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Abstract
Numerical optimization models are used to develop scenarios of the future energy sys-
tem. Usually, they optimize the energy mix subject to engineering costs such as equip-
ment and fuel. For onshore wind energy, some of these models use cost-potential curves 
that indicate how much electricity can be generated at what cost. These curves are upward 
sloping mainly because windy sites are occupied first and further expanding wind energy 
means deploying less favorable resources. Meanwhile, real-world wind energy expansion 
is curbed by local resistance, regulatory constraints, and legal challenges. This presumably 
reflects the perceived adverse effect that onshore wind energy has on the local human pop-
ulation, as well as other negative external effects. These disamenity costs are at the core of 
this paper. We provide a comprehensive and consistent set of cost-potential curves of wind 
energy for all European countries that include disamenity costs, and which can be used 
in energy system modeling. We combine existing valuation of disamenity costs from the 
literature that describe the costs as a function of the distance between turbine and house-
holds with gridded population data, granular geospatial data of wind speeds, and additional 
land-use constraints to calculate such curves. We find that disamenity costs are not a game 
changer: for most countries and assumptions, the marginal levelized cost of onshore wind 
energy increase by 0.2–12.5 €/MWh.

Keywords  Cost-potential curves · Energy system modeling · Disamenity costs · Onshore 
wind energy · Setback distances

1  Introduction

Numerical cost optimization models of the energy system are used to develop scenarios 
of the future electricity generation mix. Under the constraint of net-zero greenhouse gas 
emissions by mid-century, the results of these cost optimization models often entail a very 
substantial expansion of onshore wind energy. This expansion often is reported to come 
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at relatively low cost, being concentrated in areas with high wind speeds. Meanwhile, the 
real-world expansion of onshore wind energy falls short in comparison to the modeled sce-
narios. In many places it has even slowed down compared to historical observations. The 
sluggishness of wind power expansion is often attributed to local resistance, presumably 
due to an adverse impact of turbines on natural amenities, their visual and noise impact, 
flicker, or a loss in scenery (e.g., Krekel and Zerrahn 2017; McKenna et al. 2021). These 
effects can be described as “disamenity costs”, that is, the monetarization of the perceived 
adverse effect onshore wind energy has on the local human population. These are one type 
of negative implications of wind turbines, along with the impact on wildlife.

Most existing energy system models today do not account for disamenity costs. Instead, 
they minimize engineering cost subject to technical as well as environmental land eligibil-
ity constraints. The simplest approach for modeling onshore wind energy expansion is a 
single assumption on the levelized cost of electricity (LCOE) per geography, which may 
be derived from investment cost and typical capacity factors. Models are then allowed 
to build wind power until the technical potential is reached (e.g., Bogdanov et  al. 2019; 
Ruhnau et al. 2022). Other models use a more detailed approach using long-term supply 
(or cost-potential) curves (e.g., Tröndle et al. 2020; Neumann 2021). Cost-potential curves 
indicate how much electricity can be generated at what cost: they show annual genera-
tion or installed capacity on the x-axis and levelized cost on the y-axis. These curves are 
upward sloping because windy sites are occupied first, and less favorable resources need to 
be deployed subsequently.1

In addition to technical and environmental constraints, some energy system models 
consider social acceptance when determining land eligibility. One common approach is to 
define a minimum distance between wind turbines and settlements to avoid adverse effects 
on local population. Many studies have estimated the feasible potential, with a wide range 
of results, depending on the underlying assumptions (e.g., Grassi et  al. 2012; McKenna 
et al. 2014; Sánchez-Lozano et al. 2014; Watson and Hudson, 2015; Samsatli et al. 2016; 
Baseer et al. 2017; Ryberg et al. 2018). For example, Watson and Hudson (2015) and Sam-
satli et al. (2016) obtain very different results for land availability for onshore wind energy 
in southern England. The former study finds that 37.8% of the area is eligible for wind 
turbines while the latter merely classifies 2% of the land as usable. This indicates the dif-
ficulties and arbitrariness of defining such constraints.

In practice, hardly any of the exclusion criteria is (or must be) a hard constraint. Instead 
of a binary classification, reality is more nuanced. Obstacles such as areas being protected 
for environmental reasons or proximity to human settlements make wind investments less 
likely, but, in general, not outright impossible. For example, Harper et  al. (2019) study 
the likelihood that certain technological, legislative, and social constraints prevent the con-
struction of wind turbines in the UK. Similarly, McKenna et al. (2021) analyze the tradeoff 
between building wind turbines in wind-rich regions and beautiful landscapes. The authors 
find evidence that planning applications for onshore wind are more likely to be rejected in 
more scenic areas. Eichhorn et al. (2019) present a framework for assessing possible wind 
sites based on environmental, social, technical, and economic aspects. Applying the frame-
work to Germany, the authors find strong trade-offs between the different objectives. These 
studies name the trade-offs and compare solutions qualitatively.

1  The fact that technological learning may drive down costs over time is typically included in separate 
equations.
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There is a small branch of the literature that studies the impact of internalizing disamenity 
costs in expansion and siting decisions. Lohr et al. (2022) assess the effect of internalizing 
environmental costs in a strongly simplified model. They observe a strong shift in technol-
ogy mix and the placement of generators. Lehmann et al. (2021) analyze how taking local 
disamenities into account changes the optimal siting of turbines in Germany. They find a sig-
nificant spatial trade-off between the engineering cost and the disamenity costs: considering 
disamenity costs substantially alters the optimal siting patterns. Grimsrud et al. (2021) study 
the effect of internalizing the external costs of wind turbines, finding that accounting for such 
costs lowers the social cost of new wind turbines significantly. Tafarte and Lehmann (2021) 
investigate trade‐offs between the most relevant criteria for siting wind turbines: engineering 
costs, disamenities for local residents, the aesthetic quality of the landscape, local nature con-
servation, and biodiversity impacts. The authors find that the cumulated costs vary signifi-
cantly between when optimizing according to these criteria.

The main objective of this work is to provide a set of onshore wind energy cost-potential 
curves for European countries to be used as inputs in energy system and power market mod-
eling in the context of net-zero emission scenarios. This research is hence best understood as 
a service to the energy modeling community. To this end we use existing valuation of dis-
amenity costs of wind turbines from the literature that describe the costs as a function of the 
distance between turbine and households, which we combine with gridded population data. 
This is essentially done in four steps: (a) creating a European dataset of “nearby population” 
for European geolocations drawing on population data from Eurostat, (b) using existing valu-
ation of disamenity costs from the academic literature on choice experiments to calculate a 
map of disamenity costs of onshore wind energy, (c) calculating a map of engineering cost 
based on reanalysis wind speed data using renewables.ninja (Staffell and Pfenninger 2016), 
and (d) determining turbine locations given land eligibility constraints using the geospatial 
tool GLAES (Ryberg et al. 2018). Combining these turbine locations with the engineering and 
disamenity cost maps yields cost-potential curves that include disamenity costs. Code and data 
will be available on Zenodo and GitHub, respectively, under a CC-BY license that allows wide 
re-use (see Code & Data Availability statement at the end of this article).

Despite the limitations of summarizing granular data in high-level statements, we think it 
is fair to say that our results show that disamenity costs are, by and large, not a game changer. 
Even when considering a truly massive expansion of wind energy and using upper end cost 
estimates we find that the disamenity costs increase the marginal LCOE of onshore wind 
energy by not more than 15 €/MWh in most Europe countries, and much less in some. How-
ever, in some of the most densely populated countries such as the Benelux region, the impact 
of disamenity costs can reach toward 25 €/MWh. Lower end disamenity cost estimates yield 
an impact on the marginal LCOE in the order of magnitude of 1 €/MWh. Compared to the gap 
in engineering costs between onshore wind and nuclear energy, to the decline in wind energy 
engineering cost in the past decade, or to the social cost of carbon of fossil-fuel electricity, 
these numbers are quite small.

The remainder of this paper is structured as follows: Sect. 2 describes the methods used 
to derive the cost-potential curves, Sect. 3 presents some analysis of the cost-potential curves 
with a focus on the impact of disamenity costs, Sect. 4 discusses the limitations of the meth-
ods and the implications of the results, and Sect. 5 draws conclusions.
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2 � Methods

This section describes our literature-based assumptions on disamenity cost curves 
(Sect. 2.1), how these are combined with population data to derive disamenity cost maps 
(Sect.  2.2), our method for calculating engineering costs based on resource potentials 
(Sect. 2.3), and the framework we use to determine the optimal turbine placement  and the 
resulting cost-potential curves (Sect.  2.4).

2.1 � Disamenity Cost Functions

There is no market for wind-turbine related disamenities. Hence, disamenity costs cannot 
be observed but need to be estimated. The existing literature uses three different approaches 
for such estimates: hedonic prices, choice experiments, and the life satisfaction approach. 
We discuss these approaches in the following.

The method of hedonic pricing is used to estimate disamenity costs based on observed 
housing prices. It can hence be classified as a “revealed preferences” approach. The under-
lying idea is that disamenities from wind energy may lower the prices for nearby property, 
in particular houses. This could be because owners obtain a lower utility from living in 
the affected houses themselves or a lower rent from tenants with a reduced willingness to 
pay. Existing studies that estimate the disamenity costs of wind energy based on housing 
prices yield ambiguous results. While many US studies find no significant effects (Lang 
et al. 2014; Hoen et al. 2015; Hoen and Atkinson-Palombo 2016), several European studies 
find a significant reduction in prices of nearby houses of − 1.4% to − 14% (Jensen et al. 
2014; Gibbons 2015; Dröes and Koster 2016; Sunak and Madlener 2016; Frondel et  al. 
2019). Because property value data for all potentially affected houses across Europe is una-
vailable, we reject hedonic pricing for evaluating disamenity costs of wind turbines within 
the European scope of this paper.

In contrast to hedonic prices, choice experiments fall within the category of “stated 
preferences” approaches. As part of the experiment, probands are asked to compare several 
wind farms, which differ by properties such as proximity, height, and the number of tur-
bines, and state their willingness to pay (WTP) for realizing the wind farm they prefer or a 
willingness to accept (WTA) the outcome they dislike. Wen et al. (2018) provide a review 
and quantitative synthesis of such choice experiments. Across the reviewed studies, the 
most significant and consistent result is that the disamenity costs decrease with the distance 
between wind turbines and the probands’ homes. The effect of a change in the number 
of turbines and in the turbine height are ambiguous. We hence focus on the relationship 
between disamenity and proximity. Most studies quantify the WTP as a function of the 
distance to a wind turbine. As an average of the reviewed studies, Wen et al. (2018) derive 
a formula for the WTP as a function of the distance d that, when converted to €/person/
turbine/year,2 yields:

By design, choice experiments estimate the relative value of a change in distance, but 
not the disamenity costs of a wind turbine in absolute terms. Hence, this approach cannot 

(1)WTP = −3.6 ⋅ ln (d) + k

2  Wen et  al. provide estimates in GBP/household/farm/year. We assume an exchange rate of 0.86 GBP/
EUR, 2 persons per household, and 5 turbines per wind farm.
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provide information on the constant k in the above formula. It is important to note that esti-
mates for the WTP are usually significantly lower than for the WTA due to income effects, 
that is, respondents’ WTP is lower because of their limited financial capacities. In a general 
review, Horowitz and McConnell (2002) report an average WTA/WTP-ratio of about 7 for 
all goods and about 10 for non-market good, the category to which wind energy disamenity 
would belong. Even though we are not aware of a systematic WTA/WTP comparison for 
wind energy, it seems likely that the WTP estimation underestimates the actual disamenity 
costs.

The third approach is the life satisfaction approach. As an alternative to evaluating 
stated and revealed preferences, it estimates the impact of nearby wind turbines on self-
reported life satisfaction, while controlling for income and other relevant confounders. The 
disamenity costs are derived by determining the increase in income needed to compensate 
the reduction in life satisfaction due to nearby wind turbines. Krekel and Zerrahn (2017) 
use this approach to estimate the disamenity costs of wind energy in Germany. They find 
average disamenity costs of about 40 €/person/turbine/year3 for households within 4 km 
distance from the wind turbine, and no significant result for distances above 4 km. As the 
authors state, a significant limitation of this approach is that “quantifications using well-
being data may overestimate the monetary effect of an environmental externality” (Krekel 
and Zerrahn, 2017). One reason for this is that likely measurement errors in the income 
variable may bias downward the estimated effect of life satisfaction on income. This would 
lead to an overestimation of the income needed to compensate the wind-related satisfaction 
loss (Frey et al. 2004).

Based on this literature, we define an upper and a lower case for the disamenity costs 
c(d) as follows and as displayed in Fig. 1:

Fig. 1   Disamenity cost functions

3  Krekel and Zerrahn report 150–250 €/person/farm/year. For conversion, we assume 5 turbines/farm.
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For the lower case, we use the WTP function from Wen et al. (2018) Eq. (1) and para-
metrize the constant k such that wind disamenities become zero at 4  km, reflecting the 
finding of Krekel and Zerrahn (2017). This lower-case function is about one order of mag-
nitude smaller than the estimate from Krekel and Zerrahn, which is not surprising given 
that WTP estimates tend to be low compared to WTA values and given that the life sat-
isfaction approach tends to overestimate disamenity costs. For the lower case, we multi-
ply the lower-case function by a factor of ten, which yields a function that is in the order 
of magnitude of Krekel and Zerrahn and which is in line with the general intuition from 
Horowitz and McConnell (2002) that estimates for the WTA could be 10 times larger than 
for the WTP in the case of non-market goods. The magnitude of the difference between our 
lower and higher cases reflects that the uncertainty regarding the disamenity costs of wind 
energy is high—a limitation which should be kept in mind when interpreting our (or any 
other) analysis on the implications of disamenity costs.

Note that the literature and, therefore, our analysis assumes a homo oeconomicus in the 
sense that the disamenity costs depend only on nearby turbines and not on how the remain-
ing population is affected. By contrast, people may behave more like a homo reciprocans 
in the sense that they feel a negative utility if other people are exposed to less turbines than 
themselves. This could be an argument in favor of a more equitable distribution of wind 
turbines although such a distribution would not be cost-optimal in the sense of our analysis.

2.2 � Disamenity Cost Maps

Our calculation of disamenity cost maps is based on the GEOSTAT population dataset,4 
which reports the number of inhabitants in a 1 × 1 km grid. For each cell in this grid, we 
estimate the number of inhabitants within a given distance pj(d) of a wind turbine located 
in the cell j . Because of the 1 × 1 km resolution, there is some ambiguity about the distri-
bution of the population within each raster cell. Likewise, there is uncertainty about the 

(2)c(d) =

{

−3.6 ⋅ ln (d) + 5.0 lowercase

−36.0 ⋅ ln (d) + 50.0 uppercase

Fig. 2   Probability matrix for a 
distance of 3 km. The values 
represent the probability of a 
randomly placed inhabitant in the 
corresponding cells being within 
3 km of a randomly placed tur-
bine placement at center cell

4  https://​ec.​europa.​eu/​euros​tat/​web/​gisco/​geoda​ta/​refer​ence-​data/​popul​ation-​distr​ibuti​on-​demog​raphy/​geost​
at.

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
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exact position of a wind turbine within a raster cell. Here, we use a stochastic approach 
that calculates the probability that the distance between a randomly placed turbine in one 
cell and a randomly placed inhabitant in another cell is below a certain threshold. This 
approach is conservative as it neglects the potential of optimizing turbine placement within 
a cell. In reality, population will often be concentrated in specific locations within a cell, 
and an optimized turbine placement could avoid these locations within a cell. This would 
lead to larger distances between turbines and population and, therefore, lower disamenity 
costs compared to our approach. Figure 2 illustrates the resulting probability matrix ma,b(d) 
for the distance d = 3km.

Counting the population within a certain distance pj(d) is efficiently achieved by convo-
luting the probability matrix ma,b(d) with the original population dataset pj:

where ja,b is the cell resulting from offsetting j by a and b , with j0,0
def

= j . Figure 3 displays 
an extract of the original population dataset (a) alongside the resulting datasets for the pop-
ulation within the distance of 1 km (b) and 3 km (c).

The derived population counts pj(d) are combined with the disamenity cost function 
c(d) from Sect. 2.1 to calculate disamenity costs Cj for a turbine located in the cell j as 
follows:

where di − di−1 are distance intervals. The first part of the equation calculates the number 
of inhabitants within this distance interval, and the second part calculates the average dis-
amenity cost for an inhabitant within this distance interval, assuming a uniform geographic 
distribution. Note that the disamenity cost function is not defined for zero and that we 
set the minimum distance d0 to 0.2 km, which is in line with the minimum distance from 

(3)pj(d) =

+d
∑

a=−d

+d
∑

b=−d

ma,b(d) ⋅ pja,b ,

(4)
Cj =

4
∑

i=1

(

pj
(

di
)

− pj
(

di−1
))

⋅

di

∫
di−1

c(r) ⋅ 2�rdr,

d0 = 0.2 km, and di = i km ∀i ∈ ℤ
+,

Fig. 3   Original population dataset  (inhabitants per km2) a, population within a distance of 1  km b, and 
population within a distance of 3 km c for the example of north-western Germany
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settlements as implemented in the turbine placement algorithm (see Sect. 2.4) Fig. 4) illus-
trates and extract of the resulting disamenity cost map (same area as displayed in Fig. 3).

2.3 � Engineering Cost Maps

To derive a European map of engineering cost of wind power, we first simulate electricity 
yields in all locations, and we then derive the levelized cost of electricity using a range of 
financial parameters.

We calculate electricity yields using simulated capacity factor time series from Trön-
dle et al. (2019).5 The time series are simulated using renewables.ninja (Staffell and Pfen-
ninger 2016) from MERRA-2 weather data for ~ 2700 onshore locations in Europe. At all 
locations, the same wind turbine is assumed: Vestas V90 2000 (the most-built wind turbine 
between 2010 and 2018 in Europe), with a hub height of 105 m (median hub height in the 
same period). The time series comprise 17 years, from 2000 to 2016, and we use the mean 
to derive annual electricity yields.

We derive the levelized cost of electricity from electricity using financial parameters 
given in Table 1. The parameters are projections for the year 2030 and, therefore, slightly 
below today’s values.

Fig. 4   Disamenity cost map (for 
the low disamenity cost scenario)

Table 1   Financial assumptions for calculating the levelized cost of electricity

O&M operation and maintenance; WACC​ weighted average cost of capital

Parameter Value Unit Source

Investment cost 1040 €/kW Danish Energy Agency (2022)
Fixed O&M cost 16.8 €/kW/yr Danish Energy Agency (2022)
Lifetime 30 yrs Danish Energy Agency (2022)
WACC​ 5 % Own assumption
Availability 90 % European Environment Agency (2009)

5  The dataset is available via https://​doi.​org/​10.​5281/​zenodo.​35330​38.

https://doi.org/10.5281/zenodo.3533038
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2.4 � Turbine Placement

To construct cost-potential curves, we first determine the placement of turbines given land 
eligibility constraints using the Geospatial Land Availability for Energy Systems (GLAES) 
package by Ryberg et  al. (2018). The considered land eligibility constraints are summa-
rized in Table 2.6 They are, with the exception of the distance to settlements, taken from 
a literature review by Ryberg et al. (2018) covering 43 studies from countries worldwide. 
The actual constraints vary substantially between and even within countries, and there are 
many exceptions to the assumed constraints (Hedenus et  al. 2022). In addition, changes 
in the corresponding laws may hinder or ease the permission of wind turbines in certain 
areas. Hence, the implemented constraints should be interpreted as an approximation of the 
very heterogenous real-world conditions. A more precise representation of this heterogene-
ity would require an extensive and detailed policy review that goes beyond the scope of 
this study.

For our main scenario, we deliberately choose a relatively small minimum distance from 
settlement areas (200 m) to explore the disamenity costs related to potential turbine place-
ment near settlements. In a sensitivity analysis, we increase the minimum distance from 
settlement areas to contrast the costs of such a hard restriction and contrast the arising costs 
with the disamenity costs resulting from the placement closer to settlements.

Given the eligible land resulting from the above exclusion criteria, the GLAES algo-
rithm determines the turbine placement that maximizes the number of turbines in a 

Table 2   Exclusion criteria and 
excluded areas for the placement 
of wind turbines, based on 
Ryberg et al. (2018)

Exclusion criteria Threshold

Altitude above sea level 1800 m
Maximum slope (degrees) 10°
Excluded areas With minimum distance
Lakes 400 m
Rivers 200 m
Settlement areas 200 m
Industrial, commercial, and mining areas 300 m
Roads (primary & secondary) 200 m
Railways 150 m
Airports 5000 m
Power lines (> 110 kV) 200 m
National parks 1000 m
Natura 2000 (protected habitats and 

protected birds)
1500 m

Protected reserves 500 m
Biospheres 300 m
Landscape protection areas 500 m
Natural monuments 1000 m
Protected wilderness 1000 m

6  Altitude and slope are taken from the Digital Elevation Model over Europe (EU-DEM), which has a spa-
tial resolution of 30 m (Ryberg et al. 2018).
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predetermined region. Note that turbines are placed on a much higher resolution than the 
1  km2 of the cost maps. The distance between any two turbines is at least 500  m. The 
number of turbines multiplied by a turbine capacity of 2 MW per turbine yields the techno-
ecological potential (given the social constraints defined in Table 2).7

The resulting placement renders a more conservative potential for onshore wind energy 
compared to previous studies. For example, the techno-ecological potential that we esti-
mate for Germany is slightly below 600 GW, while previous studies with less conservative 
assumptions on buffer zones yield potentials between 1200 GW (UBA, 2013) and 1500 
GW (Bofinger et al. 2011).

The techno-ecological potential is much larger than what can be expected to be built. 
Therefore, we refer to political expansion targets to identify a realistic range of onshore 
wind capacity expansion. Unfortunately, there is no official European net-zero energy sce-
nario. On the one hand, the latest scenario extending to 2050 is the EU reference scenario 
from 2020,8 which does not meet the net-zero emission target defined in the EU Green 
Deal. On the other hand, the more recent and more ambitious EU Green Deal scenarios9 
are on a net-zero path but end in 2030. To overcome this limitation, we use the onshore 
wind capacities for 2050 from the EU reference scenario as a lower boundary and multi-
ply these values by a factor of two for an estimated upper boundary for the expected wind 
expansion (to reflect that increased climate policy ambition likely comes with increased 
onshore wind capacity). For the example of Germany, this results in a range of 105–210 
GW onshore wind capacity, which is in line with a recent review of German net-zero sce-
narios, finding a range of 74–218 GW (Ariadne 2022).

We draw on the previously described disamenity costs, engineering costs, and turbine 
placement to derive the cost-potential curve of onshore wind energy, that is, the long-term 
marginal cost of onshore wind energy as a function of deployment. More precisely, for 
every turbine that we placed as described in Sect. 2.4, we estimate engineering and dis-
amenity costs from the cost maps defined in Sects. 2.2 and 2.3. Sorting turbines by cost 
yields the cost-potential curves. Note that the sorting of the turbines is different depend-
ing on whether disamenity costs are considered and on their magnitude. The next section 
describes and analyses the cost-potential curves in more detail.

3 � Results

In the following, we will first discuss the results of our model for the example of Ger-
many as Europe’s largest country with a high population density (Sect.  3.1). Also 
using the example of Germany, we will subsequently contrast a disamenity-cost-based 
turbine placement with enforcing minimum setback distances (Sect. 3.2), before turn-
ing toward a comparison of multiple EU countries (Sect. 3.3).

7  Note that there is no explicit limitation on the deployment density. In a single unconstrained cell, a maxi-
mum of 5 turbines could be placed, implying a maximum of 10 MW/km2. Over larger areas, however, the 
constraints will significantly reduce the (implicit) maximum deployment density.
8  https://​energy.​ec.​europa.​eu/​data-​and-​analy​sis/​energy-​model​ling/​eu-​refer​ence-​scena​rio-​2020_​en.
9  https://​energy.​ec.​europa.​eu/​data-​and-​analy​sis/​energy-​model​ling/​policy-​scena​rios-​deliv​ering-​europ​ean-​
green-​deal_​en.

https://energy.ec.europa.eu/data-and-analysis/energy-modelling/eu-reference-scenario-2020_en
https://energy.ec.europa.eu/data-and-analysis/energy-modelling/policy-scenarios-delivering-european-green-deal_en
https://energy.ec.europa.eu/data-and-analysis/energy-modelling/policy-scenarios-delivering-european-green-deal_en
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3.1 � Example of Germany

In general, we find a small to moderate impact of disamenity costs on total costs, depend-
ing on the underlying disamenity cost assumptions. This becomes visible in Fig. 5a, which 
displays the different cost-potential curves for the example of Germany. Over the entire 
techno-ecological potential of about 600 GW, the average engineering costs are 42 €/MWh, 
and the average total costs (engineering + disamenity costs) are 45 and 70 €/MWh for the 
low and for the high assumption on disamenity costs, respectively. This means that consid-
ering disamenity costs leads to an average increase in the total cost of onshore wind energy 
by 7% to 67%. However, a full exploitation of the technical potential seems both unrealistic 
and unnecessary. For perspective, we consider an expansion range of one to two times the 

Fig. 5   a Cost-potential curves for Germany based on pure engineering costs as well as total costs includ-
ing low and high disamenity costs, respectively; b Corresponding ranges of marginal costs for building 1× 
(lower bound of boxes) and 2× (upper bound of boxes) the capacity in the EU reference scenario

Fig. 6   Decomposition of the 
cost-potential curves for Ger-
many for the assumption of high 
disamenity costs into engineering 
and disamenity costs
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onshore wind capacity in the latest EU reference scenario (grey area in Fig. 5a).10 Within 
this expansion range, the marginal costs only increase by 3–5% for the low and by 23–34% 
for the high assumption on disamenity costs (Fig. 5b). A cost increase in this order of mag-
nitude does not fundamentally threaten the energy transition toward net-zero emissions. 
Nevertheless, in the case of high disamenity costs, onshore wind energy may become less 
attractive compared to other decarbonization options, in particular given the steeper slope 
of the high disamenity cost-potential curve.

Disamenity costs have limited implications on the national level, but they may signifi-
cantly alter the socially optimal turbine placement within countries. While the engineering 
cost-potential curve is based on the assumption that turbines in locations with the lowest 
engineering costs are deployed first, the total cost curves are based on the trade-off between 
engineering and disamenity costs. Based on the total cost curves, turbines may be built at 
locations with higher engineering costs due to their lower disamenity costs (Fig. 6). In fact, 
when building one to two times the onshore wind capacity in the latest EU reference sce-
nario, the average engineering costs increase by about 5% from 32 €/MWh to 34 €/MWh 
when considering high disamenity costs in the siting of turbines. Note that this is directly 
related to the energy output of the installed wind capacity: when considering disamenity 
costs, turbines are placed at less windy locations, producing about 5% less energy. The 
difference between this increase in engineering costs and the larger increase in total costs 
discussed in the previous paragraph are the actual disamenity costs after optimizing turbine 
placement for total cost.

When considering disamenity costs in the cost-potential curves, turbines are built fur-
ther away from population centers leading to a lower exposure of inhabitants to turbines. 
This is illustrated in Fig. 7, which displays the average number of turbines to which inhab-
itants in Germany are exposed when expanding wind energy according to the different 
cost-potential curves. When expanding wind energy up to one to two times the capacity in 

Fig. 7   Number of affected people in Germany within different distances from the wind turbines as a func-
tion of wind expansion by a engineering cost, b total costs including low disamenity costs, and c total costs 
including high disamenity costs

10  We consider this range to reflect that the EU reference scenario does not meet the net-zero emission tar-
get defined in the EU Green Deal and that increased climate ambition likely comes with more onshore wind 
capacity (see Sect. 2.4).
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the EU reference scenario purely by engineering costs, residents are exposed to an average 
of 3.4 to 7.4 wind turbines, respectively, within 4 km distance from their homes. When 
considering the low assumption for disamenity costs in the least-cost turbine placement, 
this number is reduced by more than 30% to 2.4 to 5.0 turbines. The average exposure is 
cut by more than 60% to 1.3 to 3.1 turbines in the high disamenity cost case. For the exam-
ple of Germany, this means that considering disamenity costs in the placement of turbines 
could reduce the number of affected people by more than 60% at an increase in engineering 
cost of only 7%.

3.2 � Enforcing Setback Distances

In our main scenario, we apply a minimum setback distance of 200 m for wind turbines to 
settlements mainly for technical and safety reasons. The attractiveness of locations close 
to settlements is determined entirely by disamenity and engineering costs. Many jurisdic-
tions in Europe require larger minimum distances of 1 km or more (McKenna et al. 2022), 
mostly motivated by the desire to reduce disamenity cost. To assess the usefulness of such 
larger setback distances, this subsection compares our main scenario with 200 m setback 
distance to two sensitivity runs applying a setback distance of 1 km (changing the respec-
tive parameter in GLAES, see Sect. 2.4). While our main scenario and the first sensitivity 
build turbines by their total costs (considering disamenity costs), the second sensitivity run 
builds turbines by their pure engineering cost (ignoring disamenity costs). Throughout this 
section, we restrict the analysis on the assumption of high disamenity costs as a conserva-
tive estimate.

Our results show that larger setback distances increase total costs without reducing 
the overall exposure to wind turbines. When the minimum setback distance of 200  m 

Fig. 8   Average costs and turbine exposure in three different deployment scenarios for Germany reaching 
1× (lower bound of boxes) and 2× (upper bound of boxes) the capacity of the EU reference scenario. Wind 
turbines are deployed using either a 200 m or 1 km minimum setback distance to settlements and either fol-
lowing minimal engineering costs or minimal total costs. a Ranges of average engineering and total costs 
and b average turbine exposure within a 4 km radius
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is increased to 1  km, the techno-ecological potential is reduced from about 600  GW to 
380  GW. When still considering disamenity costs in the turbine placement, total costs 
to reach one to two times the capacity of the EU reference scenario increase by 2 to 5% 
(Fig. 8a). This is because the strict 1 km setback distance excludes turbine locations that 
were chosen based on their low total cost, and they need to be replaced by turbines with 
higher total costs. While the setback distance naturally avoids turbine exposure within 
a 1 km radius, the exposure in the 1 to 4 km range remains constant when building the 
capacity of the EU reference scenario and even increases by 14% when building twice as 
much, compared to building the same amount of capacity with only 200 m setback dis-
tance (Fig. 8b). Apparently, some of the locations which are excluded because of the 1 km 
setback difference affected less people than the locations chosen instead. As a result, dis-
amenity costs also increase. Note that our analysis is for specific wind capacity targets. For 
a target in energy terms, costs will increase even further because larger setback differences 
exclude some of the locations with the best resources (see also Mai et al. 2021).

Using the larger setback distance and considering only engineering costs in the tur-
bine placement worsens results further. The total costs to reaching one to two times the 
capacity of the EU reference scenario increase by 13–15%, and turbine exposure rises 
by 70–120% (Fig. 8). In isolation, a setback distance of 1 km is an ineffective means to 
decrease disamenity costs of and exposure to wind turbines. Figure 9 illustrates the cost-
potential curves in the two sensitivity runs. In the first sensitivity run (Fig. 9a), the cost-
potential curve becomes much steeper than in the main scenario (Fig. 6), and the marginal 
cost increase even more than the average cost displayed in Fig. 8. In the second sensitivity 
run (Fig. 9b), it becomes apparent that a purely engineering-cost-based turbine placement 
means that some turbines will lead to very high disamenity costs, despite the implemented 
1 km minimum setback distance.

Fig. 9   Decomposition of the cost-potential curves for Germany into engineering and disamenity costs (high 
assumption) a for turbine placement with only 1 km minimum distance from settlements considering high 
disamenity costs compared and b for turbine placement with 1 km minimum distance from settlements not 
considering disamenity costs in turbine placement
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3.3 � Cross‑Country Comparison

After the previous focus on the example of Germany, this section broadens the perspective 
towards all EU countries (except for the islands of Malta and Cyprus). How relevant are 
disamenity costs for wind energy across Europe, given the different techno-ecologic poten-
tial, the targeted buildout, and population distribution? Like Sect. 3.2, this session focuses 
on the results for our high assumption on disamenity costs as a conservative estimate.

We find that the increase in the national marginal LCOE when considering disamen-
ity costs is quite different across countries (Fig.  10). Denmark represents a special case 
because its capacity target in the EU reference scenario exceeds the available potential.11 

Fig. 10   Increase in the marginal LCOE due to high (upper boxes) and low (lower boxes) disamenity costs, 
when building 1× (circles at one end of the boxes) and 2× (other end of the boxes) the capacity in the EU 
reference scenario. See footnote 9 for more information on Denmark

Fig. 11   Marginal engineering and total costs when building 1× (lower bound of boxes) and 2× (upper 
bound of boxes) the capacity in the EU reference scenario; countries are sorted by the relative increase in 
LCOE due to high disamenity costs (Fig. 10). For Denmark, the marginal engineering LCOE at full exploi-
tation of the potential is displayed (total cost exceed the graph)

11  If we assumed that the full potential was deployed, the effect of disamenity costs would exceed the 
graph, because locations with very high disamenity costs could not be avoided. This highlights the value of 
flexibility in turbine placement for reducing disamenity costs.
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Apart from this special case, Belgium, the Netherlands, and Luxemburg show the highest 
increase (up to 55% at 1× the EU reference scenario), followed by France, Germany, and 
Austria (about 23% increase at 1× the EU reference scenario). For most countries, however, 
disamenity costs have a smaller relative effect (10–20% for eight countries and < 10% for 
the remaining ten countries). Country differences increase further when the onshore wind 
capacity is increased from one to two times the EU reference scenario, because for some 
countries, the relative impact of disamenity costs increases substantially (e.g., BE, NL, 
LU, DE), while the relative impact is almost constant for others (e.g., FR, AT, SI, ES, PT, 
HR, LV).12 Such a heterogeneity in the relative effect of disamenity costs is a first indica-
tion that incorporating disamenity costs in energy system models may change the optimal 
regional distribution of onshore wind energy as well as its relevance compared to other 
energy sources, such as solar photovoltaics.

Further insights can be drawn from assessing the effect of disamenity costs in abso-
lute terms (Fig.  11). Overall, the absolute impact of disamenity costs is below 15 €/
MWh in most countries, except for the Benelux region, where the impact raises up to 25 
€/MWh for large expansion scenarios. Furthermore, disamenity costs lead to an increase 
the inter-country variability of wind onshore LCOE (from 18–38 to 19–59 €/MWh), 
which could make inter-country re-allocation of wind energy more attractive. In addi-
tion, it becomes apparent that countries with a high relative effect of disamenity costs 
(displayed in the left of Fig. 11) tend to have high engineering costs in the first place. 
Finally, some countries change their relative competitiveness. For instance, marginal 
engineering costs in Poland are cheaper than in Bulgaria, but Bulgaria is cheaper in 
terms of total costs.

Fig. 12   Marginal engineering and total costs when building 1× (lower bound of boxes) and 2× (upper 
bound of boxes) the capacity in the EU reference scenario; countries are sorted by the relative increase in 
LCOE due to disamenity costs (Fig.  10). For Denmark, the EU reference scenario exceeds the technical 
potential

12  In exceptional cases, the relative impact of disamenity costs decreases with wind capacity expansion 
(RO and FI). However, a closer look at the data revealed that the absolute impact of disamenity costs is 
almost constant, and the relative impact only decreases because the baseline engineering costs increase.
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Part of the above can be explained by the targeted potential, that is, the share of the 
techno-ecologic potential corresponding to one to two times the capacity target in the 
EU reference scenario (Fig. 12). Again, the situation is very mixed across EU countries, 
because differences in both the available potential and the targeted expansion. The coun-
tries that were earlier found to have high disamenity costs and a steep increase in disamen-
ity costs with further wind expansion are those countries with ambitions expansion targets 

Fig. 13   Map of population in South-Western Europe (inhabitants per km2). While the population in France 
is very dispersed, it is very concentrated in Spain

Fig. 14   Population’s exposure to installed wind turbines within 4  km distance when building 1× (lower 
bound of boxes) and 2× (upper bound of boxes) the capacity in the EU reference scenario; countries are 
sorted by the relative increase in LCOE due to disamenity costs (Fig. 10)
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relative to the national potential (BE, NL, LU, DE). By contrast, countries with similarly 
high disamenity costs but with a lower sensitivity to expansion have less ambitious target 
relative to the available potential (FR, AT). This is plausible as exploiting only a small 
share of the potential leaves a large degree of flexibility to avoid locations with high dis-
amenity costs. Conversely, a high target share leads to a reduced flexibility.

Some differences in the disamenity costs, however, cannot be explained by the targeted 
potential. For example, effect of disamenity costs is much smaller in Spain than in France, 
although their targeted potential and their average population densities (94 cap/km2 in 
Spain and 106 cap/km2 in France13) are similar. The cause for the difference in disamenity 
costs appears to be the spatial distribution of the population. Settlements are very dispersed 
in France and, therefore, disamenity costs can hardly be avoided. Whereas population is 
very concentrated in Spain and onshore wind energy can easily be built in remote areas 
(Fig. 13).

The heterogeneity that we find between EU countries is also reflected in the population’s 
exposure to wind turbines and in exposure reduction when considering disamenity costs in 
the turbine placement (Fig. 14). For example, Belgium, the Netherlands, and France exhibit 
similar characteristics to Germany, with about 60% reduction in exposure when consider-
ing disamenity costs. By contrast, other countries such as Italy, Sweden, Finland, Spain, 
and Portugal show a much higher reduction by up to 98%. The size of the reduction gener-
ally reflects how much flexibility there is for turbine placement. Furthermore, the initial 
exposure is driven by the coincidence of windy sites with densely populated areas, and the 
remaining exposure is highly correlated with the relative effect of disamenity costs on total 
costs (Fig. 10).

4 � Discussion

We estimated the effect of disamenity costs on cost-potential curves across 25 EU coun-
tries. Because estimates of disamenity costs are highly uncertain, we consider a range of 
plausible assumptions. For the lower end of this range, we show that disamenity costs are 
negligible and hardly affect the placement of turbines. For the upper end of the estimates, 
disamenity costs are high enough to induce substantial changes in turbine placement within 
countries. For the example of Germany, we show that higher minimal distances between 
turbines and settlements increase the disamenity costs, because it reduces the flexibility 
to explicitly trade-off disamenity costs and wind potential. This also explains some of the 
substantial heterogeneity we find between different EU countries: those countries that tar-
get to exploit a higher share of the national techno-ecological potential are likely to feature 
higher disamenity costs. Other influencing factors are the distribution of the population and 
the correlation between windy and densely populated areas.

Many of the required input assumptions are subject to substantial uncertainty, and all 
our results should be read accordingly. In addition to the uncertainty about the parametri-
zation of disamenity costs, people’s utility may also depend on how fair they perceive the 
distribution of wind turbines, which is not captured in our analysis (see Sect. 2.1). Further-
more, there is uncertainty regarding the land eligibility for turbine placement. We build on 
the internationally representative parameters recommended by Ryberg et  al. (2018), but 

13  Eurostat dataset DEMO_R_D3DENS.
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local conditions can vary substantially, and these conditions may change dynamically in 
the future. Besides, land eligibility restrictions in practice are often not binary as assumed 
in our modeling suggested in our current model, but exceptions can lead to turbine place-
ment within theoretically ineligible areas (Hedenus et  al. 2022). Such exceptions could 
allow turbine placement to respond even more to disamenity costs than in our analysis, 
especially as many of these theoretically ineligible areas will be scarcely populated.

We focused on the impact of disamenity costs on the marginal cost of onshore wind 
energy and on the turbine placement within countries. From the moderate size of the cost 
increase, it can already be seen that wind energy will remain a cornerstone of a cost-opti-
mal transition toward net-zero emissions. However, the increase in the marginal costs may 
reduce the competitiveness of wind energy compared to other decarbonization options, 
such as solar photovoltaics and energy efficency. In addition, the hererogeneity of disamen-
ity costs across European countries may change the international distribution of onshore 
wind energy. Answering these more nuanced questions would require an energy system 
model, which is beyond the scope of the current study. We hope, however, that the dataset 
published with this study will enable such an analysis in the near future.14

One objective of this study is to provide a European dataset on disamenity costs to the 
energy modeling community, as well as the scripts to tailor this dataset to individual needs 
and assumptions. Nevertheless, some public policy aspects are worthwhile to be discussed.

In this regard, it should first be acknowledged that real-world turbine placement does 
not follow a cost-optimization model. Instead, it is determined by regional planning, zon-
ing laws, permitting procedures, regulation of protected areas, distance rules, and (local) 
politics. As regional planning is a complex process that takes into account multiple objec-
tives, it may be argued that it already accounts for disamenity costs—albeit possibly in 
crude and biased ways.

To the extent that our specification of disamenity costs is accurate, economic theory 
would suggest that a first-best internalization policy would be a differentiated Pigouvian 
tax, where turbine developers would pay a fee for each turbine built that follows Eq. (1). 
Such a tax would yield the first-best allocation of turbines that minimizes social costs 
(Fig. 6), where an absence of such policy and proxy policies yields sub-optimal siting and 
hence higher costs (Fig. 9b).

Our economic analysis of disamenity costs is agnostic about whether such a Pigou-
vian tax exists. Furthermore, it is agnostic about whether the affected citizens are actually 
compensated. From a social cost perspective, the disamenity costs would occur anyways, 
and it would always make sense to consider disamenity costs in the turbine placement to 
maximize welfare (be it through a Pigouvian tax or regional planning). By contrast, a com-
pensation mechansim would address the political question about how to distribute these 
welfare gains. In this regard, a smart payment mechanism could be desirable to increase the 
public acceptance of onshore wind energy.

14  For an indication on the impact of the cost of onshore wind energy on energy scenarios, readers may 
refer to Neumann and Brown (2021). Depending on the baseline costs, a 10% cost increase may reduce the 
deployment of onshore wind energy by 5–20% (median values with regard to other parameter uncertainty).
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5 � Conclusions

We show that disamenity costs play only a minor role for the expansion of onshore wind 
energy in Europe. Only in four countries with high population densities and only if we 
assume the uncertain disamenity cost to be high do we see large increases in the marginal 
LCOE of onshore wind. In the other countries or when uncertain disamenty cost are low, 
increases in the marginal LCOE are low or negligble. Our results indicate that disamenity 
costs will not be a major hurdle for the expansion of wind energy in Europe.

However, even low increases in the marginal LCOE could lead to changes in the design 
of energy systems in the following two ways. First, considering disamenity costs can make 
wind sites with low population density attractive despite relatively low wind speeds, as 
the avoided disamenity costs can compensate for the higher engineering costs. In many 
cases, a disamenity-cost-optimized turbine placement reduces exposure strongly without 
increasing total cost much. Second, considering disamenity costs can make wind energy 
less competitive against other generation technologies, in particular solar energy, and could 
therefore lead to smaller shares of wind energy. Energy system models that can or want to 
incorporate this level of granularity need to integrate disamenity costs to be able to repre-
sent these effects. Our openly available result data allow to do that.

With regard to public policy, we conclude that an explicit consideration of diamsenity 
costs in an optimized turbine placement is more effective than minimum setback differ-
ences between wind tubines and pupulated areas. In fact, minimum setback difference can 
even be counter-productive as they reduce the flexibility for an optimized trade-off between 
disamenity costs with engineering costs.

We have focused on disamenity costs on nearby human population as one important 
component of social costs that is often neglected in energy models. Further research may 
widen the scope to internalize further cost components such as negative effects on land-
scape scenicness as well as wildlife. Despite all uncertainty about these cost components, 
this may yield a more appropriate approximation of the overall social costs of onshore 
wind power to be included in future energy system analyses.
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