci

)

dCi

= pi ⋅ �
0

i
⋅ RR�

(

Ci

)

.

(2)MDi

(

C0

i

)

= V ⋅ pi ⋅ �
0

i
⋅ RR�

(

C0

i

)

.

2  All populations and mortality rates are age-group specific, which is suppressed here for simplicity.
3  The baseline VSL measure used in this analysis is a uniform VSL applied to all populations. Two addi-
tional VSL measurements which are age adjusted were also evaluated.
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where �s
ij
 is the change in PM2.5 concentration in location i from a one-unit increase in 

emissions of pollutant s at source j . The �s
ij
 coefficients come from the InMAP Source-

Receptor Matrix (ISRM) in Goodkind et al. (2019). The ISRM uses a reduced form air-
quality model, InMAP (Tessum et  al. 2017), and isolates the impact of emissions from 
any particular source grid cell in the US to all possible locations. The ISRM uses variable-
sized grid cells, with smaller grid cells in areas with higher population density. Marginal 
damages of emissions from every grid cell in the ISRM are calculated, and then emission 
sources are allocated to the corresponding grid cells in the ISRM.

2.2 � Data

To calculate marginal damages, data on populations by age group, baseline (observed) 
mortality rates by age and cause, and observed PM2.5 concentrations were collected. Popu-
lation data was collected at the Census tract level, in five-year age groups, and by race and 
ethnicity for the total population (Manson et  al. 2021). Data was available for the years 
2008, 2011, 2014 and 2017. It was unavailable for 2005 and 2002, and therefore population 
data from 2000 and 2008 was interpolated to estimate populations for 2002 and 2005.

Observed mortality rates were collected from the Centers for Disease Control and Preven-
tion (CDC 2020). Data were collected for each year (2002, 2005, 2008, 2011, 2014, and 2017) 
by five-year age groups, at the state urbanization-category level. Data at the county level by 
age group was often unreliable, and therefore aggregating by urbanization category within 
a state was used. Six urbanization categories were combined into three groups: large metro 
(large central metro, large fringe metro), medium metro (medium metro, small metro), and 
non-metro (mircopolitan, noncore). These groupings exhibited substantially different age-spe-
cific mortality rates, and provided some degree of sub-state level heterogeneity in age-group 
mortality rates. The urbanization-group mortality rates were assigned to counties based on the 
county urbanization categorization (CDC 2017). Lastly, to get mortality rates for each grid 
cell, the mortality rate of the county within which the grid cell centroid resided was used. The 
mortality data included a subset of causes of death, rather than all causes. This was done to 
be consistent with the GEMM C-R function from Burnett et al. (2018), which examined the 
association between PM2.5 concentrations and deaths from non-communicable diseases plus 
lower-respiratory infections (NCD + LCI) (see Appendix for list of CDC codes included). The 
list of causes of death included in our analysis represented 87% of all deaths.

Annual average ground-level PM2.5 concentration data were collected from datasets 
using satellite measurements and calibrated with ground-level observations (van Donkelaar 
et al. 2021) for the years 2002, 2005, 2008, 2011, 2014, and 2017. The data were gridded 
at 0.1º × 0.1º across North America. These data were applied to the grid cells in the ISRM 
by taking the mean of the observations that were inside each ISRM grid cell.

2.3 � VSL

For the main analysis, a uniform VSL was applied across all ages for the willingness 
to pay for changes in mortality risk. This uniform approach is commonly adopted in 
this literature and by the EPA in regulatory impact analyses. However, estimates of 
the VSL indicate that over time the value increases with income. The EPA estimates 
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a triangular distribution of the income elasticity of the VSL with a mean of 0.49 (US 
EPA 2010). This mean value was applied to the real GDP per capita in the US over our 
study period (US Bureau of Economic Analysis 2022), to obtain VSL estimates for 
each year (in 2017$). The VSL increased by 10% (in real terms) from $9.17 million in 
2002 to $10.08 million in 2017.

Estimates of the VSL are often derived from hedonic wage analyses, studying the 
relationship between compensation and the risk of death on the job of the working-age 
population. Studies of the risk of premature mortality related to air pollution exposure, 
find that the overwhelming majority of victims are older than the typical working-age 
adult. This raises the question if it is appropriate to apply the VSL derived by deci-
sions of working-age adults to the generally older population harmed by air pollution. 
To illustrate the importance of age, the results are produced using a VSL uniformly 
applied to all populations—as is done by the EPA—as well as two alternative estimates 
of the VSL that are age adjusted.

The first age-adjusted VSL, which has intuitive appeal, is to apply a uniform value 
for each additional year of life expectancy (i.e., a uniform VSL-year or VSLY). In this 
approach, it is assumed that each year has equal value, on average, to individuals of 
any age, but the VSL is larger for younger individuals than older because they have 
more years of remaining life expectancy. With this measurement, the VSL at any age 
is equal to the discounted sum of the VSLY for the remaining years of life expectancy.

Evans and Smith (2006) note that “the conclusion that VSL declines with age has 
gained a status close to a professional consensus,” which would argue in favor of the 
age-adjusted VSL described above. Evans and Smith (2006), however, demonstrate 
that there is both theoretical and empirical evidence that suggest that an ever declin-
ing VSL over one’s lifetime may not be correct. This does not imply, however, that 
the VSL is necessarily uniform for all age groups. Aldy and Viscusi (2008) estimated 
this age-VSL relationship, and found an inverted-U shaped VSL across ages, perhaps 
reflecting the levels of consumption across the lifetime. This relationship rises from 
young to middle aged workers and then declines as workers reach retirement age.

These two age-adjusted VSL measurements (i.e., VSLY and inverted-U VSL) were 
applied to the results to understand the sensitivity of the conclusions to different VSL 
methodologies. I follow Robinson et al. (2021) who used the three VSL measurements 
described above. For the VSLY, a value of $432,000 is used for each year of additional 
life expectancy, along with the estimated life expectancy by age (Arias and Xu 2019). 
This produces a VSL equal to the uniform VSL of $10.08 million for a 40-year old 
individual using a 3% discount rate. For the inverted-U VSL, the cohort-adjusted VSL 
from Aldy and Viscusi (2008) was used and adjusted so that the VSL for a 40-year old 
is again equal to $10.08 million. A potential problem with the inverted-U VSL is that 
it stops at age 62. I use the age 62 estimated VSL for all older populations, again fol-
lowing Robinson et al. (2021). Each VSL measure, across age groups, is produced in 
Table 2 in the Appendix.

2.4 � Emissions

US emissions data were downloaded from the National Emissions Inventory (NEI), 
which is compiled for every three years (2002, 2005, 2008, 2011, 2014, and 2017; US 
EPA 2021b). Emissions of primary PM2.5, SO2, NOX, NH3, and VOC were collected. Each 
year’s inventory is separated into point, non-point, on-road, and non-road sources. All 
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emissions needed to be allocated to ISRM grid cells for the estimation of marginal dam-
ages. Every point source includes geographic locational information and were allocated to 
the grid cell it resided in. All other emission categories (non-point, on-road, and non-road) 
were summarized at the county level in the NEI. County emissions were allocated to ISRM 
grid cells proportionally to the population of the grid cells within that county. Point-source 
emissions were separated into three groups according to the release height of the emis-
sions using the effective stack height. The heights are ground level or low stacks, middle 
stacks, and high stacks which affects the magnitude and spatial distribution of the air qual-
ity effects from emissions (see details of stack height allocation in Goodkind et al. 2019).

A summary of the emissions across all categories is shown in Table 1 (Table 3 in the 
Appendix shows summaries of emissions for each category). Emissions of SO2, mostly 
from point sources, dropped from 13.5 to 2.1 million metric tons from 2002 to 2017. NOX 
emissions, mostly from point and on-road sources, also dropped substantially from over 19 
million metric tons to under 10 between 2002 to 2017. Emissions of VOC appears to have 
increased substantially over this period, but this is due to a change in the estimation meth-
ods of non-point VOC emissions in the NEI, not an actual observed increase in emissions. 
Therefore, VOCs were excluded from the analysis going forward.

2.5 � C‑R function

To make the marginal damage calculations, an appropriate C-R function was needed. To that 
end, the GEMM C-R functions were used relating NCD + LRI with PM2.5 concentrations (Bur-
nett et al. 2018). Several reasons contributed to this choice over the other available options.

It was necessary to find a C-R function that related adult premature mortality with long-
term exposure to PM2.5 air pollution. This endpoint makes up the vast majority of air pollution 
impacts in EPA calculations (US EPA 2011, 2013), and thus seems appropriate for under-
standing the changes in marginal damages over time. However, the bulk of the estimates of 
this relationship come from observational studies from the epidemiological literature. These 
estimates use sophisticated statistical methodologies and provide important associations, but 
perhaps lack the validity of causal-inference methodologies. Several strands of recent research 
have identified causal relationships between air pollution and adverse health and social effects 
(Currie and Walker 2011; Stafford 2015; Knittel et  al. 2016; Burkhardt et  al. 2019). These 
types of studies often rely upon infant health metrics as the endpoint due to more plausible 
claims of causality. These endpoints, however, are not suitable for this analysis.

Deryugina et al. (2019) found a causal relationship between air pollution and adult pre-
mature mortality, using wind direction as an instrument for pollution. This provides impor-
tant validation of this relationship, but is not directly usable for the analysis here because it 

Table 1   Emissions by pollutant 
and year (million metric tons)

NH3 NOX PM2.5 SO2 VOC

Total 2002 3.61 19.27 4.47 13.49 17.33
2005 3.70 17.12 4.91 13.37 16.57
2008 3.65 15.89 3.88 9.15 47.15
2011 3.49 13.63 3.67 5.71 48.38
2014 2.97 11.86 3.34 4.05 46.22
2017 3.49 9.61 2.86 2.07 31.10
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is silent on the shape of the air pollution/mortality relationship. The shape of the C-R func-
tion is vital for the analysis being conducted in the present paper, in being able to indicate 
how changes in PM2.5 concentrations affect the marginal damages of emissions. Several esti-
mates from the epidemiological literature address the shape of the C-R function, with many 
finding a concave shape (Krewski et al. 2009; Pope et al. 2011; Crouse et al. 2012; Burnett 
et al. 2014; Vodonos et al. 2018; Christidis et al. 2019), with a steeper increase in mortality, 
per unit of PM2.5 increase, at low compared with high concentrations. A few papers in the 
economics literature also identified a concave shape of the air pollution C-R function—for 
example, Schlenker and Walker (2016) estimate the causal link between short-term varia-
tions in carbon monoxide and hospital admissions using airport congestion; and Gong et al. 
(2023) estimate the relationship between long-run exposure to PM2.5 and mortality in China 
using trade shocks as an instrumental variable. The GEMM is an ideal choice to understand 
the effect of a nonlinear C-R function as it is a meta regression of 41 separate studies, and 
uses a flexible functional form to let the data determine the shape of the C-R function.

The GEMM is a global estimate, mostly relying on studies from low-concentration 
countries in North America and Europe, but also including data from high-concentration 
countries, such as China (Burnett et al. 2018). There are a few major cohort studies based 
specifically on US populations (the American Cancer Society Study and the Harvard Six-
Cities Study)—which are both included in the GEMM meta regression (Turner et al. 2016; 
Lepeule et al. 2012)—but estimates from these studies do not address the question of shape 
to the same degree as GEMM.

With the caveats that GEMM is based on associational, and not causal, studies, and is esti-
mated for global populations, it was the best C-R function for the present analysis. While there 
is strong suggestive evidence that the C-R function is concave, this is not a settled question with 
definitive proof. The analysis provided here illustrates the effect on marginal damages from emis-
sions as PM2.5 concentrations improve if we have a concave C-R function as found in GEMM.

The GEMM functions are stratified by five-year age groups for the adult population. 
The left panel of Fig. 2 illustrates the marginal relative risk [i.e., the change in the rela-
tive risk of mortality from a 1 µg  m−3 increase in PM2.5 concentration—or the RR′

(

Ci

)

 
from Eq. (2)] for each age group. Two important features are evident from these functions. 
First, the marginal change in risk is much greater at lower concentrations than higher con-
centrations. Each function is relatively flat above approximately 13  µg  m−3, and has a 
steep slope between 4 and 9 µg m−3. There is a two-fold greater risk reduction in going 
from a PM2.5 concentration of 5 to 4 µg m−3 than from going from 14 to 13 µg m−3. Sec-
ond, the marginal relative-risk reduction is greater for younger compared with older popu-
lations. Thus, all else equal, an air quality improvement will provide a larger relative-risk 
reduction to younger populations. However, the absolute risk reductions are much larger 
for older populations who face substantially higher baseline risks of mortality, as is illus-
trated in the right panel of Fig. 2—the right panel shows the change in the mortality rate 
by age groups from a 1 µg m−3 increase in PM2.5 concentration, with substantially larger 
changes in the mortality rate for older populations compared with younger adults.

2.6 � Scenarios

In addition to calculating the changes in marginal damages over time, the factors 
that most influenced these changes were of interest. In particular, were how changes 
in the PM2.5 concentration, the VSL, the total population, the age distribution of the 
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population, the age-specific mortality rates, and the location of emission sources each 
impact the marginal damages of emissions between 2002 and 2017.

To understand the effect of one of these factors, I see how the marginal damages in 
2017 compare if one factor is held at 2002 levels. For example, with the VSL, this is 
easily accomplished by using the 2002 VSL value in the calculation for 2017 marginal 
damages. Then comparing the original 2017 marginal damages and these adjusted 2017 
marginal damages (with the 2002 VSL), the effect of an increased VSL between 2002 
and 2017 on the marginal damages was isolated. Similar methods were used to isolate 
the impact of the other factors involved. Most importantly, by isolating the effect of 
the change in the PM2.5 concentration, the importance of the shape of C-R function in 
increasing marginal damages as overall concentrations decline is demonstrated.

3 � Results

3.1 � Trends

To start, the trends in the factors that influence marginal damages are compared. Fig-
ure  3 shows that PM2.5 concentrations declined consistently between 2002 and 2017, 
falling 36% from a population-weighted average of 12.0 to 7.7  µg  m−3. These trends 
were consistent across racial and ethnic groups, with 38% and 34% reductions for black 
and Hispanic populations, respectively. The decline in concentration exposure was 
greatest in those locations facing the worst air quality. The 95th percentile concentration 
exposure dropped 37% from 17.9 to 11.3 µg  m−3, whereas the 5th percentile exposure 
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dropped 22% from 7.0 to 5.5 µg m−3. Figure 4 shows that the largest PM2.5 concentra-
tion reductions between 2017 and 2002 were located in the eastern half of the country 
and California, with five to ten µg m−3 declines in the Rust Belt and states in the upper 
south (see Fig. 9 in the Appendix for PM2.5 concentration maps for years 2002, 2005, 
2008, 2011, 2014, and 2017). Areas in Montana and the Pacific Northwest saw small 
concentration increases in 2017 (compared with 2002), potentially the result of abnor-
mally bad wildfires in the region.

The adult population (defined here as 25 and older) in the contiguous US (which 
excludes Hawaii, Alaska, and Puerto Rico), increased 16% from 185 to 215 million 
between 2002 and 2017. However, the age distribution of the change was not uniform. 
The 25 to 49-year-old population grew just 0.3% over this time, whereas the 50 to 
69-year-old population increased 44%, from 54 to 78 million, and the 70-and-over popu-
lation increased 23%, from 26 to 32 million. All of these population factors increase the 
marginal damages, by having a larger population, and a larger share of the population in 
age groups that are more vulnerable to air pollution.

Despite the rising population in the older age groups, the mortality rates in these groups 
decreased over time. For younger adults, aged 25 to 39, the NCD + LRI mortality rate declined 
4% between 2002 and 2017, for middle-aged adults (40 to 49-years-old) the mortality rate 
declined 16%, for the 50 to 69-year-old age group, the mortality rate declined 9%, and for the 
oldest age group, 70 and above, the mortality rate declined 17%. The lower the mortality rate, 
the less vulnerable the population is from exposure to air pollution. Also, mechanically, the 
calculation of marginal damages uses the baseline, or observed, mortality rates, and thus with 
a lower mortality rate the marginal damages are lower. It is important to distinguish the impact 
of the lower mortality rates across age groups. While the 40 to 49-year-old age group and the 
70 and above age group showed similar percent reductions in the mortality rate, the mortality 
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rate in the latter group is 30 times that of the former. Therefore, the effect on marginal dam-
ages is substantially more influenced by the reduced mortality rate in the oldest populations.

Trends in the other factors, including the spatial distribution of emissions and populations, 
are more difficult to quantify and must be inferred by the changes in the marginal damages. 
The overall trends in emissions by pollutant and the category of the source reveal a substantial 
change in the types of emissions contributing to PM2.5 concentrations. Point-source emissions 
of SO2 declined 84% from 11.4 to 1.9 million metric tons between 2002 and 2017. NOX emis-
sions from point sources and on-road vehicles declined 63% and 56%, respectively, from 2002 
to 2017. Primary PM2.5 emissions from non-point sources declined 28% over this period. Non-
point emissions of NH3—which make up 95% of all NH3 emissions—increased 4% between 
2002 and 2017. Between 2002 and 2017, substantial reductions from point and on-road sources 
occurred, but there were smaller reductions or increases in emissions from non-point sources. 
This resulted in a shift from SO2 and NOX being the overwhelming contributor to PM2.5 con-
centrations to primary PM2.5 and NH3 being major contributing pollutants.

3.2 � Marginal damages

Mean marginal damages of emissions, shown in Fig.  5, in the US increased between 
2002 and 2017 for primary PM2.5, SO2, NOX and NH3.4 Primary PM2.5 marginal damages 
increased the most, on average, from $140,000 per ton to $227,000 per ton, a 61% increase. 
Mean marginal damages of NOX, SO2, and NH3 emissions increased 46%, 36%, and 30%, 
respectively, between 2002 and 2017.

The marginal damages illustrated in Fig. 5 use the uniform VSL across ages. Using either 
of the age-adjusted VSL measurements substantially reduces marginal damages. For instance, 
calculating the mean marginal damages of primary PM2.5 emissions in 2017 with the always 
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declining VSLY across ages, were 54% lower than the uniform VSL. The mean marginal 
damages of primary PM2.5 using the inverted-U VSL were 27% lower than the uniform VSL.

It is expected that the marginal damages are smaller with either of the age-adjusted 
VSLs, but for our purposes, the interest is in how the marginal damages changed between 
2002 and 2017 using these three different VSL measures. Surprisingly, there was almost no 
difference in the change over time with any of the three VSL measures—that is, the ratio of 
the marginal damages between 2017 and 2002 was very similar across the uniform and the 
age-adjusted VSLs. Why was this so? There were substantial changes in the demographics 
of the US population, with a larger share of the population in the older age groups; how-
ever, there were also reductions in the baseline mortality rates, which offset some of the 
demographic changes. On net, from 2002 to 2017, this led to a slight increase in the share 
of air-pollution-related mortality in the oldest and middle-age groups, and a slight decrease 
in the share for the 70–79-year-old age group. The average age of an air-pollution-related 
death decreased ever so slightly from 73.71 to 73.67 between 2002 and 2017. Thus, using an 
age-adjusted VSL reduces marginal damages overall compared with a uniform VSL because 
the VSL is lower for the oldest age groups, but did not change the relative comparison of 
marginal damages between 2002 and 2017, which is the focus of our analysis. Therefore, the 
remaining results are all presented using the uniform VSL, noting that all values would be 
approximately proportionally deflated if an age-adjusted VSL were applied.

The change, spatially, in the marginal damages between 2002 and 2017 is shown in Fig. 6. 
The largest changes in overall magnitude were from emissions occurring generally near 
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population centers and in the states in the upper south and the mid-Atlantic states. Figure 7 
shows the relative changes in marginal damages by location between 2002 and 2017. The small-
est relative changes occurred in the Pacific Northwest and the western states in the Midwest. In 
the states in the upper south, marginal damages doubled or more in many locations between 
2002 and 2017.

How were these increases in marginal damages affected by each of the key factors 
discussed above? To evaluate this, a series of counter-factual simulations were run in 
which all factors were held constant at 2017 levels except one which was set at 2002 
levels. The isolated effect of each of these factors on the contribution to changes in 
mean marginal damages between 2002 and 2017 is illustrated in Fig.  8. To start, the 
effect of the decrease in PM2.5 concentrations between 2002 and 2017 were examined. 
With all other factors at 2017 levels (population, age distribution, mortality rates, VSL, 
and emissions), but PM2.5 concentrations at 2002 levels, the mean marginal damages 
of emissions were 21–23% less than the actual 2017 marginal damages. Thus, the 36% 
decrease in PM2.5 concentrations between 2002 and 2017, increased the marginal dam-
ages of emissions by approximately 22% (see teal bars in Fig. 8). This increase is the 
isolated effect of how lowered PM2.5 concentrations increased the marginal risk reduc-
tion of pollution abatement, as illustrated by the GEMM C-R response function in 
Fig. 2. Rather than reducing marginal damages of emissions as environmental quality 
improves substantially, our calculations here, when using the GEMM functions, indi-
cates that the shape of the C-R function is an essential factor in increasing the marginal 
benefits of additional abatement.

Another important factor in the changes in marginal damages of emissions were the 
demographic trends. Simulating marginal damages with the total population and age distri-
bution at 2002 levels, but all other factors at 2017 levels, led to a 19–22% reduction in mar-
ginal damages of emissions compared with the actual 2017 estimates. Thus, marginal dam-
ages would be approximately 20% lower than they were in 2017 if there were no changes 
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in the population size or makeup since 2002 (see yellow bars in Fig. 8). This combines 
the effect of the 16% increase in the adult population and the larger share of the popula-
tion over 50 years old. The growing population, with a larger share more vulnerable to the 
effects of air pollution, increases the marginal benefit of reducing additional emissions.

Along with the population changes, there were substantial reductions in the age-specific 
mortality rates. If five-year age-group mortality rates stayed at their elevated 2002 levels, 
but all other factors were kept at 2017 levels, the marginal damages of emissions would be 
17–20% higher than the actual 2017 estimates. Without the substantial improvement in the 
adult population health between 2002 and 2017, marginal damages would be substantially 
higher in 2017 (see blue bars in Fig. 8). The population is somewhat less vulnerable to air 
pollution because of these reduced mortality rates, lessening the marginal benefit of addi-
tional emission reductions.

Rising mean income in the US led to an increased value of avoiding mortality risks. 
If the VSL had remained unchanged at the 2002 level, but all other factors were at 2017 
levels, then the marginal damages would be 9% less than the actual 2017 estimates (see 
green bars in Fig. 8).

Lastly, the effect of the changes in the spatial distribution of emissions was isolated. 
When the quantity and spatial location of emissions were at 2002 levels, but all other 
factors were held at their 2017 levels, the effect is mixed on the marginal damages of 
emissions. Mean marginal damages of SO2, NH3, and NOX would be 16%, 14%, and 5% 
higher than the actual 2017 values if emissions remained unchanged at 2002 levels and 
locations. Thus, the spatial distribution of emissions of these three pollutants changed 
between 2002 and 2017 to make their marginal impact less harmful (see pink bars in 
Fig.  8). This is likely the result of disproportionate emission reductions from sources 
nearer to larger population centers. Conversely, the marginal damages of primary PM2.5 
emissions were 11% less in this simulation compared with the actual 2017 values. This 
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indicates that 2017 primary PM2.5 emission sources were more harmful due to the spa-
tial distribution compared with emissions in 2002.

Overall, reduced PM2.5 concentrations, increased population with a larger share in the 
oldest age groups, and an increased VSL contributed to a 30–60% increase in the marginal 
damages of emissions.
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4 � Conclusion

Substantial progress was made in air quality in the US over the past several decades. Rather 
than see this issue as largely resolved, our analysis here indicate that there is ample oppor-
tunity to further improve health through air pollution reductions. In fact, a large part of this 
opportunity is attributable to the reduction in PM2.5 concentrations, as this raises the mar-
ginal risk reduction from additional improvements. The increased marginal damages raise 
the possibility that additional emission reductions could yield positive net benefits.

Even supposing that the marginal benefits of abatement exceeded marginal abatement 
costs for previous emission reductions, the marginal abatement costs could be many times 
greater for additional reductions. This may be especially true for abatement from large 
point sources of SO2 and NOX, which reduced an enormous share of their emissions in the 
past 20 years. However, other sources—such as agricultural emissions of NH3, and other 
pollutants from non-point sources—did not reduce emissions to nearly the same degree. 
While these sources may prove more difficult to regulate, there is the potential for large 
gains in welfare from a focus on reducing emissions from these sources.

Appendix

CDC codes

The following items were included from ICD-10 113 cause list as a representation of non-
communicable diseases plus lower-respiratory infections for use with the GEMM C-R 
function (CDC 2020).

•	 Malignant neoplasms (C00-C97)
•	 In situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown behavior 

(D00-D48)
•	 Anemias (D50-D64)
•	 Diabetes mellitus (E10-E14)
•	 Nutritional deficiencies (E40-E64)
•	 Meningitis (G00,G03)
•	 Parkinson disease (G20-G21)
•	 Alzheimer disease (G30)
•	 Major cardiovascular diseases (I00-I78); Other disorders of circulatory system (I80-

I99)
•	 Influenza and pneumonia (J09-J18)
•	 Other acute lower respiratory infections (J20-J22,U04)
•	 Chronic lower respiratory diseases (J40-J47)
•	 Pneumoconioses and chemical effects (J60-J66,J68,U07.0)
•	 Pneumonitis due to solids and liquids (J69)
•	 Other diseases of respiratory system (J00-J06,J30- J39,J67,J70-J98)
•	 Peptic ulcer (K25-K28)
•	 Diseases of appendix (K35-K38)
•	 Hernia (K40-K46)
•	 Chronic liver disease and cirrhosis (K70,K73-K74)
•	 Cholelithiasis and other disorders of gallbladder (K80-K82)
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•	 Nephritis, nephrotic syndrome and nephrosis (N00-N07,N17-N19,N25-N27)
•	 Infections of kidney (N10-N12,N13.6,N15.1)
•	 Hyperplasia of prostate (N40)
•	 Inflammatory diseases of female pelvic organs (N70-N76)
•	 All other diseases (Residual)
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Fig. 9   PM2.5 concentrations (µg m−3) by year.  Source: van Donkelaar et al. (2021) and Author’s calculations

PM2.5 concentration maps
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VSL measurements

Table 2   VSL measurements used 
in marginal damage calculations. 
All dollar amounts are in $2017 
US dollars

Age group Uniform VSL VSLY Inverted-U VSL

25–29 $10.08 $11.36 $7.30
30–34 $10.08 $10.92 $8.60
35–39 $10.08 $10.41 $9.62
40–44 $10.08 $9.82 $10.27
45–49 $10.08 $9.17 $10.43
50–54 $10.08 $8.44 $9.97
55–59 $10.08 $7.66 $8.80
60–64 $10.08 $6.81 $6.86
65–69 $10.08 $5.91 $6.86
70–74 $10.08 $4.96 $6.86
75–79 $10.08 $3.99 $6.86
80 +  $10.08 $2.57 $6.86
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Emission totals by category
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Table 3   Emissions by pollutant, 
year, and category (million 
metric tons).  Source US EPA 
(2021b)

NH3 NOX PM2.5 SO2

On road 2002 0.26 7.11 0.14 0.22
2005 0.27 5.82 0.12 0.13
2008 0.12 6.22 0.22 0.03
2011 0.11 5.27 0.18 0.03
2014 0.10 4.38 0.15 0.03
2017 0.09 3.14 0.10 0.02

Non road 2002 0.00 4.38 0.30 0.65
2005 0.00 4.24 0.28 0.70
2008 0.00 1.77 0.16 0.03
2011 0.00 1.48 0.14 0.00
2014 0.00 1.25 0.12 0.00
2017 0.00 0.95 0.09 0.00

Non point 2002 3.19 1.46 3.23 1.19
2005 3.26 1.57 3.65 1.23
2008 3.44 3.22 2.84 0.55
2011 3.29 3.33 2.85 0.38
2014 2.79 3.12 2.63 0.23
2017 3.32 3.21 2.33 0.20

Point 2002 0.17 6.33 0.80 11.43
2005 0.16 5.48 0.87 11.31
2008 0.08 4.70 0.66 8.54
2011 0.09 3.56 0.50 5.30
2014 0.08 3.11 0.44 3.78
2017 0.08 2.32 0.34 1.85

Total 2002 3.61 19.27 4.47 13.49
2005 3.70 17.12 4.91 13.37
2008 3.65 15.89 3.88 9.15
2011 3.49 13.63 3.67 5.71
2014 2.97 11.86 3.34 4.05
2017 3.49 9.61 2.86 2.07
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