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Abstract
In this paper, we identify factors that influence adoption of two types of environmen-
tal innovations, environmental patents and pollution prevention (P2) activities, and then 
measure the resulting influence of each on the pollution profile of the firm. We find that 
environmental patenting is most strongly driven by the technological capacity of the firm, 
including prior environmental patenting and prior P2 adoptions. While P2 activities are 
also influenced by prior adoptions of P2, other factors play an important role, including 
environmental innovation opportunities, the regulatory environment, and firm-specific 
characteristics. In terms of environmental outcomes, we find that both environmental tech-
nologies reduce pollution. Due to strong knowledge accumulation effects of environmental 
patents, the long-term impact of an environmental patent is stronger and longer lasting than 
the long-term impact of a P2 practice.

Keywords  Environmental patents · GMM · Innovation · Knowledge accumulation · 
Pollution prevention · Technology adoption · Toxic releases

JEL Classification  Q55 · O31 · Q53

1  Introduction

From local air or water pollution to global problems like climate change, new environmen-
tal technologies will be required to solve many environmental challenges we face today. 
Since most innovation occurs within firms, realizing the promise of environmental innova-
tions depends on the willingness of firms to invest in their own capacities to develop and 
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implement new green technologies. While firms are increasingly advertising their green 
credentials, it is unclear whether these pronouncements reflect actual commitments to envi-
ronmental improvements or are simple greenwashing behavior (Lyon and Maxwell 2011). 
Taken at face value, recent commitments by firms, for example, to be ‘water positive’ by 
2030 (i.e., to replenish more water than it uses) (Microsoft), to eliminate tailpipe emissions 
by 2035 (GM), to be zero waste (i.e., no landfill) (Disney), or to have net zero carbon emis-
sions by 2040 (Amazon and Walmart), will require new environmental technologies. In 
this research, we explore how firms may engage in a portfolio of activities to contribute to 
their innovative potential and then measure the impact of these technologies on their envi-
ronmental performance.

We consider two common types of environmental innovative activities, environmental 
patents and pollution prevention (P2) activities, and identify their impact on the chemical 
releases of the firm. Environmental patents and P2 activities serve as measures of a firm’s 
innovative potential, though they differ in several important respects. To be eligible for a 
patent, an innovation must be new, non-obvious, and useful. Acquiring an environmental 
patent takes time and effort, and hence, large and more important innovations are more 
likely to be patented. Pollution prevention (P2) or source reduction activities, on the other 
hand, involve modifying or tailoring pre-existing methods to a firm’s operations. They con-
sist of practices that reduce or eliminate “waste at the source by modifying production pro-
cesses, promoting the use of nontoxic or less toxic substances, implementing conservation 
techniques, and reusing materials rather than putting them into the waste stream” (US EPA 
2021). Thus, while acquiring a patent is typically the result of sustained, broad, and exten-
sive R&D effort, P2 activities are largely not proprietary or unique to a firm. In fact, the 
EPA publicizes materials that describe different P2 practices and manages a clearinghouse 
that allow firms to share knowledge about P2 that can be adopted by a variety of firms (US 
EPA 2020).

The different level of commitment and actions required to qualify for an environmental 
patent versus adopting a P2 activity suggest different drivers of adoption as well as dif-
ferent effectiveness in improving the environmental profile of the firm. In this paper, we 
explore the factors that promote environmental innovation in the form of environmental 
patents and P2 activities. Next, we investigate whether and how these innovations influence 
levels of toxic chemical releases. We identify if there is complementarity between the two 
environmental technologies and trace out the long-term impact of innovations on pollu-
tion by recognizing the role of knowledge accumulation from each type of innovation. This 
analysis provides a better understanding of the innovative capacity of firms in the envi-
ronmental arena and the potential for innovations to yield improvements in environmental 
quality.

To address these questions, we develop a model of a cost-minimizing firm that jointly 
chooses environmental patenting activity and pollution prevention activity. The analytic 
model implies estimating equations for patents, P2 adoption, and chemical releases. We 
empirically test our hypotheses on a sample of manufacturing firms over a 12-year period 
using dynamic GMM models with instrumental variables and fixed effects. Results show 
environmental patenting is strongly influenced by the technical capacity of the firm, which 
is measured by past patenting experience in both the environmental as well as non-environ-
mental arena, general R&D spending, and past P2 activities. P2 adoption is also influenced 
by prior P2 activity, but otherwise, the broader technology environment is not typically 
important. Rather, P2 adoption is influenced by the regulatory threat that firms face, the 
opportunities for P2 adoption based on the number of chemicals they use and the level of 
their releases, as well as firm-specific characteristics such as firm age and size. In terms 
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of the impact on pollution, we find evidence that both patenting and P2 adoption reduce 
pollution. While the immediate effects of a patent and P2 practice on pollution are modest, 
5.6% and 2%, respectively, the long-term impact are larger due to knowledge accumulation 
effects of technology adoption. We identify a strong knowledge accumulation channel for 
patenting that is influenced by both prior patenting and prior P2 adoption.

The paper proceeds as follows: we review related literature in Sect.  2; Sect.  3 pre-
sents a conceptual model of firm behavior and the resulting empirical framework; Sect. 4 
describes the sample and data. Results are presented in Sect. 5. Concluding comments and 
policy implications follow in Sect. 6.

2 � Related Literature

2.1 � Determinants of Patenting and P2 Adoption

The literature on patents and P2 have largely developed independently from each other. 
From the vast literature on innovation, patents are typically considered an outcome of 
directed research effort by the firm. Spending on research and development is a primary 
influence on patenting activities (Bound et al. 1984) but other firm specific factors such as 
the age, size, and profitability (Cohen 2010) as well as the type and concentration of the 
industry (Scherer 1965; Brunnermeier and Cohen 2003; Geroski 1990) have been found to 
influence the directed research effort of a firm and the level of general patenting activity. 
For patents in the environmental arena, in addition to the abovementioned factors, research 
identifies other important drivers such as the corporate governance of the firm (Amore and 
Bennedsen 2016; Nadeem et  al. 2020), energy prices (Popp 2002; Aghion et  al. 2016), 
the policy environment (Johnstone et al. 2010), and the technology forcing nature of some 
environmental regulations (Popp 2003; Bellas and Lange 2008, 2011). Compliance costs 
associated with environmental regulations have been found to have a mixed influence on 
environmental patenting behavior (Brunnermeier and Cohen 2003; Jaffe and Palmer 1997).

Many factors that affect patenting have also been found to influence P2 adoption. For 
example, higher spending on research and development as well as younger and larger firms 
have been shown to adopt more P2 practices (Harrington 2012). The literature on P2 adop-
tion also places emphasis on the general regulatory environment: Harrington (2013), for 
example, finds that state level pollution legislation as well as state level policies and incen-
tives for P2 adoption significantly affect firm activity in this area. Management practices 
[such as the implementation of a total quality environmental management system (Khanna 
et al. 2009)] and management-based regulations (Bennear 2007) have also been found to 
positively enhance P2 adoption.

Also useful for this current work are studies that link past experience with a technology 
to new innovative activity. Many studies find that lagged or cumulative stock of patents 
lead to more patenting in the future (Blundell et al. 1995, 1999, 2002; Ramani et al. 2008), 
though this is not universally found (Roper and Hewitt-Dundas 2015). Some studies argue 
that past patenting adds to general knowledge stock, which can lower the marginal cost of 
new innovation (a form of path dependence) to promote new patenting (Acemoglu et al. 
2012; Aghion et al. 2016). Others suggest that past patenting promotes new patenting as a 
way to maintain or create technological leadership in an industry (Rave and Goetzke 2017). 
The role of learning and the impact of a knowledge stock has been found to influence P2 
adoption as well. Lagged P2 has been shown to have a positive effect on new P2, perhaps 
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capturing path dependence, while cumulative P2 stock has a negative effect on new P2, 
which has been interpreted as capturing a diminishing effect of new P2 opportunities (Har-
rington 2013; Deltas et al. 2014).

While both environmental patents and P2 are commonly investigated environmental 
technologies, there is little direct empirical work that evaluates their joint adoption. This 
is one area where we seek to contribute to the literature. To our knowledge, the only direct 
work examining environmental patenting and P2 is Chang and Sam (2015).1 They find that 
P2 activities as well as general patenting activity influence the acquisition of environmental 
patents. They do not consider whether patenting in turn affects P2 or how their adoption 
determines environmental performance.

2.2 � Immediate and Long‑Term Impacts of Patents and P2 on Pollution

Our work is also related to the literature that examines the impact of innovations on envi-
ronmental quality. Early work related to the literature on regulation and innovation suggests 
that it is through patenting that firms meet tighter environmental standards. For example, 
to meet new regulatory standards under the Clean Air Act, Popp (2003) shows that firms 
acquired patents specifically related to scrubber technology while Bellas and Lange (2008) 
show how the stock of firm patents increased in response to this regulatory regime. Car-
rion-Flores and Innes (2010) examine the relationship between regulation-induced environ-
mental innovation and releases of toxic air emissions of manufacturing facilities and find 
that new environmental patents are an important source of reductions of toxic chemical 
releases. Outside of a regulatory context, a second strand of the literature attempts to more 
directly quantify the impact of environmental patents on environmental performance. For 
example, Antonioli et  al. (2018) find that knowledge stock (as measured by the stock of 
patents on general environmental management (i.e., air, water and waste)) increased recy-
cling across Italian regions. Tobelmann and Wendler (2019) and Zhang et al. (2017) find 
the environmental patenting contributed to reductions in carbon dioxide emissions in the 
EU and China, respectively.2

P2 practices have also been shown to improve the environmental performance of firms. 
Bui and Kapon (2012) and Ranson et al. (2015) find reductions of around 10–15% in firm 
emissions of toxic chemicals following P2 implementation. Bi and Khanna’s (2017) study 
suggests that the impact of P2 is magnified for firms that also participate in the 33/50 pro-
gram. Finally, Lee and Bi (2020) find that environmental knowledge in one area (P2 prac-
tices related to toxic releases) can lead to improvements in environmental performance in 
another area (reduction in greenhouse gases) among a set of electric power plants. These 

1  Despite the limited literature that deals directly with joint adoption of P2 practices and patents, there is 
work related to joint adoption of voluntary environmental actions (like P2) and environmental innovations 
(like a patent). For example, Brouhle et al. (2013) and Lim and Prakash (2014) find positive relationships 
between participating in a voluntary program (Climate Wise and ISO 14001) and firm patents. Carrion-Flo-
res et al. (2013), on the other hand, find a negative relationship between voluntary 33/50 program participa-
tion and environmental patents. Other work (see Cleff and Rennings 2000; Damanpour and Gopalkirshnan 
2001; Wagner 2007; Rehfeld et al. 2007; Ziegler and Nogareda 2009; Ozusaglam et al. 2018; Horbach et al. 
2012) explores the relationship between self-reported product innovations, process innovations and organi-
zational innovations (such as environmental management systems).
2  A number of studies consider the impact of environmental patents on a measure of environmental perfor-
mance in relation to productivity, including Ghisetti and Quatraro (2017) and Weina et al. (2016).



443Patents and P2: Innovation and Technology Adoption for…

1 3

studies, then, establish a positive impact of technology embedded in patent and P2 prac-
tices on the environmental performance of the firm.

Another area of the literature focuses on longer-term impacts on environmental out-
comes from the adoption of environmental technologies such as patents and P2 practices. 
In Carrion-Flores and Innes’s (2010) study, these long-term impacts on the steady state 
outcome are modest; they find that a 1% tightening of a standard induces 0.43% more 
patenting, which then yields 1.64% long-term emission reduction. Park (2014) finds that 
tighter regulations in the energy sector increased the cumulative number of patents over a 
50-year time period which in turn increased the reuse rate of coal combustion by-product. 
Harrington et al. (2014) documents large pollution reductions from continuous P2 adoption 
over a 10-year period, though these long-term effects are in the end transitory as pollution 
reductions dissipate over time.

Our study makes two major contributions related to the impact of environmental tech-
nologies on environmental performance. First, our study recognizes that firms employ a 
suite of environmental technologies to improve environmental performance, in contrast to 
the existing literature that focuses on the impact of either patents or P2 activities. Sec-
ond, we identify the long-term impact of technology adoption on pollution. In doing so, we 
measure knowledge accumulation effects and how adoption of one technology can enhance 
the stock of knowledge in either or both technologies, yielding greater pollution reduction. 
As such, we demonstrate the value of employing multiple environmental technologies on 
long-term environmental improvements.

3 � Framework

3.1 � Model

3.1.1 � Optimal Innovative Activity Choices

Consider a cost-minimizing firm i at time t producing a target output level, Y  , which may 
also generate pollution Qit as a by-product. To enhance the efficiency of production (which 
also reduces pollution), the firm may employ two types of environmental technologies: pat-
ents, Pit , and source reduction (i.e., pollution prevention) activities, Sit . These technologies 
contribute to the firm’s stock of environmental technical knowledge, Kit . The firm’s knowl-
edge stock at any point in time is a function of the sum of current and discounted past 
experience with patents and P2, i.e., Kit = ki

�
Pit, Sit

�
= ki

�∑T

�=0 �
�
�
Pi,t−�

�
,
∑T

�=0 �
�
�
Si,t−�

��
 . 

Recognizing the different effort and embodied knowledge in an environmental patent ver-
sus a P2 activity, the impact of each technology on the knowledge stock may differ, i.e., 
kP

>

<
kS . We make no assumption on the functional form of k to allow for any type of rela-

tionship between environmental technologies in the knowledge stock function (Roper and 
Hewitt-Dundas 2015).

The output of the firm depends on its raw material input usage and its technological 
knowledge, Yit = fi

(
Xit,Kit

)
 . We define purchased raw materials, Xit , but assume that only a 

portion of the raw material Xit is effectively transformed in production. Thus, effective input 
is X̂it = �i(Kit) ∗ Xit , where 1 > 𝜑K > 0 . We assume that the production function exhibits 
diminishing marginal productivity in all its arguments, ( fX > 0; fXX ≤ 0; fK > 0; fKK ≤ 0 ). 
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With a fixed output target, Y  , the firm’s choice of P and S also determines the level of input 
use, i.e., Xit = xi(Pit, Sit) . Patents and P2 can therefore affect input use differently depend-
ing on whether each is a substitute or a complement to raw material inputs in production.

Any purchased raw material that is not converted to effective input is a residual or pol-
lution, Qit = Xit − X̂it = gi

(
Xit,Kit

)
 (Ayres and Kneese 1969). The function g allows for dif-

ferences across firms on how they recycle, reuse, store, or treat the residual before it is 
released into the environment as pollution. We assume that pollution is increasing in raw 
materials ( gX > 0; gXX ≥ 0 ) and decreasing in knowledge stock ( gK < 0; gKK ≥ 0) . Since 
the knowledge stock and input level are functions of P and S, patents and P2 can have dif-
ferent impacts on productivity and pollution through their different impacts on knowledge 
stock and raw material input use.

A firm chooses P and S to minimize total costs of producing target level of output, Y  , 
where the costs include cost of raw materials, costs of both abatement technologies, and 
costs of unabated pollution. Costs of unabated pollution may include costs of waste dis-
posal and compliance, costs of regulations related to inspections, fines or penalties, or even 
indirect costs arising from neighborhood groups, lobby groups, or consumers groups pro-
testing high pollution of the firm. The unit costs of these inputs are �X , �S , �P and�Q , 
respectively. Suppressing firm and time subscripts for notational simplicity, the cost mini-
mization problem of the firm is:

The first order conditions are:

These expressions show that, at the margin, the benefit of another unit of abatement 
technology (left hand side) is equal to the cost of using that technology (right hand side). 
The marginal benefits from an extra unit of each technology consists of higher revenue 
from productivity enhancements (via f) and avoided pollution costs (via g), each arising 
from two sources: enhanced capital stock from both technologies ( �K

�P
 and �K

�S
 ) and change 

in raw material input use resulting from adoption of either technology ( �X
�P

 and �X
�S

). The 
marginal cost of an additional unit of technology is simply the sum of unit adoption cost 
and the change in costs associated with the resulting raw material input use. Thus, the opti-
mal choice of each technology may be affected by the adoption of the other according to 
whether and how much the other technology affects the size of its benefit and cost terms.

We use these first order conditions to empirically model how the optimal choice of pat-
ents and P2 depends on the knowledge stock of both technologies and on production and 
abatement technologies, reflected in f and g. Thus, the estimating equations for firm-level 
patent and source reduction activities adopted by firm i in year t are as follows:

Minimize
S,P

C = �Xx(P, S) + �PP + �SS + �Qg(x(P, S), k(P, S))

subject to Y = f (x(P, S), k(P, S))

�
(
fK
�K
�P

+ fX
�X
�P

)
− �Q

(
gK

�K
�P

+ gX
�X
�P

)
= �P + �X

�X
�P

�
(
fK
�K
�S

+ fX
�X
�S

)
− �Q

(
gK

�K
�S

+ gX
�X
�S

)
= �s + �X

�X
�S

(1)Pit = exp
(
aP + bPQit−T + cPKit−T + dPZ

P
it
+ �

P
i
+ vt + �P

it

)
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The vector of lagged knowledge stock, Kit−T , consists of most recent flow and further 
lagged stocks of patents and P2. Since production and abatement technology are unob-
served, we use a variety of observable characteristics such as past level of pollution, 
denoted as Qit−T , to indicate the level of production as well as scope of pollution genera-
tion that capture unobserved technical characteristics. The vectors ZP

it
 and ZS

it
 include other 

firm-specific exogenous variables that could affect patenting and P2 adoption such as firm 
size, broad measures of technical capacity, opportunity for technology adoption, and regu-
latory, market, and financial measures. It also includes measures for the scope of opera-
tions that can capture input use. Since many of these variables capture both production 
and abatement technology, we are unable to disentangle the productivity and abatement 
motives and the resulting effect on input choices inherent in the P2-patent relationship; we 
only empirically capture the total effects from all channels. In both equations, vt represents 
a vector of year dummies, �P

i
 and �S

i
 are firm-specific time-invariant factors that capture 

unobserved heterogeneity, and �P
it
 and �S

it
 are the random error terms.

3.1.2 � Pollution Outcome

Pollution is not directly chosen by the firm but  is an outcome from the optimal choice of 
patents and P2 through g and �.3 We are interested in measuring and comparing how the 
choices of P and S affect pollution. We show that the effects of P and S on pollution are 
through raw material input use and the knowledge stock. The expanded expression for pol-
lution can be used to analyze how it is influenced by patents and P2:

Accounting for the interrelated decisions to adopt patents and P2 (and raw materials), 
a change in environmental patents or source reduction will affect pollution through two 
major channels.4 First, an increase in technology increases the knowledge stock ( �K

�P
 and 

�K

�S
 ), which enhances the efficiency of converting raw input to effective input. Second, an 

increase in technology can influence the level of raw material input used   ( �X
�P
and

�X

�S
) . If 

patents or P2 discourage raw material input use, then lower input use reinforces the effi-
ciency enhancing effect, unambiguously reducing pollution. But if patents or P2 encourage 
raw material input use, this complementarity may partially or fully offset the efficiency 
enhancing effect and pollution may increase or decrease. Because the impact of each tech-
nology on raw material input use may differ and each technology affects knowledge stock 
differently, we anticipate patents and P2 may have non-symmetric impacts on pollution, 
which we empirically test in the next section.

The foregoing analysis allows us to specify the estimating equation for the pollution 
equation as follows:

(2)Sit = exp
(
aS + bSQit−T + cSKit−T + dSZ

S
it
+ �

S
i
+ vt + �S

it

)

Q = X − �X = x(P, S) ∗ (1 − �(k(P, S)) = g(X,K)

3  In a similar way, choosing S and P (which effectively determines X) define output, through the function f .
4  The channels that capture the full effects that account for inter-related patent and P2 decisions can be 
shown using the expression as follows: dQ

dP
= gK

(
�K

�P

)
+ gX

(
�X

�P

)
;
dQ

dS
= gK

(
�K

�S

)
+ gX

(
�X

�S

)
 . The first term 

in each expression captures the efficiency enhancing channels through which patents and P2 increase the 
knowledge stock which decreases pollution. The last term in each expression captures how each technology 
affects raw material input use.
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The vector of lagged knowledge stock measures, Kit−T consists of recent flows and 
lagged stocks of both patents and P2 similar to Eqs.  (1) and (2). Elements of cQ are 
expected to be negative, but the coefficients of specific patent and P2 variables may have 
different magnitudes. While the function g and its relevant derivatives are unobserved, 
firm-level characteristics are included in an attempt to capture some factors that embody 
g . The lagged pollution variable, Qit−T , can capture the scope of pollution generation and 
target level of output. The vector ZQ

it
 includes various time-varying exogenous factors that 

capture the general technical capacity, enforcement actions and other firm specific char-
acteristics embedded in g as well as measures to capture size and scale of operations that 
are related to extent of input use, X . �Q

i
 represents firm-specific time-invariant factors that 

capture unobserved heterogeneity, while vt represents a vector of year dummies. �Qit is the 
random error term.

3.2 � Empirical Approach and Econometric Issues

For the technology adoption decisions [Eqs. (1) and (2)], a number of econometric issues 
arise that influence our estimation approach. First, the two dependent variables, patents and 
P2, are count in nature. The count of new patents applied for in a given year and the count 
of new P2 practices adopted in a given year contain a large number of zeros (61% of obser-
vations report zero environmental patents and 52% of observations report zero new P2) and 
exhibit significant range (from 0 to 223 for environmental patents and 0 to 277 for P2). We 
presume counts of environmental patents and source reduction are distributed Poisson.

The second issue relates to the specification of the lagged dependent variable to capture past 
experience or knowledge stock in patenting or P2. The dynamic model with lagged dependent 
variable can either be modeled as a linear or multiplicative dynamic feedback model (Blundell 
et al. 1999). Since our sample consists of many zero values for patenting and P2, we use the 
multiplicative feedback model as recommended by Cameron and Trivedi (2005, 2010). For 
estimation, we utilize a two-step GMM Poisson estimator with additive errors.

The third issue relates to the presence of unobservable firm-specific time invariant char-
acteristics that might influence the acquisition of an environmental patent as well as the 
adoption of a P2 practice. Due to the count nature of the dependent (technology) varia-
bles and presence of lagged dependent variables, we cannot run a traditional fixed effects 
model. Instead, to account for firm level unobserved heterogeneity, we include several firm 
specific measures that capture time invariant propensity to innovate. In our patent equation, 
we use the average number of environmental patents received by each firm prior to our 
estimation window and its corresponding dummy variable (as in Blundell et al. 1999). In 
the P2 equation, we use the count of P2 adopted in the initial year of reporting and its cor-
responding dummy variable (as in Wooldridge 2005; Harrington 2012, 2013).

Fourth, we anticipate some endogeneity issues if time-varying unobserved factors 
jointly affect the P and S decisions. In the patent and P2 equations, we lag the other tech-
nology variable to remove any simultaneity between patenting and P2 adoption decisions. 
We also use different lagged specifications of patents and P2 flows and stocks to allow us 
to explore how different temporal specifications in knowledge and experience may affect 
each abatement strategy. Because lagging the technology (and pollution) variables may 
not remove all correlation between them and time-varying unobservables, we also utilize 

(3)Qit = aQ + bQQit−1 + cQKit−T + fQZ
Q

it
+ �Q

i
+ vt + �Qit
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instruments for these potentially endogenous variables in the two technology adoption 
decisions. The details of the instruments and tests statistics are provided in Sects. 5.1.1 and 
5.1.2. With valid instruments, coefficient estimates from the two-step GMM will be con-
sistent and efficient (Windmeijer and Santos Silva 1997). We use the GMM bias-corrected 
robust estimator clustered at the firm level (Windmeijer 2005).

Estimation of the pollution Eq.  (3) involves addressing several econometric issues as 
well: endogeneity of P2 and patents and panel data with a lagged dependent variable. 
While pollution is not a choice variable but an outcome of the optimal choices of P2 and 
patents, endogeneity of P2 and patents arise because their impact on pollution operate 
through the unobserved pollution function, g . Despite including Qit−T and ZQ

it
 to capture 

some of these unobservables, there may be remaining unmeasured factors that influence 
pollution as well as P2 and patent choices, necessitating the use of instrumental variables. 
The presence of a lagged dependent variable in a panel data framework also renders the 
traditional fixed effects estimators inconsistent (Arellano and Stephen 1991). We therefore 
employ the dynamic panel GMM model that controls for the unobservable facility-spe-
cific effects through first differencing, while relaxing the assumption of strict exogeneity 
of regressors, patents and P2. This requires system estimation of Eq. (3) and its differenced 
version and the use of instruments for the pollution variables, patents and P2. The details 
on the instruments used for the levels and differenced equations as well as the tests sta-
tistics are described in Sect. 5.2. We report the two-step estimator and the bias-corrected 
standard errors (Windmeijer 2005).

4 � Sample, Data Sources and Variable Description

The selection of our sample is primarily dictated by our choice of environmental perfor-
mance measure: the level of toxic releases of the firm. Data for our technology and envi-
ronmental performance measures are collected from the National Bureau of Economic 
Research (NBER) Patent database [as supplemented by Kogan et al. (2017)] and US EPA 
Toxic Releases Inventory (TRI). The NBER Patent database contains the count of patents 
granted to each parent company over time. For each parent company, we use each patent’s 
application year to match the patent data to the TRI database to reflect the timing of the 
discovery when the knowledge was available to the firm (as in Carrion-Flores and Innes 
2010; Popp 2003). The TRI contains annual facility-reported data on chemical-level pol-
lution and source reduction (P2) activities for each year, aggregated to the parent company 
level.5 TRI reporters that do not appear in the NBER patent database are assigned a value 
of zero for patents. Firms that appear in the patent database but do not appear at least once 
in the TRI are excluded from the sample because we are ultimately interested in the envi-
ronmental outcomes resulting from patenting and adoption of pollution prevention prac-
tices that are only available in the TRI. Thus, our findings apply to the technology adoption 
decisions and environmental performance of firms that are required to report to the TRI 
based on TRI reporting guidelines.

5  We aggregate data from facility to the parent company level data using the CUSIP code in the TRI and 
the GVKEY for patents. We obtain both CUSIP and GVKEY identifiers from the Center for Research in 
Security Prices (CRSP) and merged the TRI and patent database.
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Reporting to the TRI is limited to those facilities that meet the reporting requirements 
related to industry classification, size and volume of releases of EPCRA section 313 listed 
chemicals.6 We focus our study on the manufacturing sector (SIC 20-39) from 1992 to 
2004. The start date follows the passage of the Pollution Prevention Act of 1990 and our 
ending date is influenced by data availability and the desire to avoid any possible trunca-
tion issues that arise with the use of patent data. TRI reporting requirements have changed 
through the years with many chemicals having been added or deleted from the list in dif-
ferent years.7 Both P2 and toxic releases are reported at the chemical level, aggregated for 
each facility, then aggregated over all facilities of a parent company every year. We restrict 
our analysis to the chemicals that have been consistently reported during the sample period 
(Bi and Khanna 2017, 2012; Vidovic and Khanna 2007; Khanna and Damon 1999) to avoid 
mis-attributing changes in releases to P2 when chemical additions and deletions occur.8

We supplement our data on patents, P2 activities, and toxic releases with two additional 
datasets. First, we capture enforcement actions against firms from US EPA Enforcement 
and Compliance History Online (ECHO). While the TRI simply mandates the disclosure 
of facility level hazardous and toxic chemical releases, some of these releases are subject 
to different federal, state, or local statutes that restrict or provide guidelines for the use and 
disposal of these substances.9 Non-compliance with different environmental statutes, then, 
including those that govern the use of toxic chemicals, may result in violations, penal-
ties, and/or inspections. We use the ECHO database to measure these enforcement actions 
against firms. TRI reporters that do not appear in the ECHO database are assumed to have 
received zero enforcement actions. The final data source for our study is the Center for 
Research in Security Prices (CRSP). From this database, we extract variables that capture 
market and firm financial characteristics. Some firms have missing data for some of these 
financial variables, and different equations use different sets of these financial variable as 
controls. Our sample size is 4223 observations, except for a few models that require 3-year 
lags of explanatory variables or 3-year lags of instruments.

We classify our variables into several groups: (1) technical capacity variables, (2) pol-
lution variables, (3) regulatory variables, (4) market variables, and (5) other firm-specific 
production and financial variables. Our key interest is understanding the role of the tech-
nical capacity of the firm, which includes past patenting and source reduction activities 
as well as pollution, which is measured by total releases of toxic chemicals. The other 
categories include important control variables that might influence technology adoption 

7  See USEPA: https://​www.​epa.​gov/​system/​files/​docum​ents/​2022-​02/​tri-​chemi​cal-​list-​chang​es_2.​23.​22.​pdf.
8  Restricting our analysis to the same set of chemicals allows us to focus on the innovative efforts and 
toxic releases associated with a fixed set of chemicals. While including newly added or dropping newly 
deleted chemicals may seem attractive, doing so changes the set of chemicals for which P2 and releases are 
reported. As a result, it is challenging to know whether measured changes in innovative efforts or releases 
reflect actual changes in innovative efforts or releases. If we observe changes in our measure of innovation 
(P2) or changes in our measure of releases, we cannot verify how much of the change is due to chemical 
substitution or due to changes in reporting requirements. The latter case is particularly problematic because 
a firm may keep the same P2 practices or keep releases constant over time but would cause our measure to 
increase or decrease if the chemical is newly added or deleted to the list of required chemicals. For these 
reasons, we restrict our analysis to the same set of chemicals and recognize that the adoption and innova-
tion–pollution relationship we observe is for these fixed set of substances.
9  Information on such cross-listing can be found at: https://​www.​epa.​gov/​epcra/​conso​lidat​ed-​list-​lists.

6  The facilities required to report to the TRI belong to specific industries (NAICS), meet a minimum size 
(full time employee equivalents) and meet minimum quantity of manufacture/import/process/use of any 
EPCRA section 313 chemicals (US EPA 2019).

https://www.epa.gov/system/files/documents/2022-02/tri-chemical-list-changes_2.23.22.pdf
https://www.epa.gov/epcra/consolidated-list-lists
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and pollution as well as variables that satisfy the exclusion restrictions and can serve as 
potential instrumental variables. In Table 1, we identify which variables are used in each 
equation as well as the descriptive statistics for their original (unlogged) values. Some vari-
ables, detailed below, are transformed into natural log, and for these variables whose value 
may be zero, we added one before taking the natural log.

We capture firm technical capacity through several measures related to firm patenting, 
P2 activities, and general R&D. The dependent variable in the patent equation (Eq. 1) is 
EnvPatents, the count of environmental patents of each firm in a given year. Environmental 
patents are defined by World Intellectual Property Organization-International Patent Clas-
sification (WIPO-IPC) Green Inventory classification.10 This broad classification includes 
technology related to waste management, energy conservation, transportation, agriculture/
forestry, alternative energy production, nuclear power generation and administrative, and 
regulatory or design aspects. We utilize this broad measure because environmental patents, 
unlike P2, are not necessarily targeted towards specific chemicals or substances in the TRI. 
Our measure, then, allows us to capture unforeseen and unknown spillovers between tech-
nology areas as well as spillovers between technologies that address pollution across differ-
ent media (such as air, water, and land). Finally, our use of a broad measure, the WIPO’s 
Green Inventory classification, matches the EPA’s (broad) definition of P2 (discussed fur-
ther below).

We develop other patent measures as explanatory variables. We recognize that new 
(environmental) patenting may be promoted by past knowledge by measuring the specific 
environmental knowledge and general technical knowledge of the firm (Blundell et  al. 
1995, 2002, 1999; Ramani et  al. 2008). Specific environmental knowledge gained from 
previous environmental patents is measured with lagged EnvPatents and EnvPatent Stock, 
which is measured as the natural log of the depreciated stock of past environmental patents. 
General technical knowledge is measured with the natural log of the depreciated stock of 
non-environmental patents, denoted as Non-EnvPatents Stock. The patent stock measures 
are calculated as the cumulative sum of successful patent applications of firm i from 1987 
through year t − 1 weighted by industry specific depreciation weights (Ramani et al. 2008). 
We use industry depreciation rates from Park and Park (2006). Depreciation rates vary 
within a narrow range from 11.86% (tobacco) to 14.39% (electronics and electrical equip-
ment). We expect these measures of past patenting to be positively correlated with cur-
rent environmental patenting. We also define peer patents, Avg Peer EnvPatents, to capture 
technological spillovers between firms in the same industry. We calculate it as the natural 
log of the sum of all EnvPatents of a firm’s 2-digt SIC peers divided by the number of 
peers. To control for unobserved heterogeneity in the patent equation (as in Blundell et al. 
1999), we define EnvPatents Pre-Sample as the natural log of the average number of envi-
ronmental patents received by each firm in our dataset from 1987 to 1992. We also include 
EnvPatents Pre-Sample Dummy, which is equal to one if a firm received any environmental 
patents in the pre-sample period, and 0 otherwise.

Another set of technical capacity variables relate to source reduction (P2) activities. 
The variable Total P2 is the sum of 43 different P2 practices newly undertaken by each 
facility for each of its chemicals, summed up over all facilities of a parent company each 
year. Because only new P2 needs to be reported, low P2 counts may be due to potential 

10  The Green Inventory was developed by the IPC Committee of Experts in order to facilitate patent infor-
mation searches related to Environmentally Sound Technologies, as listed by the United Nations Frame-
work Convention on Climate Change (UNFCCC) (WIPO 2021).
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exhaustion (at least in the short term) of new P2 practices. These 43 pollution prevention 
activities are classified by the USEPA into eight broad categories: (1) good operating prac-
tices, (2) materials and inventory control, (3) spill and leak prevention, (4) raw material 
modifications, (5) equipment and process modifications, (6) cleaning and decreasing, (7) 
surface preparation and finishing practices, and (8) product modifications (US EPA 2018). 
Because facilities report (yes/no) which type of P2 they adopted for each chemical, while 
also reporting chemical-specific releases (to air, water, land, underground), the TRI report-
ing system allows facilities to directly link their abatement efforts like P2 and their pollu-
tion levels.

Consistent with other P2 studies (Harrington 2013; Deltas et al. 2014), we generate a 
number of measures of a firm’s past experience with P2 as explanatory variables. First, we 
utilize lagged Total P2. The second measure is Total P2 Stock, which is the depreciated 
sum of a firm’s past adoption of P2 activities. We use the same industry specific deprecia-
tion rate that was used to generate the environmental patent stock variable. When used as 
explanatory variables in the patent and pollution equations, we take the natural log of Total 
P2 and Total P2 Stock. To capture spillover effects, we define Avg Peer P2, which is the 
natural log of the sum of all Total P2 of a firm’s 2-digit SIC peers divided by the number 
of peers. We expect that the past P2 variables and Avg Peer P2 will be positively correlated 
with the number of new source reduction activities adopted by a firm. To control for unob-
served heterogeneity in the TotalP2 equation, we define Total P2 Pre-Sample as the num-
ber of P2 practices adopted by each firm in the first year the EPA collected P2 data, 1991 
(as in Harrington 2012, 2013; Wooldridge 2005). We also include Initial Total P2 Dummy, 
which is equal to one if a firm adopted any P2 practices in 1991, and 0 otherwise.

The final measure employed to capture the technical capacity of the firm is its spending 
on research and development. To account for size-adjusted innovativeness, we use R&D 
Intensity, which we calculate as the natural log of the ratio of 3-year moving average of 
R&D expenditures to 3-year moving average of employees. Firms with greater techni-
cal capacity are expected to be better equipped to patent, undertake source reduction, and 
reduce releases.

Our second category of variables are pollution-related variables. The dependent variable 
in the pollution equation is Total Releases, which is the natural log of the sum (in pounds) 
of the toxic releases of all chemicals used, stored, processed and released by all facilities 
of each parent company that are reported annually to the TRI. Since pollution levels may 
generate opportunities for innovation and/or determine size and scope of operations, we 
also include lagged Total Releases as an explanatory variable in both the environmental 
patenting and P2 equations. Higher levels of releases present the firm more opportunities 
to benefit from innovative activity, and thus firms with higher releases are expected to have 
more environmental patenting and source reduction activities.

Our third category of variables are regulatory variables which are meant to capture dif-
ferences in regulatory threats and liabilities that could affect innovation and pollution lev-
els of the firm. Violations is the natural log of the sum of all violations of the facilities of 
the firm. Inspections is the natural log of the count of facilities of the firm that have been 
subjected to at least one inspection. Penalties is the natural log of the dollar value of all 
penalties assessed for all facilities. Self-disclose is the natural log of the count of facilities 
of the firm that have self-disclosed a violation. In our empirical models, 2-year lagged val-
ues of all regulatory variables are used as explanatory variables. Firms that have been sub-
jected to more regulations or enforcement actions are expected to undertake more source 
reduction activities and choose lower level of releases.
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Table 1   Descriptive statistics

The descriptive statistics are for all the variables expressed in levels (not natural log)

Variable names Mean Std. Dev Patents P2 Pollution

Dependent variables
EnvPatents 4.820 16.681 X
Total P2 8.174 21.317 X
Total releases (lbs) 2,563,215 9,354,847 X
Explanatory variables
Technical capacity variables
EnvPatent 4.820 16.681 X
EnvPatent Stock 21.398 68.465 X
Avg Peer EnvPatents 1.860 3.942 X
Total P2 8.174 21.317 X
Total P2 Stock 16.147 41.069 X X
Avg Peer P2 4.860 16,681 X
Non-EnvPatent Stockt-1 43.110 151.432 X
R&D Intensityt−2 (Thd US$/employee) 7.324 22.822 X X X
Regulatory variables
Violationst−2 1.257 7.601 X X
Inspectionst−2 0.168 0.374 X X
Self-discloset−2 0.075 2.079 X
Penaltiest−2 (US$) 142,729.3 2,801,184 X X
Firm-specific variables
Capital Intensityt−2 0.064 0.123 X X
HHIt−2 0.041 0.013 X
Number of facilities 31.660 72.657 X
Number of chemicals 11,509.59 24,890.35 X
Aget−2 0.780 0.100 X X
Salest−2 (Million US$) 4,776.729 15,775.23 X X X
Debt to Asset Ratiot−2 0.198 0.170 X
ROAt−2 0.037 0.502 X X X
EnvPatents pre-sample 2.457 8.628 X
EnvPatents pre-sample dummy 0.496 0.500 X
1991 P2 1.710 1.494 X
1991 P2 dummy 0.0294 0.1688 X
SIC 20 (food) 0.0393 0.1944 X X X
SIC 21–25 (tobacco, textile, apparel, wood, furniture) 0.0502 0.2184 X X X
SIC 26–27 (paper, printing) 0.1513 0.3584 X X X
SIC 28 (chemicals) 0.0694 0.2541 X X X
SIC 29–32 (petro, rubber, non-metal) 0.0552 0.2283 X X X
SIC 33 (metal) 0.0476 0.2129 X X X
SIC 34 (other metals) 0.1598 0.3665 X X X
SIC 35 (construction) 0.1589 0.3656 X X X
SIC 36 (electronic) 0.1193 0.3242 X X X
SIC 37 (motor vehicles) 0.0294 0.1688 X X X
SIC 38–39 (Lab Eqpt, Other Mfg)—omitted 0.1196 0.3245 X X X
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Our fourth category of variables are market and industry conditions that influence the 
firm’s technology adoptions and/or pollution decisions. We use Capital Intensity, defined 
as the natural log of capital expenditures over sales, to further account for a company’s 
ability to invest (acquire, upgrade, and maintain) physical assets such as property, indus-
trial buildings, or equipment. Firms with higher capital intensity are hypothesized to have 
greater incentive and ability to undertake technology adoptions. We define HHI as the nat-
ural log of the Hirschmann-Herfindahl Index, the sum of squared market share of each firm 
within each 2-digit NAICS level, to capture market concentration. The effect of market 
concentration on innovation activities could be positive or negative (Cohen 2010). Other 
differences across sectors are captured with industry dummies.

Our fifth and final category is firm-specific production and financial variables. To 
account for the fact that P2 reporting is at the chemical level, we use Number of Chemi-
cals of all facilities of a parent company as a measure of opportunities to undertake and 
report P2. To construct this variable, we aggregate all of the chemicals utilized across all 
facilities of a parent company.11 Because parent companies with more facilities would have 
larger scale of operations and scope for pollution, we also include Number of Facilities. 
We include Sales and Sales Squared to capture firm size. Larger firms are expected to have 
more resources to undertake more environmental patenting and source reduction activities 
and/or may experience economies of scale in innovation and pollution reduction. The ratio 
of net income to total assets, ROA, proxies for the profitability of firms. More profitable 
firms are expected to do more patenting and source reduction and have lower releases. To 
control for risk, we use Debt to Asset Ratio, the ratio of total debt to total assets. Firms 
that are riskier may be less inclined to undertake costly activities such as source reduction. 
We calculate Age of a facility, as the ratio of total assets to gross assets. Older firms are 
expected to be less capable of innovative activity and less able to reduce pollution. Except 
for Age and ROA, we express all these firm-level variables in natural log, and all of the 
variables are lagged 2-years. Finally, we include year dummies in all equations.

Table 1 shows the descriptive statistics of all our variables. We note that our sample is 
comprised of large firms: the average firm in our sample has 32 facilities, reports 2,563,215 
pounds of releases, and has sales of $4.777 billion. The average number of innovations in 
a given year is modest (mean environmental patents is 4.82 and mean P2 is 8.17), though 
there is significant range as firms in the 95th percentile acquire 24 environmental patents 
and 36 P2 practices. We also compared our sample to all TRI reporting firms in terms of 
their distribution across industry classes. The industry composition of our sample is typi-
cally within 1–2 percentage points of the industry composition in the TRI.12 We remind 
that the reader that our results most directly relate to TRI reporting facilities with similar 
characteristics.

11  For instance, if one chemical is reported by all 100 facilities of a parent company, it will be counted as 
100 since that captures and controls for the number of opportunities for innovative activity. The number of 
chemicals can be large for some firms due to the scope of their operations and the number of facilities of the 
firm. The number of chemicals is highly skewed: the mean is 11,509 and median is 3200 (min is 39, max 
is 289,559). The number of facilities is also skewed: the mean is 32 and median is 8 (min is 1, max is 912).
12  Our industry representation is within 5 percentage point of the representation in the TRI with the excep-
tion of Other Metals (SIC 34) (under-represented) and Construction (SIC 35) and Electronics (SIC 36) 
(over-represented).



453Patents and P2: Innovation and Technology Adoption for…

1 3

5 � Results

We first present results from the adoption decisions of the two technologies: in Sect. 5.1.1, 
we look at factors that affect patent acquisition, and Sect. 5.1.2 looks at factors that affect 
P2 adoptions. In Sect. 5.2, we present results from our pollution equation. Section 5.3 inte-
grates these findings by exploring the long-term pollution reduction effects of knowledge 
accumulation from an additional patent or P2 practice.

5.1 � Drivers of Technology Adoption

5.1.1 � Determinants of Environmental Patents

We estimate empirical models to explore the factors that influence patenting behavior 
based on our conceptual model and the literature. Our core interest is the extent to which 
the technical capacity of the firm, as represented by its own past experience with environ-
mental patenting (Env Patents and EnvPatents Stock) and P2 activities (Total P2 or Total 
P2 Stock), affect patenting. The technical capacity of the firm may also be influenced by 
other knowledge investments (R&D Intensity and Non-EnvPatent Stock) and technological 
spillovers from industry peers (Avg Peer Env Patent).

As outlined in Sect. 3.2, endogeneity concerns arise if unobserved factors jointly affect 
the technology adoption decisions as well as the pollution level. In addition to lagging all 
technology and pollution measures, we also employ instruments for Total P2 (or Total P2 
Stock) and Total Releases. We use exogenous variables that are correlated with P2 and 
releases as instruments; these include Peer P2, Number of Chemicals, Number of Facilities, 
Violations, Self-disclose, and Inspections, each lagged 2 years. Regulatory variables are an 
attractive set of instruments as they are not traditionally thought to affect patent decisions 
directly (Brunnermeier and Cohen 2003) but have been found to affect pollution prevention 
adoptions (Bi and Khanna 2012, 2017; Harrington et al. 2014) and releases (Brouhle et al. 
2009; Carrion-Flores and Innes 2010). For models using Total P2 Stock, we use the sum of 
Peer P2, Number of Chemicals, and Number of Facilities from the beginning of our sample 
period up to the previous 2 years so that the instruments have a similar temporal structure 
to the endogenous stock variable. In results not shown, we find that the instruments are rel-
evant; the joint F-test statistics are 27.44 and 106.47, respectively, in regressions of P2 and 
releases against their own sets of explanatory variables, including the variables which we 
use as instruments. Over-identification tests for all models (Table 2) indicate that we can-
not reject the null hypothesis of instrument validity.

Table 2 presents results from different models that vary in their measurement of prior 
environmental patenting and prior P2 adoptions. Models I and II measure prior patenting 
using the firm’s environmental patenting in the previous year; Models III and IV use the 
firm’s environmental patent stock lagged 2  years. Prior P2 activity is identified using a 
1-year lagged flow measure in Models I and III and 2-year lagged stock measure in Models 
II and IV. Across the first four models, our results indicate prior environmental patenting, 
whether measured as a flow (lagged EnvPatents) or stock variable (2-year lagged EnvPat-
ents Stock), is an important driver of new environmental patenting by firms. The estimated 
elasticities of past environmental patenting on new environmental patenting are between 
0.676 and 0.985, with the lower estimates obtained whenever lagged EnvPatents Stock is 
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used. These elasticities translate to a 0.65–0.95 increase in new environmental patenting 
from one additional environmental patent in the prior year.13

We find some evidence that past experience adopting P2 activities also influence envi-
ronmental patenting today. We find that previous P2 adoptions influence environmental 
patenting by firms whenever we use 2-year lagged EnvPatents Stock: 1 year lagged Total 
P2 is statistically significant at 90% level (Model III), while 2-year lagged Total P2 Stock 
is significant at 95% (Model IV). A positive influence of P2 on environmental patenting is 
consistent with results found in Chang and Sam (2015). In Models III and IV, the marginal 
effect of an extra P2 adoption is 0.23–0.42 environmental patents. We note that the influ-
ence of P2 on environmental patenting is insignificant in models that include lagged Env-
Patents (Models I and II).

Results from the first four models suggest that our two measures of prior environmental 
patenting have separate effects on firms’ current patenting. Out of concern that including 
the flow and stock measures separately may bias our coefficient estimates in these regres-
sions upward due to correlation between the measures, we include both prior patenting 
measures together in Models V and VI. We find evidence that both EnvPatents and Env-
Patents Stock positively influence new environmental patenting regardless of which past 
P2 measure is used, though the elasticities are smaller than those implied Models I–IV. 
Further, we find that the elasticity for EnvPatents is significantly larger than that of the 
EnvPatents Stock elasticity (0.88 vs. 0.16 in Model V and 0.77 vs. 0.34 in Model VI). Our 
elasticity estimates for the effect of past patenting are comparable to those found by Blun-
dell et al. (1999, 2002) who similarly used GMM-IV approach to estimate a multiplicative 
dynamic feedback model. Notably, we continue to find a positive association between envi-
ronmental patenting and Total P2 Stock when both prior environmental patenting measures 
are included but P2 has a more modest impact on patenting in this case: an extra P2 yields 
an extra 0.14 (Model V) to 0.15 (Model VI) environmental patents. As in Models III and 
IV, 1 year lagged Total P2 is significant at the 90% level, while 2 year lagged Total P2 
Stock is significant at the 95% level.

Turning to our remaining regressors, our results indicate that knowledge investments 
measured by Non-EnvPatent Stock and R&D Intensity have a positive relationship with 
environmental patenting in most models, consistent with existing literature. We find limited 
evidence of technological spillovers from environmental patenting by peers. With respect 
to other covariates, we find environmental patenting is positively associated with capital 
intensity (as in Brunnermeier and Cohen 2003) and return on assets (as in Chang and Sam 
2015), which suggests that firms with more capital assets and greater profitability have the 
resources to patent. Finally, we find no consistent evidence that releases of toxic chemicals, 
market concentration, sales, and age of capital directly affect environmental patenting.

5.1.2 � Determinants of P2 Activities

We continue our exploration of the technology adoption decision by considering the deter-
minants of P2 adoptions. Again, we pay special attention to the role of the technical capac-
ity of the firm, which is represented by its own past experience with P2 activities (Total P2 

13  Following Cameron and Trivedi (2010), the marginal effect can be calculated using the formula � × x

y
 , 

where � is the elasticity, x is the sample mean value of the independent variable of interest, and y is the pre-
dicted value of the dependent variable evaluated at the mean of the regressors. In this case, 
0.9810 ×

4.65

4.82
= 0.95.
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and Total P2 Stock), environmental patenting (EnvPatents and EnvPatents Stock), general 
knowledge investments (R&D Intensity), and technological spillovers from industry peers 
(Avg Peer P2).

As in the patent equation, our analysis of source reduction activities pays attention 
to endogeneity concerns that arise from other technology adoption decisions as well as 
the emissions profile of the firm. As a result, the models instrument for both patents and 
releases. Instruments for Total Releases include further lagged values of releases and Final 
Good,14 while instruments for EnvPatents include the environmental patents of peers in 
one’s industry, non-environmental patents of the firm, capital expenditures and HHI.15 In 
results not shown, we find that these instruments are relevant; the joint F-test statistics are 
195.87 and 150.21, respectively, in regressions of releases and patents against their own 
sets of explanatory variables, including the variables we use as instruments. In all models, 
the Hansen J-statistic (shown in Table 3) gives us confidence in the validity of our instru-
ment set.

Results of the P2 adoption decision are shown in Table 3. Models I and II measure prior 
P2 using the count of a firm’s P2 adoptions in the previous year; Models III and IV use a 
firm’s stock of P2 practices up to 2 years ago. Environmental patenting is identified using a 
1-year lagged flow measure in Models I and III and 2-year lagged stock measure in Models 
II and IV. Coefficient estimates from the Poisson models are robust across the different 
specifications.16 We find that P2 adoption is positively related to past P2 experiences. Both 
measures of past P2 experiences—be it lagged Total P2 or lagged Total P2 Stock—have a 
positive effect on current P2 adoption. This result is consistent with the literature (Bi and 
Khanna 2017; Harrington 2012, 2013) and suggests that firms leverage past P2 in adopting 
new P2. Given the significance of both the lagged flow and lagged stock measures of P2, 
we provide Model V and VI to tease out whether it is the most recent experiences with P2 
or experiences further in the past with P2 that influences P2 today. In Model V and VI, we 
include the lagged flow of past P2 (Total P2t−1) and further lagged stock of P2 (Total P2 
Stockt−2). Here, we see that it is only the recent flow of P2 that drives the results rather than 
the further lagged stock measure. Recall, for patents, both the recent experience and further 
stock of environmental patenting was important. In terms of the magnitude of the effects 
for P2, our results suggest a relatively small impact of past P2 on current P2. For lagged 

16  We note that our main results are also robust to exclusion of our initial condition variables, Initial P2 
dummy and 1991 P2, which capture unobserved firm heterogeneity. In the patent literature, these measures 
are frequently included to capture unobserved firm specific characteristics. A closely related paper in the 
environmental patenting literature (Carrion-Flores and Innes 2010) does not include such pre-sample meas-
ures. Exclusion of initial P2 adoption makes R&D Intensity, Peer P2, and Debt to Asset Ratio statistically 
significant but our core results are the same: we see a positive influence of past P2 and releases on P2 adop-
tion and insignificance of environmental patents on P2 adoption.

14  Final good has been used as proxy for consumer pressure in other studies that explain environmental 
behavior or performance (Khanna and Damon 1999; Anton et  al. 2004; Vidovic and Khanna 2007; Har-
rington 2012). In our sample of firms, the following 4-digit SIC codes are considered final goods: 1311, 
2000, 2011, 2020, 2050, 2070, 2100, 2200, 2211, 2300, 2330, 2761, 2834, 2840, 2844, 3661, 3669, 3911, 
3949, 3950, 4813, 5040, 5140, and 6141.
15  The form of the instruments matches the form as the environmental patent variable. When the environ-
mental patent variable is expressed in the form of a flow (stock) variable, the instruments are also expressed 
as flow (stock) variable.
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P2 (see Model I and II), our coefficient estimates imply that one extra P2 on the past will 
increase new P2 adoption by 0.05.17

We fail to document an influence of other elements of the technical environment of the 
firm on P2 adoption. In particular, EnvPatents, R&D Intensity, and Avg Peer P2 are not 
significantly related to current P2 adoptions by the firm. As the variables EnvPatents and 
R&D Intensity capture more general technical capacity of the firm, the results suggest an 
absence of spill-over effects from general technical capacity of the firm to P2 adoption. The 
absence of an effect of R&D is consistent with the notion that P2 largely involves out of the 
box technologies that do not require large technical capacity or high general R&D by the 
firm. The absence of an effect for R&D is also found in work by Harrington (2012, 2013), 
Harrington et al. (2014), and Luan et al. (2016). The variable Avg Peer P2 was included to 
measure potential technological spillovers from industry peers. We fail to document such 
a channel. While a spillover channel between facilities within a firm was identified in Har-
rington (2012, 2013), we don’t find evidence of spillovers between firms.

Many of our control variables influence P2 adoptions. Consistent with our priors, we 
find that firms with higher past toxic chemical releases are more likely to adopt P2 prac-
tices in the following year. This suggests that, unlike the case for patents, firms look to P2 
practices as a way to address toxic pollution concerns. As expected, the number of chemi-
cals that firm reports to the TRI is also strongly associated with the number of P2 adop-
tions of the firm. Among the enforcement variables, firms who had a large penalty in the 
past are more likely to adopt source reduction/P2 practices. In some but not all models, 
firms that self-disclosed environmental violations in the past are more likely to adopt P2 
practices (see Model III and IV). In contrast, firms inspected more frequently have fewer 
P2 adoptions. Among our firm specific financial variables, we find P2 is negatively corre-
lated with the age of the firm (though this is statistically significant only at the 90% level), 
which is consistent with our prior. Larger firms (as measured by sales) are more likely to 
adopt P2 practices, though the marginal effect declines with size. Most of our year dum-
mies are significant indicating variation in P2 over time. Industry dummies, though, are 
largely insignificant.

In summary, our results of patent and P2 adoptions suggest different factors motivate 
adoption of these technologies. While technical capacity is important for both, the nature 
of existing and past knowledge that is relevant for each varies. For patents, both the general 
technical environment (R&D and non-environmental patents) and specific environmental 
technical knowledge (past experience with patents and P2) matter. These findings suggest 
that to cross the high bar to qualify for a patent, the firm must have a mix of broad and spe-
cific experience and knowledge. For P2 activities, though, the only technology variable that 
matters is (recent) past P2 experience; past environmental patents and general R&D do not 
influence P2 activities. Rather, P2 activities are more robustly influenced by the existing 
opportunities for source reduction (number of chemicals and past pollution level), the regu-
latory environment (inspections and penalties), and firm specific characteristics (younger 
and larger). In addition to the different factors that motivate environmental patenting and 
P2 activity, we find that the magnitude of the coefficient of the past experience variable 

17  Following the form of the dependent and independent variable in our Poisson model, the elasticity (ε) is 
simply the coefficient estimate on the variable of interest (α) times the same mean value of the variable x 
(P2 or patent), ε = α*x. In this case, ε = 0.0090 × 4.620452 = 0.04. Since the marginal effect is � × x

y
 , where x 

is the sample mean value of the independent variable of interest, and y is the predicted value of the depend-

ent variable evaluated at the mean of the regressors, 0.04 × 9,22

8.17
= 0.05.
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is quite different. The impact of an environmental patent on new patenting is much larger 
than the impact of a P2 practice on new P2 adoptions. Different influences and different 
magnitudes of impact reinforce the fact that these environmental technologies are viewed 
differently by firms. Whether and how the two technologies lead to different impacts on the 
pollution profile of the firm is explored in the next two sections.

5.2 � Innovation and Toxic Chemical Releases

Our second set of results investigate whether technological innovations of environmental 
patents and P2 practices reduce pollution. We pay attention to the form of the technology 
adoption (whether a recent flow of knowledge or a more sustained stock of knowledge) as 
well as the relative magnitude of the potential effect of each technology on pollution.

All pollution models include lagged pollution as a key explanatory variable to capture 
path dependence in pollution choices as well as unobserved production and abatement 
technology. We also include regulatory pressure variables among our set of controls. The 
inclusion of regulatory variables in the pollution equation is not meant to capture regu-
latory variables as “drivers” for pollution in the same way that regulatory pressure can 
drive abatement technology choice. Rather, the regulatory pressure variables are included 
to capture unobserved pollution function g that may explain a facility’s unobserved choices 
of other abatement technology (other than patents and P2) which can also determine pollu-
tion. We lag these regulatory variables 2 years to avoid simultaneity issues.18

To deal with the econometric challenges outlined in Sect. 3.2, all models in Table 4 use 
2- to 7-year lags of Total Releases as GMM-type instruments. For Total P2 and EnvPatents 
which we treat as potentially endogenous, their instrument set includes GMM-type instru-
ments, other exogenous regressors in the pollution equation and other exogenous regressors 
unique to the patent and P2 equations. The length of lags of the GMM-type instruments 
for Total P2 and EnvPatents slightly vary across models depending on the length of lags 
included for each endogenous variable. The AR tests for first and second order serial cor-
relation in the first differenced errors show that the null hypotheses of no serial correla-
tion are rejected for AR(1) but not rejected for AR(2), indicating that GMM type instru-
ments are valid. The other instruments used are as follows: in the differenced equation, we 
include Non-EnvPatent Stock, R&D Intensity, Peer EnvPatent Stock, Peer TotalP2, Number 
of Chemicals, Self-disclose, Sales, Sales Squared and ROA; in both differenced and levels 
equation, we include HHI, Age, Violations, Inspections and Penalties. In the models where 
we use lags of Total P2 and EnvPatents as explanatory variables, we still suspect their 
endogeneity because they may be correlated with the errors in Eq. (3) due to unobservable 
time-varying factors that capture abatement technology and abatement costs. We then use 
appropriately lagged GMM type instruments as well as the other exogenous factors from 
Tables  2 and 3 that are correlated with Total P2 and EnvPatents. In results not shown, 
the joint F-test statistics are 122.7 and 34.2, respectively, in regressions of patents and P2 
against their own sets of explanatory variables, including the variables we use as instru-
ments. Sargan tests show that the moment conditions and the instruments are valid for all 
the models.

18  We investigate 1-year and 3-year lags of regulatory variables and find that the results are robust to using 
different lags. Results are available upon request.
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Table 4 presents the determinants of toxic chemical releases. To explore and compare 
the role of the two types of abatement technologies, different columns in Table 4 use dif-
ferent specifications of the EnvPatents and Total P2 variables. We measure the knowledge 
from environmental patents as a stock variable in Models I and III and as a flow variable 
in Models II and IV; P2 activities are measured as a stock variable in Models I and IV and 
as a flow variable in Model II and III. Across the four models, we find evidence that envi-
ronmental patents and P2 activities reduce toxic releases of the firm. The coefficients on P2 
are negative and statistically significant at the 95% level or higher across the four models. 
For environmental patenting, the coefficient is also negative across all four models, though 
the statistical significance is slightly less pronounced (the effect is statistically significant 
at the 95% level in Model I and statistically significant at the 90% level across the other 
three models).19 That both environmental technologies tend to reduce the level of releases 
of toxic chemicals suggests that simultaneously employing a portfolio of abatement strate-
gies can yield higher levels of pollution reduction than a singular focus on a one type of 
technology.

Focusing on the magnitude of the coefficients of the Total P2 and EnvPatents variables, 
we can see that the implied immediate impacts are quite similar across models: Model 
II suggests that a 10% increase environmental patenting reduces chemical pollution by 
approximately 2.7% while a 10% percent increase in pollution prevention activities reduces 
Total Releases by 1.65%. The differences in the coefficients of P2 and environmental patent 
variables are not statistically significant. These elasticities are very similar to those derived 
by Carrion-Flores and Innes (2010) for patents (2.48%) and by Harrington et al. (2014) for 
P2 (1.67%). For our sample, these elasticity estimates imply that chemical releases will be 
reduced by approximately 5.6% from one extra patent and about 2% from one extra P2 in 
the same year of adoption.20,21

The signs and significance of the coefficients of other explanatory variables are robust 
across models. The models show that the level of toxic chemical releases increase with 
past level of releases and number of facilities but fall with sales. A ten percent increase in 
past releases increases current releases by approximately 3.4%. This value is slightly lower 
than estimates in other studies, none of which include Number of Facilities as an explana-
tory variable (Carrion-Flores and Innes 2010; Harrington et  al. 2014; Harrington 2013). 
A 10% increase in number of facilities yields a slightly more than proportional increase 
in releases, about 12%. This coefficient is highly significant despite the inclusion of Sales, 
which is also a control for size. The negative significant coefficient of Sales suggests that 
there may be economies of scale in abatement or that larger firms may have better technol-
ogy to undertake emission reduction. We find that firms with more R&D do not have lower 
releases. This finding indicates that the role of R&D in reducing pollution is indirect via 

19  We investigate whether it is the current flow or lagged flow of P2 and environmental patents that influ-
ence pollution. For both technologies, we find stronger evidence that current flows matter compared to fur-
ther lagged flows of the variable. Results are available upon request.
20  The mean Total P2 is 8.2 and mean EnvPatents is 4.8, one extra Total P2 adopted is 12.2% of mean Total 
P2 while one extra EnvPatent is 20.7% of mean EnvPatents.
21  Our estimated impact of P2 on chemical releases may be biased if P2 adoption influences whether or 
not a particular chemical is reported to the TRI at any given year. For example, if P2 activities result in 
reducing chemical releases below the reporting threshold even though it is not entirely eliminated from the 
production process, our results may underestimate the pollution reduction attributable to P2. Similarly, if P2 
adoption has resulted in substitution of one TRI chemical for a non-TRI chemical, any reduction in chemi-
cal releases observed may again be an underestimate of the effect of P2 adoption.
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Table 4   Determinants of chemical releases, dynamic panel GMM models

Standard errors are in parentheses below coefficients; ***p < 0.01, **p < 0.05, *p < 0.1. All models assume 
iid. Models I and II are robust to using MA(1) error structure. For all models, we use and report two-step 
robust estimator (Windmeijer 2005)
a The natural log of this variable is used in all models
b These variables were treated as endogenous and coefficients were estimated using instrumental variables

Variables Model I Model II Model III Model IV

Lagged dependent 
variable

Total Releasest−1
b/ 0.352*** 0.349*** 0.349*** 0.346***

(0.074) (0.075) (0.075) (0.075)
Pollution preventiona

Total P2b − 0.165** − 0.170***
(0.075) (0.076)

Total P2 Stockt
b − 0.155*** − 0.155***

(0.056) (0.070)
Environmental patents
EnvPatents − 0.267* − 0.274*

(0.155) (0.153)
EnvPatents Stockt − 0.379** − 0.272*

(0.163) (0.162)
Controls
Violationst−2 − 0.029 − 0.022 − 0.023 − 0.022

(0.025) (0.031) (0.032) (0.031)
Inspectionst−2 0.0065 0.0052 0.0662 0.085

(0.0058) (0.0064) (0.147) (0.147)
Penaltiest−2 0.035 0.076 0.0049 0.0053

(0.152) (0.146) (0.0064) (0.0063)
R&D Intesityt−2 − 0.063 − 0.101 − 0.099 − 0.110

(0.113) (0.113) (0.114) (0.112)
Salest–−2 − 0.134* − 0.250*** − 0.246*** − 0.246***

(0.082) (0.076) (0.076) (0.075)
Capital Intesityt−2 1.221 1.963 2.110 1.772

(1.985) (1.953) (1.972) (1.873)
Return on Assets t−2 − 0.0040 − 0.0102* − 0.0101* − 0.0097*

(0.0032) (0.0062) (0.0061) (0.0060)
Number of Facilities 1.303*** 1.259*** 1.270*** 1.253***

(0.149) (0.140) (0.142) (0.139)
Constant 6.524*** 7.092*** 7.047*** 7.155***

(1.043) (1.089) (1.084) (1.082)
Year dummies YES YES YES YES
Observations 4,223 4,223 4,223 4,223
Number of firms 550 550 550 550
Sargan test [p value] 192.042 [0.606] 200.474 [0.477] 203.630 [0.415] 203.6305 [0.415]
1st order autocorr [p 

value]
− 4.268*** [0.000] − 4.332*** [0.000] − 4.131*** [0.000] − 4.295*** [0.000]

2nd order autocorr [p 
value]

0.1248 [0.901] 0.116 [0.908] 0.112 [0.911] 0.118 [0.906]
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environmental patents, which is shown in Table 2 to be positively associated with R&D 
Intensity. Finally, we find that inspections, violations, and penalties all have statically insig-
nificant coefficients. The insignificance of the regulatory variables in the pollution equation 
is similar to findings by many in the literature which use regulatory variables as controls 
in a pollution equation, while focusing on the role of voluntary environmental action as the 
main explanatory variable of interest such as P2 (Bi and Khanna 2017; Harrington et al. 
2014), state program or legislation (Harrington 2013), EMS adoption (Sam et al. 2009), or 
environmental program participation (Bi and Khanna 2017, 2012; Sam et al. 2009; Brouhle 
et al. 2005).

5.3 � Long‑Term Impacts on Pollution

The results presented in Table 4 describe the direct influence of patents and P2 on pollution 
on the year of adoption. But what is the impact of an additional environmental patent or 
P2 practice on pollution projected into the future? Given the interplay between P2, patents, 
and pollution outlined in Eqs. 1–3, technology adoption in one period has the potential to 
impact pollution in succeeding periods through several channels. To conduct this analysis, 
we choose the models that we believe best capture the relationships between current and 
past levels of patents, P2, and pollution (Model VI, Table 2; Model I, Table 3; and Model 
II, Table 4). Denoting current (lagged) EnvPatents as Pit

(
Pit−1

)
 , 2-year lagged EnvPatent 

Stock as Pstock
it−2

 , current (lagged) Total P2 as Sit
(
Sit−1

)
 , 2-year lagged Total P2 Stock as SStock

it−2
 , 

and lagged Total Releases as Qit−1,we can express these models as follows:

To identify the effect of a one unit change in environmental patents and P2 adopted at 
time t on pollution at period t + τ, Qt+τ, we take the derivative of Eq. (3′) with respect to Pt 
and St (full derivation is shown in the Appendix):

(1′)Pit = exp
(
aP + bPQit−1 + cP2S

stock
it−2

+ dP1Pit−1 + dP2P
stock
it−2

+ ePZ
P
it
+ �

P
i
+ vt + �P

it

)

(2′)Sit = exp
(
aS + bSQit−1 + cSSit−1 + dSPit−1 + eSZ

S
it
+ �

S
i
+ vt + �S

it

)

(3′)Qit = aQ + bQQit−1 + cQSit + dQPit + eQZ
Q

it
+ �Q

i
+ vt + �Q

it
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 where P̂ and Ŝ represent the percentage change in mean patent or mean P2 that is equiva-
lent to a one-unit change in patent or P2 in our sample. Equations 4 and 5 illustrate that 
the adoption of a patent or P2 practice in one period will affect pollution in the future 
through several channels. The first term captures a lagged pollution channel. Here, a one 
unit increase in EnvPatents or Total P2 yields lower releases in the same period, which 
then lowers the entire time path for pollution relative to what pollution would have been 
had that extra EnvPatents or Total P2 not been adopted. The second and third terms cap-
ture knowledge accumulation channels when enhanced knowledge from EnvPatent or P2 
adoption affects a firm’s ability to undertake new patenting and new P2 in the future. The 
second term represents the same-technology knowledge accumulation effect. This arises as 
a one unit increase in Env Patent (Total P2) will raise the entire time path for Env Patent 
(Total P2), which in turn will influence pollution in the future. The last term represents the 
cross-technology knowledge accumulation effect. It measures the extent to which a one 
unit increase in Env Patent (Total P2) affects the adoption of the other technology, Total P2 
(EnvPatent), which shifts the other technology’s time path upward or downward depending 
on whether one promotes or discourages the other.

Utilizing the coefficient estimates and standard errors from our preferred models, we 
calculate the long-term impact of an extra EnvPatent and extra Total P2 on pollution 
beyond the year of adoption (see Fig. 1).22 We note that in any given year, the long-term 
impact of an environmental patent is much greater than the impact of a P2 practice. In par-
ticular, the results suggest that the contribution of an additional patent is about 7–8 times 
higher than the impact of an additional P2 practice. This difference in magnitude is due 
to the following reasons (1) the coefficient of patenting is larger than the coefficient of 
P2 in the pollution equation; (2) the same technology knowledge accumulation effect of 
patenting is larger than that of P2; and (3) P2 promotes patenting, but patenting has no sta-
tistically significant effect on P2. The figure also shows the length of time that technology 
adoption (an extra patent or an extra P2) will continue to affect pollution. With knowledge 
depreciation and the importance of recent lagged values of technology on pollution (but 
not through longer-lived stock values), we observe statistically significant long-term reduc-
tions in pollution for a finite number of years: 10 years for an environmental patents and 
6 years for a P2 practice. Summing up annual pollution reduction estimates from the years 
with statistically significant effects and adding them to the immediate impacts derived 
above, we find that an extra patent yields a cumulative pollution reduction of 28% while an 
extra P2 yields a cumulative reduction of only 5%. These results show that the effect of an 
extra patent is larger and lasts longer than that of an extra P2.

In summary, we find that patenting and P2 are significant contributors to long-term 
cumulative pollution reduction beyond the year of their adoption. That the effect is much 

(5)
dQt+𝜏
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=
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22  The coefficient of (unlogged) lagged P2 in the P2 equation from Table 3 is converted to an elasticity 
using mean value of P2 for consistency with interpretation of other coefficients.
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more pronounced for patents than for P2 is an important finding that further demonstrates 
the differences between these two technologies. Not only are adoption decisions driven by 
different factors, but their different impact on long-term pollution reduction suggests that 
firms acquire and utilize knowledge from them differently to yield desired environmental 
outcomes.

6 � Conclusions and Policy Implications

In this work, we have identified factors that influence firm environmental patenting and 
P2 adoption as well as the influence of those technologies on firm pollution. In terms 
of the adoption decision, we have two central findings. First, our results demonstrate 
that different factors influence patent and P2 adoption. We find that general technical 
capacity of the firm (such as R&D and the extent of patenting in environmental and 
non-environmental areas) matter strongly for environmental patents. For P2, the scope 
of opportunity to undertake P2 (extent of past emissions and numbers of chemicals), 
the regulatory exposure of the firm, and firm specific factors (size and age of the firm) 
are important motivators. These findings suggest that policy levers to promote patenting 
and P2 should target different pathways; for example, stimulating general knowledge 
accumulation to enhance patenting activity while creating a more stringent regulatory 
environment to promote P2 adoption. Our second main finding relates to the different 
mechanisms through which past experience affects future technology adoptions. While 
past experience in a technology is important for both patents and P2 (past experience 
with environmental patents promote new environmental patents and past experience 
with P2 promote new P2 adoptions), the cross-technology effects are different. We find 
that P2 promotes environmental patenting but not vice versa, which indicates that firms 
utilize knowledge in these areas in different ways and that policies promoting patents 
and P2 have the potential to differentially impact the environmental technical capacity 
of firms beyond the short-term. That promoting P2 adoption has additional spillover 
benefits in encouraging future environmental patenting is noteworthy.

With regards to the impact of technologies on pollution, we find evidence that patent-
ing and P2 adoption have distinct impacts on pollution and that the distinct influence 
of each persists even after controlling for the level of R&D spending, the size of the 
firm, and the firm’s past environmental performance. While the immediate impact of 
each technology on pollution reduction is modest, the strong knowledge accumulation 
effects of both technologies mean that the effect of each technology on pollution may be 
observed years after adoption. The long-term impact of an extra patent is larger and lasts 
longer than that of an extra P2. These findings underscore the importance of knowledge 
accumulation as a driver of long-term pollution reduction. Ignoring this effect not only 
underestimates the pollution reduction effects of patenting or P2 adoption but also gives 
rise to a cost of delaying innovative activity.

The larger long-term impact of environmental patenting on pollution reduction may 
naively imply that we need to focus our abatement efforts on these more sophisticated 
and novel innovations. But, in fact, promoting P2 has a place in the policymaker’s 
toolkit for three reasons. First, early promotion of both P2 and patents is worthwhile 
because knowledge accumulation effects for both are robust and because P2 promotes 
further patenting. Second, the innovative process involved in patenting requires consid-
erable time before knowledge is available and meets the standard for patenting, while 
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P2 technologies are more easily accessible and adaptable, bringing pollution reduc-
tion immediately. Third, P2 adoption is less resource intensive than patenting. Per unit 
costs of pollution reduction due to patenting is most certainly higher than those from 
P2 adoption. Thus, using the more costly patenting process may not be cost-effective. 
While a full-blown cost-effectiveness analysis and comparison of costs of P2 and pat-
enting is beyond the scope of this paper, such an exercise would be valuable to enable 
comparison of costs of pollution reduction between patents and P2. Our analysis, thus, 
presents the case for examining a suite of environmental technologies to better inform 
environmental policy decisions that will promote a combination of technologies to take 
advantage of knowledge accumulation effects.

Moving beyond the specific findings of this work, we hope our research motivates and 
feeds into future research directions in the area of environmental innovations. We con-
clude by mentioning two broad avenues of future research that might build off the pre-
sent work. First, because environmental innovations have the potential to impact a firm’s 
environmental footprint other than toxic releases, future work should identify and possibly 
compare how innovations bring about improvements in other measures of environmental 
performance. Second, our findings on knowledge accumulation and spillovers between 
technologies could be further explored in future work. Research that is directed at par-
ticular environmental problems that require more specialized technologies would allow a 
closer examination of spillovers between a specific set of environmental innovations and/or 
specific P2 practices (or other types of innovation such as management practices or process 
improvements). We believe these two areas of future explorations will enhance our under-
standing of the interplay between environmental technology and environmental outcomes.

Fig. 1   Percent reduction in toxic releases from a one unit increase in patents or P2. ***p < 0.01, **p < 0.05, 
*p < 0.1
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Appendix

The empirical results allow us to specify our general expressions in (1) and (2) such that 
that patents are a function of 1-year lagged patent flow, 2-year lagged patent stock, and 
2-year lagged P2 stock (Table 2, Model VI); while P2 is explained by 1-year lagged P2 
flow and 1-year lagged patent flow (Table 3, Model I). Pollution is affected by contem-
poraneous P2 and patents (Table  4, Model II). Denoting current (lagged) EnvPatents as 
Pit

(
Pit−1

)
 , 2-year lagged EnvPatent Stock as Pstock

it−2
 , current (lagged) Total P2 as Sit

(
Sit−1

)
 , 

2-year lagged Total P2 Stock as SStock
it−2

 , and lagged Total Releases as Qit−1 , we can express 
these models as follows:

In the derivations that follow, we simplify the notation when calculating marginal 
effects (as elasticities) using count models. For example, we denote �Pt+1

�Pt

=
�log[E(Pt+1|Q,K,Z)]

�Pt

 , 

and �St+1
�St

=
�log[E(St+1|Q,K,Z)]

�St
 .  We use elasticities implied by estimates in Tables 2 and 3.  

To calculate the effect of an extra environmental patent adopted at time t on pollution τ 
periods hence, we take the derivative of Eq. (3′) with respect to Pt . We note that pollution 
at any period is a function of lagged pollution which is in itself a function of Pt and St , and 
of Pt+� and St+� , that are themselves functions of Pt and St.

The first term illustrates how the trajectory of pollution is lower due to patenting. 
The second term is the same-knowledge accumulation effect that results from most 
recent new patent and further lagged patent knowledge stock. The third term is the 
cross-knowledge accumulation effect because past patenting affects new P2 which in 
turn affects pollution. Note that for the second and third terms the learning effects 
include an adjustment factor arising from how the effect of an initial patent on pollution 
can encourage or discourage future patenting and future P2. Because patenting 
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occurring in the initial period can lower pollution immediately, 𝜕Qt

𝜕Pt

< 0 , the adjustment 
terms will reinforce (mitigate) the knowledge accumulation effects if lower pollution in 
the adoption year will encourage (discourage) subsequent patenting and P2, i.e., 
𝜕Pt+1

𝜕Qt

< 0;
𝜕St+1
𝜕Qt

< 0 ( 𝜕Pt+1

𝜕Qt

> 0;
𝜕St+1
𝜕Qt

> 0 ). All these effects will be felt 2 years after adop-
tion because of the 2-year lagged effect of patent stock on new patent flow).

In the year of adoption, τ = 0, the only effect is through the contemporaneous impact 
which is the focus of Sect. 5.2, dQt

dPt

= dQ.
One year after adoption at time t + 1, the effect of patenting at time t is:

Since we are interested in a new patent adopted at time t, not any earlier, several 
terms are zero. By substituting for all coefficients from (1′), (2′) and (3′):

Two years after adoption at time t + 2, the effect of patenting at time t is derived simi-
larly, noting that new patenting at time t + 2 now also influenced by the effect of 2-year 
lagged patent stock, Pstock

t
 and the adjustment terms are non-zero.

By substituting for all coefficients from (1′), (2′) and (3′) and noting that depreciated 
cumulated stock of patents can be expressed as Pstock

it
=
∑t

� �
�Pt−�:

Generalizing (A.1.2) for all years � ≥ 1 , we have

After multiplying (8) by P̂ , which represents what one extra patent is as a proportion 
to mean patent, we derive Eq. (4) in Sect. 5.3.

The effect of an extra P2 adopted at time t on future emissions can be analyzed simi-
larly. To calculate the effect of an extra P2 adopted at time t on pollution τ periods 
hence, we take the derivative of Eq. (3′) with respect to St , recognizing that pollution at 
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[
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+
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)
+
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)
+
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(A.4)
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= bQdQ + dQ
[
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]
+ cQ
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Q
dQ + dQ
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d2
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+ dP2�
0 + dP1bPdQ
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any period is a function of lagged pollution which is in itself a function of Pt and St , and 
of Pt+� and St+� , that are themselves functions of Pt and St.

All expressions are analogous to the expression for patents. The first term illustrates 
how the trajectory of pollution is lower due to an additional P2 practice. The second term 
is the same-knowledge accumulation effect that results from most recent new P2. The third 
term is the cross-knowledge accumulation effect because P2 affects patenting which then 
affects pollution. There are again adjustment factors in the second and third terms arising 
from how the effect of an initial P2 on pollution can encourage or discourage future P2 and 
future patenting. Because P2 occurring in the initial period lowers pollution immediately, 
𝜕Qt

𝜕St
< 0 , the adjustment terms will reinforce (mitigate) the knowledge accumulation effects 

if lower pollution in the adoption year will encourage (discourage) subsequent patenting 
and P2, i.e., 𝜕Pt+1

𝜕Qt

< 0;
𝜕St+1
𝜕Qt

< 0 ( 𝜕Pt+1

𝜕Qt

> 0;
𝜕St+1
𝜕Qt

> 0 ). All these effects will be felt 4 years 
after adoption because of the 2-year lagged effect of patent stock on new patent flow,  the 
2-year lagged effect of P2 stock on new P2 flow, and the 2-year lagged effect of P2 stock on 
patents.

Differentiating Eq. (3′) with respect to St , on the year of adoption, the only effect we can 
see is the immediate effect, dQt

dSt
= cQ.

One year after adoption at time t + 1, the effect of an extra P2 adopted at time t is:

Substituting the coefficients from (1′), (2′), the expression at t + 1 is:

Two and three years after adoption, the general expression can be extended to incorpo-
rate longer pollution path dependence effects and longer adjustment in the P2 knowledge 

dQt+�

dSt
=

�Qt+�

�Qt+�−1

�
�Qt+�−1

�Qt+�−2
…

�Qt

�St

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pollution path dependence

+
�Qt+�

�St+�

⎡
⎢⎢⎢⎢⎢⎣

via lagged P2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�

�St+�
�St+�−1

�St+�−1
�St+�−2

…
�St+1
�St

�
+

adjustment factor
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�

�St+�
�St+�−1

�St+�−1
�St+�−2

…
�St+1
�Qt

�Qt

�St

�
⎤
⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pollution change due to P2 knowledge accumulation from extra P2

+
�Qt+�

�Pt+�

⎡
⎢⎢⎢⎢⎢⎢⎣

via lagged patent
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�

�Pt+�
�Pt+�−1

�Pt+�−1
�Pt+�−2

…
�Pt+2

�Sstockt

�Sstockt

�St

�
+

via patent stock
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�

�Pt+�

�Pstock
t+�−2

�Pstock
t+�−2

�Pt+2

�Pt+2

�Sstockt

�Sstockt

�St

�
+

adjustment factor
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�

�Pt+�
�Pt+�−1

�Pt+�−1
�Pt+�−2

…
�Pt+1
�Qt

�Qt

�St

�
⎤
⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pollution change due to patent knowledge accumulation from extra P2

dQt+1

dSt
=

�Qt+1

�Qt

[
�Qt

�St

]
+

�Qt+1

�St+1

[(
�St+1
�St

)
+

(
�St+1
�Qt

�Qt

�St

)]

+
�Qt+1

�Pt+1

[(
�Pt+1

�Sstock
t−1

�Sstock
t−1

�St−1

)
+

(
�Pt+1

�Pstock
t−1

�Pstock
t−1

�Pt−1

�Pt−1

�Sstock
t−3

�Sstock
t−3

�St−3

)

+

(
�Pt+1

�Qt

�Qt

�St

)]

(A.7)
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accumulation term. We are also able to capture the first expression in the third term. The 
second expression in the third bracket will still be zero because we are interested in an 
extra P2 at time t and not any earlier.

Substituting the coefficients from (1′), (2′) and noting that depreciated cumulated stock 
of P2 can be expressed as Sstock

it
=
∑t

� �
�St−�:

Four years after an extra P2 adoption, all terms are non-zero:

Substituting the coefficients from (1′), (2′) and noting that Sstock
it

=
∑t

� �
�St−�:

Generalizing for all years � ≥ 1 , and simplifying

After multiplying (13) by Ŝ , which represents what one extra P2 is as a proportion to 
mean P2, we derive Eq. (5) in Sect. 5.3.
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