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Abstract
This paper examines the effects of environmental innovation on material usage, using 
Direct Material Input (DMI) and Raw Material Input (RMI) as indicators of material 
usage. The analysis is conducted on European Union countries for the years 1990–2012. 
We utilize the Generalized Method of Moments in a dynamic panel setting. Based on pat‑
ent data, we construct green knowledge stocks for specific technological domains. We find 
that the effect of environmental innovation differs between subdomains. Innovation in the 
areas of energy efficiency, and recycling and reuse is found to reduce material usage. For 
alternative energy production, transportation, production or processing of goods, and gen‑
eral green innovation no significant effect is found. We observe a distinct reducing effect 
of some environmental innovation areas when compared with overall innovation. The tech‑
nology effects are similar for RMI and DMI. The results are discussed from the perspective 
of literature on the environmental effects of environmental innovation, and literature on 
decoupling.

Keywords Decoupling · Dynamic panel · Environmental innovation · Material flows · 
Patent data · Sustainable development

JEL Classification Q01 · Q55 · Q56 · Q58

1 Introduction

Sustainable Development (SD) has become an important item on the global political 
agenda, reflected inter alia in the UN 2030 Agenda for Sustainable Development (United 
Nations 2015). However, unimpressed by resource scarcities or the danger of climate 
change, unfettered economic growth remains the focal point of economists and policy mak‑
ers. Even the Agenda for Sustainable Development acknowledges economic growth as an 
integral part of the equation. Increased economic activity has undoubtedly caused a dra‑
matic increase in environmental pressures. Even before a fundamental questioning of the 
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growth paradigm, the consequences of economic activity on the environment are obvious 
(Rockström et al. 2009; Schramski et al. 2015).

Innovation is a key force for offsetting scale effects to align economic development with 
environmental sustainability. Achieving this forceful decoupling of economic growth from 
resource use and the associated environmental impacts, crucially depends on technological 
improvements reducing pressure stemming from production and consumption (Popp et al. 
2010). This assumption is formulated more clearly in the IPAT hypothesis, which states 
that environmental impact (I) is not just proportional to the scale of human population (P), 
but depends on the level of affluence (A) and specific technology choices (T) (Steinberger 
et al. 2010; Weina et al. 2016).

Decoupling economic development from its environmental impact is ultimately about 
increasing the productivity by which environmental resources are transformed into eco‑
nomic goods and services (Baptist and Hepburn 2013). Some studies claim that Europe 
has already achieved a high level of decoupling between economic growth and material 
use, at least in relative terms (Moll et al. 2005; Voet et al. 2005). These claims are sup‑
ported by a conviction that has begun to influence policy (OECD 2011). These endeavors 
are reflected in a variety of political programs and initiatives, such as the Raw Materi‑
als Initiative (European Commission 2008), the Europe 2020 strategy declaring a resource 
efficient Europe as one of the seven flagship initiatives (European Commission 2010), or 
the Roadmap to a Resource Efficient Europe (European Commission 2011a). These efforts 
strive towards the concept of a circular economy (European Commission 2015), although 
limits to circularity are inevitable (Cullen 2017). The shift to green technologies is a key 
component in achieving these goals. This is reflected, inter alia, in the EU Eco‑Innovation 
Action Plan (European Commission 2011b), putting environmental technologies at the 
heart of environmental policy in the EU. Thus, the EU is specifically targeting the deploy‑
ment of green technologies.

Despite the fact that governments are invested in encouraging innovative environmen‑
tal technologies, there is little empirical evidence about whether or not these technologies 
have a positive environmental impact (Barbieri et al. 2016). One of the obstacles confront‑
ing researchers is the lack of a common mechanism to determine the effects innovation 
exerts on the environment (Barbieri et al. 2016). Still, it seems evident that if innovation 
is intended to lessen environmental damage, then the political pursuit of innovation can be 
justified. Several papers have shown that green technologies reduce environmental pressure 
(Carrión‑Flores and Innes 2010; Wang et al. 2012; Zhang et al. 2017), or at least positively 
affect environmental productivity (Costantini et  al. 2017; Ghisetti and Quatraro 2017; 
Weina et al. 2016).1 However, findings remain ambiguous and unclear. Weina et al. (2016) 
come to the conclusion that green technologies contribute to improvements in environmen‑
tal productivity, yet do not play a significant role in reducing the absolute emission level. 
All of these papers focus on the sectoral (Carrión‑Flores and Innes 2010), sectoral‑regional 
(Ghisetti and Quatraro 2017), sectoral‑national (Costantini et  al. 2017), or the regional 
level (Wang et al. 2012; Weina et al. 2016; Zhang et al. 2017), and employ emission indi‑
cators (mainly  CO2) to proxy environmental pressure.

When considering global environmental performance, every nation’s efforts are impor‑
tant. If the governments of specific nations are responsible for reducing environmental 
pressure by committing to, e.g., the Paris Climate Agreement, determining whether or not 

1 Positively affecting environmental productivity refers to reductions in environmental damage per unit of 
output.
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environmental innovation is effective is of key importance. Hence, in this paper we will 
focus on European Union countries to provide insights concerning the impact of environ‑
mental innovation on environmental pressure at the national level. European Union coun‑
tries are industrialized and share institutional commonalities, not the least of which is a 
strong commitment to pursue environmental innovation.2

As noted above, most studies on the effects of environmental innovations made use of 
emission indicators to operationalize environmental pressure. Yet it can be argued that 
such environmental indicators fail to capture the holistic nature of environmental pres‑
sure, including pressures at different stages of the economic process, as well as at different 
points in time (Agnolucci et  al. 2017). Some scholars have proposed indicators such as 
those from Material Flow Accounting as an alternative proxy of environmental pressure 
(among others, Fischer‑Kowalski et al. 2011). The issues of environmental impact stem‑
ming from economic activity could relate to impacts on substance flows or soil erosion 
(Rockström et  al. 2009). Some of these impacts may not be gone despite the treatment 
of particular pollutants. Material flow indicators are used, for example, as key indicators 
in the assessment of Sustainable Development Goals,3 given that these indicators refer to 
various traits and qualify as a comprehensive measure of environmental pressure.

First, materials are resources that are inputs in the production function (O’Mahony 
and Timmer 2009), and have both economic and environmental relevance. Not being per‑
fectly recyclable, material usage reflects an irreversible depletion of environmental assets 
by humans. Second, materials capture potential environmental pressure at different stages. 
For example, the same material flow that causes land degradation at extraction may be the 
cause of harmful emissions at a later point in the value chain (e.g., the burning of fossil 
fuels). When viewed in this way, material inputs may be interpreted as waste potential that 
will, sooner or later, contribute to all sorts of environmental pressures (Weisz et al. 2006). 
It is for these reasons that the reduction of material use has become a central policy objec‑
tive from the national to the global level (European Commission 2008, 2010, 2011a; G7 
2015; OECD 2016; United Nations 2015).

This paper mainly contributes to two strands of literature. First, it will provide addi‑
tional insights into the environmental effects of environmental innovation by widening the 
scope of this research strand. Comprehensive environmental indicators will be employed 
and a cross‑country panel analysis will be conducted. Second, the paper will add to the 
literature on the determinants of material flows and decoupling (among others, Agnolucci 
et al. 2017; Krausmann et al. 2009; Shao et al. 2017; Steinberger et al. 2010; Weisz et al. 
2006) by explicitly analyzing the impact of environmental innovation on national material 
usage.

Given that at the national level successful decoupling may be biased due to trade and 
outsourcing (Schaffartzik et al. 2016; Wiedmann et al. 2015), we will employ two mate‑
rial indicators in this paper. First, the well‑established Direct Material Input (DMI) (Canas 
et al. 2003) indicator captures all materials entering the socio‑economic system. Second, 
the Raw Material Input (RMI) indicator is calculated using global multiregional input–out‑
put (MRIO) models to account for upstream flows of foreign resource extraction related to 
imported commodities (Wiedmann et al. 2015).

2 The terms environmental innovation, green innovation and eco‑innovation are not distinguished through‑
out this paper.
3 Material flow indicators are mentioned for Goal 12, see https ://susta inabl edeve lopme nt.un.org/sdg12 . 
Accessed August 09, 2019.

https://sustainabledevelopment.un.org/sdg12


1386 T. Wendler 

1 3

The results of our paper provide evidence that environmental innovation does reduce 
material usage at the national level. Neither general innovation nor overall environmental 
innovation is found to significantly affect material usage. Rather, specific areas of green 
technologies are associated with reductions in material usage, namely: recycling and reuse, 
and energy efficiency. We further find that GDP plays an important role in determining 
material usage. Our findings suggest that GDP affects RMI more strongly than DMI.

Section 2 offers a brief review of the literature dealing with the effects of environmental 
innovation and the determinants and decoupling of material flows. Section 3 develops the 
theoretical framework and hypotheses for our analysis. Section 4 introduces and describes 
the data. Section  5 explains the econometric model employed. Section  6 presents the 
empirical results and discusses the results concerning the effects of environmental innova‑
tion and decoupling. In Sect. 7 several conclusions are drawn.

2  Literature Review

This paper draws upon the literature that deals with the environmental effects of environ‑
mental innovation, as well as the literature about decoupling and determinants of material 
flows.

If environmental innovation (EI) creates more efficient and less wasteful process‑
ing of materials, it is clearly related to material flows.4 Generating energy from wind or 
solar power should reduce our reliance on fossil fuels. A more efficient product design 
can reduce the amount of raw materials and energy needed for production. More efficient 
vehicles reduce fuel consumption while providing the same level of mobility. These exam‑
ples show how environmental innovation can reduce material usage without a concomitant 
decline in economic activity.

While there is some evidence that EI has a positive impact on environmental pressures, 
some confusion remains (Barbieri et al. 2016). Carrión‑Flores and Innes (2010) find that 
EI reduced emissions for US manufacturing industries between 1989 and 2004, and that 
more stringent pollution targets induce innovation by increasing the cost savings of EI. 
Ghisetti and Quatraro (2017) find for sectors in Italian regions that EI increases the value 
added obtained per unit of emissions. Similar results are obtained for the impact of EI on 
sectoral performance in European countries, with EI improving the environmental perfor‑
mance both via a direct and an indirect effect (Costantini et  al. 2017). Furthermore, for 
industrial sectors in OECD countries, EI has led to reductions in energy intensity (Wurlod 
and Noailly 2016). However, the evidence in studies examining the regional level remains 
rather inconclusive. Zhang et al. (2017) find for Chinese provinces that EI measures reduce 
 CO2 per capita. Focusing on total emissions in Chinese provinces, Wang et al. (2012) find 
no effect for innovation in fossil‑fueled technologies, whereas innovation in carbon‑free 
energy technologies is found significant for specific areas. In a study on 95 Italian regions 
between 1990 and 2010, Weina et  al. (2016) conclude that for absolute environmen‑
tal impact EI does not play a significant role, yet contributes to improved environmental 
performance.

4 The Community Innovation Survey 2008 questionnaire makes explicit enquiries as to the material‑saving 
character of environmental innovations.
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A significant body of literature has emerged on the determinants of material flows (e.g. 
Haberl et  al. 2006; Hoffrén et  al. 2000; Pothen and Schymura 2015; Schaffartzik et  al. 
2014; Weinzettel and Kovanda 2011). This literature focuses on the influence of a wide 
variety of aspects, such as: economic growth (e.g. Agnolucci et al. 2017; Krausmann et al. 
2009), population (e.g. Krausmann et  al. 2009; Steinberger et  al. 2010), affluence (e.g. 
Shao et al. 2017), changes in lifestyle (e.g. Steger and Bleischwitz 2011; Voet et al. 2005), 
internationalization5 (Steger and Bleischwitz 2011), country specific factors (e.g. Stein‑
berger et al. 2010; Weisz et al. 2006), and both the sectoral and the energy supply structure 
(e.g. Weisz et al. 2006).

A fundamental focus concerns dematerialization (Bithas and Kalimeris 2016; De Bruyn 
2002; Krausmann et al. 2011; Shao et al. 2017; Steinberger et al. 2013). Dematerialization 
refers to relative or absolute decoupling of material use from economic growth (UNEP 
2011). Relative decoupling refers to decreases in material intensity without absolute reduc‑
tions in resource use, and seems rather common (UNEP 2011). Absolute decoupling (i.e., 
decreasing resource use in absolute terms) is much more rare (De Bruyn 2002; Krausmann 
et al. 2011), being somewhat bound to phases of economic recessions (Shao et al. 2017). 
While the scale of the economy measured by GDP growth, should drive the environmental 
impact upward (Stern 2004), three factors may cause material usage to lag behind increases 
in economic activity. Structural change, such as shifting from an industrial structure 
towards a service oriented economy, could cause a decrease in material intensity (Bithas 
and Kalimeris 2016; Stern 2004), although doubts as to this effect have been formulated 
(Kander 2005; Steger and Bleischwitz 2011). Furthermore, changes in the input structure 
(Stern 2004), e.g., substitutions among materials (Bithas and Kalimeris 2016), could lead 
to reductions. Lastly, technological progress is considered to drive decreasing material 
intensity (Bithas and Kalimeris 2016; Stern 2004) either by a general increase in produc‑
tivity and/or specific changes to reduce negative environmental consequences (Stern 2004). 
Recent analyses corroborate caveats concerning the achievements of decoupling (Agno‑
lucci et  al. 2017; Bithas and Kalimeris 2016; Schaffartzik et  al. 2016; Wiedmann et  al. 
2015) that have also been raised at a more conceptual level (Ayres and Warr 2004; Daly 
1987).

Although the effect of technological progress is a key component in determining mate‑
rial flows and achieving decoupling (Sect.  3), to the best of our knowledge there is no 
contribution in the literature explicitly analyzing the impact of environmental innovation 
on material flows. Given the high relevance of EI, its effects and associated technological 
change should be better understood to further the debate about technological change and 
decoupling.

3  Theoretical Framework and Hypotheses

We mainly draw upon three papers to gain a framework for this analysis (Steger and 
Bleischwitz 2011; Steinberger et  al. 2010; Voet et  al. 2005). These papers are based on 
different theoretical foundations to identify the relevant determinants of material flows, 
yet converge on similar fundamental aspects. A common framework for the analysis of 

5 Referring here to increased trade and embeddedness in the world economy, causing an increase in com‑
petitive pressure.
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environmental pressure is the IPAT hypothesis (Dong et al. 2017; Steinberger et al. 2010; 
Weina et  al. 2016). It states that environmental impact results from population size and 
affluence,6 and the technologies used. As materials per unit of GDP could be a proxy for 
technology (Dong et  al. 2017), compliance with the intensity of use hypothesis (Malen‑
baum 1978) is obvious.7 This hypothesis states that materials are a function of the coun‑
tries’ income multiplied by the prevailing material intensity (Voet et al. 2005).8 Thus, these 
hypotheses can be grouped into three relevant effects: a growth effect influencing the scale 
of economic activity, a compositional effect influencing material intensity, and a technol‑
ogy effect influencing material intensity (Voet et al. 2005).

Defining these pillars aligns with factors considered as relevant drivers of environmen‑
tal impact and material intensity mentioned in the discussion on decoupling. Stern (2004) 
considers proximate variables for environmental impact to be the scale of production, 
structural change, changes in the input mix, and technological progress. Bithas and Kalim‑
eris (2016) consider structural change, technological progress, and substitution among 
materials to qualify as relevant factors for material intensity.

Based on these considerations, we group our determinants into four pillars, from which 
we derive our main variables. The first aspect could be referred to as a scale or growth 
effect. This can be considered an overall growth effect as reflected in overall GDP growth 
(Voet et al. 2005). The second pillar could be referred to as structural change (e.g., transi‑
tioning from an industrial base to a more services oriented economic structure), influenc‑
ing the composition of production and consumption (Voet et al. 2005). Our third pillar is 
technological progress, as it influences the effect of economic activity on material flows 
(Dong et  al. 2017; Hoffrén et  al. 2000; Steger and Bleischwitz 2011; Voet et  al. 2005). 
Lastly, there should be a pillar for factors that affect the material usage of countries without 
being subject to the aspects mentioned above. Among these factors are aspects such as the 
climate (Steinberger et al. 2010; Voet et al. 2005; Weisz et al. 2006) or land area (Stein‑
berger et al. 2010; Weisz et al. 2006), which are country‑specific and rather constant, com‑
plemented by institutional (Steger and Bleischwitz 2011), cultural, or other infrastructural 
specificities.

To include the first three pillars in our analysis we will now define three key variables. 
Due to the econometric model employed (Sect.  5) variables of the last pillar, which are 
constant within a country, need not be taken into account. Our main variable of interest is 
the impact of green technological change, captured by the green knowledge stock. Tech‑
nological change should contribute to reducing material usage (Dong et al. 2017; Steger 
and Bleischwitz 2011; Voet et al. 2005). This is especially expected for our measures of 
green innovation. To capture the scale effect of the economy, we use GDP. Ceteris paribus, 
growth should lead to a proportional increase in environmental damage (Voet et al. 2005). 
Structural change in production is captured by the share of the industry sector in the value 
added of a country.9 The industry sector is assumed to be more material‑intensive (Weisz 
et al. 2006), contributing to higher levels of material usage.

9 The industry sector is defined on the 3‑sector‑data level in the Cambridge Econometrics European 
Regional Database (ERD). The industry sector is aggregated from the 6‑sector‑data by combining manufac‑
turing and energy, and construction.

6 GDP per capita (Dong et al. 2017).
7 The application of the hypothesis to this context would be:
 IPAT: Materials = Pop * GDP/Pop * Materials/GDP = GDP * Materials/GDP.
 IoU: Materials = GDP * Materials/GDP.
8 Materials per unit of income.
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4  Data

The dataset consists of a panel of EU‑27 countries, spanning the period from 1990 to 2012. 
These countries are closely tied to each other both economically and politically due to 
the framework of the European Union. While sharing similar economic and institutional 
environments, they are politically pursuing environmental innovation as a means to reduce 
material usage (European Commission 2010, 2011b). Especially within the EU‑15, a 
shared history and homogeneous economic structures and surroundings may prevent dis‑
tinctive patterns caused by path‑dependency or specific developmental stages. It can also 
be assumed that the preparations required for membership of the twelve countries that 
joined the EU in 2004 and 2007, have caused some homogeneity as well. Croatia is not 
included in our dataset, as it joined after the end of our observation period.

The time period considered starts after the collapse of the Soviet Union. This time 
restriction is mainly caused by the data availability of our dependent variable, but may 
support homogeneity between countries and patterns. The Soviet Union’s dismantling also 
marks a significant change in the global geopolitical landscape, as any number of countries 
were under pressure and pursued a transitional path towards market economies.

The material usage of an economy is measured by capturing its material input.10 This 
reflects the material requirements of the economy for consumption and production (see 
Bringezu et  al. 2004). The indicator is derived from the methodology of Material Flow 
Accounting and encompasses all materials that enter the socio‑economic system of a coun‑
try (Fischer‑Kowalski et  al. 2011). It proxies resource inputs (Bringezu et  al. 2004) and 
is comprised of a country’s domestic extraction within a given year, plus the imports of 
materials. Similar indicators would be material consumption indicators, measured by sub‑
tracting exports from material input. From our perspective, consumption indicators are less 
suited to capture the material requirements of a country. For example, as a consequence of 
technological change, material inputs for the production of export goods could be reduced. 
Consumption indicators would fail to capture such an effect, as the materials used would 
not be captured in a country’s material usage.11

We construct two distinct indicators to capture material input, namely the Direct Mate‑
rial Input (DMI) and the Raw Material Input (RMI). DMI is one of the most commonly 
used indicators, and measures the mass of domestically extracted materials plus import 
flows (Canas et  al. 2003). The difference between DMI and RMI is based on the calcu‑
lation of imported materials. DMI calculates imported materials and goods at the border 
by their actual weight, whereas RMI calculates imports by their so‑called Raw Material 
Equivalents (RME) (UNEP 2016). RMEs include the upstream material requirements of 
imported commodities (UNEP 2016). To calculate these requirements, a global multire‑
gional input–output analysis is applied (Wiedmann et al. 2015).

There are both advantages and disadvantages in using RMI and DMI for our analysis. 
RMI has the advantage that upstream flows are incorporated. Hence, the issue of offshoring 
environmentally‑intensive production steps is controlled (Schaffartzik et al. 2016), and dis‑
tortions from the positioning of countries in global value chains are avoided. Furthermore, 

10 We construct the Total Material Input, which is equal to adding up the subcategories biomass, fossil 
fuels, metal ores, and non‑metallic minerals (see also Agnolucci et al. 2017).
11 For example, advances in technology may cause fewer material needs from imports as intermediate 
inputs. However, when the goods are exported as final products, the full quantity of embodied materials 
would be gone, thus losing information of this kind.



1390 T. Wendler 

1 3

a successful reduction of inputs required for production would be associated with an even 
stronger decrease of material inputs, as upstream requirements are also reduced. On the 
flipside, RMI may be more sensitive to changes in foreign technology if changes in mate‑
rial usage are not due to domestic technology but to changes in the material usage gen‑
erated upstream. Furthermore, the calculation of the data by means of an input–output 
analysis suffers from issues and uncertainties inherent in the application of input–output 
models (Eisenmenger et al. 2016). For DMI, the opposite considerations apply. One disad‑
vantage is that upstream requirements are not included. This may obscure results if reduc‑
tions are basically due to offshoring material intensive production processes in the course 
of trade activities (Wiedmann et al. 2015). Moreover, global material reduction is not fully 
accounted for when imports are effectively reduced. An advantage is that DMI directly 
reflects the mass of materials actually processed in the economic system, without potential 
issues due to foreign changes in technology and production, and uncertainties stemming 
from the application of input–output models.

The material flow data used was obtained from the United Nations Environment Pro‑
gramme (UNEP) material flow dataset (UNEP 2016), available publicly for download at 
http://www.resou rcepa nel.org/globa l‑mater ial‑flows ‑datab ase. Because the time‑series for 
Raw Material Equivalents is restricted to 1990–2012,12 our two dependent variables are 
constructed for these years.13 From the database we obtained data on the MF4 level, which 
separates materials into four categories: biomass, fossil fuels, metal ores, and non‑metal‑
lic minerals. In this paper, we focus on the aggregated total of material input, meaning 
the summation of the values for the four subclasses (Agnolucci et al. 2017). Aggregating 
the data has the disadvantage of losing the ability to observe different effects on different 
subgroups. However, focusing on the aggregate material usage is in line with other works 
(Agnolucci et al. 2017) and a good starting point to identify aggregate dynamics. For each 
subgroup of materials we calculated the Direct Material Input by adding domestic extrac‑
tion (DE) and imports (Im). For the Raw Material Input we added the RMEs of imports 
( RMEIM ) to DE. If any of the two required subcategories (DE and Im/RMEIM ) were miss‑
ing, we set the DMI or RMI for that material class as missing. The aggregate indicator 
was then generated by adding up RMI and DMI of all material classes, and setting the 
aggregate indicator to missing if any of the subgroups were missing. Finally, we set RMI to 
missing if there was no data on regular imports. Thus, we have a harmonized availability of 
DMI and RMI for the same countries and years, facilitating a comparable analysis of both 
indicators.

To operationalize technological innovation, we rely upon patent counts, which are used 
to generate patent stocks as a measure of the installed and available technological capabil‑
ity (Costantini et al. 2017; Popp et al. 2011). Patents are generally considered to be a good 
indicator of innovative activity and are also strongly related to other measures of innova‑
tion (Griliches 1990). However, some drawbacks have been extensively discussed in the 
literature. First, a major issue can be differing patent quality. This may result from dif‑
ferent propensities to patent, different patent regimes requiring different amounts of pat‑
ents for the same invention, and different economic values of an invention (Johnstone et al. 
2010; Popp et al. 2011). Second, although few economically significant inventions have not 
been patented (Dernis and Khan 2004), there are some inventions that may not be patented 

12 Although later years are available, it is stated in the Technical Annex that data after 2012 should not be 
used for statistical analysis, as data is increasingly projection based.
13 Though data on domestic extraction and regular imports would be available for earlier years.

http://www.resourcepanel.org/global-material-flows-database
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(Haščič and Migotto 2015). Thirdly, when searching for specific environmental patents two 
possible errors may arise: either the inclusion of irrelevant patents, or the exclusion of rel‑
evant patents (Lanjouw and Mody 1996).14

In spite of these issues, there are certain advantages of using patent data for our anal‑
ysis. Next to measuring intermediate output and being widely available, patent data are 
quantitative and can be disaggregated by technological classes (Haščič and Migotto 2015). 
Disaggregated technology classes allow us to formulate specific search strategies identify‑
ing specific environmental technology domains. For these reasons, we rely on patent data 
for this study and formulate a search strategy to minimize the issues mentioned above.

We retrieve patent data using PATSTAT 2017b.15 Given the alternatives in generating 
patent based measures, we decided to rely on multinational patent applications at the Euro‑
pean Patent Office (EPO) to avoid issues of patent value and comparability. Only inno‑
vations of high value with expected commercial profitability justify the relatively high 
application costs of an EPO patent (Johnstone et al. 2010). To avoid counting technologies 
multiple times and to enhance the value of included patent applications, we only take the 
first EPO patent application within a patent family. As we are interested in the economic 
utilization of an invention, we rely on applicant data to assign patents (Ghisetti and Quat‑
raro 2017) and count the number of patent applications in which an applicant from a coun‑
try is involved. We use patent applications instead of granted patents, thus capturing the 
whole innovative effort (Costantini et al. 2017). Using the earliest filing year is considered 
preferable because it is a better reflection of the timing of the discovery. It is not influenced 
by regulatory delays (Carrión‑Flores and Innes 2010), and is common practice in similar 
empirical applications (Carrión‑Flores and Innes 2010; Costantini et al. 2017; Wang et al. 
2012; Weina et al. 2016; Wurlod and Noailly 2016).

We distinguish environmental and non‑environmental innovation based on the techno‑
logical classes of patent applications. We utilize search strategies provided by the World 
Intellectual Property Organization (WIPO) and the OECD. To capture environmental 
innovation we combine the established WIPO Green Inventory (GI) (Albino et al. 2014; 
Ghisetti and Quatraro 2017; Kruse and Wetzel 2014) with the latest version of the OECD 
EnvTech indicators (EnvTech) (Costantini et al. 2017; Ghisetti and Quatraro 2017; Haščič 
and Migotto 2015). The EnvTech now largely integrates the EPO Y02 scheme for climate‑
related technologies. Furthermore, we define search strategies identifying specific techno‑
logical areas, given that some technological domains within these classifications do not 
relate to changes in material usage.

We construct the category overall environmental innovation (EI_Full), by including 
all technological classes mentioned in the GI and/or the EnvTech16 to capture all green 
innovations. We also distinguish five specific EI domains that we believe have the abil‑
ity to capture specific effects on material usage. We utilize subsets of the above‑men‑
tioned classifications to construct the following EI domains: alternative energy production 
(EI_AEP), transportation (EI_Transp), recycling and reuse (EI_Recy), energy efficiency 
(EI_EnEff), and climate change mitigation in the production or processing of goods 

14 These issues do not prevent conclusive arguments on parameters found to be significant, while an over‑
estimation of green patents can increase the risk of not finding statistically significant coefficients, although 
the true parameter value would be significant (Wurlod and Noailly 2016).
15 The b refers to the autumn version.
16 The Green Inventory can be found at: https ://www.wipo.int/class ifica tions /ipc/en/green _inven tory/. 
[accessed August 09, 2019]. The OECD Env Tech can be found at: https ://www.oecd.org/envir onmen t/
consu mptio n‑innov ation /ENV‑tech%20sea rch%20str ategi es,%20ver sion%20for %20OEC Dstat %20(2016).
pdf [accessed August 09, 2019].

https://www.wipo.int/classifications/ipc/en/green_inventory/
https://www.oecd.org/environment/consumption-innovation/ENV-tech%20search%20strategies%2c%20version%20for%20OECDstat%20(2016).pdf
https://www.oecd.org/environment/consumption-innovation/ENV-tech%20search%20strategies%2c%20version%20for%20OECDstat%20(2016).pdf
https://www.oecd.org/environment/consumption-innovation/ENV-tech%20search%20strategies%2c%20version%20for%20OECDstat%20(2016).pdf
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(EI_ProGo). Table 1 gives an overview of the technology areas used for the construction of 
these domains. A comprehensive list of the included technological classes of each domain 
classification can be found in the “Appendix” (Table  14). A variable of general innova‑
tion was constructed including all patents (Total Inno). Non‑green counterparts of our EI 
domains are constructed based on those patents that do not belong to any technological 
class included in the corresponding EI domain.17 

Following previous work (Costantini et al. 2017; Popp et al. 2011; Weina et al. 2016; 
Wurlod and Noailly 2016), we construct patent stocks based on the patent count data we 
have obtained.18 Thus, we generate a measure of the installed technological capability 
(Costantini et al. 2017). We follow Popp et al. (2011) in constructing a knowledge stock 
that accounts for both the diffusion of new technologies and the declining influence of 
older technologies. Hereby, we account for the fact that the effect of new technologies may 
not be instantaneous and that older technologies’ effects should decrease over time (Weina 
et al. 2016). The generation of the patent stock for country i in year t follows the formula 
(Popp et al. 2011):

By multiplying the rate of diffusion with s + 1, diffusion is not constrained to zero in the 
current period (Popp et al. 2011). The rate of knowledge depreciation is set to 0.1 (β1) and 
the rate of diffusion to 0.25 (β2) (Popp et al. 2011; Weina et al. 2016).

Data on additional variables was taken from various sources. Data on Gross Domestic 
Product (GDP), the sectoral value added,19 and population was retrieved from the Cam‑
bridge Econometrics European Regional Database (ERD). Data on the share of renewables 
in Total Primary Energy Supply (TPES) was taken from the OECD. The data on the share 
of the urban population as well as trade data was taken from the World Bank. The data 
on the share of imports and exports in relation to GDP were retrieved and summed up to 
generate the variable trade openness. A list of descriptive statistics can be found in the 
“Appendix” in Table 7. The stationarity of the variables was tested using unit root tests. 
Relying on the Fisher‑Test with drift, the share of renewables in TPES is non‑stationary in 
levels (“Appendix”, Table 8).

4.1  Material Inputs

We now explore in detail our chosen dependent variables of Raw Material Input (RMI) and 
Direct Material Input (DMI). First, we will discuss differences between the two indicators 
in magnitude and then their different dynamics over time. For RMI, the smallest value can 
be found for Malta in 1990 with 7.4 million tons (MT), while the largest value is found for 
Germany in 2008 with ~ 2377 MT. For DMI, the largest value is found again for Germany 
with ~ 1495 MT in 2007. The lowest value for this indicator is found for Malta in 1995 
with 5.2 MT. These proportions between the two indicators also hold across the entire 

(1)Ki,t =

∞
∑

s=0

e−�1(s)
(

1 − e−�2(s+1)
)

PATi,t−s

17 As an illustration, NG_Recy includes all patents that do not belong to any IPC/CPC class that is men‑
tioned in the EI_Recy technology classes list.
18 We initially construct our stocks starting with count data from 1980 onwards.
19 Sectoral value added was used to calculate the share of the industry sector.
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Table 1  Overview of the construction of Environmental Innovation (EI) Domains

EI_AEP
Green inventory areas
Alternative energy production
OECD EnvTech areas
4.1. Renewable energy generation
4.2. Energy generation from fuels of non‑fossil origin
4.3. Combustion technologies with mitigation potential
EI_Transp
Green inventory areas
Transportation
OECD EnvTech areas
6. Climate change mitigation technologies related to transportation
EI_ProGo
OECD EnvTech areas
9. Climate change mitigation technologies in the production or processing of goods
EI_Recy
Green inventory areas
Reuse of waste materials (subarea of waste management)
OECD EnvTech areas
1.3.2. Material recovery, recycling and re‑use
1.3.3. Fertilizers from waste
4.2.2. Fuel from waste
8.2.5. Reuse, recycling or recovery technologies
9.6.5. Technologies for production of paper and paper articles
OECD EnvTech classes from
1.3.4. Incineration and energy recovery
8.3. Enabling technologies or technologies with a potential or indirect contribution to GHG emissions 

mitigation
9.1.2. Process efficiency
9.2.1. General improvement of production processes causing GHG emissions
9.2.5. Improvements relating to the production of other chemicals or pharmaceuticals
9.5.8. Food processing
9.6.2. Technologies for metal working
9.6.6. Technologies for working on or processing of plastics
9.6.13. Technologies for production or treatment of textiles and foot wear
9.7. Climate Change Mitigation Technologies for sector‑wide applications
EI_EnEff
Green inventory areas
Energy conservation
OECD EnvTech areas
4.5. Technologies for an efficient electrical power generation, transmission or distribution
4.6. Enabling technologies
4.7. Other energy conversion or management systems reducing GHG emissions
7.2. Energy efficiency in buildings
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sample, as on average RMI is 1.5 times as high as DMI. Yet, this RMI/DMI ratio is vari‑
able across the sample, ranging from 0.88 to 3.28.20 The strongest divergence between the 
two indicators occurs in Malta in 1991 with RMI being 3.28 times as high as DMI. Only 
few cases occur in which DMI is larger than RMI, namely in Bulgaria (1996 and 1997), 
the Netherlands (1990), Poland (1990), and Romania (1990 and 1991). The highest aver‑
age deviations of the two indicators (RMI/DMI ratio) are found for Luxembourg (2.28), 
Slovakia (1.94), the United Kingdom (1.89), Lithuania (1.74), and Italy (1.71). The lowest 
average differences are found for Bulgaria (1.09), Belgium and Estonia (1.16), Romania 
(1.20), and the Netherlands (1.21). Some countries show a large variation in this ratio, such 
as Luxembourg (Min.: 1.37; Max.: 2.99), Malta (Min.: 1.26; Max.: 3.28), Slovakia (Min.: 
1.43; Max.: 2.59), and the United Kingdom (Min.: 1.34; Max.: 2.37). Other countries show 
very little variation, for example Bulgaria (Min.: 0.96; Max.: 1.14), Estonia (Min.: 1.08; 
Max.: 1.24), and Sweden (Min.: 1.30; Max.: 1.48).

The share of materials extracted domestically, the so‑called domestic resource depend‑
ency (DRD) (Weisz et al. 2006), plays an important role as the import of materials may 
hide upstream flows (Eisenmenger et al. 2016; Schaffartzik et al. 2016). In line with the 
observations on the RMI/DMI proportions, the DRD is higher in the case of DMI (~ 70%) 
than it is for RMI (~ 49%). This indicates that DMI does not value equally the fact that 
most imports are associated with upstream flows. These are accounted for in RMI, raise 
the mass of imports, and thus lower the share of domestic extraction. The DRD is expected 
to diminish when a country is placed further downstream in the value chain, meaning that 
more suppliers are upstream before materials are refined in the country. In our sample the 
highest average levels of DRD (> 80% in DMI and > 70% in RMI) are found for Bulgaria, 
Estonia, Poland, and Romania.

Table 1  (continued)

7.3. Architectural or constructional elements improving the thermal performance of buildings
7.4. Enabling technologies in buildings
9.6.5. Technologies for production of paper and paper articles
OECD EnvTech classes from
9.1.2. Process efficiency
9.2.1. General improvements of production processes causing GHG emissions
9.4.1. Production of cement
9.5.1. Agricultural machinery or equipment
9.6.1. Technologies for shaping products
9.6.2. Technologies for metal working
9.6.6. Technologies for working on or processing of plastics
9.6.13. Technologies for production or treatment of textiles and foot wear
9.7. Climate Change mitigation technologies for sector‑wide applications

“(Green Inventory/OECD EnvTech) Areas” refers to sections of which all technological classes were 
included for the EI domain. “(Green Inventory/OECD EnvTech) Classes from” refers to sections of which 
only specific technological classes were included. A detailed overview of the technology classes constitut‑
ing each EI domain is provided in the Appendix (Table 14)

20 0.88 indicates that RMI amounts only to 88 if DMI is set at 100, while 3.28 indicates that RMI is 328 if 
DMI equals 100.
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Additional insights into the dependent variables are acquired when analyzing their 
dynamics over time. First, we look at the difference between the first and the last observed 
value for RMI and DMI in each country. For all countries the relative increase of RMI is 
larger than DMI’s, although quite small in some countries (e.g., in Bulgaria RMI grew 10 
percentage points more than DMI), while very large in others (e.g., in Luxembourg RMI 
grew 155 percentage points more than DMI). Also, the final RMI values are larger than the 
initial ones across all countries, while DMI shows smaller values at the end of our time‑
period in several countries: United Kingdom − 26%, Hungary − 23%, Romania − 22%, Italy 
− 5%, Greece − 3%, and the Czech Republic − 1%.

These findings correspond to the different growth dynamics of RMI and DMI. RMI 
grows on average at a rate of almost 3%, while DMI only about 1.4%. Across all countries 
average RMI growth is larger than DMI growth, with all countries having a positive RMI 
growth rate. The only country with less than 1% average RMI growth is Hungary (0.82%), 
while Cyprus, Estonia, Luxembourg, Latvia, and Malta have more than 5% growth on aver‑
age. Concerning DMI, Hungary, Italy, Romania, and the United Kingdom have negative 
average growth rates. Hence, the two indicators do not only lead to differences in mag‑
nitude, but also represent different dynamics over time. The higher growth rate of RMI 
indicates an increasing importance of offshoring material‑intensive production processes.

4.2  Knowledge Stocks

For each of our distinct patent search strategies we construct a knowledge stock based on 
Formula (1). In Table 2, we report the top 5 countries for our six environmental innovation 
variables and the general innovation variable, as well as the descriptive statistics. The top 
countries are Germany, France, Italy, Netherlands, and the United Kingdom (UK). This 
largely corresponds to the level of economic development, and the size of the countries. 
These countries, ranked by their mean value, always take the first five places. The only 
exception concerns transportation, where the Netherlands is ranked 7 behind Austria and 
Sweden.

Germany and France hold the top 2 spots in every category, although Germany has by 
far the largest knowledge stock in our sample with values that are almost three times as 
high as France. Generally, the UK follows in third place followed by the Netherlands and 
Italy. In the case of energy efficiency (EI_EnEff), the Netherlands shows higher values than 
the UK. When it comes to recycling and reuse (EI_Recy), Italy shows slightly higher val‑
ues than the Netherlands, and in the case of transport (EI_Transp) the Netherlands drops 
out of the Top 5 being replaced by Austria. All countries involved are EU‑15 countries 
with a larger population and a high level of economic development.

As Fig. 1 shows, knowledge stocks tend to increase over time. For the average EU‑27 
country, the knowledge stock increases in all EI domains. Norming all values to 1 in 
2001 shows that all EI domains start at ~ 0.5 in 1990 and develop upwards to 1 in 2001. 
After 2001, transportation (EI_Transp) and energy efficiency (EI_EnEff) show the larg‑
est increase reaching ~ 2.4 in 2012. Production or processing of goods (EI_ProGo) also 
reaches a value above 2 in 2012, while overall environmental innovation (EI_Full) and 
alternative energy production (EI_AEP) reach ~ 1.8 of their 2001 value. The smallest 
increase can be found for recycling and reuse (EI_Recy) remaining below 1.5 in 2012.

In terms of absolute numbers, EI_Recy is the smallest category, followed by EI_
ProGo and EI_Transp. EI_AEP is by far the largest EI domain, with an average value 
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roughly 1.8 times as high as EI_EnEff. Descriptive statistics on the knowledge stock 
variables can be found in the “Appendix” (Table 7).

Table 2  Countries with largest average knowledge stock by innovation type

Innovation type Country Mean SD Min Max

Total Inno Germany 99961.1 41160.3 40818.4 167442.2
France 36193.9 12907.2 16460.3 58069.8
UK 24311.1 6462.8 13416.4 33762.0
Netherlands 18029.6 7661.0 7213.5 29821.7
Italy 16432.5 6860.4 6160.4 27096.8

EI_Full Germany 17976.7 7751.8 7269.7 32174.1
France 5871.5 2025.6 2823.1 9765.6
UK 4213.5 1258.4 2138.2 6069.0
Netherlands 2859.4 1265.6 1155.9 5103.5
Italy 2129.1 990.1 795.5 3912.4

EI_EnEff Germany 3372.3 1822.5 1157.0 7326.6
France 1105.8 414.1 536.0 2079.5
Netherlands 881.5 533.8 254.1 1871.9
UK 730.0 237.1 396.9 1195.8
Italy 438.0 254.0 107.4 915.1

EI_AEP Germany 5955.6 2312.3 2872.2 10342.2
France 2044.4 647.6 1041.3 3194.4
UK 1767.4 572.3 831.0 2441.0
Netherlands 1164.9 413.0 578.9 1908.5
Italy 692.0 292.4 328.6 1275.9

EI_ProGo Germany 1346.2 648.4 518.7 2658.4
France 444.6 167.7 200.8 798.9
UK 295.1 91.8 170.4 482.9
Netherlands 221.6 106.0 90.4 460.4
Italy 206.9 91.3 71.6 366.7

EI_Transp Germany 2662.7 1590.8 738.6 6008.2
France 981.2 496.8 389.1 2072.7
UK 414.1 138.2 222.2 726.4
Italy 341.3 153.0 135.2 623.7
Austria 207.0 93.5 72.4 409.1

EI_Recy Germany 957.2 244.2 415.7 1309.3
France 295.5 67.3 160.3 425.4
UK 197.7 58.0 93.1 279.7
Italy 156.5 65.7 56.4 266.4
Netherlands 154.5 52.2 62.1 247.5
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5  Econometric Model

In view of the literature on panel data and our research question, a dynamic approach 
should be adopted to account for the dependency of material flows on their own past val‑
ues (see Shao et al. 2017). We will formulate equivalent equations for DMI and RMI. The 
model to be estimated is given by:

with the subscript i = 1,…,N denoting the countries, and t = 1,…,T the years of the panel. 
The vector X includes the explanatory variables, � denotes the vector of coefficients. � is 
the country fixed effect, and � is the error term.

Estimating a fixed‑effects model with a lagged dependent variable (LDV) as a regressor 
generates a biased estimate of the coefficients (Judson and Owen 1999). If the time dimen‑
sion becomes sufficiently large, the correlation between the LDV and the country‑specific 
effect might be small (Castro 2013). Even for T = 30 the bias can amount to 20% of the true 
value of the coefficient (Judson and Owen 1999). As in our application we are dealing with 
T = ~ 20, this bias should be seen as potentially strong. This suggests that a one‑step dif‑
ference Generalized Method of Moments (GMM) estimator, as proposed by Arellano and 
Bond (1991), should be used (Hwang and Sun 2018; Judson and Owen 1999).

The starting point of this estimator is given by first differencing the equation:

(2)DMIit =

J
∑

j=1

�jDMIit−j + X�

it
� + �i + �it

(3)ΔDMIit =

J
∑

j=1

�jΔDMIit−j + ΔX�
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Fig. 1  Development of the average EU‑27 patent stock between 1990 and 2012 by EI domain. All variables 
were normed by their value in 2001
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Thus, the country‑specific effects are eliminated and instrumental variable estimators 
can be used. These estimators allow the inclusion of endogenous regressors, as well as pre‑
determined and exogenous regressors. Endogenous regressors are influenced by the con‑
temporaneous error term, while predetermined regressors may be influenced by the error 
term in previous periods. The differentiation process has the disadvantage that while the 
fixed effects are gone, Δyt−1 is now correlated with Δ�it as yt−1 is a function of �it−1.

This problem can be solved by instrumental variables. Lags of the dependent variable 
and the regressors can be used to satisfy the moment conditions:

The orthogonality restrictions above are the basis of the one‑step GMM estimation. 
While exogenous regressors instrument themselves in first differences, predetermined and 
endogenous variables are instrumented with their lagged levels. For predetermined vari‑
ables lags 1 and deeper are available, for endogenous variables lags 2 and deeper.21 An 
endogeneous variable is correlated with the contemporaneous error term. Thus, to instru‑
ment ΔXt one would need Xt−2 as Xt−1 would be correlated with the �t−1 in Δ�t . Instru‑
menting with lagged levels instead of lagged differences makes one time period more 
available.22

The procedure requires that no second‑order autocorrelation is present in the differ‑
enced equation. First‑order correlation is expected in differences as the Δ�t and Δ�t−1 share 
a common �t−1 term, thus evidence is uninformative. Autocorrelation of a higher order than 
one in the differenced equation would render some instruments invalid and would require 
deeper lags to be used as instruments, causing a loss of T (Roodman 2009). The presence 
of second‑order autocorrelation would generate inconsistent estimates (Castro 2013).

Crucial for the validity of GMM is exogeneity of the instruments. When the number of 
regressors k is equivalent to the number of instruments j, the model is exactly identified 
and the detection of invalid instruments becomes impossible. Yet, if the model is overiden‑
tified with j > k, validity of the instruments can be tested using the Sargan specification test 
(Castro 2013; Roodman 2009).

Special attention, especially in a larger T context, should be given to restricting the 
number of instruments used, as too many instruments impose problems for GMM estima‑
tion (Roodman 2009). This consideration motivates the sparse use of instruments to avoid 
instrument proliferation, as is carried out in the empirical application and explained in 
Sect. 6. We will check the results for reductions in the instrument count.

6  Empirical Results and Discussion

We begin the empirical analysis by specifying and validating a baseline model using our 
three main explanatory variables and the lagged dependent variable (LDV). Then we turn 
to the estimation for our two dependent variables with the various classifications of green 

(4)E
[

DMIit−sΔ�it
]

= 0 and E
[

Xit−sΔ�it
]

= 0

for t = j + 2,… , T and s ≥ j + 1

21 A predetermined variable X
t
 is influenced by past error terms, e.g. �

t−1 . Thus, in first‑differences X
t−1 is a 

valid instrument for ΔX
t
 as it is only correlated with �

t−2 , and thus not with Δ�
t
.

22 A first‑difference instrument would be available for the first time in the fourth period, while a lagged 
level instrument is first available in the third period.
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technological areas. To ensure that we identify an actual effect and avoid issues of omitted 
variable bias in our innovation variable, we also check for the effects of total innovation 
and the non‑green counterparts of the green technological areas that were previously found 
to exert a significant effect on material usage. We further explore several variables that may 
be considered to affect material usage and check them for inclusion in our model. Lastly, 
we check the robustness of our results for reductions in the instrument count.

6.1  Main Results

In our estimations, the variables in all specifications are either in natural logarithm or share. 
In line with the respective tests and literature (Roodman 2009), all specifications include 
time‑effects. Concerning the fixed‑effects estimation, the Hausman test supports estimating 
a fixed‑effects instead of a random‑effects model. The regular fixed‑effects model is esti‑
mated with Driscoll and Kraay standard errors (FE DK), that are robust to cross‑sectional 
dependence, heteroscedasticity, and autocorrelation (Hoechle 2007). We use the FE estima‑
tor to initially ensure the soundness of the Arellano‑Bond estimation concerning the coef‑
ficient of the LDV. We report the coefficients and in brackets the robust standard errors. As 
to the tests, we report the respective statistic and the p value in brackets.

To overcome bias and inconsistency in OLS estimation methods, we employ the Arel‑
lano‑Bond estimator. The difference one‑step GMM estimator was used, in line with econo‑
metric literature (Hwang and Sun 2018; Judson and Owen 1999) and similar applications 
(Castro 2013; Wang et al. 2012). In our baseline model we include one lag of the depend‑
ent variable to allow past material use levels to influence current material use (Shao et al. 
2017), the stock of green knowledge (Costantini et al. 2017), GDP, and the industrial inten‑
sity as explanatory variables. In the Arellano‑Bond estimation (AB), the LDV is instru‑
mented with the second to tenth lag of the non‑lagged dependent variable. Environmental 
innovation is treated as potentially endogenous (Costantini et al. 2017) and instrumented 
with the third to fifth lag. GDP is treated as endogenous and instrumented with its second 
and third lag. The industrial intensity is treated as exogenous. Concerning the LDV, the use 
of more lags as instruments presents a trade‑off as a large instrument count may weaken 
the reliability of our results (Roodman 2009), given that we have 27 cross‑sectional units 
in our sample. However, we check the robustness of results to different instrument choices. 
The robustness of our results in relation to the reduction of the instruments is shown in the 
“Appendix” (Table  13). Furthermore, all AB estimations are conducted with orthogonal 
deviations instead of a first‑difference transformation (Hayakawa 2009; Hsiao and Zhou 
2017; Roodman 2009). Especially, when the lag range is restricted, orthogonal deviations 
lead to asymptotically unbiased estimates (Hsiao and Zhou 2017). The consistence of the 
estimator is assured as the AR tests for serial correlation in the differenced residuals pro‑
vide no evidence of second‑order autocorrelation. The validity of the employed instru‑
ments is confirmed by the results of the Sargan test.

We start by checking the soundness of the AB estimation by estimating our baseline 
model with OLS, FE, and AB (Table 3). To be sound, the coefficient of the LDV in the AB 
estimation should lie in or near the range of the coefficient size of OLS (upward biased) and 
FE (downward biased) (Roodman 2009). This condition seems to hold, given the standard 
errors of the LDV. The results provide support that the AB specifications are sound, hence 
we will continue with AB estimation in further analysis.
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Our main variable of interest is environmental innovation (EI), proxied by a knowledge 
stock derived from data on environmental patent applications, as we are interested in its 
potential to contribute to reductions of material usage. We use a green knowledge stock 
accounting for the diffusion and depreciation of technologies (Popp et al. 2011). Utilizing 
a holistic definition of green innovation (EI_Full), which includes all technologies of the 
Green Inventory (GI) and/or the OECD EnvTech (EnvTech), we do not find that EI affects 
material usage, neither when using the Raw Material Input (RMI) nor when using Direct 
Material Input (DMI).

We continue by briefly discussing the results concerning the other determinants of 
material usage included in our model before we continue analyzing our main variable of 
interest (EI) in more detail, focusing on specific technological areas. We include the first 
lag of the dependent variables for both RMI and DMI. The results indicate that a depend‑
ence of both indicators on their own past values exists. However, the coefficient size differs 
as the coefficient ranges at ~ 0.6 for RMI (Table 4), while it is at ~ 0.8 for DMI (Table 5).

To capture the scale of the economy, we include the contemporaneous GDP. For RMI, 
we find that GDP is significant with a coefficient of ~ .6, indicating that a 1% increase in 

Table 3  Results of OLS, fixed‑effects and GMM for RMI and DMI

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5) (6)
Model OLS FE DK AB OLS FE DK AB

Dep. var. Raw mate‑
rial input

Raw mate‑
rial input

Raw mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

L1. Raw mate‑
rial input

0.958*** 0.583*** 0.378*
(0.0130) (0.0970) (0.193)

L1. Direct mate‑
rial input

0.971*** 0.768*** 0.800***
(0.00879) (0.0512) (0.0696)

EI_Full − 0.00620* 0.00700 − 0.0105 − 0.00380 0.00267 − 0.0203
(0.00341) (0.00932) (0.0335) (0.00287) (0.00837) (0.0184)

GDP 0.0373** 0.285*** 0.584*** 0.0236** 0.158** 0.276*
(0.0149) (0.0631) (0.202) (0.00953) (0.0639) (0.141)

Industrial 
intensity

0.120** 0.627** 0.602 0.111* 0.473** 0.316*
(0.0562) (0.252) (0.407) (0.0577) (0.192) (0.183)

Time‑effects Yes Yes Yes Yes Yes Yes
Observations 559 559 532 559 559 532
No. of countries 27 27 27 27 27 27
R‑squared 0.997 0.9045 0.998 0.8803
No. of instru‑

ments
36 36

AR1‑test − 2.25 − 3.56
[0.024] [0.000]

AR2‑test 0.86 − 0.06
[0.389] [0.955]

Sargan‑test 18.67 11.59
[0.067] [0.395]
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GDP raises the RMI by 0.6%.23 Turning to specifications with DMI as dependent vari‑
able, we find that the coefficient of GDP is slightly significant in the AB estimation with 
a coefficient roughly half as large as for RMI. This finding further holds when looking at 

Table 4  Results of different EI domains for raw material input

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5) (6)
Model AB AB AB AB AB AB

Dep. var. Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

Raw mate‑
rial input

L1. Raw mate‑
rial input

0.378* 0.629*** 0.708*** 0.674*** 0.558*** 0.640***
(0.193) (0.106) (0.172) (0.124) (0.130) (0.124)

EI_Full − 0.0105
(0.0335)

EI_AEP − 0.0239
(0.0171)

EI_Transp − 0.0563
(0.0353)

EI_Recy − 0.0482***
(0.0128)

EI_EnEff − 0.0370**
(0.0177)

EI_ProGo − 0.0224
(0.0153)

GDP 0.584*** 0.494*** 0.391** 0.440*** 0.645*** 0.381*
(0.202) (0.175) (0.177) (0.159) (0.215) (0.195)

Industrial 
intensity

0.602 0.227 0.321 0.347* 0.208 0.519**
(0.407) (0.218) (0.280) (0.200) (0.262) (0.201)

Time‑effects Yes Yes Yes Yes Yes Yes
Observations 532 512 485 486 502 483
No. of countries 27 27 26 27 27 27
No. of instru‑

ments
36 36 36 36 36 36

AR1‑test − 2.25 − 2.87 − 2.44 − 2.63 − 2.60 − 2.78
[0.024] [0.004] [0.015] [0.009] [0.009] [0.005]

AR2‑test 0.86 0.58 0.82 0.44 0.59 0.47
[0.389] [0.560] [0.414] [0.661] [0.557] [0.636]

Sargan‑test 18.67 15.67 16.28 12.34 14.11 19.03
[0.067] [0.154] [0.131] [0.338] [0.227] [0.061]

23 This value represents the short‑run coefficient, and the same goes for all other regressor coefficients. As 
the dependent variable follows an autoregressive process defined by the coefficient on the LDV, the impact 
of changes in a regressor in t affects not only the dependent variable in t, but also in coming periods. The 
long‑run coefficients can be computed dividing each short‑run coefficient by one minus the sum of the coef‑
ficients on the lag of the dependent variable (Pesaran and Smith 1995).
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the coefficients of GDP in Tables 4 and 5. As for RMI, it fluctuates between 0.38 and 0.65, 
while it remains slightly significant or insignificant for DMI. This result appears plausi‑
ble, given the potential relevance of the outsourcing of material intensive production steps 
(Schaffartzik et al. 2016), which is not sufficiently captured in the DMI indicator. Thus, it 
seems reasonable that the impact of GDP is larger when accounting for upstream flows.

To capture structural change, considered highly relevant in determining material flows 
(Steger and Bleischwitz 2011; Weisz et  al. 2006), we include the share of the industry 

Table 5  Results of different EI domains for direct material input

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5) (6)
Model AB AB AB AB AB AB

Dep. var. Direct mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

Direct mate‑
rial input

L1. Direct 
material input

0.800*** 0.796*** 0.795*** 0.814*** 0.715*** 0.761***
(0.0696) (0.0874) (0.112) (0.105) (0.108) (0.0893)

EI_Full − 0.0203
(0.0184)

EI_AEP − 0.0242
(0.0153)

EI_Transp − 0.0562
(0.0358)

EI_Recy − 0.0389**
(0.0162)

EI_EnEff − 0.0402*
(0.0201)

EI_ProGo − 0.0240
(0.0148)

GDP 0.276* 0.307* 0.287* 0.224 0.415* 0.190
(0.141) (0.156) (0.151) (0.152) (0.234) (0.172)

Industrial inten‑
sity

0.316* 0.297 0.422 0.542** 0.425 0.831***
(0.183) (0.229) (0.357) (0.240) (0.282) (0.181)

Time‑effects Yes Yes Yes Yes Yes Yes
Observations 532 512 485 486 502 483
No. of coun‑

tries
27 27 26 27 27 27

No. of instru‑
ments

36 36 36 36 36 36

AR1‑test − 3.56 − 3.46 − 3.11 − 3.25 − 3.40 − 3.47
[0.000] [0.001] [0.002] [0.001] [0.001] [0.001]

AR2‑test − 0.06 0.21 0.15 0.03 0.22 0.20
[0.955] [0.837] [0.878] [0.974] [0.825] [0.840]

Sargan‑test 11.59 14.13 9.35 9.20 11.16 12.70
[0.395] [0.226] [0.589] [0.603] [0.430] [0.313]
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sector in the value added of a country (Industrial Intensity). The results concerning Indus‑
trial Intensity remain somewhat inconclusive. For RMI (Table 4), it is only significant in 
two specifications with a coefficient of 0.35 and 0.52 respectively. For DMI (Table 5), it is 
found to be significant in three estimations with a coefficient size of ~ 0.3 to ~ 0 .8. These 
coefficients can be interpreted as stating that a one percentage point increase in the indus‑
trial sectors share is associated with a ~ 0.3 to ~ 0.8% increase in material usage. These 
results are in line with the consideration that the industrial sector’s comparatively high 
resource intensity becomes smaller as the material intensity of the service sector rises 
when upstream interlinkages are taken into account (Steger and Bleischwitz 2011). This is 
given in the RMI indicator.

We now turn to look at model estimations dealing with the more specific classifications 
of green technologies by technological domain. As discussed earlier we specify alternative 
energy production (EI_AEP), transportation (EI_Transp), recycling and reuse (EI_Recy), 
energy efficiency (EI_EnEff), and climate change mitigation in the production or pro‑
cessing of goods (EI_ProGo). The results using RMI as dependent variable are shown in 
Table 4.

More specific definitions of EI lead to differing results compared to the holistic defini‑
tion of EI_Full. In the cases of EI_AEP, EI_Transp, and EI_ProGo, EI remains insignifi‑
cant, although the coefficient size gets larger in magnitude. Innovation in the areas of EI_
Recy, and EI_EnEff are found to significantly reduce material usage. The largest effect in 
magnitude can be found for EI_Recy as a 1% increase in the knowledge stock is associated 
with a ~ 0.05% decrease of material usage, significant at a 1% level. EI_EnEff is significant 
at a 5% level with a smaller coefficient, indicating a ~ 0.04% decrease of material usage per 
percentage increase of the knowledge stock.

Now we turn to the same estimations with DMI as our dependent variable. The results 
are reported in Table 5. It can be noted that the results for our different EI fields are quali‑
tatively similar with our results for RMI. EI_AEP, EI_Transp, and EI_ProGo remain insig‑
nificant. EI_Recy is found to be significant at a 5% level, with a coefficient smaller in mag‑
nitude. The coefficient of EI_EnEff is larger in magnitude, significant at a 10% level.

Even though the links of EI with material usage are statistically strong, the estimated 
elasticities are rather small, ranging between − 0.0482 and − 0.0370. However, to assess 
the effect of EI on material usage, these numbers need to be seen in the context of the 
overall change of EI, as even small elasticities may indicate a large effect if the changes 
in EI are large (see also Costantini et al. 2017). To calculate the average effect of EI on 
material usage in a given year we multiply the elasticities with the average changes of the 
EI variables. The average increase in knowledge in a given year for EI_Recy is associated 
with a reduction of material usage by 0.57% with respect to RMI. EI_EnEff entails a simi‑
lar impact on RMI with a reduction of 0.54%. For DMI, EI_EnEff has a larger effect with 
a reduction of 0.59%, whereas EI_Recy reduces material usage by 0.46% in a given year. 
Recalling that the average increases of RMI and DMI are about 3% and 1.4% respectively 
(Sect. 4.1), these technology effects account for a relevant reduction of material usage.

These results indicate that the effects of innovation on material usage differ based on 
technological domain. However, utilizing patent data can result in including too many or 
too few patents into the classification. An overestimation of the patent stock mainly results 
in a heightened risk of not finding a significant parameter (even if the true parameter is 
significant), while underestimating the knowledge stock limits conclusions for the tech‑
nologies included (Wurlod and Noailly 2016). To secure that we have isolated an actual 
effect of the specific green technological domains that does not stem from mistakes in 
our technology boundary, we now test variables found to be significant by analyzing their 
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non‑green counterparts and total innovations (Total Inno) in our model. The results are 
shown in Table 6.

The results show that neither general innovation (Total Inno) nor the non‑green coun‑
terparts of the EI domains have a significant impact on material usage.24 This indicates 
that the EI domains have a specific effect on material usage that is different from overall 
technology effects. This result holds for both RMI and DMI. Hence, we are confident that 
we have identified an effect of our specific measures of green technology, which is sensi‑
tive to the fact that general innovation is not associated with decreases in material usage. 
This renders a plausible impression that our finding of EI_Full to be insignificant is due to 
the inclusion of certain technological areas which are unrelated to a reduction of material 
usage.

6.2  Robustness Checks

We will proceed by checking the robustness of the obtained results of EI. First, we will 
include additional explanatory variables that are considered to be potentially relevant 
determinants of material usage. Then we will reduce the instruments in our AB modelling, 
so that we use almost as many instruments as there are countries in our sample (Roodman 
2009). Hereby, we ensure that the results are not sensitive to the number of instruments 
used. The results for the inclusion of control variables are reported in Tables 9, 10, 11 and 
12 in the “Appendix”. The reduction of the instruments is reported in Table 13.

We analyze variables concerning trade openness, i.e., the embeddedness of the country 
in the world economy (Carattini et al. 2015), population (Krausmann et al. 2009), the share 
of urban population (Shao et al. 2017), and energy composition (Weisz et al. 2006) proxied 
by the share of renewable energy in TPES. All variables are in natural logarithm or share. 
The share of renewable energy was included in first‑differences as the stationarity test (see 
“Appendix” Table 9) indicated that this variable is non‑stationary in levels.

Trade openness is often considered to be relevant for countries’ environmental dam‑
age (Carattini et al. 2015). It may reflect competitive pressure as the world market forces 
countries’ industries to be more resource efficient (Steger and Bleischwitz 2011; Voet et al. 
2005). Trade openness may also be related to structural implications (Carattini et al. 2015). 
However, our results show trade openness to be insignificant. An explanation could be 
that embeddedness in the world market also means increased supply and availability of 
resources.

Population is a highly relevant determinant of environmental damage, which is reflected 
both in the material flow literature and the IPAT hypothesis (amongst others, Krausmann 
et  al. 2009; Steinberger et  al. 2010; Weina et  al. 2016). We find population to be insig‑
nificant, which seems mainly due to our estimation analyzing changes in material usage. 
Absolute changes in economic activity are captured in GDP, and population has a low vari‑
ance in industrialized countries anyhow (Weina et al. 2016).

We check for the share of urban population as a proxy for the population prone to live 
according to a typical industrial metabolic profile (Shao et  al. 2017). Our findings show 
this variable to be insignificant, which may be due to our application looking at material 

24 Note that for reporting sound and homogenous specifications, we instrumented all innovation variables 
with lag three and four. For RMI we allowed lags two to thirteen for the LDV. Results are not sensitive to 
different instrumentation choices.
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input in contrast to other analyses (Shao et al. 2017), as well as high density settlements 
reducing the per capita infrastructural requirements (Weisz et al. 2006).

The composition of the energy supply is often considered to influence material usage 
(Steger and Bleischwitz 2011; Weisz et  al. 2006), as renewable energy may reduce the 
usage of, e.g., fossil fuels. The insignificance of this variable in our analysis may be due to 
the additional material demand required to set up renewable energy infrastructures (Steger 
and Bleischwitz 2011). Another possible reason for this insignificance could be due to the 
fact that we do not explore cross‑country differences, but rather focus on changes within 
individual countries. Furthermore, renewable energy likely captures a substitution among 
materials (Bithas and Kalimeris 2016), while we analyze total material usage.

Now we turn to the reductions of the instrument count. We reduce the used lags of the 
innovation variable and the GDP variable to only the second lag as an instrument. The 

Table 6  Results for non‑green technologies

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5) (6)
Model AB AB AB AB AB AB

Dep. var. Raw material 
input

Raw material 
input

Raw material 
input

Direct mate‑
rial input

Direct mate‑
rial input

Direct material 
input

L1. Raw material 
input

0.554*** 0.552*** 0.552***
(0.158) (0.155) (0.159)

L1. Direct mate‑
rial input

0.863*** 0.862*** 0.866***
(0.0652) (0.0655) (0.0647)

Total Inno − 0.0233 − 0.0188
(0.0206) (0.0173)

NG_EnEff − 0.0230 − 0.0191
(0.0206) (0.0169)

NG_Recy − 0.0232 − 0.0176
(0.0210) (0.0169)

GDP 0.488*** 0.487*** 0.489*** 0.195 0.197 0.187
(0.161) (0.156) (0.165) (0.124) (0.122) (0.124)

Industrial inten‑
sity

0.485** 0.490** 0.487** 0.321** 0.322** 0.324**
(0.227) (0.229) (0.229) (0.145) (0.145) (0.144)

Time‑effects Yes Yes Yes Yes Yes Yes
Observations 532 532 532 532 532 532
No. of countries 27 27 27 27 27 27
No. of instru‑

ments
38 38 38 35 35 35

AR1‑test − 2.73 − 2.75 − 2.70 − 3.69 − 3.68 − 3.70
[0.006] [0.006] [0.007] [0.000] [0.000] [0.000]

AR2‑test 0.84 0.84 0.84 − 0.10 − 0.10 − 0.10
[0.400] [0.399] [0.400] [0.919] [0.919] [0.917]

Sargan‑test 19.29 19.17 19.32 11.76 11.65 11.97
[0.114] [0.118] [0.113] [0.301] [0.309] [0.287]
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instruments for the LDV were reduced to lag two to six.25 We find that the results concern‑
ing EI_Recy remain rather robust. EI_Recy remains significant both for RMI and DMI 
at the 5% and 10% level respectively. The coefficient turns a little smaller in magnitude. 
EI_EnEff shows to be more sensitive. Both for RMI and DMI the coefficient loses its sig‑
nificance. While the coefficient turns larger in magnitude for RMI, it turns substantially 
smaller in magnitude in the case of DMI.

6.3  Discussion

This paper contributes mainly to the debate on the environmental effects of environmental 
innovation (EI). Unlike previous work we have constructed indicators of material usage 
to operationalize environmental impact. We have focused on both Direct Material Input 
(DMI) and Raw Material Input (RMI) to account for the respective shortcomings that both 
indicators present. The role of EI was explored in more detail by defining subclasses that 
represent different areas of green technological change.

As discussed in Sect.  2, previous work focused on other indicators of environmental 
pressure when assessing the effects of EI, mainly emission indicators. On the sectoral level, 
reducing effects of EI were found (Carrión‑Flores and Innes 2010; Costantini et al. 2017; 
Ghisetti and Quatraro 2017; Wurlod and Noailly 2016), while on the regional level evi‑
dence was more inconclusive (Wang et al. 2012; Weina et al. 2016; Zhang et al. 2017). The 
work most related to our sample of European countries is the analysis of eco‑innovation 
effects in European sectors. Here a direct and indirect effect of EI is found, as effects occur 
not only in the sector where an EI originates, but also in other sectors through market trans‑
actions (Costantini et al. 2017). Such a supply chain effect is captured on a national level to 
some extent. Moreover, EI activities are embedded in the general national effort to upgrade 
the sustainability of its production (Costantini et al. 2017). On the national level, spillovers 
between regions are included, which are considered a channel through which EI exerts its 
effects (Barbieri et al. 2016).

A further contribution of this paper concerns the subdomains of EI we defined to 
explore various areas affecting material usage in different ways. Our findings suggest that 
green innovation in the areas of energy efficiency (EI_EnEff), and recycling and reuse (EI_
Recy) is associated with decreases in material usage. Such effects could not be found for 
the EI domains of alternative energy production (EI_AEP), transportation (EI_Transp), cli‑
mate change mitigation in the production or processing of goods (EI_ProGo), and overall 
EI (EI_Full). Energy efficiency measures can be considered to affect material usage rather 
directly as reduced energy demand results in associated decreases in the utilization of 
materials like fossil fuels or other energy carriers. A similar consideration can be applied 
to technological advances in recycling and reusing, as they decrease the need for newly 
extracted materials, and promote the concept of a circular economy (Cullen 2017; Euro‑
pean Commission 2015).

EI in the production or processing of goods includes a broad range of technolo‑
gies listed in the Y02P class. As these technologies strongly relate to resource‑inten‑
sive production processes, they likely capture not only direct effects (e.g., recycling or 
energy efficiency measures), but also the general innovative effort to upgrade the sus‑
tainability of production and processing. Hence, the fact that this EI domain is found 
insignificant could be related to the inclusion of technologies unrelated to reductions of 

25 To secure a sound estimation concerning, e.g., the coefficient of the LDV.
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material usage, and the arising difficulty with isolating the reducing effect (see Wurlod 
and Noailly 2016). Concerning our measures of EI_AEP and EI_Transp, which were also 
found to be insignificant, two further interpretations can be considered. First, both EI_
AEP and EI_Transp capture technologies which are basically related to the substitution 
of materials, not specifically their reduction. It remains uncertain which type of environ‑
mental pressures will arise due to the utilization of new technologies, such as electric 
mobility (Hepburn et al. 2018). Hence, the effects of these technologies can potentially 
not be sufficiently captured by our aggregated material indicators. For example, the uti‑
lization of solar energy may reduce fossil demand but, on the other hand, increase the 
need for specific metals or other materials as new infrastructural requirements emerge. 
The same seems to hold for new modes of transportation. Second, an alternative and 
complementary explanation concerns the empirical framework. While changes in reusing 
materials in industrial processes are rather quickly implementable, redefining the energy 
supply system or the transportation system are large scale technological and societal 
processes.26 Hence, policy may play a more important role in facilitating these changes 
(Popp et al. 2011). Capturing them in an empirical setting seems more difficult due to the 
uncertain time‑horizon of such transformations.

Thus, while some specific EI domains are found to reduce material usage, such results 
can neither be obtained for general innovation nor the non‑green counterparts of our EI 
domains. These findings point to the relevance of narrowly defining technological areas. 
While some technological domains within the broad definition of EI (EI_Full) exert an 
effect, this effect cannot be isolated for our broad definition of EI as the inclusion of tech‑
nologies that do not affect material usage (e.g., water technologies) likely causes finding 
no impact of general EI (Wurlod and Noailly 2016). Although we do not find an impact 
of general innovation or non‑green subgroups, there likely are “non‑green” technologies 
that reduce material usage. Generally, it is considered that many “normal” innovations do 
provide environmental improvements (Kemp and Pearson 2007). Especially in the context 
of material usage, we could expect such results. Improving efficiency and reducing costly 
materials can be considered as general aims of innovative activity that strives to enable 
general productivity gains. Thus, the fact that all non‑green groups and general innova‑
tion were found to be insignificant should be interpreted cautiously in the sense that our EI 
domains exert a different effect than overall innovation.

With a focus on material usage, our results also provide further evidence contributing 
to the literature on decoupling.27 We explicitly operationalize the impact of green tech‑
nologies and assess both the impacts on RMI and DMI. The fact that there is a reducing 
impact of EI on material usage, points to the notion that at least a relative decoupling is 
likely as we ascertain a technology effect (Bithas and Kalimeris 2016; Stern 2004; UNEP 
2011). Referring to Tables 4 and 5, it is obvious that GDP plays a role in determining mate‑
rial use. We observe a substantial and robust impact of GDP on RMI. For DMI, we find 
the influence of GDP to be more modest. Our observations concur with the consideration 

26 Especially the societal aspect in these technological changes should be stressed. As soon as changes no 
longer just occur “behind the curtain” of production facilities and firms, but enter directly in the life and 
daily environment of people there can be a high degree of resistance causing such changes to turn into diffi‑
cult and long‑lasting societal negotiation processes, making it difficult to capture such aspects in an empiri‑
cal setting as used in the proposed analysis.
27 Please note that given the empirical design the interpretation of the results in the sense of decoupling 
should be treated with caution, due to the presence of the LDV and time‑effects (Plümper et al. 2005).
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that European countries have profited—with respect to their DMI—from the outsourcing 
of material intensive activities through international trade. Therefore, resource efficiency 
gains may be substantially smaller when accounting for upstream flows (Schaffartzik et al. 
2016; Wiedmann et al. 2015). The effects of structural change, which are more pronounced 
for DMI, support these observations. Nonetheless, our results show for both indicators that 
EI can contribute to reductions in material usage. Thus, strengthening EI seems a valid 
way to reduce the material usage in European economies. Reductions by technology need 
to be kept from being overwhelmed by rebound effects and continued economic growth 
(Binswanger 2001; Freire‑González 2017) if an absolute reduction of environmental 
impact is to be achieved.

7  Conclusions

A reduction of material usage has become an important goal on the political agenda 
(European Commission 2011a). The aim of this paper was to empirically examine the 
effects that environmental innovation (EI) had on material usage within the European 
Union countries. Input indicators based on the methodology of Material Flow Account‑
ing have been considered as more holistic proxies of environmental pressure (Agnolucci 
et  al. 2017; Fischer‑Kowalski et  al. 2011) than single‑pressure indicators such as  CO2 
emissions.

We provide new evidence that EI has contributed to reductions of material usage in 
European economies. For technologies in the areas of energy efficiency, and recycling 
and reuse, we find that EI did contribute to such reductions. For further classifications of 
technologies, we do not find significant effects on material usage. This could, however, 
be due to issues of capturing substitutions between materials, long time‑horizons in sys‑
temic technological change, as well as too broad definitions of technological fields. These 
results have important implications for academics and policymakers alike, as substantial 
differences in the effects of technologies occur. Differences in feasibility, time require‑
ments for changes, and overall environmental effects of technologies need to be accounted 
for in order to facilitate effective policies and an appropriate analysis of green technologi‑
cal change. Nonetheless, our main results complement earlier findings on the effects of EI 
on emissions and energy intensity (Carrión‑Flores and Innes 2010; Costantini et al. 2017; 
Ghisetti and Quatraro 2017; Wurlod and Noailly 2016; Zhang et  al. 2017), although the 
comparability of studies remains limited, given the differences in indicators, samples and 
econometric methods.

Differences between the two input indicators have been found. For both RMI and DMI, 
there is a technology effect, as for both indicators EI is found to have a significant reducing 
effect. Scale effects are found to be more relevant in the case of RMI. Effects of structural 
change are more pronounced for DMI.28 Thus, our results support considerations present 
in decoupling literature suggesting that successes in decoupling may be biased upwards 
due to outsourcing via international trade (Schaffartzik et al. 2016; Steger and Bleischwitz 
2011; Wiedmann et al. 2015).

28 It should be noted that the empirical analysis does not allow for conclusions on the effects of structural 
change on specific material classes.
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Some further avenues of research emerge from the limitations of this analysis. First, the 
analysis could be refined by unpacking material classes to identify substitutional effects 
among materials (Bithas and Kalimeris 2016). A more detailed analysis focusing on a 
sectoral level (Costantini et al. 2017) might identify the potential of EI in material usage 
reduction in different sectors. Generally, our results support the relevance of looking at 
specific technological domains and of accounting for effects along entire supply chains. 
Hence, there is a need for research that provides an in‑depth analysis of the holistic effects 
of specific green technologies. Given the crucial relevance of scale effects in driving mate‑
rial usage, especially the political dimension needs to be taken into account when striving 
towards Sustainable Development. This involves the relevance of public policy and gov‑
ernance to support the development and spreading of green technologies, but also the key 
issue of avoiding rebound effects and growth as a consequence of technological progress 
(Aghion and Howitt 1998; Binswanger 2001; Freire‑González 2017). If these are not suf‑
ficiently accounted for, the merits of EI are likely eaten up or even overcompensated for by 
scale effects.

Despite these limitations, our results support the notion that environmental innovation 
can contribute to reducing material usage. Therefore, supporting environmental innova‑
tion and reducing environmentally harmful subsidies (Wilts and O’Brien 2019) could cre‑
ate a win–win situation. However, the holistic impacts of innovation should be taken into 
account, such as the long‑term induced dynamics of EI, when being dealt with at the politi‑
cal level.

While the potential of environmental innovation to reduce environmental pressure may 
be far from being fully exploited, it cannot be ignored that technological advances have 
not as yet been able to solve our environmental issues. Rather, these issues tend to become 
more and more pressing. Simply hoping for future technological breakthroughs to solve our 
issues, would be unreasonable, if not reckless. Especially, given the limitations on decou‑
pling (Cullen 2017; Georgescu‑Roegen 1971; Meadows et al. 1972; Schramski et al. 2015), 
the pursuit of Sustainable Development calls for continuous adjustment and alignment with 
environmental necessities. Fundamental changes in lifestyles and societal structures may 
become inevitable and should be strengthened as required, in order to not realize too late 
that technology may not do the trick.

Appendix

See Tables 7, 8, 9, 10, 11, 12, 13 and 14.
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Table 7  Descriptive statistics

a Trade Openness is equivalent to the sum of Imports/GDP and Exports/GDP

Variable Unit Obs Mean SD Min Max Source

Total raw material input 
(RMI)

Tons 588 4.84e + 08 5.92e + 08 7,421,426 2.38e + 09 UN environment 
international resource 
panel global material 
flows database

Total direct material 
input (DMI)

Tons 588 3.15e + 08 3.60e + 08 5,162,637 1.50e + 09 UN environment 
international resource 
panel global material 
flows database

Industrial intensity: sec‑
tor share in gross value 
added

Share 620 0.283 0.059 0.113 0.524 Cambridge econometrics 
European regional 
database (ERD)

GDP Billions 
of Euro

620 384.00 601.25 2.80 2539.85 Cambridge econometrics 
European regional 
database (ERD)

EI_Full Stock 621 1449.74 3868.92 0 32,174.14 PATSTAT 2017b
EI_AEP Stock 621 521.25 1285.04 0 10,342.2 PATSTAT 2017b
EI_Transp Stock 621 192.04 614.47 0 6008.21 PATSTAT 2017b
EI_Recy Stock 621 83.07 194.10 0 1309.30 PATSTAT 2017b
EI_EnEff Stock 621 285.89 768.56 0 7326.65 PATSTAT 2017b
EI_ProGo Stock 621 114.72 295.39 0 2658.38 PATSTAT 2017b
Total Inno Stock 621 8541.33 21,704.97 0.43 167,442.2 PATSTAT 2017b
NG_EnEff Stock 621 8255.44 20,948.14 0.43 160,115.5 PATSTAT 2017b
NG_Recy Stock 621 8458.26 21,515.21 0 166,132.9 PATSTAT 2017b
NG_ProGo Stock 621 8426.61 21,411.78 0.43 164,783.8 PATSTAT 2017b
Trade  opennessa Share 600 1.00 0.56 0.34 3.44 World Bank
Population Thousand 

people
620 17,918 22,227 360 82,520 Cambridge econometrics 

European regional 
database (ERD)

Renewable energies in 
total primary energy 
supply

Share 621 0.087 0.084 0 0.374 OECD

Urban population Share 621 0.717 0.117 0.479 0.977 World Bank
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Table 8  Unit roots

Variables used are in logarithm or share
Fisher‑ADF: The Fisher‑type unit‑root tests are based on augmented Dickey–Fuller (Fisher‑ADF) tests with 
drift and one lag; the null hypothesis is that “all panels contain unit‑roots”; the test does not require a bal‑
anced panel. Statistics and respective p‑values (in square brackets) are reported for each type of Fisher test: 
inverse Chi squared, inverse normal, inverse logit and modified inverse Chi squared
Δ is the first difference operator

Fisher ADF Fisher ADF Fisher ADF Fisher ADF
Inv. X2 Inv. N Inv. L M. Inv. X2

Total raw material input (RMI) 135.94
[0.0000]

− 6.98
[0.0000]

− 6.87
[0.0000]

7.89
[0.0000]

Total direct material input (DMI) 137.44
[0.0000]

− 6.95
[0.0000]

− 6.91
[0.0000]

8.03
[0.0000]

Industrial intensity: sector share in gross value 
added

161.00
[0.0000]

− 6.67
[0.0000]

− 7.44
[0.0000]

10.30
[0.0000]

GDP 141.96
[0.0000]

− 7.03
[0.0000]

− 7.14
[0.0000]

8.46
[0.0000]

EI_Full 128.59
[0.0000]

− 4.95
[0.0000]

− 5.55
[0.0000]

7.18
[0.0000]

EI_AEP 109.03
[0.0000]

− 4.15
[0.0000]

− 4.46
[0.0000]

5.30
[0.0000]

EI_Transp 67.65
[0.0488]

− 0.98
[0.1625]

− 0.86
[0.1954]

1.77
[0.0388]

EI_Recy 120.24
[0.0000]

− 4.87
[0.0000]

− 5.12
[0.0000]

6.37
[0.0000]

EI_EnEff 94.28
[0.0006]

− 1.84
[0.0325]

− 1.85
[0.0333]

3.88
[0.0001]

EI_ProGo 126.60
[0.0000]

− 4.35
[0.0000]

− 5.21
[0.0000]

6.99
[0.0000]

Total Inno 180.35
[0.0000]

− 7.94
[0.0000]

− 8.90
[0.0000]

12.16
[0.0000]

NG_EnEff 175.73
[0.0000]

− 7.73
[0.0000]

− 8.61
[0.0000]

11.71
[0.0000]

NG_Recy 173.44
[0.0000]

− 7.54
[0.0000]

− 8.45
[0.0000]

11.49
[0.0000]

NG_ProGo 177.68
[0.0000]

− 7.74
[0.0000]

− 8.69
[0.0000]

11.90
[0.0000]

Trade openness 103.54
[0.0001]

− 4.60
[0.0000]

− 4.56
[0.0000]

4.77
[0.0000]

Population 122.37
[0.0000]

− 2.55
[0.0053]

− 3.40
[0.0004]

6.58
[0.0000]

Renewable energies in total primary energy supply 45.89
[0.7760]

2.95
[0.9984]

3.31
[0.9994]

− 0.78
[0.7825]

Δ Renewable energies in total primary energy 
supply

257.55
[0.0000]

− 11.65
[0.0000]

− 13.48
[0.0000]

19.59
[0.0000]

Urban population 152.76
[0.0000]

− 2.34
[0.0098]

− 3.30
[0.0006]

9.50
[0.0000]
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Table 9  Inclusion of controls for RMI/EI_EnEff

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5)
Model AB AB AB AB AB

Dep. var. Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

L1. Raw material 
input

0.569*** 0.611*** 0.561*** 0.573*** 0.638***
(0.127) (0.0932) (0.132) (0.117) (0.103)

EI_EnEff − 0.0399 − 0.0437* − 0.0369** − 0.0389* − 0.0446*
(0.0237) (0.0230) (0.0179) (0.0193) (0.0261)

GDP 0.680** 0.610*** 0.640*** 0.629*** 0.593**
(0.303) (0.199) (0.219) (0.214) (0.289)

Industrial intensity 0.177 0.110 0.211 0.178 0.0849
(0.287) (0.360) (0.263) (0.258) (0.366)

Trade openness − 0.0243 − 0.0140
(0.0330) (0.0316)

Population − 0.143 − 0.129
(0.229) (0.223)

D1. Renewable 
energy

− 0.117 − 0.170
(0.219) (0.219)

Urban population − 0.236 − 0.189
(0.286) (0.283)

Time‑effects Yes Yes Yes Yes Yes
Observations 500 502 502 502 500
No. of countries 27 27 27 27 27
No. of instruments 37 37 37 37 40
AR1‑Test − 2.72 − 2.81 − 2.59 − 2.69 − 2.91

[0.007] [0.005] [0.010] [0.007] [0.004]
AR2‑Test 0.60 0.60 0.62 0.59 0.65

[0.548] [0.550] [0.536] [0.555] [0.515]
Sargan‑Test 14.41 14.66 14.15 14.29 15.22

[0.211] [0.199] [0.225] [0.217] [0.172]
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Table 10  Inclusion of controls for RMI/EI_Recy

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5)
Model AB AB AB AB AB

Dep. var. Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

Raw material 
input

L1. Raw material 
input

0.680*** 0.713*** 0.681*** 0.692*** 0.720***
(0.107) (0.126) (0.122) (0.114) (0.104)

EI_Recy − 0.0465*** − 0.0497*** − 0.0479*** − 0.0482*** − 0.0467***
(0.0127) (0.0135) (0.0124) (0.0137) (0.0129)

GDP 0.412** 0.414** 0.428*** 0.412** 0.356**
(0.150) (0.155) (0.154) (0.157) (0.140)

Industrial intensity 0.362* 0.256 0.355* 0.317 0.276
(0.188) (0.296) (0.195) (0.200) (0.260)

Trade openness 0.00986 0.0174
(0.0201) (0.0206)

Population − 0.124 − 0.0863
(0.220) (0.193)

D1. Renewable 
energy

− 0.159 − 0.188
(0.196) (0.193)

Urban population − 0.228 − 0.239
(0.212) (0.193)

Time‑effects Yes Yes Yes Yes Yes
Observations 486 486 486 486 486
No. of countries 27 27 27 27 27
No. of instruments 37 37 37 37 40
AR1‑test − 2.67 − 2.65 − 2.65 − 2.70 − 2.72

[0.008] [0.008] [0.008] [0.007] [0.006]
AR2‑test 0.43 0.44 0.47 0.44 0.46

[0.667] [0.659] [0.641] [0.662] [0.642]
Sargan‑test 12.34 11.53 12.19 12.13 11.25

[0.339] [0.400] [0.350] [0.354] [0.423]
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Table 11  Inclusion of Controls for DMI/EI_EnEff

(1) (2) (3) (4) (5)
Model AB AB AB AB AB

Dep. var. Direct material 
input

Direct material 
input

Direct material 
input

Direct material 
input

Direct material 
input

L1. Direct material 
input

0.724*** 0.742*** 0.718*** 0.718*** 0.755***
(0.0948) (0.0914) (0.109) (0.106) (0.0912)

EI_EnEff − 0.0443 − 0.0458* − 0.0400* − 0.0410* − 0.0491
(0.0302) (0.0236) (0.0201) (0.0202) (0.0296)

GDP 0.468 0.415* 0.406* 0.411* 0.448
(0.373) (0.224) (0.237) (0.236) (0.362)

Industrial intensity 0.378 0.316 0.432 0.410 0.276
(0.309) (0.345) (0.281) (0.289) (0.391)

Trade openness − 0.0315 − 0.0252
(0.0564) (0.0565)

Population − 0.128 − 0.132
(0.212) (0.225)

D1. Renewable 
energy

− 0.312 − 0.352
(0.341) (0.324)

Urban population − 0.111 − 0.0225
(0.306) (0.301)

Time‑effects Yes Yes Yes Yes Yes
Observations 500 502 502 502 500
No. of countries 27 27 27 27 27
No. of instruments 37 37 37 37 40
AR1‑test − 3.58 − 3.49 − 3.41 − 3.43 − 3.57

[0.000] [0.000] [0.001] [0.001] [0.000]
AR2‑test 0.23 0.23 0.27 0.22 0.29

[0.818] [0.821] [0.786] [0.824] [0.774]
Sargan‑test 9.67 10.89 11.24 11.09 9.13

[0.561] [0.452] [0.423] [0.436] [0.610]

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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Table 12  Inclusion of Controls for DMI/EI_Recy

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5)
Model AB AB AB AB AB

Dep. var. Direct material 
input

Direct material 
input

Direct material 
input

Direct material 
input

Direct material 
input

L1. Direct material 
input

0.825*** 0.841*** 0.822*** 0.817*** 0.849***
(0.0926) (0.0989) (0.104) (0.104) (0.0837)

EI_Recy − 0.0367** − 0.0404** − 0.0389** − 0.0392** − 0.0381**
(0.0175) (0.0165) (0.0158) (0.0163) (0.0172)

GDP 0.189 0.217 0.209 0.217 0.170
(0.166) (0.136) (0.150) (0.157) (0.148)

Industrial intensity 0.551** 0.424 0.548** 0.527** 0.449
(0.242) (0.325) (0.234) (0.249) (0.307)

Trade openness 0.00905 0.0150
(0.0256) (0.0263)

Population − 0.125 − 0.100
(0.200) (0.185)

D1. Renewable 
energy

− 0.430 − 0.444
(0.305) (0.313)

Urban population − 0.0998 − 0.0983
(0.234) (0.217)

Time‑effects Yes Yes Yes Yes Yes
Observations 486 486 486 486 486
No. of countries 27 27 27 27 27
No. of instruments 37 37 37 37 40
AR1‑test − 3.26 − 3.26 − 3.29 − 3.26 − 3.31

[0.001] [0.001] [0.001] [0.001] [0.001]
AR2‑test 0.02 0.04 0.08 0.03 0.07

[0.984] [0.971] [0.936] [0.974] [0.941]
Sargan‑test 9.11 8.41 8.77 9.05 7.79

[0.611] [0.676] [0.643] [0.617] [0.732]
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Table 13  Reductions of the Instrument Count

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4)
Model AB AB AB AB

Dep. var. Raw material input Raw material input Direct material 
input

Direct material input

L1. Raw material 
input

0.501** 0.676***
(0.211) (0.167)

L1. Direct material 
input

0.847*** 0.844***
(0.112) (0.118)

EI_EnEff − 0.0492 − 0.0224
(0.0371) (0.0193)

EI_Recy − 0.0449** − 0.0323*
(0.0191) (0.0178)

GDP 0.749* 0.441 0.173 0.179
(0.401) (0.273) (0.220) (0.217)

Industrial intensity 0.196 0.338 0.421** 0.531**
(0.297) (0.245) (0.203) (0.224)

Time‑effects Yes Yes Yes Yes
Observations 502 486 502 486
No. of countries 27 27 27 27
No. of instruments 29 29 29 29
AR1‑test − 2.02 − 2.50 − 3.47 − 3.34

[0.043] [0.012] [0.001] [0.001]
AR2‑test 0.58 0.44 0.12 0.02

[0.559] [0.663] [0.903] [0.985]
Sargan‑test 5.64 5.50 4.63 3.73

[0.228] [0.240] [0.328] [0.443]
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Table 14  Technology classes of specific EI domains

IPC Alternative energy production

IPC IPC IPC CPC

A01H C12N 9/32 F21S 9/03 H01M 14/ Y02E 10/
A62D 3/02 C12N 9/34 F22B 1/ H01M 2/02 Y02E 50/
B01D 53/ C12N 9/36 F23B 90/ H01M 2/04 Y02E 20/
B09B C12N 9/38 F23G 5/ H01M 4/86
B60K 16/ C12N 9/40 F23G 7/ H01M 4/87
B60L 8/ C12N 9/42 F24D 11/ H01M 4/88
B63B 35/ C12N 9/44 F24D 15/04 H01M 4/89
B63H 13/ C12N 9/46 F24D 17/ H01M 4/90
B63H 19/02 C12P 5/02 F24D 19/ H01M 4/91
B63H 19/04 C12P 7/06 F24D 3/ H01M 4/92
C01B 33/02 C12P 7/07 F24D 5/ H01M 4/93
C01B 33/03 C12P 7/08 F24F 12/ H01M 4/94
C02F 1/14 C12P 7/09 F24F 5/ H01M 4/95
C02F 1/16 C12P 7/10 F24H 4/ H01M 4/96
C02F 11/04 C12P 7/11 F24S H01M 4/97
C02F 11/14 C12P 7/12 F24T H01M 4/98
C02F 3/28 C12P 7/13 F24V 30/ H01M 8/
C02M 1/107 C12P 7/14 F24V 40/ H02J 7/35
C02M 1/113 C12P 7/64 F24V 50/ H02K 7/18
C07C 67/ C21B 5/06 F25B 27/ H02N 10/
C07C 69/ C23C 14/14 F25B 30/ H02S
C10B 53/ C23C 14/16 F26B 3/
C10G C23C 14/18 F27D 17/
C10 J C23C 14/20 F28D 17/
C10L 1/ C23C 16/24 F28D 18/
C10L 3/ C30B 29/06 F28D 19/
C10L 5/ D21C 11/ F28D 20/
C10L 9/ D21F 5/20 G02B 7/183
C11C 3/10 E02B 9/ G05F 1/67
C12N 1/13 E04D 13/ H01G 9/20
C12N 1/15 E04H 12/ H01L 25/
C12N 1/21 F01K H01L 27/142
C12N 15/ F01N 5/ H01L 27/30
C12N 5/10 F02C 1/05 H01L 31/02
C12N 5/12 F02C 1/06 H01L 31/03
C12N 5/14 F02C 3/28 H01L 31/04
C12N 5/16 F02G 5/ H01L 31/05
C12N 5/18 F03B H01L 31/06
C12N 5/20 F03C H01L 31/07
C12N 5/22 F03D H01L 51/42
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Table 14  (continued)

IPC Alternative energy production

IPC IPC IPC CPC

C12N 5/24 F03G 4/ H01L 51/43
C12N 5/26 F03G 5/ H01L 51/44
C12N 5/28 F03G 6/ H01L 51/45
C12N 9/24 F03G 6/ H01L 51/46
C12N 9/26 F03G 7/04 H01L 51/47
C12N 9/28 F03G 7/05 H01L 51/48
C12N 9/30 F21L 4/ H01M 12/

Energy efficiency Recycling and reuse

IPC IPC CPC IPC IPC CPC

B60K 6/10 E04F 13/12 Y02E 40/ A43B 1/12 C21B 3/08 Y02E 50/3
B60K 6/28 E04F 13/14 Y02B 20/ A43B 21/14 C21B 3/10 Y02P 10/21
B60K 6/30 E04F 13/15 Y02B 30/ B03B 9/06 C22B 19/28 Y02P 10/22
B60L 3/ E04F 13/16 Y02B 40/ B22F 8/ C22B 19/30 Y02P 10/23
B60L 50/30 E04F 13/18 Y02B 50/ B29B 17/ C22B 25/06 Y02P 10/24
B60W 10/26 E04F 15/18 Y02B 60/ B29B 7/66 C22B 7/ Y02P 20/147
C09K 5/ E04F 15/20 Y02B 70/ B30B 9/32 C25C 1/ Y02P 20/148
E04B 1/62 E06B 3/263 Y02B 80/ B62D 67/ D01F 13/ Y02P 20/149
E04B 1/64 E06B 3/267 Y02B 90/ B65D 65/46 D01G 11/ Y02P 20/58
E04B 1/66 E06B 3/273 Y02E 60/ B65H 73/ D21B 1/08 Y02P 60/87
E04B 1/68 E06B 3/277 Y02E 70/ C03B 1/02 D21B 1/10 Y02P 70/179
E04B 1/70 F03G 7/08 Y02P 10/25 C03C 6/02 D21B 1/32 Y02P 70/24
E04B 1/72 F21K 99/ Y02P 10/26 C03C 6/08 D21C 5/02 Y02P 70/263
E04B 1/74 F21L 4/02 Y02P 10/27 C04B 11/26 D21H 17/01 Y02P 70/267
E04B 1/76 F24H 7/ Y02P 10/28 C04B 18/04 H01B 15/ Y02P 70/279
E04B 1/78 F28D 20/ Y02P 10/29 C04B 18/06 H01J 9/50 Y02P 70/625
E04B 1/80 G01R Y02P 20/121 C04B 18/08 H01J 9/52 Y02P 70/627
E04B 1/82 H01G 11/ Y02P 20/122 C04B 18/10 H01M 10/54 Y02P 70/629
E04B 1/84 H01L 33/ Y02P 20/123 C04B 18/12 H01M 6/52 Y02P 70/633
E04B 1/86 H01L 51/5 Y02P 20/124 C04B 18/14 Y02P 70/649
E04B 1/88 H01M 10/44 Y02P 20/125 C04B 18/16 Y02P 70/651
E04B 1/90 H01M 10/46 Y02P 20/126 C04B 18/18 Y02P 70/653
E04B 1/92 H02J Y02P 20/127 C04B 18/20 Y02P 80/40
E04B 1/94 H05B 33/ Y02P 20/129 C04B 18/22 Y02W 30/5
E04B 1/98 Y02P 20/131 C04B 18/24 Y02W 30/6
E04B 2/ Y02P 20/132 C04B 18/26 Y02W 30/7
E04B 5/ Y02P 40/121 C04B 18/28 Y02W 30/8
E04B 7/ Y02P 40/123 C04B 18/30 Y02W 30/9
E04B 9/ Y02P 60/14 C04B 33/132 Y02W 90/2
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Table 14  (continued)

Energy efficiency Recycling and reuse

IPC IPC CPC IPC IPC CPC

E04C 1/40 Y02P 60/15 C04B 33/135
E04C 1/41 Y02P 70/143 C04B 33/138
E04C 2/284 Y02P 70/145 C04B 7/24
E04C 2/288 Y02P 70/163 C04B 7/26
E04C 2/292 Y02P 70/24 C04B 7/28
E04C 2/296 Y02P 70/261 C04B 7/30
E04D 1/28 Y02P 70/263 C05F
E04D 13/16 Y02P 70/623 C08J 11/
E04D 3/35 Y02P 70/635 C09K 11/01
E04F 13/08 Y02P 70/639 C10G 1/10
E04F 13/09 Y02P 70/647 C10L 5/46
E04F 13/10 Y02P 80/1 C10L 5/48

C10M 175/
C11B 11/
C11B 13/
C14C 3/32
C21B 3/04
C21B 3/06

Transportation Production or pro‑
cessing of goods

IPC IPC CPC CPC

B60K 16/ F16H 48/14 Y02T Y02P
B60K 6/ F16H 48/16
B60L 11/18 F16H 48/18
B60L 7/10 F16H 48/19
B60L 7/12 F16H 48/20
B60L 7/14 F16H 48/22
B60L 7/16 F16H 48/24
B60L 7/18 F16H 48/26
B60L 7/20 F16H 48/27
B60L 7/22 F16H 48/28
B60L 8/ F16H 48/29
B60L 9/ F16H 48/30
B60W 20/ H02J 7/
B61 H02K 29/08
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