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Abstract We relax the common assumption that regulators know the structural relationship
between emissions and ambient air quality with certainty. We find that uncertainty over this
relationship can manifest as a unique form of multiplicative uncertainty in the marginal
damages from emissions. We show how the optimal stringency of environmental regulation
depends on this structural uncertainty.We also show how new information, like the discovery
of previously unknown emission sources, can counterintuitively lead to increases in both
optimal emissions and ambient pollution levels.
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1 Introduction

Environmental regulations can have substantial economics impacts. As a result, there is
considerable interest in knowing the precise relationship between emissions and ambient
pollution levels in order to develop the optimal stringency pollution regulation. As long as the
relationship between emissions and ambient pollution is known, any uncertainty reduces to
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Weitzman (1974) uncertainty in damages associatedwith a given level of ambient pollution or
the costs borne by emitters for reducing emissions by a given amount. This type of uncertainty,
which we call “distributional uncertainty” to reflect the presence of stochasticity in the costs
or benefits of emissions, continues to receive considerable attention in the economics of
pollution control.

In this paper, we examine the implications of a different kind of uncertainty we term
“structural uncertainty”. Structural uncertainty occurs when the relationship between pollu-
tion emissions and ambient pollution levels is unknown. Examples includewhen the regulator
is unaware of specific pollution sources or substantively misinformed about the magnitude of
pollution coming from a source. We show that this form of uncertainty gives rise to a unique
set of modeling implications and regulatory issues.

A great deal of evidence in the physical science literature shows there is considerable
uncertainty in the relationship between emissions and ambient concentrations of various pol-
lutants. For example, it was recently discovered that up to 44% of sulfates in Los Angeles,
the most studied air basin in the world, come from large ships burning bunker fuel in the Los
Angeles-LongBeach harbors (Dominguez et al. 2008). This far exceeded previous apportion-
ments of ambient sulfate concentrations to harbor traffic.1 Even though sulfates were already
known to come from ships, the level of contributions of their emissions to ambient pollution
levels was very inaccurate. As a result, known sulfate emissions were “misapportioned”.
Recent work regarding the U.S. suggests that yearly anthropogenic emissions of methane, a
powerful greenhouse gas (GHG), are 50–70% higher than previously thought (Miller et al.
2013). Put another way, there aremissing emissions inventories for methane. As a result, each
ton of knownmethane was previously over-attributed to causing extant atmospheric methane
concentrations. To that end, fugitive emissions from leaks in industrial processes of methane
and Volatile Organic Compounds (VOCs) are thought to be both large and notoriously diffi-
cult to estimate (Chambers et al. 2008; Wu et al. 2014). Similarly, the relationship between
mercury emissions and ambient mercury levels is subject to considerable uncertainty even
though the health risks of mercury are now well-known. The uncertainty exists in large part
since “it is difficult to obtain data [on mercury emissions] from national authorities” leading
to uncertain emissions inventories (Pacyna et al. 2010). Regardless, mercury emissions have
been subject to recent regulatory action. China’s carbon emissions are notoriously challeng-
ing to track: the government announced in late 2015 they had been burning 17% more coal
per year than previously announced.2 In each case, and in many others, ambient levels of
pollution are known but the physical relationship between different emission sources and
ambient pollution levels is unknown due to imprecision in attributing the set of total actual
emissions to observed ambient pollution levels.3

Potential welfare gains from a better understanding of the structural relationship between
emissions and ambient pollution seem to be largely ignored. For example, the 2010 EPA

1 When the effect of harbor emissions on ambient sulfate levels was accurately estimated, emissions from
ships were substantially reduced by plugging in to mainland electricity while in port.
2 See New York Times article at: http://tinyurl.com/gvodrvf.
3 Haagen-Smit (1952) famously discovered that automobile exhaust was largely responsible for smog in the
L.A. air basin. Automobiles emissions were previously not recognized as a possible source of smog. In an
example that clearly points to economic implications, Thiemens and Trogler (1991) discovered that about 30%
of nitrous oxide emissions, a precursor to ozone and a greenhouse gas, were unaccounted for in emissions
inventories. Mounting a search for them by finger printing molecules, the EPA found that the use of adipic
acid in the production process for nylon gave rise to large quantities of nitrous oxide. Upon learning of
this discovery, nylon producers voluntarily modified their production process to greatly reduce nitrous oxide
emissions at very little cost at a time when other emitters of nitrous oxide were undertaking high cost measures
to abate emissions.
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budget requested $842 million (less than 9% of the total agency budget) for improvement
of science and technology. Of that amount, only a very small fraction is spent on improved
modeling of the pollution output-ambient quality relationship, more accurately recording
emissions or searching for new pollution sources. Such expenditures are orders of magnitude
less than the direct costs of pollution regulation by firms, households and local governments
nationwide (Gray 2002; Gray and Shimshack 2011). Therefore, it is possible there may be
economic gains from basing pollution control regulations on a more precise understanding
of the relationship between emissions and ambient pollution levels.

The U.S. EPA, and its counterparts in OECD countries and many developing countries,
utilizes both an air pollutant emissions monitoring system and an ambient air quality mon-
itoring system to measure air pollutants. Controlling for other factors such as temperature
and wind, the two systems are linked to each other using an air dispersion model which takes
emissions as an input affecting the stock of ambient pollution. The Community Multiscale
Air Quality (CMAQ)model is one suchmodel delivering estimates for ozone and particulates
and its approach has been widely adopted in the atmospheric modeling literature (Kim and
Ching 1999). The potential for discord between the two monitoring systems is well known
among air quality modelers (McKeen et al. 2004, 2009) and difficulties in reconciling the
two systems has taken on increasing importance as efforts are made to produce real time
forecasts of ambient quality (Wang et al. 2011; Zhang et al. 2012a, b).

Possible problems in translating emissions into ambient concentrations was occasionally
mentioned in early economic work on pollution control (Spence and Weitzman 1978; Cran-
dall 1981). The implications of imperfect information governing the relationship between
emissions and ambient pollution, however, has received attention limited only to relatively
narrow pollution control problems rather than pollution control problems more broadly.
Examples include evaluating optimal pollution control when the effect of emitters on ambi-
ent pollution is stochastic (Horan et al. 1998; Hamilton and Requate 2012), when damages
from emissions vary spatially (Muller 2011; Fowlie and Muller 2013), when precisely which
out of a set of possible non-point source emitters do in fact emit (Segerson 1988; Hansen
1998), and non-point source water pollution permit allowances (Horan and Shortle 2005).
This literature considers structural uncertainty but do not explicitly consider cases where
there is uncertainty over if the full set of all polluters are identified.

We build on this literature by investigating the more general issue of how allowing uncer-
tainty in how known emission sources maps to observed ambient pollution levels impacts
(1) expected damages from emissions and (2) the optimal stringency of pollution control.4

in doing so we focus on air pollutants but the qualitative results generalize other forms of
pollution, such as the water pollution examples discussed above. We do this in three parts,
each of which is a distinct contribution. First, we develop a model of structural uncertainty.
A key aspect of our model is that the regulator must estimate the marginal contribution of
observed emissions on ambient levels of pollution. In that sense, our model is akin to a
structural model rather than a reduced form model of damages from emissions.5 Second,
we use the model to identify how resolving uncertainty through discovering new emission
sources impacts optimal stringency of ambient pollution levels. This approach is motivated
by discoveries of new sources in the physical sciences literature discussed above. Third,
we investigate how explicitly accounting for the presence of structural uncertainty impacts

4 Put anotherway, our problem is one about accurately apportioning known sources to ambient pollution levels.
In that sense, one application of our paper is to consider how the level of a “pollution license” considered
in Montgomery (1972) is affected by uncertainty in the relationship between how known emitters affect the
ambient level of pollution.
5 For an example of a well-executed reduced form model of damages see Lemoine and McJeon (2013).
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optimal pollution stringency levels. This final approach seeks to be more normative, whereas
the previous two are positive economic models.

2 Model

This section develops our theoretical model. Throughout we assume the vector of optimal
emission levels is achievable via a tax or tradable quota system.We do not address the myriad
issues with actual implementation of pollution control mechanisms here. We focus only on
the stringency of pollution control in this paper.

Each firm, industry or sector i chooses a level of emissions, xi , to maximize profits πi (xi ).
The indicator ‘i’ could also index countries or anthropogenic versus geological sources. We
assume that πi (xi ) is initially increasing in x and twice differentiable with π ′′

i (xi ) < 0.
Similar in in spirit to Horan and Shortle (2005), each unregulated firm emits at a level x∗

i
such that π ′

i (x
∗
i ) = 0. Let the regulator know the exact form of πi (xi ) for all i with certainty.

There are N total emitters. Firm profit functions can be either homogeneous or heterogeneous
(e.g., πi () or π(). The steepness and level of marginal profits from emissions can vary by
source.6

Emissions from firms contribute to the ambient pollution level, y, which decreases social
welfare according to a strictly increasing damage function D(y). We make two simplifying
assumptions about ambient pollution and associated damages. First, the regulator knows
the damage function D(y) perfectly. For exposition we assume that marginal damages are
linear in y: D′(y) ∝ cy although we don’t leverage it in a proof until our third Proposition.
Second, the ambient level of pollution, y, is perfectly observable. We make this assumption
throughout. Ambient pollution levels are actually only measured at discrete locations (e.g.,
monitoring stations) at discrete points in time (e.g., when readings are taken). Ambient
levels of pollution between these spatio-temporal fixed points is itself uncertain. We do not
investigate the implications of this source of uncertainty.

We asume ambient pollution is related to emissions according to the simple linear func-
tion y = f ({x}Nx=1) = �i xiβi + ε, where ε is an idiosyncratic term and βi reflects the
marginal physical impact of each emitter’s contribution to, y, the ambient pollution level.
The idiosyncratic term, ε, explicitly models the typically assumed imperfections of any pol-
lution dispersion model.7 The coefficient βi represents the contribution of different emitters
to ambient pollution levels at a particular location. The existence and importance of these
“transfer coefficients” is well-understood in the atmospheric chemistry literature (Fu et al.
2012).

A linear relationship between ambient pollution and emissions is appealing for simplicity
but it is not innocuous. First, while linearity is a reasonable approximation in many cases,
such as heavymetals and primary particulatematter, it is not a reasonable assumption inmany
other cases such as where the relationship with precursor emissions and ambient pollution
is known to be non-linear. Second, since there is no explicit spatial dimension in this model,

6 From a modeling perspective, geological emissions of methane, for example, have a very steep marginal
benefit curve: it is very costly and could require geo-engineering to reduce such emissions.
7 Recent work has focused on the importance of stochastic environmental sinks, which could be modeled
similarly, for the merits of policy instruments (Hamilton and Requate 2012). We abstract from discussion of
policy instruments here to focus on the role of structural uncertainty in the relationship between emissions
and ambient pollution levels for pollution control stringency.
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our ambient pollution y should be thought of as ambient pollution in a particular location.8

Third, there is no temporal element in this initial flow pollutant model. We will later show
that the important aspects of this model carry through directly to a stock pollutant when the
stock’s decay rate is known. While our model can be generalized, we restrict our analysis to
the simplest case possible to clearly show the first order effects of structural uncertainty on
optimal pollution control.

Emissions from the i th polluter in themodel, xi , increases ambient pollution levels at some
rate βi (e.g., E[y] = �i xiβi ). We initially assume all polluters’ emissions have the same
physical impact on ambient pollution levels (e.g., βi = β j ), but later relax this assumption.9

If the marginal physical effects of emissions on ambient levels of pollution are known
the social planner (e.g., regulator) sets the vector of emissions to maximize expected social
welfare. As a result, the regulator maximizes the sum of all profits less expected damages
from ambient levels of pollution (recall the expectations operator is needed since realizations
of y are stochastic):

max{x} �N
i=1πi (xi ) − E[D(y)]. (1)

The N first order conditions for optimality are:

π ′
i (x

∗
i ) = E[D′(y∗)βi ] = D′(y∗)βi ∀ i = 1, ..., N . (2)

The first order conditions show the standard result that the change in profits from reducing
a unit of emissions by the firm should equal the expected marginal damages caused by an
increase in firm i’s contribution to the ambient pollution levels. Importantly, marginal dam-
ages of a firm’s emissions are weighted by the contribution of their emissions to ambient
pollution levels, βi . Given our assumptions that marginal damages are linear and the rela-
tionship between emissions and ambient levels of pollution, βi , is known we can drop the
expectations operator in Eq. (2). Finally, due to our homogeneity assumption across profits,
πi , and the relationship between emissions and ambient levels, (e.g., βi = β j ), the restricts
all polluters to emit at the same level x∗ satisfying Eq. (2). This represents the classic non-
depletable externality problem.

2.1 Modeling Uncertainty Between Emissions and Ambient Pollution

We now relax the assumption that the marginal physical effect of known emitters on ambient
pollution, βi , is known and that all emitters are identified. We model the regulator’s task as
both (1) estimating themarginal physical effect of knownemitters and (2) using that parameter
to inform the stringency of pollution regulation. The regulator’s task in this subsection is
estimating marginal physical impacts, β, of each emitters’ contribution to ambient pollution
levels (call the estimate β̂). We discuss the EPA’s procedure for doing this in the “Appendix”.
To make our example as clear as possible, we initially assume the regulator completely

8 Our model has implications for the related literature which uses “transfer coefficients” to improve efficiency
of regulation (Muller 2011; Fowlie and Muller 2013). However, a spatial dimensions is not needed to develop
the intuition in our model.
9 There are at least two common situations where this would not be the case that can be seen as extensions.
First, there are many types of GHGswhich contribute to climate change. For example, methane is a muchmore
potent greenhouse gas than carbon dioxide, but ultimately cause damages via the same mechanism. Second,
the same type of emissions from two different sources could impact ambient pollution at different rates. For
example, particulate matter from two coal power plants, one close to a city and one far away, may both impact
ambient PM 2.5 levels in a city, but have different transfer coefficients (Muller 2011; Fowlie andMuller 2013).
Uncertainty over transfer coefficients can be seen as a special case where the translation of emissions into
ambient pollution is not known with certainty.
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ignores that they observe an incomplete set of emitters. We also initially assume emitter
homogeneity (e.g., for both β and π(·)).

Formally, assume that the regulator has identified only a subset of K = α0N out of N
total emitters where α0 < 1. There are two helpful ways of formalizing “α0” in this example.
First is as the percentage of identified emitters. A second way of representing the percentage
of known emitters, α0, in this situation is as a Nx1 vector of ones and zeros. If the i th emitter
is known, then the i th place define a vector α0 will have a one. Alternatively, if the j th
emitter is unknown then the j th place in the vector α0 will have a zero.10 Since all emitters
are homogeneous except for being identified or unidentified, then, we can interpret observed
emissions as α0 percent of the sum of total emissions observed by the regulator without loss
of generality. Recall, though, that the regulator does not know α0. For much of this section,
we use the scalar notation for notational ease.11 Introducing the α parameter in this way is the
key distinguishing factor in our approach relative to other structural uncertainty approaches
such as those on water quality trading non-point source pollution (Segerson 1988; Horan and
Shortle 2005) or transfer coefficients (Fowlie and Muller 2013).

Assume that the regulator observes a series of observations for emissions and ambient pol-
lution levels: {x̃t , yt }Tt=1. Stack ambient pollution levels in a vector Y and observed emissions
for each time period t in a vector X̃ . As before, assume the true data generating process is
yt = �N

i=1xi,tβi + εt but also assume εt is a well-behaved normally distributed random error
component and that emissions affect ambient pollution identically. For illustrative purpose,
suppose the regulator estimates the coefficient vector β by regressing Y on X̃ using Ordinary
Least Squares (OLS). While regulators may not actually perform OLS to parameterize air
dispersion models, we want to show very precisely in the simplest case how inferring trans-
fer coefficients from an incomplete emissions inventory leads to biased estimates of transfer
coefficients due to over-attribution of known emitters to ambient pollution levels.

Estimates from attributing known emissions to observed ambient pollution levels lead to

upwardly biased estimates. Specifically, estimates take the form β̂ = Y ′ X̃
X̃ ′ X̃ = Y ′X

α0X ′X = β
α0
.

Because α0 ∈ (0, 1) due to incomplete information of the regulator, the estimate of marginal
physical effects of known pollutants, β̂, is upwardly biased in this case.12 Note that if the
regulator knew α0 with certainty, they could correct their biased estimate of β̂, which we
discuss in detail below.13

10 In this way, the sum of the number of ones in the vector α0 divided by the length of the vector is the
percentage of known emissions, α0.
11 From amodeling perspective, this model is very similar to one with a set of point source polluters which can
be regulated and monitored and a set of non-point source polluters which cannot be. The difference between
our approach is the cause of partial regulation (unknown sources motivated by the physical sciences literature
rather than known sources which can not be monitored). This matters for policy: paying for better technology
tomonitor non-point source polluters is different than paying for better scientific understanding of the pollution
process.
12 This type of upward bias of the OLS estimator is a special case of multiplicative measurement error.
While somewhat common in the epidemiology literature, we are not aware of any similar measurement error
present in the economics literature. In our model α0 is an unknown constant between zero and one. Zhang
et al. (2012) shows that the asymptotic distribution of β̂ given multiplicative measurement error of this form

can be expressed as
√
N (β̂ − β

α0
) ∼ N

(
0, σ 2α20(X ′X)−1

)
. Hence, OLS will overestimate the marginal

physical effect and underestimate its variance of the estimator. Intuitively, there is over-attribution of perfectly
observed ambient pollution levels to a subset of the universe of emitters in the physical model being used in
the regulation of pollution.
13 It is also possible that the contribution of the subset of known emissions are underestimated by the regulator
in some cases. The clearest example is for local air pollutants like particulate matter. For particulate matter
the U.S. EPA estimates the level of “fugitive emissions” from sources that are difficult if not impossible to
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Consider a regulator who uses the estimated marginal effect of known emitters on ambi-
ent pollution from the misspecified model above, β̂, to set emissions levels as a function of
expected ambient pollution levels. The resulting optimality condition obtained from maxi-
mizing expected welfare is:

max
{x}K1

�K
i=1πi (xi ) − E[D(y)|α0] = �K

i=1πi (xi ) − E[D(�i xi,t β̂i )|α0] (3)

π ′
i (x

∗
i ) = E[D′(y∗)β̂] = D′(y∗)β̂ ∀ i = 1, ..., K = α0N . (4)

where E[y∗] = X̃∗′β̂. Note that conditioning on α0 indicates the regulator estimates β̂i for all
identified emitters i = 1, ..., K = α0N . Given our homogeneity assumption, β̂i = β̂ j = β̂.
Since α0 < 1 and π ′′

i (·) < 0, the x̃∗
i implicitly defined by the set of Eq. (4) must be lower

than in the case above when β is estimated without upward bias.14 The main implication for
individual firms is that known sources are over-regulated in this misspecified model relative
to when marginal damages of known emissions are known. The reason is that perceived
marginal damages of known emitters are higher than their actual damages.

If the regulator’s estimate of marginal physical effects, β̂i , is an unbiased estimator of
βi , then expected marginal costs of a firm’s emissions equals actual marginal costs and
the problem reduces to a standard treatment of multiplicative uncertainty. The main dif-
ference between this treatment and the seminal work on multiplicative uncertainty in Hoel
and Karp (2001) is that our multiplicative uncertainty maps to damages and profits from
emissions (via uncertainty in β) rather than assumed uncertainty over costs of abatement
themselves.

This structural uncertainty model can be extended to fit the stock pollutant model of
Newell and Pizer (2003). Assume yearly contributions to a stock of pollution, St is yt .
Assume that St is perfectly observed. As in Newell and Pizer (2003), the equation of motion
is St = (1 − δ)St−1 + yt where δ is the stock pollutant decay rate. When δ is known,
yt = St − (1 − δ)St−1. In any given year, the set of known emitters contributes to the
stock of ambient pollution as in the flow pollutant case since the decay rate is known (e.g.,
St − (1 − δ)St−1 = �xtβ + εt ). As a result, uncertainty over β can be extended to stock
pollutants so long as the net present value of damages is considered. If the decay rate δ is not
known then the stock pollutant case presents a unique set of challenges we leave to future
research.

Footnote 13 continued
measure such as particulates from traffic on roads, leaks from pipes, and small industrial processes. In our
model, it amounts to adding an unobserved emitter (motivated by unobserved fugitive emissions) to the set
of known emitters such that α0 > 1. In that case, estimates of known emissions on ambient pollution levels
would be biased downward (e.g., β̂ = β

α0
< β). Indeed, one possible interpretation of our model is that it is

a model of uncertain fugitive emissions: uncertainty in fugitive emissions manifests as structural uncertainty
in the relationship between emissions and ambient pollution levels.
14 Consider the following example: assume there are two homogeneous polluters but only one is known, the
true β = 1 but that only one polluter is identified. Lastly, assume marginal damages increase at a constant rate
d. In this case the regulator would form an estimate of marginal emissions of β̂ = 2. As a result the first order
condition for the regulator is π ′

1(x
∗
1 ) = E[d(y∗)2] = d(2x∗

1 )2 = 4dx∗
1 . Conversely, the full information first

order condition, given that firms are homogeneous, would be π ′
1(x

∗
1 ) = d(2x∗

1 )1. Since the profit function is
concave, the known emitter is over regulated in the partial information case.
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3 Analytical Results

This section presents analytical results from the theoretical model when the regulator must
estimate marginal physical effects of known emissions from an incomplete set of emitters.
The marginal benefit of emissions (e.g., πi (·)) and the marginal physical effects of emissions
(e.g., βi ) are allowed to vary across firms.

3.1 Discovering New Emission Sources

If a scientific discovery reveals more emission sources than were previously known, then
there are more emissions to attribute to ambient pollution levels (e.g., α0 increases to α1). As
a result the marginal damage associated with emissions from each emitter that was identified
before the scientific discovery is lower since the marginal contribution of their emissions to
ambient levels of pollution is lower. Put another way, βi is revised down when the vector of
transfer coefficients are re-estimated since observed emissions are now larger than they were
before.15 This is similar to implications of the recent discovery that there were substantial
unaccounted for inventories of fugitive methane emissions (Miller et al. 2013).

Figure 1 shows the intuition for this result graphically. As the transfer coefficient of known
emitters becomes less upward biased (e.g., β̂0 > β̂1 > β), the curve representing perceived
marginal damage of emissions rotates down.16 Figure 1 holds ambient pollution levels, y,
fixed in order to highlight how the rotation of the marginal damage curve is exclusively tied
to changes in the estimated marginal physical effect of known emitters on ambient pollution
levels, β̂.

An important result from discovering new emissions sources is that it is always strictly
cheaper to achieve a given level of ambient pollution so long as at least one newly discovered

emitter has lowermarginal abatement costs than that of a previously regulated firm:
∂πi (x∗

i,0)

∂x >
∂π j (x∗

un)

∂x = 0,where x∗
un is the emissions level of the unregulated emission source.An increase

in the set of emitters increases the emissions of previously known emitters and decreases the
emissions of a newly discovered polluter if the marginal profit of the unregulated source is
less than the regulator’s expectations of their marginal damages.

It is alwaysweakly cheaper to achieve a given level of ambient pollution if a new emissions
source is discovered. However, it may not be optimal to decrease ambient levels of pollution.
Whether it is optimal or not for actual ambient pollution to decrease when a new emissions
source is identified depends on what happens to expected ambient pollution levels when a
new emitter is discovered (all proofs in the “Appendix”):

Proposition 1 An increase in the set of known emitters may decrease the expected level of
ambient pollution if 1) marginal physical effects are sufficiently biased upward and 2) the
set of new emitters is sufficiently small.

15 In the context of the OLS estimation example above, the scientific discovery implies that the percentage
of observed emissions is larger than it was before. If α0 is the old percentage of identified emissions and α1 is
the new percentage, then X̃ = α1X where α1 > α0. As a result, the estimated coefficient is lower than what is

was before for previously known emitters: E[β̂1] = y′X
α1X ′X = β

α1
<

β
α0

. Given that α1 > α0, the first order

effect on x∗
i implied by the new optimality condition in Eq. (4) for i = 1, ..., α1N is that previously known

emitters’ optimal emissions levels will be higher than they were before.
16 In Fig. 2 and subsequent figures, we assume D(·) is a convex function. Therefore, marginal damages are
upward sloping. However, even if damages were linear (Muller andMendelsohn 2009; Newell and Pizer 2003)
in pollution (e.g., marginal damage curves are flat), discovering new emitters (α increasing) shifts the marginal
damage curve down causing emissions of previously known sources to increase.
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∂D(y)
∂y β̂0

∂D(y)
∂y β

∂π′
i(xi)
∂xi

$
x

xx∗
0 x∗

∂D(y)
∂y β̂1

x∗
1

Emissions

Fig. 1 Optimal firm emissions under different β̂

Intuition suggests that discovering new emitters leads expected emissions to increase.
Proposition 1 says that once new emitters are discovered, expected ambient pollution levels
could be lower than before. The level of expected ambient pollution can change once the
new emitters are discovered because (1) their emissions are now counted in inventories, (2)
marginal physical effects of previously identified emitters were biased upward and (3) the
regulatormust revise their estimates ofmarginal physical effects of known emitters and newly
discovered emitters. The new expected ambient pollution level is a function of the interaction
these three parameters. Thus, expected ambient levels of pollution can change even before
the regulator decides to restrict emissions from the newly identified emitter.

Proposition 1 results from non-linearity in revisions of marginal physical effects from
previously identified emitters. Sometimes the change in the estimated physical effects from
previously known emitters dominates the additional contribution from newly discovered
sources and vice-versa. As a result, expected ambient pollution levels can increase or decrease
as new sources of emissions are discovered. Ifmarginal physical effects are biased downward;
then expected emissions always increase.

While Proposition 1 deals with changes in expected pollution, there is the larger question
of how newly discovered sources or transfer coefficient revisions affect optimal expected
pollution levels. If expected ambient pollution falls upon the discovery of new emitters,
marginal expected damages also fall, so long as the damage function is convex leading to the
following two Propositions:

Proposition 2 If expected ambient pollution decreases upon the discovery of new emitters,
then previously known emitters’ optimal emissions levels strictly increase. Conversely, if
expected ambient pollution increases, previously known emitters’ optimal emissions levels
strictly decrease.

Proposition 3 An increase in the set of known emitters can decrease the optimal level of
ambient pollution if benefits of emissions for newly discovered emissions is sufficiently large
(e.g., decreasing emissions is sufficiently costly).
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D′(y)β̂i,0

D′(y)βi

D′(y)βj

D′(y)β̂j,0

π′
i(x)

π′
j(x)

xjx∗
j,0x∗

j,1x∗
i,1x∗

i,0 xi

$
xi

$
xj

Firm i Firm j

Fig. 2 Example of discovery of new emissions sources

Proposition 2 relates the nature of the damage function and to updated estimates of the
marginal effect of emissions on ambient levels of pollution. Expected damages from ambient
pollution levels are a function of three things: (1) the nature of the damage function, (2) the
emission levels of known emitters, and (3) the estimated contribution of those known emis-
sions on ambient pollution levels. The emission levels of known polluters and the estimated
contribution of those known emissions on ambient pollution levels form expected ambient
pollution levels.17 If the joint effect of changes in damages from expected ambient levels of
pollution and updated estimates for a particular emitter is strong enough (e.g., if expected
marginal damages attributable to a specific emitter increase), then that emitter should be
regulated more intensely.

Proposition 3 identifies the impact of discovering additional emitters on optimal ambient
levels of pollution. There are four effects which all occur simultaneously when a new emitter
is discovered which all affect whether expected ambient pollution levels increase or decrease
upon discovery of additional emitters. First, the estimates of marginal physical effects of
emissions on ambient pollution levels decrease. Second, there are now more known emitters
in each period. Third, each additional known emitter is now regulated. Fourth, the level of
emissions from the previously regulated firms can be adjusted. The first and third effects act
to decreases ambient pollution levels while the second acts to increase them. The final effect
is the response of the regulator: in response to effects one through three the regulator could
increase, decrease or leave regulated emission levels unchanged. Since there are effects
inducing the regulator to both increase and decrease regulated emissions, it is not clear
whether previously identified emitters will be regulated more or less stringently.

17 A theoretical drawback of the approach in this section is the lack of dynamic consistency in the relationship
between changes in emissions caused by the regulation of emissions and ambient levels of pollution. For
example, assume that through a change in some policy instrument, a regulator reduces known emissions from
xi to a level δxi where δ ∈ (0, 1). In this case, expected ambient pollution will fall by (1 − δ)β̂i but actual
ambient pollution will fall by only (1 − δ)β. Over time, the regulator could account for this discrepancy in
order to partially correct for biased estimates.

123



Structural Uncertainty and Pollution Control: Optimal... 347

The key intuition behind Proposition 3 is from allowing the marginal benefits of emissions
to vary by source (e.g. πi 	= π j ). If the marginal benefit of emissions of the newly discovered
polluter is large (e.g., π ′

j (x j ) steep), then the increase in emissions from the previously
identified source (x∗

i,1 − x∗
i,0) could be smaller than the decrease in emissions from the

previously unidentified source (x∗
j,0 − x∗

j,1) for a given revision in the marginal impact of
emissions on ambient pollution levels. As a result, an increase in ambient pollution may be
optimal, as shown in Fig. 2. This situation ariseswhen a new source of emissions is discovered
that cannot be changed for any plausible cost, as is the case when new emissions are part
of the earth’s natural processes. Such discoveries were made by Keppler et al. (2006) and
Etiope and Ciccioli (2009) when they found that both plants and the ocean floor are major
sources of potent greenhouse gases.18 Alternatively, if new emissions sources can be cheaply
reduced, such a discoverywould result in lower optimal total ambient pollution levels. Recent
recognition of the greenhouse gas potential of atmospheric black carbon from stoves in India
is one such example (Ramanathan and Carmichael 2008).

Taken together, Propositions 2 and 3 imply that if the resource regulator has misspecified
the relationship between emissions and ambient pollution levels, then known emitters are
often over-regulated relative to the full information case. Hence, known emitters in this
scenario may have an incentive to learn more about the true nature of the polluting process.

Both of these Propositions rely on the assumption that the regulator under counts emis-
sions. If they instead over count emissions then (e.g., account for too much fugitive dust) then
the results reverse. These two Propositions are explicit about this with their key assumption:
if α is assumed to be greater than one the converse of these results would be true. As a result,
each Proposition has an associated Corollary which we omit here in the interest of conserving
space. If the regulator over counts fugitive emissions the opposite would be true and known
emitters would be under-regulated relative to the full information case.

3.2 Accounting for Uncertain Emission Inventories

Here we consider the case when the regulator accounts for the possibility they may observe
only a subset of emitters.19 We primarily assume that all emitters are homogeneous in most,
but not all, of this section to show thefirst order effects of accounting for structural uncertainty.

Assume the regulator knows that α ≤ 1, but only has prior beliefs over the true fraction
of identified emitters at any point in time: α ∼ μ(α). By acknowledging imperfect informa-
tion, the regulator knows their estimates of identified emissions’ marginal effect on ambient
pollution levels are upwardly biased and knows there is a fraction of unknown emitters of
size (1 − α).

There are two implications of allowing for priors μ(α) over the fraction of identified
emissions. First, it impacts the stock of total expected emissions inventories. Second, it
impacts estimates of marginal physical impacts of emissions on ambient pollution levels.
Continuing with the OLS intuition from above, conditional on a particular percentage of
known emitters, α, the regulator can correct for the bias in marginal physical impacts by

18 Put another way, if a regulator sets a limit on total known emissions in order to meet an ambient quality
standard and discovers later that some emissions are from very high cost sources such as geological processes,
then the expected cost of reaching the ambient pollution target will increase.
19 Thus far we have focused on how changes in the percentage of known emissions affect estimates of known
emissions on ambient pollution levels. One reason for this is that it is impossible for the regulator to know
with certainty what the new percentage of emissions, α1, or the old percentage of emissions, α0, actually are.
Instead, the discovery only reveals the amount of new emissions discovered as a percentage of old emissions.
Thus, the discovery informs the regulator of the relative change in the composition of emissions but not the
level of known emissions directly.
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estimating β̂ if they multiply by by α: αβ̂ = α
β
α

= β. Put another way, it is possible that

conditional on knowing α, it is possible that E[β̂|α]−β < β̂ −β if β̂ is the estimated effect
when not accounting for bias; in this way, conditional on knowing the level of incomplete
information it is possible to reduce or eliminate bias in an estimated transfer coefficient. In
this way, priors μ(α) imply a distribution over physical impacts as a function of the model
used to estimate marginal physical impacts by atmospheric chemists.

Maintaining homogeneity of all emitters for simplicity, take x̃ to denote the actual emis-
sions of each of the αN identified emitters and x∗

un to represent unidentified emitters. When
accounting for structural uncertainty, the regulator can account for the contributions of the
unknown emitters in contributing to ambient levels, (1 − α)Nx∗

unβ because they condition
on α. However, at any point in time the regulator does not know the true fraction of identified
emitters but instead has prior beliefsμ(α) over the distribution of α. As a result, the objective
function of the regulator when accounting for structural uncertainty is:

max
{x̃}αN1

∫
(αN )πi (x̃) + (1 − α)Nπi (x

∗
un) − D(αN x̃β + N (1 − α)x∗

unβ)μ(α)dα. (5)

Note that the regulator has only αN control variables since only αN emitters are known with
certainty. The resultant first order conditions for the known bias case is therefore:

π ′
i (x̃) =

∫
D′(αN x̃β + N (1 − α)x∗

unβ)βμ(α)dα ∀ i = 1, ..., αN

= E[D′(Y )β|μ(α)] (6)

In this circumstance, the regulator accounts for the knownbias in both calculating the expected
level of ambient pollution and in correcting their estimates of the marginal physical effect
of emissions on ambient pollution, making this management regime dynamically consistent.
No elements of the unknown portion of ambient pollution, (1 − α)Nx∗

unβ, are known to
the regulator. However, if E[α|μ(α)] < 1, then there must be more total emissions than
the set of observed emissions. In the first order condition, Eq. (6), we can see precisely
where multiplicative uncertainty enters the regulators problem since the estimated transfer
coefficient, β, is a function of priors, μ(α). The expectations operator now is evaluated over
β.

Now consider the case of the regulator setting optimal equilibrium ambient pollution and
emission levels when accounting for structural uncertainty versus the case when only a subset
of emitters are known but the marginal effect of all emitters is correctly identified in both
cases, akin to Sect. 2.1 above:

Proposition 4 If only a subset of homogeneous emitters is accounted for by the regulator but
marginal emissions are estimated unbiasedly, it is optimal to over-regulate known emitters
when accounting for structural uncertainty with Bayesian priors relative to when it is not
accounted for.

Proposition 4 stems from the regulator acknowledging their policy will have less influence
on actual ambient pollution levels than a regulator with naive beliefs. Regulators in this case
know theyhave biased estimates ofmarginal physical effects due to the possibility of unknown
unapportioned sources of emissions. They balance the loss in profits of known emitters with
the social welfare gains of lower expected ambient pollution.

Consider the regulator setting optimal ambient pollution and emission levels when
accounting for structural uncertainty versus the case when they are not accounting for struc-
tural uncertainty. Because α can impact the estimate ofmarginal physical effects of emissions
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on ambient levels of pollution non-linearly (e.g., the OLS example has that β̂ = β
α0
), deriving

analytical results are more challenging. We therefore make the strong assumption that the
slope of marginal damages with respect to ambient pollution levels is linearly increasing.
Even with this restrictive assumption we are unable to determine whether currently known
emitters should always be regulated more or less stringently:

Proposition 5 For linearly increasing marginal damages and upwardly biased estimates, it
is not optimal to regulate known emitters more stringently when accounting for structural
uncertainty if expected marginal damages when accounting for structural uncertainty are
lower than when not accounting for structural uncertainty.

There are three key pieces of intuition for Proposition 5. First, if the set of unknown emitters is
believed to be large, then there is a large quantity of emissions that the regulator believes they
cannot control. This is the direct effect of structural uncertainty on the regulator’s problem.
This gives the regulator incentive to increase regulatory burden on known emitters when
they account for structural uncertainty since unapportioned emission sources increase the
marginal cost of an additional unit of pollution from known emitters. Second, estimated
marginal physical effects of emissions from known emitters are always lower when the
regulator accounts for structural uncertainty relative to when they do not. This gives the
regulator incentive to reduce the regulatory burden on known emitters when they account for
structural uncertainty. This is the indirect effect of uncertainty on the regulator’s problem.
Third, if the marginal profit from emissions is small, then the importance of the first two
effects is magnified since, from a social welfare perspective, it is costly to significantly alter
emissions of knownpolluters. Even for linearly increasingmarginal damages, then,we cannot
say whether known emitters should always be regulated more stringently when accounting
for structural uncertainty. Lastly, while full bias correction is feasible conditional on priors
μ(α) is feasible, the proof of Proposition 5 only relies on estimates conditioning on μ(α)

being less biased than when not.
The indeterminate result fromProposition 5 is unsatisfying but there are still policy lessons

embedded in it. For example, if the regulator is fairly certain they have identified all emitters
then it ismore likely that accounting for structural uncertainty leads to increased stringency on
known emitters. The reason is the non-linearity in the bias when naively estimating marginal
emissions. In the OLS case, for example, as α approaches one, the marginal change in α is
constant but the marginal change in 1

α
gets smaller. The converse is true for lower levels of

α. Similarly if marginal profits are very steep, then x∗ ≈ x∗
un , and accounting for structural

uncertainty will lead to decreased stringency on known emitters.
Applying this model and the insights from Proposition 5 is relatively straightforward, but

the correct functional relationships between pollution and damages, the general functional
form on profits, and the non-linearities induced by biased estimation will all be context
specific. This naturally lends itself to simulation based exercises to size the magnitude of the
problem in different contexts. One example is bounding exercises where efficiency losses
from not accounting for structural uncertainty are going to be largest versus smallest. This
allows regulators to focus effort on use cases which have the highest expected value in terms
of increased regulatory efficiency.

4 Discussion

While we have focused on upwardly biased transfer coefficient estimates over counting
fugitive emissions could lead to downwardly biased estimates. In that situation, our results
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would be reversed. It is unclear if fugitive emissions are over or under counted in general. In
the case of methane, for example, fugitive emissions were under counted (Miller et al. 2013).
In other contexts like particulate matter, though, the opposite could be true. This possibility
highlights the complexity associated with the general problem of structural uncertainty in
the relationship between emissions and ambient levels of pollution. Complicating matters
further, the regulator might face punitive legal or political costs in over or under regulation
of regulated firms if they acknowledge scientific uncertainty.

There are alsowelfare implications of accounting for structural uncertainty in the pollution
process. Increasing the accuracy of information assumptions in any economic model should,
in expectation, increase total welfare of the solution to the regulator’s problem. Indeed, the
change in welfare is equal to the social value of information. We note, though, that the social
value of information is a function to the regulator’s response to it; in this way the social value
of the discovery of new emission sources is a function of whether the regulator explicitly
accounts for structural uncertainty.

Our work suggests there may be substantial efficiency gains to investing resources to help
resolve and reduce structural uncertainty since we show it affects the optimal stringency
of environmental regulation. Currently, budget allocations suggest that pollution control
agencies passively react to scientific discoveries that alter the understanding of the pollution
process. Our work can be used as the starting point to formally estimate the expected gains
from R&D programs aimed at quantifying the total amount of known emissions, identifying
unapportioned sources of a particular pollutant and reducing structural uncertainty. While
greenhouse gases are an obvious candidate, a much smaller system with a well-understood
physical model for translating emissions into ambient pollution levels might be a better test
case. In particular, extensions of this model could include optimal experimentation to learn
about structural uncertainty faced by the regulator.

Appendix 1

Proposition 1 An increase in the set of known emitters may decrease the expected level of
ambient pollution if (1) marginal physical effects are sufficiently biased upward and (2) the
set of new emitters is sufficiently small.

Proof Let a subset of emitters K = α0N initially be used to estimate marginal effects of
emissions on ambient pollution levels where α0 < 1. Assume all emitters are homogeneous
except that some are known and some are unknown. Let estimated transfer coefficients
conditional on α0 be β̂0 and assume that β̂0 > β.

Expected ambient pollution, conditional on regulation, is E[y∗|α0] = X̃∗′
β̂0 = α0N x̃∗

0 β̂0

where x̃∗
0 is the regulated level of emissions of known emitters conditional on α0 and β̂0 given

by the first order conditions in Eq. (4).
Given the homogeneity assumption, the new class of unregulated emissions that were

emitting at a level x̃∗
un where x̃∗

un > x̃∗
0 . Assume there are (α1 − α0)N emitters discovered

(e.g., α1 > α0). Taken together, this implies that total discovered emissions could be either
larger or smaller than the existing set of emissions. Lastly, assume that the new estimated
transfer coefficient is β̂1 < β̂0 so that transfer coefficient estimates are revised downward.

The new expected level of ambient pollution before any changes in emissions of regulated
and unregulated emitters is E[y|α1] = (α1 − α0)N x̃∗

un β̂1 + α0N x̃∗
0 β̂1.

The sign of the difference between expected emissions ex ante and ex post of discovery
can be expressed as:
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sign[E[y|α1] − E[y∗|α0]] = sign[(α1 − α0)N x̃∗
un β̂1 + α0N x̃∗

0 β̂1 − α0N x̃∗
0 β̂0]

= sign[α0 x̃
∗
0 (β̂1 − β̂0) + x̃∗

un β̂1(α1 − α0)]. (7)

There are two terms in Eq. (7). The first term describes the decrease in expected emissions
from previously identified emitters when the regulator revises their transfer coefficient esti-
mate downward. This term is negative since transfer coefficients are initially biased upward
by assumption. The second term is the additional emissions expected from the newly discov-
ered emitters. If the second term dominates expected ambient pollution increases. However, if
the first term dominates the second, expected ambient pollution decreases giving the desired
result. �
Proposition 2 If expected ambient pollution decreases upon the discovery of new emit-
ters, then previously known emitters’ optimal emission levels strictly increase. Conversely,
if expected ambient pollution increases, previously known emitters’ optimal emission levels
strictly decrease.

Proof To determine the impact of new emission sources on known emitter’s optimal pollution
levels, Proposition 1 showswemust address both increases and decreases in expected ambient
pollution levels. Let initial estimated transfer coefficients be β̂0 and the estimated transfer
coefficient after new emissions are discovered be β̂1 < β̂0. Assume that α0 increases to α1

causing E[y|α1] < E[y∗|α0] and damages are convex, E[D′(y)|α1] < E[D′(y∗)|α0]. By
construction, the marginal expected damages attributable to previously known emitters in the
first order condition after the discovery of new emitters, shown in Eq. (4), is smaller than the
marginal expected damages before the discovery:

E[D′(y|α1)]β̂1 < E[D′(y∗|α0)]β̂0. (8)

The previous level of regulated emissions, therefore, cannot be optimal:

π ′
i (x̃

∗
i |α0) = D′(E[y∗|α0])β̂0 > D′(E[y|α1])β̂1. (9)

Concavity of the profit function dictates that the marginal benefit of emissions is too high
and it must be that x̃∗

i |α1 > x̃∗
i |α0. By inspection, the converse is also true giving the desired

result. �
Proposition 3 An increase in the set of known emitters can decrease the optimal level of
ambient pollution if benefits of emissions for newly discovered emissions is sufficiently large
(e.g., decreasing emissions is sufficiently costly).

Proof The objective function of the regulator in this model is to maximize expected social
welfare. If the regulator is fully informed, their maximization problem is:

max{x} E
[
�N
i=1πi (xi ) − D(y)

]
,

where y = �x ′
iβi + ε and x is the N x 1 vector of emissions. Differentiating this equation

with respect to the N control variables gives the N first order conditions (E[π ′
i (x

∗
i )] =

E[D′(y∗)βi ] ∀ i) and implicitly define the set of optimal emission levels {x∗}.
Take a simplified casewhere there are only two emitters i and j .Without loss of generality,

assume that βi = β j = β = 1. Assume that both πi (·) and π j (·) are strictly concave and
that π ′′

i (·) = −ki and π ′′
j (·) = −k j so that k indexes the magnitude of the second derivative

for each emitter’s profit function. Assume that the regulator only knows of emitter i and
has formed an upwardly biased estimate the marginal physical effect of emitter i of β̂ > 1.
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Leveraging the linear marginal damage assumption to drop the expectations operator, the
regulator will let the following single first order condition set emitter’s i’s:

π ′
i (x

∗
i0) = D′(x∗

i0)β̂. (10)

Note that emitter j will emit at the level defined by π ′
i (x

∗
j0) = 0 since they are unidentified

and therefore unregulated. As a result, before being regulated emitter j’s total emissions are
x∗
i0 + x∗

j0.
Assume that after identifying emitter j , the regulator correctly identifiesmarginal physical

effects β = 1. The new optimal levels of regulated emissions are given by

π ′
i (x

∗
i0 + 
xi ) = D′(x∗

i0 + 
xi + x∗
j0 − 
x j )

π ′
j (x

∗
j0 − 
x j ) = D′(x∗

i0 + 
xi + x∗
j0 − 
x j ) (11)

where 
xi and 
x j represent the increase and decrease in emissions after emitter j is
identified and x∗

i0 + 
xi + x∗
j0 − 
x j the associated level of emissions. Since D′(x∗

i0 +

xi + x∗

j0 −
x j ) > 0 there must be a decrease in emitter j’s emissions due to the concavity
of π j (·).

To determine how discovering new emission source j impacts optimal ambient pollution,
Proposition 1 and Proposition 2 show we must analyze three cases: no change in emissions
after discovery of j , an increase in emissions and finally an decrease in emissions. Assume
first that 
xi − 
x j = 0. In this case there is no change in total emissions after j is
discovered and the regulator sets emissions according to Eq. (11). This would occur if β̂ was
sufficiently high so that when the marginal damage curve rotates down, the increase in i’s
emissions exactly offset the decrease in j’s. This would occur despite emitter j’s emissions
(x∗

j0 −
x j ) entering the damages function. Hence, emissions could remain unchanged after
the discover of an additional emitter.

Now augment the profit function for emitter j such that π̃ j
′(x∗

j0) = 0 at the same point

as previous but that π̃ j
′′(·) = −k̃ j where k̃ j > k j . By assumption, π̃ j

′(x∗
j0 − 
x j ) >

π ′
j (x

∗
j0 − 
x j ). This cannot be an equilibrium. As a result, emissions from j must increase

and emissions from i must decrease thereby leading to an increase in emissions after the
discovery of emitter j , correctly revising estimates of marginal physical effects of emissions
and subsequently revising regulated emission levels. Note that to arrive at a decrease in
emissions let k̃ j < k j and the converse is true. This completes the proof. �

Proposition 4 If only a subset of homogeneous emitters is accounted for by the regulator but
marginal emissions are estimated unbiasedly, it is optimal to over-regulate known emitters
when accounting for structural uncertainty with Bayesian priors relative to when it is not
accounted for.

Proof The first order condition in the full information case is π ′(x∗) = D′(Nx∗β) which
implicitly defines the optimal level of emissions for all emitters. Thefirst order conditionwhen
accounting for structural uncertainty, Eq. (6), can be rewritten as π ′(x̃) = E[D′(αN x̃β +
(1− α)Nx∗

unβ)β|μ(α)]. The term (1− α)Nx∗
un will be positive for non-degenerate beliefs.

Now assume that x̃ = x∗. Because the term (1 − α)Nx∗
un will be positive and the profit

function, π(·) is strictly concave, it must be the case that x∗
un > x̃ , therefore this cannot be

an equilibrium. By concavity of the profit function, allowed emissions of known emitters,
x̃ , should be reduced to less than emissions of emitters in the full information case, x∗, to
satisfy the first order condition (6), thereby completing the proof. �
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Proposition 5 For linearly increasing marginal damages and upwardly biased estimates, it
is not optimal to regulate known emitters more stringently when accounting for structural
uncertainty with Bayesian priors relative to when it is not accounted for if expected marginal
damages when accounting for structural uncertainty are lower than when not.

Proof Assume that the marginal damages from ambient pollution increase at a constant
rate c. The first order condition when accounting for structural uncertainty, Eq. (6), can be
rewritten as π ′(x̃) = E[c(αN x̃ β̂ + (1− α)Nx∗

un β̂)β̂|μ(α)]. Assuming that that bias can be
corrected (e.g., E[β̂|α] = β) and simplifying terms, we can further reduce the expression to
π ′(x̃) = E[c(αN x̃β + (1 − α)Nx∗

unβ)β|μ(α)]. The term (1 − α)Nx∗
unβ will be positive

for non-degenerate beliefs. Take x̃ to be the optimal level of emissions of identified emitters
when accounting for structural uncertainty.

When structural uncertainty is not accounted for assume that β̂ > β, the first order
condition for the αN known emitters is π ′(x∗) = E[c(αNx∗β̂)β̂] which implicitly defines
the optimal level of emissions, x∗ for all known emitters.

Further, temporarily assume that x̃ = x∗ so that π ′(x̃) = π ′(x∗). We can compare the
expected marginal damages across regulatory regimes by signing the expression:

E[c(αNx∗β̂)β̂] − E[c(αN x̃β + (1 − α)Nx∗
unβ)β|μ(α)] (12)

Taking advantage of the linearity and x̃ = x∗ assumptions, Eq. (12) simplifies to x∗α(β̂2−
β2) − (1 − α)x∗

unβ
2. The first component of this expression is positive since β̂2 − β2 >

0 by assumption. Note further that positivity requires only that the incorrectly estimated
coefficient, β̂, be larger than the corrected coefficient, β. The second component of this
expression is negative since (1 − α)x∗

unβ
2 > 0. As a result, the sign of this expression is

determined by the relative magnitude of the bias in β, the relative size of identified versus
unidentified emitters and the relative slope of the profit function (e.g., the difference between
x̃ and x∗

un). If the expression is positive, the known emitters must be less intensely regulated
when not accounting for bias. The converse is also true. This completes the proof. �

Appendix 2

Regulator Techniques to Account for Incomplete Emission Inventories
In practice, the set of emitters that affect ambient pollution levels at a particular time

and place are imperfectly observed. For both uniformly mixing pollutants like methane and
non-uniformly pollutants like heavy metals the full set of emissions is unknown (Pacyna
et al. 2010; Miller et al. 2013). Regulators sometimes, but not always, acknowledge these
imperfections by allowing modelers to use estimates of “fugitive emissions” to account for
emission inventories from unmeasurable sources.

In addition to having an incomplete set of emitters, the regulator must also estimate the
marginal physical effect of emissions on ambient pollution levels from an incomplete set
of emissions. The U.S. EPA and its counterparts in other industrialized countries acknowl-
edge the imperfections of their theoretically driven air dispersion models in some cases.
Implemented in 2006, “Response Surface Modeling” uses maximum likelihood statistical
techniques to apportion known emissions to ambient pollution levels where atmospheric
dispersion models are inaccurate (U.S. EPA 2006; Wang et al. 2011).

This situation is likely the case for many pollutants: in the United States, the U.S. EPA
implicitly assumes that their models correctly identify the relationship between historical
emissions and current ambient pollution levels. For example, in order to perform forecasts
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of the effect of new pollution sources on ambient pollution levels, the U.S. EPA typically
calibrates its air quality models to the ambient pollution readings at any given monitoring
station. The estimated or calibrated parameters are then to forecast the effect of reducing
emissions from existing sources or the effect of additional emissions on ambient air quality
from siting a new point source at a particular location. This problem may be getting worse
rather than better over time: as the number of regulated air and water pollutants increases,
the need for additional U.S. EPA air and water dispersion modelers also increases but it is
unclear if funding for these modelers increases as well. Conversations with two different
economists and two different air modelers at the U.S. EPA suggest that there is a bottleneck
at the U.S. EPA with respect to their capacity to develop high quality emission and pollution
models despite the best efforts of the atmospheric chemists and modelers currently on staff.

We believe that estimating the relationship between emissions and ambient levels of
pollution will often lead biased estimates of the marginal physical effect β. Assume, for
example, that the regulator does not account for the fact that they only observe a subset
of the true set of emitters when attributing known emissions to a ambient pollution levels.
Intuitively, the regulator will over-attribute known emitters to ambient levels of pollution,
leading to upwardly biased estimates of the contribution of emissions to ambient pollution
levels.
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