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Abstract
Is climate change concerning because of its expected damages, or because of the risk that 
damages could be very high? Climate damages are uncertain, in particular they depend 
on whether the accumulation of greenhouse gas emissions will trigger a tipping point. In 
this article, we investigate how much risk contributes to the Social Cost of Carbon in the 
presence of a tipping point inducing a higher-damage regime. To do so, we decompose 
the effect of a tipping point as an increase in expected damages plus a zero-mean risk on 
damages. First, using a simple analytical model, we show that the social cost of carbon 
(SCC) is primarily driven by expected damages, while the effect of pure risk is only of 
second order. Second, in a numerical experiment using a stochastic Integrated Assessment 
Model, we show that expected damages account for most of the SCC when the tipping 
point induces a productivity shock lower than 10%, the high end of the range commonly 
used in the literature. It takes both a large productivity shock and high risk aversion for 
pure risk to significantly contribute to the SCC. Our analysis suggests that the risk aversion 
puzzle, which is the usual finding that risk aversion has a surprisingly little effect on the 
SCC, occurs since the SCC is well estimated using expected damages only. However, we 
show that the risk aversion puzzle does not hold for large productivity shocks, as pure risk 
greatly contributes to the SCC in these cases.

Keywords  Climate change · Tipping points · Expected utility · Integrated Assessment 
Models · Risk · Social Cost of Carbon

1  Introduction

Climate change will induce damages in the future, although their magnitude remains 
uncertain (Diaz and Moore 2017). A key uncertainty is whether emissions will trigger 
non-marginal or abrupt changes, often referred to as “tipping points” (Lenton et al. 2008; 
Alley et al. 2003; Steffen et al. 2018). Examples of large-scale regime shifts include the 
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shutdown of thermohaline circulation, the melting of the Arctic sea-ice or the die back of 
the Amazonian rainforest. Such shifts could also stem from the limited ability of social and 
economic systems to cope with climate conditions beyond some threshold. Assessing the 
present social value of damages from an additional ton of CO2released in the atmosphere, 
i.e. the social cost of carbon (SCC), requires to account for the possibility of triggering 
such high-impact events as the planet warms.

Early assessments of the SCC relied on deterministic models balancing abatement costs 
with benefits from avoided damages, assuming they are known to the social planner (Nor-
dhaus 1994). They used a damage function capturing best-guess value of the level of dam-
age for each additional degree of warming. Concerns about catastrophic damages and tip-
ping points have first been addressed in a deterministic fashion. Many studies considered 
how alternative damage functions, meant to reflect that damages may be more convex or 
present abrupt jumps, affect the results (Pizer 2003; Dumas and Ha-Duong 2005; Acker-
man and Stanton 2012; Wouter Botzen and van den Bergh 2012; Dietz and Stern 2015; 
Weitzman 2012).

More recently, studies have included in an endogenous fashion different types of cli-
mate damages risks, i.e. that damages could differ from their expected value, in integrated 
assessment models (IAMs). First, some have addressed uncertainty over the damage func-
tion by considering a social planner facing a distribution of damage functions rather than a 
single estimate (see for instance Crost and Traeger 2013). A second type of risks is recur-
ring shocks or volatility in damages which hit the economy, notably as a way to reflect 
the occurrence of disasters (Pindyck and Wang 2013; Bretschger and Vinogradova 2019). 
There is an emerging literature on how these risks affect the SCC, also in combination 
with other uncertain dimensions, such as climate sensitivity or growth (Jensen and Traeger 
2016; Lemoine and Rudik 2017; Van Den Bremer and van der Ploeg 2018).

Tipping points belong to another category of risk. They entail that emissions can irre-
versibly shift the world from a low- to a high-damage regime. Pioneering works on the 
management of thresholds show how optimal abatement is affected by the risk that pol-
lution may trigger a catastrophic event (Clarke and Reed 1994; Tsur and Zemel 1996). 
Studies which model tipping points as a stochastic risk in IAMs suggest that accounting 
for those raises the SCC (Lemoine and Traeger 2014; Cai and Lontzek 2019; Diaz and 
Keller 2016) or near-term abatement (Keller et al. 2004; Belaia et al. 2014). These studies 
consider tipping points which induce either a permanent loss of productivity (Belaia et al. 
2014; van der Ploeg and de Zeeuw 2018), the destruction of most productive capacities 
(Bretschger and Vinogradova 2018), or an increased damage regime (Lemoine and Trae-
ger 2014), and provide insightful analysis, notably on how time and risk preferences affect 
optimal policy.

When considering risk, one naturally wishes to compare how results differ from a risk-
free situation only relying on the expected outcome. In financial analysis, this comparison 
allows to derive the risk premium of an asset. Similarly, for the SCC, the gap between a 
risky and a risk-free situation indicates how much risk compounds the diminution of social 
welfare brought by emitting carbon. This is typically done by comparing results with risk 
to results when all the parameters are set to their expected value (Crost and Traeger 2013; 
Van Den Bremer and van der Ploeg 2018). However, for tipping points, the standard prac-
tice is to compare the SCC with and without a tipping point. Because the additional dam-
age a tipping point could cause does not have a zero mean, comparing cases with and with-
out tipping points conflates the effect of increased expected damages resulting from the 
introduction of a tipping point, and that from the dispersion of possible damages, i.e., a 
zero mean risk.
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In this paper, we propose a simple method to distinguish the contributions of 
expected damages and risk to the SCC in the case of a tipping point triggering a shift 
to a higher-damage regime. We decompose a tipping point on damages as an increase 
in expected damages plus a (zero-mean) pure risk on damages. We compare the SCC 
with a tipping point to the SCC under expected damages, i.e. when there is no risk and 
damages are set at their expected level. First, using a simplified model, we demonstrate 
that in the case of a stochastic tipping point, the SCC is at first order equal to the SCC 
under expected damage. Risk introduces a correction that is only of second order, and 
that is proportional to risk aversion. We then investigate numerically in an IAM the gap 
between the SCC with a stochastic tipping point and the SCC under expected damages. 
We introduce the tipping point as a stochastic risk whose hazard rate depends on tem-
perature, leading to a permanent drop in productivity. We analyse how preferences of 
the social planner (i.e., risk aversion, resistance to intertemporal substitution) and dam-
ages from the tipping point affect the comparison. We find that the SCC under expected 
damages closely approximates the SCC for low values of the productivity shock. Thus, 
risk plays a minor role when introducing a tipping point: the increase in SCC is due to 
the increase of expected damages. This result holds as long as the magnitude of the pro-
ductivity shock is less than 10%. However, risk becomes important with higher produc-
tivity shocks and under high risk aversion. The results are also robust when considering 
a tipping point leading to more convex damage.

Our article contributes to a wider literature on how climate damage risks affect optimal 
climate policies. Evidence is mixed about whether risk is a fundamental part of optimal 
abatement, or just a second order correction. On the one hand, some authors argue that 
hedging against catastrophic outcomes should be the primary driver of abatement (Weitz-
man 2009; Pindyck 2013; Dietz 2011). However, several studies show that risk has a sur-
prisingly limited effect on the optimal policy—this has been called the risk aversion puz-
zle. Risk aversion, when disentangled from the elasticity of intertemporal substitution, is 
found to play a modest role in IAMs (Ackerman et al. 2013), even in the case of a tipping 
point (Belaia et al. 2014; van der Ploeg 2016). Our contribution isolates the role of risk in 
the case of a stochastic tipping point, and shows under which assumptions the effect of risk 
is of second order. In our numerical simulations, risk only matters when there is possible 
exposure to catastrophic damages, while the SCC is primarily driven by expected damages 
for moderate productivity shocks triggered by the tipping point. This explains why studies 
find a modest role of risk aversion on the optimal policy, as productivity shocks usually 
considered in the literature remain below the 10% threshold. We add to this literature and 
provide orders of magnitude of the range of shocks and risk aversion it takes for risk aver-
sion to significantly affect the SCC.

Our article also contributes to understanding the effect of different representations for 
climate damages on optimal policy. Since climate damages are the least-grounded aspect of 
IAMs (Diaz and Moore 2017; Revesz et al. 2014; Howard 2014) and have a strong impact 
on the SCC (as large as discounting van den Bijgaart et al. 2016), it is essential to build 
rigorous methodologies that compare how different representations of damages affect the 
SCC (Pottier et al. 2015; Guivarch and Pottier 2018). Here, we compare indeed two differ-
ent settings to represent a tipping point: one where tipping points are represented as a truly 
stochastic event, one where tipping points are represented as a mere increase in the damage 
function, so that it reflects expected damages. In other words, we examine how the endog-
enous introduction of a tipping point in an IAM compares to simply using a more convex 
function, i.e., the method that was first used to represent catastrophic risks in such models. 
Our results show in which cases the two methods lead to different outcomes.
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We illustrate in Sect. 2 the effects of increased expected damages and pure risk due to a 
tipping point in a simplified one-period model, and show that the former is the primary driver 
of the SCC. In Sect. 3, we lay out the stochastic IAM we use and present how we compute the 
SCC under expected damages. Numerical comparison between the SCC under expected dam-
ages and the SCC with a stochastic tipping point are discussed in Sect. 4. Section 5 concludes.

2 � A Simple Model of a Stochastic Tipping Point

We present a simple one-period model of a climate economy to highlight the intuition behind 
the comparison between the SCC with a stochastic tipping point, and the SCC under expected 
damages. To that end we will consider successively optimal abatement and the resulting SCC 
in three situations:

•	 When there is no tipping point ( SCC∗),
•	 When there is a stochastic tipping point ( SCCt),
•	 When damages are set at their expected level ( SCCed).

We show that there is a first-order difference between the SCC with tipping points ( SCCt ) and 
without ( SCC∗ ), difference that is captured when the SCC is calculated with damages set at 
their expected level ( SCCed ). We further demonstrate that risk introduces a second-order cor-
rection, proportional to risk aversion and to the variance of damages.

Let us consider an economy producing gross output Y. Gross output is reduced because 
of damage d(E) due to emissions E, and costs c(a) of abatement measures a. Net output is 
entirely consumed, so that aggregate consumption is given by C(a,E) = Y − c(a) − d(E) . 
With � the (unabated) carbon intensity of production, emissions and abatement are linked by 
E = �Y(1 − a) . Let u(C) be the social welfare function that depends only on aggregate con-
sumption, the program of the social planner is:

so that optimal abatement satisfies c�(a∗) = �Yd�(E∗) (we star all variables related to the 
optimal point in this case).

We can define the SCC at the optimal point as the marginal social damages occurring due 
to an extra emission, measured in consumption units.

Note that (provided the constraints 0 ≤ a ≤ 1 are not binding) the equation for optimal 
abatement can be written as:

so that SCC∗ =
c�(a∗)

�Y
 : Thus the SCC is also a measure of marginal abatement costs.

(1)max
a,E

u(C(a,E)), s.t. E = �Y(1 − a)

(2)SCC∗ = −
�Eu(C(a,E))|a∗ ,E∗

�Cu(C)|C∗

= −
−u�(C∗)d�(E∗)

u�(C∗)
= d�(E∗)

(3)�Cu
||C∗ .(−c

�(a∗)) + �Eu(C(a,E))
||C∗ .(−�Y) = 0
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2.1 � SCC with a Stochastic Tipping Point

We now introduce stochastic tipping points to our setting. There are several states of nature 
� , depending on whether or not tipping points have been crossed. The damage function is 
d�(E) in state � . The probability of having triggered tipping points, i.e. on being in state � 
depends on aggregate emissions p�(E) . A simple case is when there are one tipping point 
and two states of nature: 1 the pre-tipping point world where the damage function is the d1 , 
and 2 the post tipping point world that leads to a higher damage regime d2 ≥ d1 . The tip-
ping point induces a jump in damages d2 − d1 . The probability of being in the post-tipping 
world is an increasing function of the quantities of emission released p2(E) . Our frame-
work accommodates for more general formulations, such as multiple points or a single tip-
ping point leading to different post-tipping damage functions.

The social planner maximizes the expected social welfare, where we write 
C�(a,E) = Y − c(a) − d�(E) the aggregate consumption in state �:

We note at,Et the optimal abatement and emissions of this program. The SCC is the 
marginal social damages of an extra emission measured in consumption units, so, in this 
framework:

Note that for tipping points, the probability of being in a given state of nature is endog-
enous to the action of the planner, in contrast with exogenous risk (for instance on the 
value of climate sensitivity). The optimal abatement at of this program solves (provided the 
constraints on it are not binding):

so that the SCC is still given by c
�(at)

�Y
 . Specifying to the case of a single tipping point, 

we have ��[u(C�(a,E))] = (1 − p2(E)).u(C1(a,E)) + p2(E).u(C2(a,E)) , and the SCC of 
Eq. (5) can be written as:

As in van der Ploeg and de Zeeuw (2019), the previous equation offers a decomposition of 
the SCC into three terms:

•	 the marginal damage term, before reaching the tipping point,
•	 the additional marginal damage in case the tipping point is reached, weighted by the 

probability of tipping,
•	 the damage due to a marginal increase in the probability of triggering the tipping point.

(4)max
a,E

��

[
u(C�(a,E))

]
, s.t. E = �Y(1 − a)

(5)SCCt = −
�E��

[
u(C�(a,E))

]|at ,Et

��

[
u�(C�(a,E))

]|at ,Et

(6)��

[
u�(C�(a,E))

]|at ,Et .(−c�(at)) + (�E��

[
u(C�(a,E))

]|at ,Et ).(−�Y) = 0

(7)

SCCt =
c�(at)

�Y
= d�

1
(Et)

+ (d�
2
(Et) − d�

1
(Et))

p2(E
t)u�(C2(a

t))

��[u
�(C�(a,E))]

+ p�
2
(Et)

u(C1(a
t)) − u(C2(a

t))

��[u
�(C�(a,E))]
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Introducing tipping points in this way conflates a level effect and a risk effect. Damages are 
indeed increased in the same time as risk is introduced, because the effect of the tipping point 
is not a zero-mean risk on consumption. Indeed, compared to the situation without a tipping 
point, the mean additional risk of a tipping point is (1 − p(E))(d1 − d) + p(E)(d2 − d) , which 
is equal to p(E)(d2 − d1) when the pre-tipping damage function is the same as the damage 
function without a tipping point ( d1 = d ). As a consequence, the increase of the SCC found 
when a tipping point is introduced cannot be attributed to risk alone, it may be simply the 
effect of higher expected damages. The next subsection will investigate this point.

2.2 � SCC Under Expected Damages

To understand the effect of risk induced by a tipping point, we need a way to decompose the 
SCC so that we can disentangle what comes from expected damages from what is due to a 
zero-mean risk.

Let us go back to Eq. (5). We consider the expected damage function d̃(E) = �𝜔[d𝜔(E)] . 
One can write: C𝜔(a,E) = C̃(a,E) + 𝜖𝜔(E) with C̃(a,E) = �𝜔[C𝜔(a,E)] = Y − c(a) − d̃(E) . 
This decomposes the effect of tipping point on consumption as an effect on expected dam-
ages plus a zero-mean risk 𝜖𝜔(E) = d𝜔(E) − d̃(E) . We note V�(E) = ��[�

2
�
(E)] the variance of 

damages of the zero-mean risk �.
In the case of a single tipping point, expected damages are 

d̃ = p1d1 + p2d2 = d1 + p2.(d2 − d1) . The risk � on consumption is �1 = −p2(d2 − d1) in state 
1, with probability 1 − p2 , and �2 = (1 − p2)(d2 − d1) in state 2 with probability p2 (where all 
symbols are functions of emissions E). So, compared to a world without tipping points, in 
which the damage function is the pre-tipping damages function, introducing a tipping point 
increases expected damages by p2.(d2 − d1) and adds risk. Thus, the risk of the tipping point 
is that damages are less than expected if the world does not tip (state 1, pre-tipping) and that 
damages are above expectations if the world does tip (state 2, post-tipping). It is a zero-mean 
risk whose variance is V�(E) = p2(1 − p2).(d2 − d1)

2 . The risk is of the same order of magni-
tude as the jump in damages d2 − d1.

Let us assume that the risk � is small and make a Taylor-expansion at the second-order in 
formula (5):

We show in Appendix A that we can make a Taylor expansion also of the denominator and, 
after reordering, we obtain the following decomposition of the SCC (ignoring higher-than-
second-order terms):

(8)SCCt = −

𝜕E�𝜔

[
u(C̃(a,E)) + u�(C̃(a,E))𝜖𝜔(E) + u��(C̃(a,E))

𝜖2
𝜔
(E)

2

]||||at ,Et

�𝜔

[
u�(C𝜔(a,E))

]|||at ,Et

(9)=
u�(C̃(at,Et))d̃�(Et)

�𝜔

[
u�(C𝜔(a,E))

]|at ,Et

−

𝜕E

(
u��(C̃(a,E))

V𝜖 (E)

2

)||||at ,Et

�𝜔

[
u�(C𝜔(a,E))

]|at ,Et

(10)SCCt = d̃�(Et) + 𝛾(C̃(at,Et))
C̃(at,Et)

2
𝜕EV𝜖(E)

||Et
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The SCC in the presence of a tipping point is thus shown to be the sum of marginal 
expected damages plus a second-order correction that is proportional to the Arrow–Pratt 
measure of relative risk aversion �(C) = −u��(C)∕(u�(C).C) of the utility u, and to the mar-
ginal increase in the variance of risk �EV�(E) . When the effect of tipping point is split 
into an increase in expected damage plus a zero-mean risk, this decomposition shows that 
changes in expected damages drive the effect on the SCC whereas the zero-mean risk intro-
duces only a second-order correction.

To make this statement more precise, we introduce the SCC under expected damages, 
that is the SCC in a deterministic model similar to Eq. (1) but with the damage function 
replaced by the expected damages of the tipping point d̃ . We note aed,Eed the optimal 
abatement and emissions of this program under expected damages. Thus the SCC under 
expected damages SCCed is given by:

We have the following proposition:

Proposition 1  The difference between the SCC without a tipping point (SCC∗) and the SCC 
with a tipping point (SCCt) is proportional to the difference between marginal expected 
damages and marginal damage in the pre-tipping point state of the world. It is first-order 
in the magnitude of risk induced by the tipping point.

On the contrary, the difference between the SCC under expected damages ( SCCed ) and 
the SCC with a tipping point ( SCCt ) is only second-order. It is proportional to risk aver-
sion and the marginal increase in the variance of risk induced by the tipping point.

Proof  See Appendix B 	�  ◻

To summarize, we have demonstrated that introducing a tipping point raises the SCC, 
compared to a SCC without a tipping point, where the damage function is given by the 
pre-tipping point damage function. This first order difference is explained by an increase 
in expected damages. Whereas comparing the SCC with and without a tipping point 
introduces a first-order correction in the SCC, the correction is only of second order 
when we compare the SCC with a tipping point and the SCC under expected damages.

This means first that it is misleading to compare the SCC with and without stochas-
tic tipping point, and second that the increase due to the tipping point is, in this simple 
model, a matter of expected level rather than risk. The SCC under expected damages 
captures most of the value of the SCC, as long as the damage shocks are small. Risk 
introduces a correction that increases with risk aversion. Interestingly, this result holds 
under rather general conditions. We did not assume a specific form for the change in 
damages induced by the tipping point. Hence, it applies generally, and in particular, in 
the case of one tipping point, it applies when the tipping point induces a jump in dam-
age ( d2 − d1 is constant) or more convex damage, i.e. higher marginal damage ( d2 − d1 is 
an increasing function of temperature).

The key insight of this simple one-period model is that we can think of the SCC as 
being composed of two parts: SCC under expected damages and a risk premium pro-
portional to risk aversion. For small tipping point damages, the SCC under expected 
damages will be close to the actual SCC. In the next section, we define the SCC under 

(11)SCCed =
c�(aed)

𝜎Y
= d̃�(Eed)
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expected damages for an intertemporal model and use an IAM to explore numerically 
the gap between both SCC.

3 � Contributions of Expected Damages versus Risk in a Stochastic IAM

We now use an IAM to numerically compare the SCC under a stochastic tipping point and 
the SCC under expected damages, in order to quantify the contribution of pure risk to the 
SCC. This allows us to examine whether the intuition from the simple model holds in a 
multi-period framework, and also for larger damages. We present in Sect. 3.1 the climate-
economy model and in Sect. 3.2 the social welfare functions we use. We then explain how 
we construct in this model the SCC under expected damages (Sect. 3.3), and the values we 
explore for the parameters of the model (Sect. 3.4).

3.1 � The Climate‑Economy Model

An IAM is meant to capture the main crossed interactions between the economy and the 
climate system. On the one hand, the economy, depending on growth, mitigation policies 
and technological choices, produces greenhouse gas emissions which interfere with the cli-
mate system. On the other, these changes in the climate system cause damages to the econ-
omy. An IAM allows to derive an optimal emission path from the point of view of a social 
planner balancing the costs of mitigation and damages of climate change, and to calculate 
the social value of intertemporal marginal damages caused by emissions—the SCC.

We use a classical DICE-like model, building on the Ramsey–Cass–Koopmans frame-
work (Guivarch and Pottier 2018). The economy produces a single good in quantity Qt 
using two factors, capital Kt and labour Lt through a Cobb-Douglas function. The produc-
tivity is affected by climate change via a damage factor1 �t that depends on temperature Tt , 
so that final production Yt writes:

Production induces emissions, which can be mitigated at a certain cost. The social planner 
trades off consumption, mitigation costs (which represent a share �t of production), and 
investment in capital (share st of production)

where � is capital depreciation, and �t the abatement rate. �1(t) measures total mitigation 
costs and decreases exogenously due to technical progress.

(12)Yt = �(Tt)AtK
�

t
L1−�
t

(13)Ct =Yt(1 − �t − st)

(14)�t =�1(t)�
�2
t

(15)Kt+1 − Kt = − �Kt + Ytst

1  For notational convenience, we use damage factor � instead of damage function D. The correspondence 
is simply � = 1 − D.
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The difference with DICE equations concerns the climate system. It has been shown 
that DICE’s climate model implies a lag between CO2 emissions and warming that is 
too long, i.e., the temperature rises too slowly in response to emissions (National Acad-
emies of Sciences 2016; Mattauch et al. 2019) DICE’s climate model is also inconsist-
ent at long timescales (Glotter et  al. 2014). We adopt a simple linear formula linking 
temperature change to cumulative CO2 emissions, as in Guivarch and Pottier (2018) and 
Dietz and Venmans (2019). Indeed, the ratio of global temperature increase to cumula-
tive emissions has been shown to be almost independent of time and of emission path-
ways in simulations of the response to a range of emission scenarios with climate mod-
els, as well as in observations (Matthews et al. 2009; Zickfeld et al. 2009, 2013; Gillett 
et  al. 2013; Collins et  al. 2013). There are physical explanations to this near-linear 
dependence between warming and cumulative carbon emissions, due to the compensat-
ing effects of oceanic uptake of heat and carbon (Solomon et al. 2009; Goodwin et al. 
2015; MacDougall and Friedlingstein 2015). There are also limitations to such a simple 
climate representation, for instance Leduc et al. (2015) have shown that the linear rela-
tionship between temperature change and cumulative emissions is no longer valid for 
high emission pathways such as the RCP 8.5.

Our equation for temperature change is thus:

where Tt is the global temperature increase at time t, CE0 is cumulated emissions up to the 
first period of the model and Es the emissions at time s. The current stock of cumulated 
emissions is St = CE0 +

∑t

s=0
Es.

where �t is the carbon content of production that decreases exogenously over time, and �t 
the abatement rate.

In our central estimates, we model the tipping point as a stochastic process with an 
endogenous hazard rate ht , leading to a permanent productivity shock, in line with Cai 
and Lontzek (2019), van der Ploeg and de Zeeuw (2018) and Belaia et al. (2014). Such 
a change in the damage function can potentially apply to a large range of tipping points 
inducing larger damages than expected. It can be direct impact on the economy, either 
caused by the melting of ice caps, leading to severe sea-level rise; a slowing down of 
thermohaline circulation; or a social tipping point beyond which adaptation is no longer 
possible. Before the tipping point, the damage factor is:

In our central case, once the tipping point has been reached, the damage factor writes:

J is the magnitude of the productivity shock, ranging from 0 to 1. In this representation, 
the tipping point increases the level of damages, but it does not affect the convexity of the 
damage function. Indeed, damages go approximatively from ≈ �T2 to ≈ �T2 + J . Uncer-
tainty about the convexity of damages may lead to greater changes than uncertainty about 

(16)Tt = �(CE0 +

t∑
s=0

Es)

(17)Et = �tYt(1 − �t)

(18)�1(T) =
1

1 + �T2

(19)�2(T) =
1 − J

1 + �T2
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the level of damages (Crost and Traeger 2013), so we also consider in the Annex the case 
of a tipping point increasing marginal damages.

At each period, the tipping point occurs with a hazard rate ht which depends on the 
temperature level. We assume that the location of the tipping point is unknown. The initial 
prior is that the tipping point is uniformly distributed between Tmin and Tmax . At each time 
t − 1 with temperature Tt−1 , the social planner learns whether the tipping point has been 
reached or not, as in Lemoine and Traeger (2014). If it has not been reached, this means 
that it can only occur when temperature is above Tt−1 , so that the social planner updates 
prior for the next period. Hence the probability to reach the tipping point at t conditional to 
not reaching it at t − 1 is given by:

Note that the marginal hazard rate tends to increase (i.e., �2�1ht ≥ 0 ), as experienced tem-
peratures increase. This setting differs from the representation chosen in Cai and Lontzek 
(2019) and van der Ploeg and de Zeeuw (2018), in which the hazard rate depends solely on 
current temperature with no learning. In that case the tipping point is therefore unavoid-
able in the long term. In our setting however, the tipping point is avoided with certainty if 
temperature stabilizes below Tmin ; it can be avoided—but with no certainty—if temperature 
stabilizes between Tmin and Tmax , and it is triggered with certainty if Tmax is exceeded. This 
representation does not consider possible processes where a tipping point would be trig-
gered with some lag.

3.2 � Social Welfare Functions

We study two types of social welfare functions: expected utilitarianism with Constant Rel-
ative Risk Aversion (CRRA), and an Epstein–Zin social welfare function. In the CRRA 
representation, time and risk preferences are embedded in a single parameter, elasticity of 
marginal utility, which conflates the resistance to intertemporal substitution and the risk 
aversion. However, the resistance to intertemporal substitution and risk aversion can have 
opposite effects in the presence of risk (Ha-Duong and Treich 2004): while the former 
favours the consumption of present generations, the latter encourages more abatement in 
the present in order to lower the risk of triggering the tipping point. For this reason, we 
also apply Epstein–Zin preferences, which disentangle intertemporal substitution and risk 
aversion.

Welfare after time t, Ut , is defined recursively:

•	 For CRRA preferences 

 where � is the pure time preference rate, and utility at each time step is given by: 

(20)ht(Tt, Tt−1) =

⎧⎪⎨⎪⎩

0 if Tt ≤ Tt−1 or Tt ≤ Tmin
Tt−max(Tmin,Tt−1)

Tmax−max(Tmin,Tt−1)
if Tt > Tt−1 and Tmin ≤ Tt ≤ Tmax

1 if Tt > Tt−1 and Tt ≥ Tmax

(21)Ut =

(
1 −

1

1 + �

)
ut +

1

1 + �
�[Ut+1]

(22)ut = Lt
(Ct∕Lt)

1−�

1 − �
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� is the elasticity of marginal utility.
	   So that we can define Bellman functions as follows: 

 where xt = (St,Kt) are state variables, yt = (�t, st) are control variables, and 
xt+1 = G(xt, yt) is the transfer function.

•	 For Epstein Zin preferences:2

 For the sake of clarity, we use different notations in the Epstein–Zin case. We denote � 
the resistance to intertemporal substitution (the inverse of the elasticity of intertemporal 
substitution), and � the risk aversion parameter.

	   We can define Bellman functions in order to solve this dynamic program: Vt =
U1−�

t

1−
1

1+�

 . 

f accounts for the decision maker’s attitude towards the risk of reaching a tipping point.3 
f (Vt+1) = [�(V

1−�

1−�

t+1
)]

1−�

1−� . It is the same formula as for CRRA preferences, in which f = �

.
Using dynamic programming, we first approximate Bellman functions in the post-tipping 
world, and then in the pre-tipping world using expectations over the temperature at which 
the tipping point occurs.

3.3 � Comparing the SCC for a Stochastic Tipping Point and the SCC Under Expected 
Damages

If S is the stock of emissions (* denotes that control variables y0 are optimally chosen given 
x0.), the SCC (at initial time) under a stochastic tipping point writes:

We use a modified damage factor �ed(T) to calculate the SCC under expected damages. 
This modified damage factor represents the expected damage factor given the prior on the 
temperature at which the tipping point occurs. Let us note p(T) the prior probability of hav-
ing reached the tipping point at temperature T. The expected damage factor writes:

(23)Vt(xt) = max
yt

[
u(xt, yt) +

1

1 + �
�[Vt+1(G(xt, yt))]

]

(24)Ut =

((
1 −

1

1 + �

)
ut +

1

1 + �
�[U

1−�

t+1
]
1−�

1−�

) 1

1−�

(25)ut =Lt
(Ct∕Lt)

1−�

1 − �

(26)Vt(xt) = max
yt

[u(xt, yt) +
1

1 + �
f (Vt+1(G(xt, yt)))]

(27)SCC = −
1

1 + �

�S�[V1]|x1
�CV0|(x0,y∗0)

2  The formula holds for 𝜃 < 1 . Otherwise when 𝜃 > 1 utility function is negative, so that 
Ut = −(−(1 −

1

1+�
)u +

1

1+�
[�t(−Ut+1)

1−� ]
1−�

1−� )
1

1−�.
3  When 0 < 𝜃 < 1 , the recursive formula involves ut −

1

1+�
f (−Vt+1).
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Damages at a given temperature are set at their expected level given the prior knowledge 
on the temperature at which the tipping point occurs. Figure 1 shows the resulting expected 
damages for two productivity shocks ( J = 10% and J = 50% ). Even though the tipping 
point only affects the level of damages, the expected damage function is more convex than 
the pre-tipping point damage function. Indeed, whereas the tipping point changes the dam-
age function from ≈ �T2 to ≈ �T2 + J , the expected damage function is ≈ �T2 + p(T)J , to 
be compared to ≈ �T2 without a tipping point. 

For each computation of the SCC for a stochastic tipping SCC , we can compute the cor-
responding SCC under expected damages, noted SCCed , which is the SCC of a determinis-
tic run with damages set at their expected level. The SCC in a stochastic setting represents 
the full effect of the tipping point, whereas we take SCCed as representing the level effect 
of the tipping point, absent risk. We will analyse the ratio SCCed∕SCC , which is the part of 
the SCC that is explained by expected damages. Its complement is the part of the SCC that 
is due to a pure risk effect, purged of any level effect.

3.4 � Calibration of the Parameters

We summarize in Table 1 the values and range explored for the parameters of interest. We 
use typical ranges of possible values for parameters related to attitudes towards risk and 
time. The pure rate of time preference is set at 1.5% (Nordhaus 2008),—a lower value of 
0.5% is explored in the Appendix. The elasticity of marginal utility ranges from 0.8 to 3 in 
the CRRA case. In the Epstein–Zin case, � is set at 0.8, and we perform a sensitivity analy-
sis in the Appendix. Considering the range used in the literature (Ackerman et al. 2013; 

(28)�ed(T) = (1 − p(T))�1(T) + p(T)�2(T)
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Fig. 1   Comparison between the two approaches. If the stochastic tipping point is triggered, the damage 
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Weitzman (2012) is pictured for comparison. (Color figure online)
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Crost and Traeger 2013; Jensen and Traeger 2014; Cai and Lontzek 2019), we explore risk 
aversion ( � ) from 0.5 to 20.

For the parameters describing the tipping point, most of the published literature use 
impacts under a 10% decrease of productivity. Nevertheless, we acknowledge that the 
impacts of such a phenomenon are difficult to quantify and could be very large, so we 
explore a much larger window for the productivity shock J, from 0 to 50%. The tempera-
ture at which the tipping point would occur is uncertain, and we assume it is distributed 
between current temperature ( Tmin = 0.8 ) and Tmax = 7 ◦C (Lemoine and Traeger 2014 
consider the upper bound for the temperature threshold between 3 and 9 ◦C). This means 
for instance that there is a 19% probability of triggering a tipping point between 0.8 and 2 ◦
C.4

4 � Results

We present the comparison between the SCC under a stochastic tipping point and the SCC 
under expected damages, first with CRRA preferences, then with Epstein–Zin preferences 
where risk aversion and resistance to intertemporal substitution differ. We finally discuss 
the significance of our results and lessons that can be drawn for the risk aversion puzzle.

4.1 � With CRRA Preferences

We compute the SCC for a stochastic tipping point for different values of the elasticity of 
marginal utility ( � ) and productivity shocks (J) in the range specified in Sect. 3.4, as well 
as the SCC under expected damages SCCed.

One striking result is that the ratio SCCed∕SCC is very close to one for low productiv-
ity shocks and low risk aversion (see Fig. 2b), meaning that most of the SCC stems from 
expected damages enhanced by the tipping point rather than from the risk on damages the 
tipping point introduces. As J increases, aversion to the risk of high damages make the 
SCC rise faster than the SCC under expected damages, so that the ratio decreases.

Table 1   Main parameters for 
the stochastic tipping point 
numerical exercise. All other 
parameters are calibrated 
according to Guivarch and 
Pottier (2018)

Parameter Value (sensitivity test)

Pure rate of time preference ( �) 1.5% (0.5)
Elasticity of marginal utility ( �) from 0.8 to 3
Resistance to intertemporal substitution ( �) 0.8 (0.5 and 1.5)
Risk aversion ( �) from 0.5 to 20
Productivity shock (J) from 0 to 50%
Minimum temperature threshold ( Tmin) 0.8
Maximum temperature threshold ( Tmax) 7 (10)

4  A sensitivity test using Tmax = 10 is performed in the Appendix. As said above, we also explore in the 
Appendix the case of a tipping point affecting the convexity of the damage function, rather than its level. 
Results are similar to those presented in the main text.



722	 N. Taconet et al.

1 3

The share of SCC due to expected damages also decreases as the elasticity of mar-
ginal utility � increases. The role of the elasticity of marginal utility � on the SCC is a 
priori ambiguous. Indeed, CRRA preferences conflate intertemporal trade-offs and risk 
aversion, and � has opposing effects on the SCC. On the one hand, a higher � favours 
present consumption relative to future consumption of wealthier generations (intertem-
poral substitution), which decreases the SCC. On the other hand, it encourages miti-
gation to reduce the risk induced by reaching a tipping point (risk aversion), which 
increases the SCC. In the case of SCCed , only the intertemporal substitution effect 
is at play, not the countervailing risk aversion effect. Thus the SCC under expected 
damages ( SCCed ) decreases faster with � than the SCC does, and the ratio SCCed∕SCC 
decreases with � . Note that in the stochastic case, the intertemporal substitution effect 
outweighs the risk aversion effect: for a given productivity shock J, the SCC decreases 
when � increases (Fig. 2a).

Though SCC varies by more than an order of magnitude with the ranges of shocks 
and preferences explored here, most of this variation is explained by expected dam-
ages. For example, at � = 2 , introducing a tipping point with a shock of J = 10% tre-
bles the SCC from 34 to 103 $∕tCO2 . However, this increase is not related to risk but 
to the simple fact that expected damages have increased—indeed, SCCed is 97 $∕tCO2 . 
A mere 6% of the SCC is due to a pure risk effect.

Numerically, it takes both a high productivity shock and a high elasticity of mar-
ginal utility for SCCed to significantly underestimate SCC . Expected damages explain 
more than 90% of the SCC, as long as the productivity shock is inferior to 10%, what-
ever the value of risk aversion in the range explored here. Only with productivity 
shocks higher than 40%, jointly with an elasticity of marginal utility higher than 2, 
does risk contribute to around half of the SCC.

The same pattern is found with a lower pure time preference rate ( � ). Though a 
lower � significantly raises the level of the SCC, it does so to the same extent in the 
stochastic case and under expected damages, so that the part of the SCC explained by 
expected damages is similar in the case of a lower � (see Fig. 7 in the Appendix).
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Fig. 2   Comparison of the Social Cost of Carbon to a risk-free SCC under expected damages for CRRA 
preferences: Heatmap of the Social Cost of Carbon (a in US$2005) and the share of its value that can be 
explained by expected damages (b ratio SCCed∕SCC ). The closer the ratio to 100%, the less risk plays 
a role. 90% of the SCC comes from expected damages for shocks lower than 10%, while it takes shocks 
greater than 40% for risk to explain at most half of the SCC
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4.2 � With Epstein–Zin Preferences

We perform the same exercise using Epstein–Zin preferences, i.e., disentangling prefer-
ences for risk and intertemporal substitution. We set the resistance to intertemporal substi-
tution ( � ) at 0.8, and present the results when the risk aversion � and the productivity shock 
J vary in Fig. 3. The corresponding graphs for different values of resistance to intertempo-
ral substitution and pure rate of time preference can be found in the Appendix as a sensitiv-
ity check, as well as alternative values for Tmax.

The part of the SCC explained by expected damages has a similar pattern as in the case 
of CRRA preferences. As expected, the ratio SCCed∕SCC decreases with risk aversion � 
and productivity shock J. Values are somewhat similar to the case with CRRA preferences 
(with a correspondence � ∼ � ) but as we explore a much larger range in risk aversion, the 
part explained by expected damages can become much lower. Interestingly, the SCC does 
not significantly increase with risk aversion for low values of the productivity shock (see 
Fig. 3a), hence the low horizontal gradient below J = 10% . However, for higher produc-
tivity shocks, the SCC shows a high sensitivity to risk aversion, and a higher � leads to 
SCC orders of magnitude greater. This suggests that risk aversion only matters when the 
economy is exposed to catastrophic risks.

For instance, for a productivity shock equal to 10%, 90% of the SCC is explained by 
expected damages up to a risk aversion of 4 (as in the CRRA case), but the part explained 
is only 60% when � = 15 . Productivity shocks higher than 25%, combined with risk aver-
sion higher than 5, lead to the ratio SCCed∕SCC below 50%. For a productivity shock equal 
to 40% and a risk aversion parameter equal to 5, the SCC under expected damages only 
makes 20% of the SCC.

The same holds for the sensitivity checks we explore in the Appendix, i.e., for alterna-
tive values of the pure time preference rate ( � = 0.5 ) and of the elasticity of intertemporal 
substitution ( � = 0.5, 1.5 ). A decrease in the elasticity of substitution (a higher � ) tends 
to decrease the SCC, but it does not affect how much the SCC is explained by expected 
damages. Indeed, � plays a similar role in both deterministic and stochastic settings, as it 
governs the trade-off between future and present consumption. This is a strong indication 
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Fig. 3   Comparison of the Social Cost of Carbon to a risk-free SCC under expected damages for CRRA 
preferences: Heatmap of the Social Cost of Carbon (a in US$2005) and the share of its value that can be 
explained by expected damages (b ratio SCCed∕SCC ). The ratio decreases with risk aversion and with the 
magnitude of the shock, but remains above 90% for productivity shocks lower than 10%, unless risk aver-
sion is greater than 10
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that our construction of the expected damages has correctly isolated the level effect of the 
tipping point. It is graphically confirmed with panel b of Fig. 4 in Appendix, where the 
iso-lines for the ratio SCCed∕SCC are almost flat in the � direction. For the same reason, 
changes in the pure time preference rate ( � ) or using a higher temperature threshold Tmax 
do not affect much the shape or position of the contours of the ratio. Even when consider-
ing a tipping point affecting the convexity of the damage function, it takes both very high 
post-tipping point marginal damages and high risk aversion for the SCC to deviate from the 
value given by expected damages.

4.3 � Significance of our Findings and Discussion of the Risk Aversion Puzzle

A productivity shock of 10% is in the higher range of those typically considered in the 
literature. For instance, Lontzek et al. (2015), with a similar framework, do not consider 
shocks above J = 10% . Belaia et al. (2014) only considers productivity shocks below 4.5% 
when thermohaline circulation collapses. Other modelling choices, in Lemoine and Trae-
ger (2014), assume a tipping point induces a change from a quadratic to a sextic damage 
function, i.e., Weitzman’s damage function that relies on an expert panel explicitly consid-
ering physical tipping points. At 4 ◦ C, this corresponds to a change of damage factor from 
�1 = 0.96 to �2 = 0.91 (so equivalent to a productivity shock of 5%). Our results thus sug-
gest that the increase of SCC found in studies considering tipping points is mostly due to 
an increase in expected damages, rather than to the risk itself.

Identifying that most of the SCC in the presence of a small tipping point is due to 
expected damages and not risk sheds light on the so-called risk aversion puzzle. It has been 
found in previous work that risk aversion has a surprisingly little effect on the SCC (Acker-
man et al. 2013), even in the case of a tipping point (Belaia et al. 2014). When risk aversion 
is higher, the SCC does not change much. This seems counter-intuitive, as risk aversion, 
especially after it has been disentangled from the elasticity of substitution in Epstein–Zin 
preferences, is expected to significantly increase the SCC.

The simple model of Sect. 2 reveals why this may be the case. Indeed, the SCC is equal 
to the SCC under expected damages plus a risk premium proportional to risk aversion. 
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Fig. 4   Epstein–Zin preference: influence of the resistance to intertemporal substitution � . Heatmap of the 
Social Cost of Carbon (a in US$2005) and the share of its value that can be explained by expected damages 
(b ratio SCCed∕SCC ), for different values of resistance to intertemporal substitution ( � ) and productivity 
shocks (J). Horizontal lines in b. indicate that preferences for intertemporal substitution does not affect the 
comparison between SCC and SCC under expected damage
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Moreover, the smaller the tipping point, the smaller the risk premium. For instance, for a 
productivity shock J = 5% and a risk aversion � = 1 , the SCC under expected damages rep-
resents 99.5% of the value of the SCC. Based on the simplified model, increasing � from 
1 to 20 increases the SCC from a base 100 = 99.5 + 0.5 to 109.5 = 99.5 + 20 × 0.5 , i.e., 
an increase of less than 10%. However, for a productivity shock J = 50% , the SCC under 
expected damages represents around 70% of the SCC at � = 1 . Setting � = 20 increases 
the SCC from a base 100 = 70 + 30 to 670 = 70 + 20 × 30 . In our numerical results, the 
effects of risk turns out to be more than proportional to risk aversion, but the pattern is as 
described by the simple model of Sect. 2.

While the numerical results explain away the risk aversion puzzle for small shocks, they 
also show that this puzzle does not always hold. We quantify the magnitude of the shock it 
takes for risk aversion to play a role. Shocks leading to a minimum of a 10% drop in pro-
ductivity are necessary for risk aversion to impact the SCC.

Only few studies explore the possibility of large shocks, which are required for risk 
aversion to significantly affect the SCC: for instance, Dietz (2011) explores damages as 
large as 90% of consumption; Méjean et al. (2020) explore possible extinction, though with 
a very low probability. In such cases, risk aversion is expected to play a significant role.

5 � Conclusion

When considering climate damages, one might wonder whether it is their expected level 
or their possible dispersion (i.e., risk) that warrants undertaking mitigation actions. This 
question has been studied for many types of risks, for instance regarding climate sensitivity 
or other critical aspects of the climate-economy system, but has not been applied to tipping 
points in damage functions.

Our research fills this gap. We model a tipping point as an endogenous risk, with a haz-
ard rate increasing with temperature, leading to a permanent productivity drop. First, we 
demonstrate in a simple setting that the SCC with a stochastic tipping point is at the first 
order the SCC with damages set at their expected level. We thus isolate the effect of the 
increased expected damages brought by the introduction of a tipping point, so that the dif-
ference between the two methods can be attributed to the sole effect of risk. Numerically, 
when risk aversion is equal to resistance to intertemporal substitution (CRRA preferences), 
the SCC under expected damages closely approximates the SCC for a low productivity 
shock and a low risk aversion. Even when disentangling resistance to intertemporal sub-
stitution and risk aversion, using Epstein–Zin preferences, the share of SCC attributable to 
risk remains limited. For both Social Welfare Functions, risk contributes less than 10% to 
the SCC, as long as shocks remain below 10% of production and risk aversion is below 10. 
We test the robustness of our results with a number of sensitivity runs regarding the para-
metrization of the tipping point and preferences. In particular, the results are qualitatively 
unchanged when considering a tipping point that leads to more convex damages rather than 
higher damages.

Providing realistic values for the damage shocks triggered by tipping points is beyond 
the scope of the article, but we nevertheless provide orders of magnitude for the type of 
damages it may take for risk to play a role. This sheds light on the risk aversion puzzle. We 
show that risk aversion only plays a role when the economy is exposed to very high post-
tipping damages. When low post-tipping point impacts are considered, the SCC is sensitive 
to expected damages, so that risk aversion plays a moderate role, in particular compared 
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to time preferences. Thus, the low level of possible damages considered in the literature 
explains the risk aversion puzzle. However, this stresses once again that the shape of the 
damage function is central in IAMs. In particular, provided that the risk of triggering a 
tipping point increases with temperature, expected damages are more convex when consid-
ering tipping points. Thus, simply using more convex damage functions in a deterministic 
fashion may be a good proxy to determine the SCC, as was done for instance by Pizer 
(2003), Ackerman and Stanton (2012), Wouter Botzen and van den Bergh (2012), Dietz 
and Stern (2015) and Weitzman (2012).

These results can be extended to other situations. For instance, multiple tipping points 
(Lemoine and Traeger 2016b) are equivalent to a single tipping point with compound-
ing damages. Our approach could be applied to this case, provided that these combined 
effects are accounted for (i.e., including the increased probability of triggering another tip-
ping point if one is reached). Damages affecting growth can also result into a higher SCC 
(Moore and Diaz 2015), but they would make the comparison with expected damages more 
difficult, because of the different time profiles of damages, with losses of potential growth 
adding up each year (Guivarch and Pottier 2018). Thus, we leave for future research the 
question of whether the risk effect plays a greater role for a tipping point affecting growth.

Because the role of preferences is critical to assess the optimal strategy under uncer-
tainty, a direct extension of our work would be to study how the comparison between meth-
ods is affected by alternative preferences for the social planner. Epstein–Zin preferences 
have recently received a lot of attention in this literature, but they may violate first-order 
stochastic dominance (Bommier and Le  Grand 2014). Bommier et  al. (2015) propose 
another class of preferences, which could be used in the case of catastrophic risks. The 
social planner may also be ambiguity averse to differing worldviews about tipping points 
(Berger et al. 2016; Lemoine and Traeger 2016a). Though we have focused here on how 
uncertainty about the tipping points affects optimal policy, this uncertainty could be com-
bined with other uncertainties at stake, such as climate sensitivity or the volality of growth 
(Cai and Lontzek 2019; Van Den  Bremer and van  der Ploeg 2018). Finally, even if the 
damage function is the weakest point of IAMs, they also embed a number of assumptions 
about the climate-economy system that may be regarded as simplistic and questionable 
(Pindyck 2013).

Deterministic approaches using best-guess expected damages (together with sensitiv-
ity analyses) are currently used to set a value for the SCC for policy evaluations (IAWG 
2010), and benefit from a lower computational burden than a fully fledged stochastic 
model. Knowing when deterministic approaches can be used as a good proxy for comput-
ing the SCC under risk can guide policy-making. Our results show that the SCC is primar-
ily driven by the expected level of damages, when the shock induced by a potential tipping 
point remains lower than 10% or so. In that case, the effects of tipping points are well cap-
tured by updating the damage function typically used to a more convex function, reflecting 
the increasing probability to trigger a tipping point as the Earth warms.

Appendix A: Proof of Equation 10

Recall that we note V�(E) = ��[�
2
�
(E)] the variance of damages of the zero-mean risk � , 

which is of second order in |�| (a norm of the risk � ). Let us start with Taylor expansion at 
second order of the term evaluated in the denominators of Eq. (8):
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So the denominator is finally:

Let us go back to Eq. (8). It is a sum of two terms, the first one is of zero-order, whereas a 
second term is of second order. In this second term, we can simply replace the denominator 
by its zero-order approximation as any correction would induce terms with orders higher 
than 2. For the first term of the sum, we have to keep the full Taylor expansion of the 
denominator. We then reorder terms of the Taylor expansion.

(29)

�𝜔

[
u�(C𝜔(a,E))
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At the last line, we have introduced the Arrow–Pratt measure of relative risk aversion 
�(C) = −u��(C)∕(u�(C).C) of the utility u to get Eq. (10).

Appendix B: Proof of Proposition 1

We are first interested in the difference between SCC with a tipping point SCCt , given by 
Eq. (5) and SCC without a tipping point SCC∗ , given by (2), with damage function d egal 
to damage function in the pre-tipping state of the world (we call 1 this state).

The proof is a little bit more complicated than just comparing the Eqs.  (2), (10) and 
(11). Indeed, one has to take into account not only that there are additional terms but also 
that these are not evaluated at the same point. This is because the planner reacts to addi-
tional damages terms and thus the optimal emissions change accordingly (it is respectively 
E∗,Et,Eed).

We have, at first order in the magnitude of risk � , thanks to (10):

The optimal abatement and emission levels solve:

Let us write at = a ∗ +h , then Et = E ∗ −�Yh and assume that h is at first-order in |�| . We 
make a Taylor-expansion of the last line in h:

Hence

The right hand side is simply −��
1
(E∗) , the marginal increase in risk � in state 1. Thus h is 

correctly at first-order in |�| and the difference between the SCCs is given by:

(37)
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This proves our first claim. We proceed similarly for the second. By definition and thanks 
to (10),

The optimal abatement and emission levels solve:

Let us write at = aed + g , then Et = Eed − �Yg and assume that g is at second-order in |�| . 
We make a Taylor-expansion of the last line in g:

Hence:

Thus g is correctly at second-order in |�| (as �EV�(E)
||Et ) is) and given by:
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The difference between the SCCs is given by:

Appendix C: Additional Graph: Sensitivity to Resistance 
to Intertemporal Substitution

Two parameters are involved in welfare evaluation at each time step: risk aversion ( � ) and 
resistance to intertemporal substitution ( � ). In the main text, we have analyzed the influ-
ence of risk aversion combined with the value of the shock. On Fig. 4, we display how 
resistance to intertemporal substitution affects the comparison of determinsitic and sto-
chastic methods. A change in � does not affect the share of the SCC explained by expected 
damages, the contour lines on the graph are horizontal.

Appendix D: Robustness Checks

We perform a sensitivity analysis on several parameters of the model:

•	 The maximum temperature threshold for the tipping point Tmax . We look at Tmax = 10 
instead of 7.

•	 Pure rate of time preference � . We run the model for lower � (0.5%)
•	 Elasticity of intertemporal substitution ( 1∕� ) in the Epstein–Zin case. We consider 

� = 0.5 and � = 1.5.

The graphs show that the shapes of the curves are not affected by a change in these param-
eters, and our finding that most of the SCC is still explained by expected damages as long 
as the shock remain under 10%.
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Appendix D.1: Parameter T
max

See Figs. 5 and 6.
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Fig. 5   Sensitivity analysis for Tmax = 10 ◦C (CRRA preferences). Heatmap of the Social Cost of Carbon 
(a in US$2005) and the share of its value that can be explained by expected damages (b ratio SCCed∕SCC)
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Fig. 6   Sensitivity analysis for Tmax = 10 ◦C (Epstein–Zin preferences). Heatmap of the Social Cost of 
Carbon (a in US$2005) and the share of its value that can be explained by expected damages (b ratio 
SCCed∕SCC)
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Appendix D.2: Parameter �

See Figs. 7 and 8.
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Fig. 7   Sensitivity analysis for � = 0.5% (CRRA preferences). Social Cost of Carbon under Epstein–Zin 
preferences. Heatmap of the Social Cost of Carbon (a in US$2005) and the share of its value that can be 
explained by expected damages (b ratio SCCed∕SCC)
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Fig. 8   Sensitivity analysis for � = 0.5% (Epstein–Zin preferences). Heatmap of the Social Cost of Carbon 
(a in US$2005) and the share of its value that can be explained by expected damages (b ratio SCCed∕SCC)
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Appendix D.3: Parameter �

See Figs. 9 and 10.

Appendix D.4: A Tipping Point Affecting the Convexity of Damages

We plot the same graphs when the tipping point affects the convexity of the damage func-
tion. Thus, the tipping point increases marginal damages rather solely damage level. We 
assume that the coefficient � in the damage factor � =

1

1+�T2
 can jump from its initial value 

( �1 = 0.00028 ) to a higher value �2 (see Fig. 11 for an illustration of the effect on the damage 
function). Results are shown in Fig. 12.  
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Fig. 9   Sensitivity analysis for � = 0.5 (Epstein–Zin preferences). Heatmap of the Social Cost of Carbon (a 
in US$2005) and the share of its value that can be explained by expected damages (b ratio SCCed∕SCC)
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Fig. 10   Sensitivity analysis for � = 1.5 (Epstein–Zin preferences). Heatmap of the Social Cost of Carbon 
(a in US$2005) and the share of its value that can be explained by expected damages (b ratio SCCed∕SCC)
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