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Abstract This paper examines the relationship between averting expenditures / choices and
perceived health risks. Models in the literature often employ risk perceptions as explanatory
variables without addressing the potential endogeneity of the perceived risk. We examine the
implications of ignoring endogeneity in this context, using an application to both drinking
water choices and expenditures and perceived health risks. Our data are from an Internet-
based cross-Canada survey that employs a novel interactive risk ladder to elicit mortality
risk perceptions relating to water. We employ two fundamentally different methods to assess
the impact of risk perceptions on behavior: an analysis of expenditures on alternate water
sources and a model of proportional choice of water sources. Results suggest the presence
of averting behavior with respect to perceived mortality risks and that the estimated effect of
water risks is greater than 3 times higher when using approaches that correct for endogeneity
compared to models that do not.
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1 Introduction

Many analyses of averting behavior to reduce health or environmental risks include the
decision-maker’s perception of risks. Perceptions are thought to better reflect behavior than
expert-elicited or objective measures of risk and empirical evidence suggests significant
differences between perceived and objective risk levels.1 While the use of risk perceptions
may be preferred from a behavioral standpoint, they present two (at least) challenges to
empirical work. First, the elicitation of these risk perceptions is nontrivial and, second, their
use in econometric models raises potential issues of endogeneity. In this paper, we illustrate
these issues by examining a case study of drinkingwater choices, expenditures, and perceived
health risks. The three main contributions of this paper are that risk perceptions are elicited
through the use of a novel online interactive risk ladder tool, effects are examined within
two fundamentally different estimation approaches: choice models and expenditure models,
and the endogeneity of these risk perceptions is accounted for in ways appropriate to each of
the methods (specifically, control function and two-stage least squares instrumental variable
(2SLS-IV) approaches).

This paper employs data from a 2009 cross-Canada Internet-based survey that solicits
drinking water choices (proportions of consumption that are either direct from the tap, fil-
tered tap, and/or bottled) and expenditures on different drinking water sources, along with
perceived mortality risks from the different drinking water sources using the risk ladder tool.
For Canadians, these mortality risks are well understood due to some highly publicized con-
tamination events in the early 2000s including an E. coli outbreak resulting in the death of
seven people and over 4000 people becoming sick.2 The costs and gravity of these conta-
mination events have not only increased public awareness of the potential health risks from
drinking water, but may also have had impacts on the choices and expenditures that individu-
als make with regard to their drinking water alternatives. Thus health concerns relating to tap
water can translate directly into observable averting behaviors, where individuals are trading
off quality characteristics, health risks, and costs in their water choices. Using this averting
behavior framework, tradeoffs and expenditures can suggest values that individuals place on
quality improvement and therefore can be used as a measure of public benefit or loss from
quality changes.

Instead of focusing on absolute objective levels of contamination, or rating scales of risk
perception, as is common in the averting behavior literature, this paper incorporates self-
reported probabilistic perceived risk levels for each of the three choices: tap water, home
filtered tap water, and bottled water. These are obtained through the use of a novel Internet-
interactive risk ladder tool in our survey.3 While this method provides us with data on risk
perceptions to help explain choices/expenditures, we also recognize that this risk perception
measure may be endogenous in the explanation of water choices or expenditures.

1 For example, laboratory experiments find that individuals place a higher weight on small-risk events and a
lower weight on high-risk events compared to objective measures (Shaw and Woodward 2008; Ridell 2012).
2 This event took place in the year 2000 in Walkerton, Ontario where E. coli contamination in local drinking
water supplies led to total costs of nearly $65 million (Livernois 2001). Other notable water contamination
events took place in 2001 inNorth Battleford, Saskatchewanwhere the presence of cryptosporidium, a parasitic
organism, led to an estimated 4–7 thousand illnesses in the region (Stirling et al. 2001), and in the aboriginal
community of Kashechewan, Ontario where E. coli resulted in the evacuation of the community and a total
cost of over $16 million (CBC 2006). Between 1993 and 2008, at least 48 water-borne disease events were
reported by public health officials in Canada (Wilson et al. 2009).
3 An illustrative video of the risk ladder in use is provided in the online supplementary material.
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There are two potential sources of endogeneity of risk perceptions: simultaneity and omit-
ted variable bias. Simultaneity bias may be present because while risk perceptions may affect
the decision of which source of drinking water to choose, these choices may in turn affect
perceptions regarding the relative safety of the water sources. For example, an individual
may consume bottled water because it is initially perceived to be safer and this perception is
reinforced overtime if the individual does not incur any adverse health impacts. Thus there is
good reason to believe that there are important feedback effects between water choices and
risk perceptions. In addition, unobserved factors affecting water choices may be correlated
with risk perceptions leading to omitted variable bias.

Given these two potential sources of endogeneity, it is difficult to know ex ante the direc-
tion of the endogeneity bias on the risk coefficient in either a choice or expenditure model but
there are two reasons to think that ignoring endogeneity of perceptions would underestimate
risk effects in our context. First, the simultaneity bias is most likely negative because of
the negative feedback effect from water choices/expenditures to health risks. This negative
relationship may arise because risk perceptions are likely lower for drinking water sources
people are most familiar with given the rarity of mortality events from drinking water. This
negative relationship leads to an underestimation of risk effects in models that do not address
endogeneity. Second, there is some prior evidence that the magnitude of water quality per-
ception coefficients increase once methods to address endogeneity are employed (Whitehead
2006; Orgill et al. 2013).

We illustrate how endogeneity associated with risk perceptions may be incorporated
into two different averting behaviour models: a multinomial drinking water choice model
and a drinking water averting expenditure models. We use a control function approach
(Petrin and Train 2010) for the first and two different two-stage-least-squares instrument
variable (2SLS-IV) approaches (Wooldridge 2010; Schwiebert 2012) for the second. A
key decision factor for the researcher is the choice of instrument. Our main instrument is
the respondent’s perception of skin cancer mortality risks, which is also collected using
the same risk ladder approach in a part of the survey. While we can never be 100%
sure that an instrument completely satisfies the exogeneity assumption required for a
valid instrument, we believe that this variable represents an improvement over previously
applied instruments such as socio-demographic characteristics or satisfaction with drinking
water.

Our results suggest the presence of averting behavior with respect to water in Canada and
that perceived mortality is a significant predictor of water consumption choices for a large
number of respondents in the survey. Furthermore, the impact of risk on expenditures and
choices is significantly affected by endogeneity. The estimates of the economic value of risk
reductions are similar between the choice and expenditure models and a set of robustness
tests shows that these measures are relatively stable over methods to address endogeneity,
representations of risk, and model specifications. Specifically, if we do not account for endo-
geneity we find a substantial underestimation of the value of risk reductions; this value is
estimated to be 3 times higher when we correct for endogeneity. Using parameter estimates
from these models we calculate a value of statistical life (VSL) estimate pertaining to reduc-
tions in the risk of death from drinking water. The VSL estimate is $3.4 million ($CAD)
using the choice models and between $3.0 and $5.4 million using the expenditure models.
Note that these value estimates are based on averting expenditures and thus likely repre-
sent a lower bound estimate of the actual willingness to pay. These findings suggest that
caution is required when estimating econometric models that include individual perception
variables and illustrate the importance of properly testing and controlling for endogene-
ity.
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2 Literature Survey

Subjective or perceived risks are often included in a wide variety of empirical models under
different contexts that involve decision making under risk or uncertainty. Decisions about the
water one chooses to drink are dependent not only on the perceived quality of a baseline such
as tap water, but on the perceived quality of other water options, as well. Perceived quality, in
turn, is based on the quality characteristics of a good, some of which may be health related,
and some of which are not. In addition, to the extent that there may be a non-zero risk of
adverse health effects arising from one’s choice, then one’s assessment of these risks may
also come into play. In this section we review the literature on averting behavior models, risk
communication and elicitation strategies, and endogeneity of risk perceptions with a focus
on drinking water health perceptions.4

Averting behavior models are used to analyze an individual’s aversion to some negative
characteristic associated with the state of his/her environment and are typically framed in
terms of improvements to one’s personal environmental quality (Courant and Porter 1981;
Bartik 1988). Typically, the measure of environmental quality is a variable indicative of a
level of contamination, as opposed to the risk level that one would note in amodel of expected
utility. Again, in the case of water contamination, one would be motivated to drink less of
the contaminated water to avoid ingestion of contaminants. This approach has been used
in a drinking water context in a number of different ways. Actual expenditures have been
used to study unique contamination events ex post (Abdalla et al. 1992) and to obtain WTP
for improvements in publicly supplied water quality (Jordan and Elnagheeb 1993; Hagihara
et al. 2004; Zerah 2000). On the other hand, discrete choice models have been adopted to
determine which factors are most likely to result in spending on “safer” water substitutes
(Larson and Gnedenko 1999; McConnell and Rosado 2000; Abrahams et al. 2000; Um et al.
2002; Wu and Huang 2001; Rosado et al. 2006; Lee and Kwak 2007).

Models of averting behavior may benefit from exploration of the use of probabilistic risk
estimates in place of absolute contamination levels. Whereas individuals may be unfamiliar
with technical names and effects of specific contaminants, it may be the case that they
are familiar with risk, which can provide more depth to statistical implementation of the
theoretical model. Risk perceptions play a very important role in determining the behavior
of individuals. The perceptions of risk are the foundation of consumption decisions where
risk is a characteristic of the good. The use of risk perceptions, as opposed to objective risk
information, may be best for the valuation of risk reduction particularly in relation to health
risk studies (Jones-Lee 1974; Freeman 1993; Hammitt and Graham 1999).

To gather perceptions of risk, some studies use a direct and discrete approach by asking
survey respondents to identify a personal risk level fromamongst a stated set of discrete values
(Johannesson et al. 1991) or on a Likert-scale basis (Abdalla et al. 1992) or to note whether
a personal risk is higher or lower than that for an “average” person or situation (Johannesson
et al. 1996; Hagihara et al. 2004). Lee et al. (1998) use a more continuous approach for
the elicitation of risk values. While these risk perception solicitation methods have had
some success, much effort has been put into the development of devices that can gather risk
perceptions more precisely (quantitatively explicit perceptions). Grid-like representations
appear to be the most popular method to communicate risks and to elicit risk perceptions
(Jones-Lee et al. 1985; Bhattacharya et al. 2007; Tsuge et al. 2005; Adamowicz et al. 2004,
2012; Carlsson et al. 2004).

4 A much more detailed discussion of this literature is presented in Schram (2009).
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An alternative is the use of a risk-ladder which facilitates the interpretation and placement
of personal risks by including relative risk information. The literature finds support for the
use of the risk ladder in order to communicate continuous risk perceptions relating to health
(Ancker et al. 2006; Corso et al. 2001). However, there have been few uses of risk ladders as
an elicitation tool. Konishi and Adachi (2011) use a risk ladder to help inform respondents
to a stated preference survey about the health risks from arsenic, but they use a 10 point
Likert scale to solicit the risk. Jakus et al. (2009) use a risk ladder method similar to that
used in the present study but use a static representation with tick marks in a mailed brochure
and elicit responses through a telephone call. Since their study was targeted at the impact of
current water consumption risk perceptions associatedwith arsenic exposure on bottled water
expenditures, they did not elicit risk perceptions for different types of drinking water sources
nor ask questions about filtered water expenditures. Data were gathered from communities
with known exposure to arsenic levels that were higher than the legal standard and the sample
size used in the analysis (n = 201) is substantially smaller than our study. Perceived risk values
were modeled as a function of perceived exposure to arsenic, among other demographics,
and were included in a Heckman selection model to investigate expenditures. Results from
the study suggested that perceived risks were not a significant variable in the choice to buy
bottled water, but were a significant predictor of expenditures on bottled water although.
Most importantly in the context of our study, no methods to address potential endogeneity
of perceptions were employed.

Most studies of water risks and averting behavior do not control for the possible endo-
geneity of the water quality or risk perception variable. Using a qualitative water quality
perception variable, Whitehead (2006) estimates the willingness to pay for water quality
improvements by full information maximum likelihood in a two equation set up. To con-
trol for possible endogeneity of perceived water quality, socio-economic variables including
race, gender, age, and whether the respondent is a farmer are used as instruments. Orgill et al.
(2013) use whether the individual is satisfied with the current drinking water taste and smell
as an instrument for perceived water quality although they note that this factor is probably
not a suitable instrument as it is likely not purely exogenous. They employ Wooldridge’s
‘forbidden regression’ by directly applying 2SLS to a nonlinear model (Wooldridge 2010).
Nauges and van den Berg (2009) use the average water risk perception in the municipality
where the household lives as a proxy for individual risk perceptions to avoid the endogeneity
issue. Konishi and Adachi (2011) address endogeneity in their analysis of water quality risks
but this analysis is based on a contingent valuation analysis rather than averting behavior.

3 Survey Data

The survey was fielded online to a national sample during the months of February andMarch
2009.5 Members of the Ipsos-Reidonline panel aged18 andolderwere recruited for the survey
via email. Recruits were chosen at random from the internet panel. A suitable distribution,
comparable to the Canadian population, in terms of age, income, region, and gender was
requested for the sample. Beyond these criteria, participation was at the discretion of the
respondent. A comparison of survey data to the 2006 Canadian census reveals similar values,

5 The survey was developed using the aid of 7 focus groups, and a pretest with follow-up calls. The pretest
was implemented by Ipsos-Reid, and resulted in 128 completed surveys. Particular consideration was given
to the design of the risk ladder for gathering risk perception information. The goal for the survey was 1000
respondents. In order to achieve this, 5556 inviteswere sent out to the Ipsos-Reid online panel. 1304 individuals
completed the survey, which would indicate a response rate of 23.5%. The 4252 non-responders include those
who quit the survey partway through, as well as those that did not choose to activate their survey link.
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e.g., mean household income in the survey sample is $66,899.41 and estimated at $69,548.00
in Census sample. The median age in the survey sample is 45, in comparison with a census
median age of 39.5.6 The mean household size in the survey sample is 2.95 persons, whereas
the census indicates a mean household size of 2.50 persons. The regional distribution of
respondents in the survey sample was also compared to the regional population distribution
from the Census. With the exception of Quebec,7 differences in regional population between
data sources are within 1% and the 1304 completed surveys appear to be a statistically
representative sample of the Canadian population.

The survey collected data on the composition of drinking water consumption, costs for
filtration and bottled water, quality perceptions, mortality risk perceptions, attitudes and
experience with water quality issues, and demographics. To gather consumption information,
the respondent indicated the proportions of each type of water that they drink in an average
month (Bottled, Filtered Tap, or Regular Tap water). Following these questions, information
on the cost incurred for purchased or filtered water was gathered.8

For filtration systems, the respondents were asked to indicate the initial cost of the system
in use, the amount of money they would spend on replacement filters, and the frequency of
replacement. Themonthly cost of filtration is the sum of costs associated with the purchase or
rental of the filtration system itself, and those associated with filters and filter replacements.
The cost for purchased systems (container style, or tap attachment) was amortized over
the useful life of the product.9 The respondent’s internal discount rate was used for the
amortization calculation and calculated from responses to a series of debriefing questions
designed to determine individual rates of time preference.10 Depending on responses, a
respondent’s internal discount rate was assigned one of the following annual rates: 10, 20,
45, or 65%.11 The equivalent monthly rate was used in an amortization calculation to produce
a monthly cost. Costs for refrigerator filtration systems were assumed to be zero since we
assume that individuals do not purchase the appliance directly for its ability to filter water.12

In order to calculate monthly costs associated with maintenance or filter replacement, the
reported cost of a replacement filter was amortized over the number of periods indicated by
the individual as a replacement frequency. Inmost cases, this valuewas between two and three
months. The monthly filtration cost is then the sum of both maintenance costs, and system

6 The reason the census median age is lower than our sample is that it includes all Canadians whereas our
sample includes only adults.
7 When compared, for Quebec the difference in regional population between data sources is 1.45% and is
overrepresented in the survey sample.
8 In this study, the cost of tap water is treated as zero, as was done by Abrahams et al. (2000). This zero cost
assumption for tap water is fairly innocuous as the marginal cost of tap water in Canada has been estimated
to be around 11cents per person per month (Dupont and Jahan 2012).
9 Following Abdalla et al. (1992) we used 10years or 120months for tap attachment filters. For container
style filters, which are likely to see muchmore wear and tear, 5years or equivalently 60months was considered
the useful life of the product.
10 A double-bounded binary choice scenario was presented to respondents where they chose between a
receiving $100 in 1month from now or $116 in 7months. A follow-up question with a higher ($128) or lower
($105)monetary amount received in sevenmonthswas presented to respondents depending how they answered
the first question.
11 These rates are slightly high, however they are consistent with responses in the survey, and on average
only a small decrease (less than $1.00) was noted when the same calculations were done using 10% rates for
all respondents.
12 Although theremay be an implicit cost associatedwith this feature of a refrigerator, the cost of the appliance
was not gathered in the survey. A total of 82 individuals reported themselves to be refrigerator water filter
users.
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rental or purchase costs.13 Costs were inflated to represent 100% monthly consumption of
filtered water.14 The average filtration cost for respondents in the survey is $13.53 per month.
The standard deviation around the mean, $80.85, is quite large and indicates significant
variability in this value.

The monthly cost for 100% consumption of bottled water was calculated by using infor-
mation on the current cost, and the current proportion of consumption reported by each
individual. The average monthly cost for 100% consumption of bottled water was calculated
to be approximately $108.04 per month.15 Again, this value has a relatively large standard
deviation of approximately $166.45 indicating significant variability.

Water quality characteristics were elicited from respondents for each drinking water type
on four dimensions -taste, odor, appearance, and convenience—using a 7-point Likert scale
defined as 1 is poor and 7 is excellent. These values are converted into three level dummy
variables (low, medium, and high).

Respondents were then asked to indicate their perceived personal annual risk of death
for their current composition of water consumption, as well as for situations in which they
drank only one type of water (e.g. 100% bottled water or 100% filtered water or 100% tap
water). The risk ladder employed a “semi-logarithmic” scale since logarithmic scales do not
allow for the adequate display of other death risk information.16 Semi-logarithmic scales are
reported as being effective at eliciting the predicted theoretical properties for risk valuations
(Corso et al. 2001). In order to assist respondents with putting water-related death risks into
context, the risk ladder showed respondents a variety of annual death risks based on Canadian
data. Prior to eliciting these risk perceptions, each respondent was asked to identify his/her
personal risk of mortality from skin cancer on the risk ladder for use as an instrument. The
risk ladder was an interactive graphic by which the individual could use a sliding mechanism
to choose and lock in their perceived risk level for each water source. See Fig. 1 for the risk
ladder .

Table 1 provides a set of summary statistics on water quality characteristics, monthly cost
and other variables used in the modeling. The descriptive statistics and summary data pre-
sented in this section reveal that Canadians have a minor to moderate concern with drinking
water quality in Canada, thereby, supporting the view that averting behavior is taking place.
Alternatives to tap water, on average, seem to provide improvements on most quality dimen-
sions listed, as well as a small perceived risk reduction. The paper turns next to a description
of the econometric methods and empirical strategies used in the analysis.

Table 2 details the average perceived risk of death for each respondent’s current drinking
water consumption profile, the perceived risks for 100% consumption of each water type, as

13 In somecases, individuals indicated a positive consumption amount, but did not know the costs they incurred
for that consumption. These cases mostly arose in filtering expenditures, as there are many components to
expenditures on filtration for which “don’t know” was a possible answer (e.g. replacement cost, replacement
frequency, system cost). In the case where an individual indicated positive consumption, but did not know a
specific expenditure, the average cost specific to each water alternative was used.
14 For example, if an individual reported spending approximately $1.00 for 1% of their monthly consumption,
100% consumption would cost them approximately $100.00.
15 We removed two observations with very high monthly bottled water costs of $5000 and $10,000. Including
these two outliers, the mean and standard deviation is $119.38 and $347.85 and we used 10 standard deviations
of the mean (∼$3600) as the outlier cut-off threshold. The 1302 remaining observations have bottled water
costs within 10 standard deviations of the mean.
16 That is, each exponential decrease (ex. 10−5 to 10−6) in the level of risk was given its own linear section
in the risk ladder, in which the appropriate decreases (ex. 0.00045–0.00040%, a decrease of 0.00005%) were
represented in a linear fashion. The “semi-logarithmic” property of the risk ladder describes the appearance
of the change between each exponential section.
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Fig. 1 Risk ladder

well as the current skin cancer risk perceptions. Tap water was generally perceived to be the
most risky drinking water source followed by filtered water, and bottled water being reported
as the least risky. Ideally, these perceived risk levels would be compared to objective risk
levels but reliable estimates of the number of deaths caused by drinking water in Canada is
unavailable. Using extrapolated numbers based on United States data, Canadian researchers
have estimated that drinking water causes roughly 90 deaths and 90,000 cases of illness annu-

123



Endogeneity of Risk Perceptions in Averting Behavior Models 225

ally due to waterborne infections in Canada (Edge et al. 2001).17 Another objective estimate
based on the number of bladder cancer cases attributable to water consumption is around 192
deaths per year.18 Although the reliability of these numbers should be interpreted cautiously,
the mean perceived risk levels elicited in this study are higher than these objective estimates,
but the median elicited risk levels are lower.

There is more robust data on objective risk levels for skin cancer in Canada and comparing
the perceived levels elicited through the ladder shows a similar story as the drinking water
risks: themean perceived risks are higher than objective risks butmedian perceived risk levels
are lower.19 Skin cancer risk perceptions are higher than drinking water risk perceptions.
In fact, the ratio of the average skin cancer risk perceptions to current drinking water risk
perceptions is 3.3 which is quite close to the objective risk ratio of 2.7 for these risk sources.20

4 Empirical Methods

This section outlines the methods used in the empirical analysis. After presenting the basic
choice and expenditure models that do not incorporate endogeneity of risk perceptions, we
discuss the endogenous risk perception variable and the instrumental variable in more detail.
The final section describes the techniques used to correct for endogeneity concerns in both
modeling frameworks.

4.1 Water Choice Model

Following Abrahams et al. (2000)’s adaptation of Courant and Porter’s (1981) model of
averting behavior, a respondent’s utility is assumed to depend upon the consumption of each
water source, Wi, a perceived health production variable, H∗, the quality characteristics of
eachwater source, qi, and anumeraire good,X.This formulation assumes that individuals gain
utility both directly through the consumption of water, and indirectly through the production
of health. Health production is analogous to the production of cleanliness in the treatment of
the original averting behaviormodel ofCourant andPorter (1981). Joint production fromother
“services” provided by the averting behavior is accounted for by separating standard quality
characteristics out from those that produce health. The perceived expected health variable,
H∗ is then produced based on exposure (consumption) to each water alternative. Actual
expected health, H, is related to the perceived variable through the use of risk perceptions.
Actual expected health uses objective risk measures, πj. Whereas for expected health, actual
risk values are replacedwith perceived risk values,π∗

j . FollowingDickie andGerking (1996),
perceived risk is assumed to be a function of the objective risk, as well as attitudes, α, and
experiences, β, with water safety:

17 The 90 deaths per year figure is confirmed cases based on extrapolated data from the United States and
may underestimate actual numbers due to under-reporting (Edge et al. 2001).
18 The 192 deaths are derived from a mortality rate of 20 bladder cancer deaths per 100,000 people over a
35-year period reported in the survey used by Adamowicz et al. (2011). This rate was multiplied by the 33.6
million people in Canada in 2009. The mortality rate information is based on studies by Wigle (1998) and
Canadian Cancer Society’s Advisory Committee on Cancer Statistics (2015).
19 The estimated age-standardized mortality rate for skin cancer in Canada is 2.3 per 100,000 (Canadian
Cancer Society’s Advisory Committee on Cancer Statistics 2015). Applied to the 2009 Canadian population
of 33.6 million, this mortality rate implies approximately 773 deaths per year from skin cancer in Canada.
20 The ratio of the objective risk levels between skin cancer and drinking water risks is calculated using the
773 annual deaths from skin cancer and 282 estimated deaths from drinking water (192 from bladder cancer
and 90 from microbial infections).
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Table 1 Descriptive statistics: means (SD) of selected variables

Variable Level Variable type Mean SD

Use bottled water (treatb = 1) Dummy 0.723 0.448

Water quality characteristics

Bottled_Taste Medium Dummy 0.418 0.493

High Dummy 0.551 0.498

Bottled_Odor Medium Dummy 0.412 0.492

High Dummy 0.573 0.495

Bottled_ Appearance Medium Dummy 0.315 0.465

High Dummy 0.678 0.467

Bottled_ Convenience Medium Dummy 0.467 0.499

High Dummy 0.412 0.492

Tap_Taste Medium Dummy 0.498 0.500

High Dummy 0.303 0.460

Tap_Odor Medium Dummy 0.510 0.500

High Dummy 0.307 0.462

Tap_Appearance Medium Dummy 0.483 0.500

High Dummy 0.415 0.493

Tap_Convenience Medium Dummy 0.250 0.433

High Dummy 0.725 0.447

Filtered_Taste Medium Dummy 0.598 0.491

High Dummy 0.353 0.478

Filtered_Odor Medium Dummy 0.584 0.493

High Dummy 0.369 0.483

Filtered_ Appearance Medium Dummy 0.500 0.500

High Dummy 0.471 0.499

Filtered _Convenience Medium Dummy 0.520 0.500

High Dummy 0.408 0.492

Monthly costs

100% Bottled water Continuous 108.04 166.453

100% Filtered water Continuous 13.53 80.849

Socio-demographic characteristics

Child Dummy 0.368 0.482

Age index Continuous 1.000 0.337

Income Dummy 0.412 0.492

College Dummy 0.185 0.389

Gender (female = 1) Dummy 0.495 0.500

Household size Continuous 2.948 1.352

Language (English = 1) Dummy 0.783 0.413

Wrong Dummy 0.150 0.357

Skin cancer risk Dummy 0.672 0.470

Number of observations 1302

Age index is calculated as the age of each respondent divided by the mean, producing a variable with a range
of approximately 0.5–1.5. The College variable indicates whether an individual had attended any college.
Income variable is indicative of annual household income greater than $70,000.
Wrong indicates an incorrect response when tasked with the assessment of a probability
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Table 2 Perceived annual risk of death from drinking water and skin cancer

Perceptions Mean (%) Median (%) SD (%)

Drinking water

Current consumption 0.0087928 0.000001 0.075363

100% Consumption by water type

Tap 0.0132576 0.000002 0.095876

Filtered 0.0101038 0.000001 0.086510

Bottled 0.0074549 0.000001 0.007455

Skin cancer

Current risk levels 0.0289521 0.000006 0.114573

Current consumption risks measures the respondent’s perceived personal annual risk of death for their current
composition of water consumption which is a mix of the three water types

π∗
j = π∗

j

(
π j , α, β

)
(1)

In Eq. (1) and in what follows, j = 1,2,3 for tap, filtered and bottled water, respectively. This
approach assumes that water quality and health risk are weakly complementary to water
consumption, thus, a respondent maximizes utility over X, andWj subject to, non-negativity
constraints on Wj and X, as well as the budget constraint:

Y = W1 p1 + W2 p2 + W3 p3 + X (2)

This budget constraint differs slightly from Abrahams et al. (2000). In that study the budget
constraint included the average cost of a filter, and specified the same “price” for both tap
water and filtered water. In this paper, following from a better data set, it is assumed that
the price associated with each alternative corresponds to the monthly cost associated with
adopting that alternative, as described in the previous section. The conditional demand for
each water source is then a function of price, income, perceived risk, quality characteristics,
and attitudes and experience about water safety. The associated conditional indirect utility
function is:

Vi = Vi(pi,Y,π∗
i , qi, α, β) (3)

where the price of tap water is equal to zero (p1 = 0). Our model involves explaining a
respondent’s choice among three water alternatives. Respondents choose a water alternative
if the utility of that choice is greater than that of each other alternative (i.e. choose k if
Vk > Vi for all i �= k). We append an error term (ε) to account for the fact that while
the respondent knows his/her indirect utility, the researcher does not. If the error terms are
independent and identically distributedwith a type I extreme value distribution, the researcher
estimates the probability of i choosing option j (Pri j ) with a conditional logit model.

Recall, however, the data onwater consumption choices gathered in our survey are propor-
tional in nature. That is, for each individual, the proportion of each type of water consumed in
an ordinary month is specified. We treat these proportions data as if they reflect individuals’
repeated choices over the time period. Equation (4) shows the likelihood function we use. It
is a modification of Guimaraes and Lindrooth (2007)’s grouped data approach.

L =
∏N

i=1

∏J

j=1
Pr

ni j
i j (4)
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In Eq. (4), Pri j is the probability of individual i choosing option j , ni j is the number of times
individual i chose option j in the specified number of choice replications ρ. Specifically, ni j
is the product of the number of replications, ρ, and the corresponding proportion of choice
of option j for individual i, α(ni j = ρ αi j ).21

Estimation of Eq. (4) requires that we make three reasonable assumptions about choices.
First, at each choice occasion within an ordinary month, all three water options are available
to the individual. Second, using a variable to indicate the number of replications imposes a
predetermined number of replications on each individual (i.e.ρ is constant across individuals).
Third, each individual consumes the same amount of water in each month.

Another matter of concern with estimation of the utility parameters in models of choice
is the imposition of homogeneous preferences. That is, each individual is assumed to have
the same marginal utility associated with various alternative specific characteristics. While
the inclusion of individual specific variables (demographics) may condition the individuals’
choice probability and produce a type of measure of predisposition towards certain options,
it does not completely account for heterogeneity in value of choice characteristics across
the sample. Following Swait (2006), latent class models are also estimated to allow for
unobserved heterogeneity and as extensions to basic multinomial logit models.

4.2 Water Expenditures Model

An alternative approach to assessing the impact of risk perceptions on choices is to examine
the impact on expenditures directly. Expenditures on bottledwater, for example, reflect a form
of averting behavior.We examine averting expenditures directly using expenditures on bottled
water as the dependent variable. We examine this in a selection framework to account for the
zero versus non-zero expenditures on bottled water as well as the magnitude of expenditures.
In addition to a number of demographic variables we explain averting expenditures with our
risk perception variable as well as the water quality characteristics variables.

4.2.1 Risk Perception Variable

If we include the risk perception variable directly as collected (that is, as a continuous
probability value), this imposes the assumption that risk reductions have a proportional effect
on drinking water behavior (Hammitt and Graham 1999).22 To relax this assumption, we
recode it as a dummy variable corresponding to low and high levels of risk.23 We examiner
four different high risk cut-off levels: Drisk0 considers any individual with a positive risk
perception level as high risk, Drisk1 uses a high risk cut-off level of 1 in 100,000,000 chance

21 The empirical model does not specify a particular value of ρ, but rather the proportions represent the
average drinking water consumption shares over the month. Without the reproduction of such occasions in
an experimental fashion, knowledge of the number of choice occasions for drinking water that one faces in a
month is difficult to obtain in a survey format. Most individuals are not likely to know how many times they
drink water in each month.
22 For example, reducing risk from 1 in 100,000,000 chance of death in a year to zero has the same effect on
behavior as reducing risk from 101 in 100,000,000 to 100 in 100,000,000.
23 Preliminary analysis using the continuous risk probability variable yields no statistically significant rela-
tionship between risks and water source choices. This can be interpreted in two ways. Either, there is no
relationship or risk reductions do not have linear effects on behaviour (but may have nonlinear effects depend-
ing on the base level of risk). The advantage of using the dummy variable approach is that the nonlinearity of
the effect of risk reductions can be modelled quite flexibly. One disadvantage of the dummy variable approach
is choosing the appropriate threshold level between low and high levels of risk. In order to illustrate this we
employ four different specifications in the paper.
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Table 3 Drinking water risk dummy variables

High risk cut-off level (%) >0 >0.000001 >0.000002 >0.00001

Choice models

Dummy variable Drisk0c Drisk1c Drisk2c Drisk10c

Percentage high risk (=1) 71.2% 46.3% 33.7% 13.4%

Mean risk reduction (%)* 0.0001427 0.0002119 0.0002785 0.0005902

Expenditure Models

Dummy variable Drisk0e Drisk1e Drisk2e Drisk10e

Percentage high risk (=1) 41.3% 30.2% 25.6% 16.9%

Mean risk reduction (%)* 0.0002063 0.0002814 0.0003321 0.0005027

* The mean risk reduction is calculated as the difference between the average risk levels in the high and low
risk categories

of death in a year, Drisk2 uses the high-risk cut-off level of 2 in 100,000,000, andDrisk10 uses
10 in 100,000,000. These different risk level dummies are summarized in Table 3. We also
present the relevant risk reductions levels relevant for the choice models and the expenditure
models. For the expenditure models, the relevant risk reduction quantity is the difference in
risk perceptions between 100% tap water and the current risk level. These reductions are
calculated as the difference in mean risk levels for high and low risk individuals implied by
the dummy variable cut-off levels. As the high risk cut-off level increases, the percentage
of respondents in the high risk category decreases while the mean risk reduction associated
with the dummy variable increases.

4.3 Instrumental Variable

For an instrumental variable strategy approach to adequately control for risk perception endo-
geneity, a valid instrument is required. Essentially, we require an instrument that is strongly
correlated with water risk perceptions (a strong instrument), but uncorrelated with unobserv-
ables affecting water type choice (satisfies the exogeneity restriction). As an instrument, we
use individual perceptions of skin cancer mortality risk which was elicited from respondents
using the same risk ladder approach as water risks. This probabilistic skin cancer risk variable
is converted to a dummy variable using the same cut-off value as the water risk variable. Our
choice to use skin cancer risk perceptions is supported by the expectation that this risk is
correlated with water risk perceptions due to common beliefs and attitudes towards risks in
general. To the extent that this instrumental variable is not completely exogenous, the focus
of this paper is to provide an illustration of methods to both elicit risk perceptions and then
appropriately model these perceptions rather than the specific results.

To test instrument strength, we can conduct an F-test of the skin cancer variable using the
first stage regression results. The exogeneity restriction cannot be directly tested because we
do not observe the error term of the outcome equation. For the instrument to satisfy the exo-
geneity restriction, we assume that there are no direct effects of skin cancer risk perceptions
on the water choice/expenditure variables or any effect running though omitted variables,
nor any reverse effects of water choices/expenditures on skin cancer risk perceptions. The
skin cancer risk variable captures the respondent’s current annual perceived risk of dying
from skin cancer, net of any behavioral adjustments. A person with a low skin cancer risk
perception could think there is a low initial risk of skin cancer mortality or that there was
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initially a high risk, but they have taken actions to reduce this risk (i.e. apply sunscreen), and
thus do not perceive the current risk to be high. Conversely, respondents who state a high
skin cancer risk may be less likely to undertake additional averting behavior because they
could also be less likely to take any risk reduction actions and hence the high skin cancer
risk perception in the first place. To the degree there is a relationship between skin cancer
risk perceptions and preventative action to mitigate drinking water risks, the mechanism for
this effect is most likely through the drinking water risk perception channel. Besides these
factors, skin cancer risk perceptions are unlikely to be correlated with many other external
unobserved factors determining water choices such as the state of local municipal drinking
water infrastructure or water quality issues in the past (e.g. historical E. coli outbreaks).
Furthermore, there are no clear reverse feedback effects of water choices/expenditures on
forming skin cancer risk perceptions. However, we can never be completely certain of the
validity of the instrument and recognize that using responses to a question from the same
individual as an instrument for responses to another question can lead to concerns about
correlations between water choices/expenditures and skin cancer risk perceptions that are
not fully captured by the drinking water risk perceptions.

4.4 Modeling Techniques for Incorporating Endogeneity of Risk Perceptions

In the choice models a control function approach is used to address potential endogeneity
(Petrin and Train 2010). The first step of the control function approach is to estimate risk
perception models for each of the three water choices. The estimated residuals from this
first stage equation can then be included in the choice models to control for endogeneity.
Because there are threewater choices, we interact the skin cancer instrument with three socio-
demographic variables (gender, age, and language) to create three instruments.24 While we
have three first stage equations, there is only one estimated endogenous variable in the second
stage. Risk perception is a dummy variable and we use a probit model of risk perceptions
as a function of the quality characteristics, the alternative specific constants, cost, as well as
the three interacted instruments.25 As suggested byWooldridge (2014), the three generalized
residuals from the probit models are then included in the choice model.26 We consider
alternative instrument interactions as well as different functional forms of the first stage
equation as part of the robustness analysis.27

24 We chose gender, age, and language as they are the most plausible exogenous socio-demographic variables
available, but cannot be assured these variables are completely endogenous. To check the robustness of the
results to different socio-demographic variables, Table 9 also summarizes models using alternative socio-
demographic variables. Results are similar across the different specifications.
25 Lewbel et al. (2013) highlight that the control function approach is less robust than IV methods when
the endogenous variable is not continuous and the model is nonlinear. Wooldridge (2014) provides a more
in-depth theoretical explanation of the control function approach and binary endogenous variables and argues
that the control function approach can be applied.
26 The generalized residual can be computed as the derivative of the log likelihoodwith respect to the constant
term and is equal to the inverse mills ratio for a probit model.
27 One potential issue with the control function approach is accounting for the new distribution of errors
that is induced by the residuals included in the second stage equation. One solution is to apply the log-odds
transformation and estimate the model in linear form as opposed to as a logit (Blass et al. 2010). The dependent
variable is now ln[αi j /(1 − αi j)] where αi j is the share of consumption for individual i of alternative j . The
benefit of this procedure is that the distribution of the errors around the mean doesn’t affect consistency as
long as the errors have zero conditional mean. However, this approach does not work if the shares for each
alternative are not strictly positive. This is, in fact, the case with our data since almost 65% of respondents do
not consume any filtered water and 18% drinking tap water only.
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For the expenditure models we employ modeling strategies that address endogeneity
within the selectionmodel framework.Wooldridge (2010) andSchwiebert (2012) both outline
approaches for handling endogeneity in selection models. The Wooldridge (2010) approach
consists of first running a probit model for the selection equation and including the calculated
inverse mills ratio in a 2SLS-IV model with the instrument. The other approach presented in
Schwiebert (2012) starts by estimating the first stage of a 2SLS-IV model and then includes
the estimated residual in the selection and expenditure equation of a Heckman selection
model. This second approach can be considered as an application of the control function
method. The key difference between these two approaches is that the Wooldridge approach
corrects for endogeneity only in the expenditure equation, whereas the Schwiebert approach
controls for endogeneity in both the selection and expenditure equation of the selection
model.

5 Results

5.1 Water Choice Model Results

We estimate four models to illustrate potential impacts of endogeneity in the esti-
mation of water choices. Model 1 is a multinomial logit model that does not con-
trol for endogeneity. Model 2 uses the same multinomial framework as Model 1with
the control function approach to correct for endogeneity. Models 3 and 4 are sim-
ilar to Models 1 and 2 but use the latent class model framework in place of the
multinomial logit in order to capture preference heterogeneity. In each model, three
alternative choices are included: tap water, bottled water and filtered water. The equa-
tion for each alternative includes a constant (for bottled and filtered water), a set of
water quality characteristics measured by self-reported perceptions (taste, odor, appear-
ance and convenience), the risk measure and price. The price variables only enter the
equations for filtered and bottled water. The “price” for tap water is assumed to be
zero.

Table 4 presents the multinomial logit models without controlling for endogeneity
(Model 1) and using the control function approach (Model 2). The estimated coeffi-
cients in Model 1 without correcting for endogeneity are all significant with signs that
one would expect, with the exception of appearance. In terms of quality characteristics,
water taste appears to be the most important and relevant to choices. The alternative
specific constants for filtered and bottled water are negative and significant at the 1%
level; suggesting that individuals prefer tap water, all other variables held constant, and
that unobserved characteristics of water sources are important for water choices. The
estimated coefficient on monthly cost is negative and significant suggesting that indi-
viduals are price sensitive. In terms of water risk perceptions, the estimated coefficient
for the risk dummy variable, Drisk1, is −0.92 and significant at the 1% level sug-
gesting that water sources with high perceived health risk levels are less likely to be
chosen.

Model 2 applies the control function approach to correct for the endogeneity of water risk
perceptions and is presented as the second set of results in Table 4. Because we include the
constructed variables (i.e. the estimated residuals) in Model 2, the standard errors are com-
puted standard errors using the Krinsky Robb procedure with 10,000 draws. The estimated
coefficients in Model 2 are quite similar compared to Model 1 for all quality characteristics,
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Table 4 Multinomial logit models of water choices

Variable Model 1 (non-control) Model 2 (control function)

Coefficient SE Coefficient SE∧

Taste

Medium 1.251*** 0.247 1.081*** 0.252

High 2.450*** 0.279 2.114*** 0.304

Odor

Medium 0.490** 0.247 0.352 0.250

High 0.608** 0.284 0.319 0.303

Appearance

Medium −0.029 0.285 −0.241 0.296

High 0.387 0.303 0.053 0.327

Convenience

Medium 0.510** 0.234 0.526** 0.233

High 1.017*** 0.230 0.973*** 0.227

ASC

Filtered −1.203*** 0.097 −1.308*** 0.100

Bottled −0.800*** 0.138 −0.802*** 0.139

Cost −0.007*** 0.001 −0.006*** 0.001

Drisk1c −0.924*** 0.145 −2.875*** 0.732

Residual

Bottled 1.237*** 0.456

Tap 1.191*** 0.447

Filtered 1.216*** 0.451

Log likelihood −966.6 −962.8

Likelihood ratio test 739.8 747.4

Pseudo R2 0.277 0.280

AIC 1957.2 1955.6

Number of Obs. 1302 1302

∧ The standard errors for Model 2 were calculated using the Krinksy–Robb procedure and 10,000 draws. The
stars represent significance at 1% (***), 5% (**), and 10% (*) levels. The water quality characteristics (taste,
odor, appearance, and convenience) are dummy variables with the low level omitted as the reference group.
The Drisk1c dummy variable uses a high risk cut-off level of 1 in 1,000,000 chance of death in a year

the alternative specific constants, and the cost variable.28 The coefficients for the three resid-
uals are all positive and significant which suggests that Drisk1 is endogenous for all three
water sources. The estimated coefficient for the Drisk1 variable decreases from −0.92 to
−2.87 when controlling for its endogeneity and remains significant at the 1% level.

Table 5 presents the results of the latent class models (Models 3 and 4) which account
for heterogeneity of preferences. Two classes were specified for each estimation.29 Class

28 There is some potential for the price coefficient to be also endogenous. While consumers are price takers
for each bottle of water or package of bottled water, they may be able to somewhat control the price-per-litre
by varying the amount of bulk purchases of water which may carry a lower price per litre.
29 Models with additional classes were considered but not justified based on the AIC/BIC criteria or had
difficulties converging.
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membership is determined through a simple constant term to control for unobserved het-
erogeneity. The latent class models show a marked improvement in the likelihood function
over the multinomial logit models. We label the two classes: a price-sensitive group, Class 1,
which accounts for approximately 77.4% of the sample, and a price-insensitive group, Class
2, which accounts for the remaining 22.6% of the sample.

Model 3 is the latent class model that does not control for endogeneity and we can see
that the estimated coefficients for the quality characteristics are quite similar across the
two classes, as are the coefficients for the filtered water alternative specific constant. The
estimated coefficients for the risk dummy variable are also quite similar across the two
classes. The key differences in preferences between the classes are for bottled water and
costs. The estimated coefficient for the bottled water alternative specific constant is −1.35
and statistically significant at the 1% level for Class 2 types and not statistically different from
zero for Class 1 types. In terms of costs, the estimated coefficient is −0.001 and statistically
significant at the 10% level for Class 2 types and is −0.018 and statistically significant at the
1% level for Class 1 types.

Turning to the control function results (Model 4) for the latent class model, the estimated
coefficients for the three additional residual terms are all positive and statistically significant
for Class 1 types. While they are of similar magnitude for Class 2 types, the coefficients are
not statistically different from zero. By controlling for endogeneity, the estimated coefficient
for the water risk perception dummy variable (Drisk1) decreases from −0.86 to −2.68 for
Class 1 types.

5.2 Expenditure Model Results

Two models are estimated to illustrate the potential impacts of endogeneity in expen-
ditures models. Model 5 and Model 6, respectively, correspond to the Wooldridge
and Schwiebert approaches to handling endogeneity. In each case, three equations are
specified: (1) a first stage equation of a 2SLS-IV model of water risk perception;
(2) a selection equation that models whether individuals decide to purchase bottled
water or not; and (3) an expenditure equation to determine how much bottled water
to purchase. Table 6 presents the results for Model 5 and Model 6. Examining the
first stage equations of water risk perception in the first two columns of Table 6,
we can note that the skin cancer variable is strongly correlated with water risk per-
ceptions. Testing for instrument strength, the F-statistic is 35.0 for the two models
suggesting that the skin cancer variable does not suffer from a weak instrument prob-
lem.

The third and fourth columns in Table 6 present the results for the selection equation
which models the decision of whether to purchase bottled water or not. The key differ-
ence is Model 5 includes the estimated residual in the selection equation. As expected, all
four high ratings for bottled water characteristic coefficients are estimated to be positive.
Bottled water convenience, taste and appearance coefficient estimates are generally statisti-
cally significant suggesting that these non-risk characteristics are important determinants of
whether to purchase bottled water or not. Conversely, estimated coefficients for high ratings
of tap and filtered water quality characteristics are negative suggesting that respondents with
higher ratings are less likely to purchase bottled water. For Model 6, the included resid-
ual in the selection equation is significant at the 10% level which suggests that the water
risk perceptions may be endogenous in the selection equation. The Drisk1 dummy variable
coefficient is estimated to be positive and significant for both models suggesting that per-
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Table 7 Bias in risk perception estimates when not controlling for endogeneity

Risk dummy variable Drisk0 (>0%) (%) Drisk1 (>0.000001%) (%) Drisk2 (>0.000002%) (%)

Choice models

Multinomial logit −68 −70 −71

Latent class (Class 1) −73 −68 −71

Drisk0 considers any individual with a positive risk perception level as high risk, Drisk1 uses a high risk cut-off
level of 1 in 1,000,000 chance of death in a year, and Drisk2 uses the high-risk cut-off level of 2 in 1,000,000.
Drisk10 biases are not presented because most of the naïve estimates are not significant. The estimated bias for
the expenditure models cannot be calculated because the coefficients are insignificant when the endogeneity
of perceptions is not addressed

ceived tap water risk is an important consideration in whether to purchase bottled water or
not.

The fifth and sixth columns of Table 6 present the results for the expenditure equation
which models the intensity of averting action.30 For both models, the estimated coefficient
for the Inverse Mills Ratio variable is positive and statistically significant suggesting that it is
important to take into account selection effects in modeling bottled water expenditures. The
test for endogeneity of water risk perceptions is different under the twomodeling approaches,
but both tests suggest that water risk perception is endogenous in the expenditure equation.
Because the expenditure equation is estimated as part of a 2SLS-IVmodel inModel 5, we can
conduct a Hausman test on water risk perceptions. The Hausman test statistic is 4.18 (p value
= 0.041)which is statistically significant at the 5% level. ForModel 6,we can test endogeneity
with a t-test on the estimated residual. The estimated coefficient for the included residual
is negative and statistically significant at the 10% level which implies that not controlling
for endogeneity would bias the water risk perception coefficient downwards. Turning to the
variable of interest, the Drisk1 coefficient is estimated to be positive and significant for both
approaches and ranges from $135.9 in Model 5 to $251.0 in Model 6. These values can be
interpreted as the monthly expenditure on bottled water that can be attributed to avoiding tap
water health risks. The difference in coefficient estimates between these two approaches can
be partly explained by the fact that Model 5 does not control for endogeneity in the selection
equation, while Model 6 controls for endogeneity in the selection and expenditure equations.
These expenditure model results corroborate the central result already observed with the
choice models: risk perceptions are endogenous and not correcting for this endogeneity will
underestimate the value of risk reductions.

5.3 Results for Alternative Specifications of the Risk Perception Variable

While the results presented so far suggest that not controlling for endogeneity in thesemodels
leads to a substantial underestimation in the value of risk reductions, we recognize the relative
arbitrary choice of the specific dummy variable cut-off level. Therefore, to investigate this,
we re-estimate the full set of results using the three other cut-off levels summarized in
Table 3. We summarize our findings in Table 7. It presents the bias in the risk coefficient
as we change the dummy variable cut-off level specification by comparing estimates from
models that do not control for endogeneity (Models 1 and 3) with those that do. For the

30 Note that similar to Models 2 and 4, Model 6 uses constructed variables in the selection and expenditure
equations and the standard errors of the parameter estimates will not be valid (Wooldridge 2010). Therefore,
we use nonparametric bootstrap replication to calculate estimates of empirical standard errors.
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expenditure models, the risk coefficient is not statistically significant using a simple selection
model without controlling for endogeneity. The endogeneity biases are similar across cut-off
choices and estimation approaches; they range between−68 and−73%.Across all estimates,
the endogeneity bias from using naïve models is −70%. Stated equivalently, the effect of
water risks is estimated to be 3 times higher using approaches that control for endogeneity
compared to models that do not.

5.4 Welfare Estimates

Using the modeling results presented above, we can derive implied welfare estimates for
water risk reductions. We use the risk reduction levels presented in Table 3 as the relevant
risk changes.31 To make our results comparable to previous estimates in the literature, we
convert these values to an implied Value of a Statistical Life (VSL) estimate. To arrive at
an estimate of an individual VSL, we divide the costs by the average household size in the
survey (2.95 individuals), and multiply the monthly costs by 12 to yield annual costs.

The VSL results for all modeling approaches and the four Drisk levels are presented in
Table 8.32 Examining the results using Drisk0 in the first column, the VSL estimates for the
multinomial logit model are $2.6 million for Model 1 (without controlling for endogeneity)
and $8.1 million for Model 2 (that controls for endogeneity). For the latent class models,
we present the VSL estimates for Class 1 types (Class 2 types are price insensitive) which
are around 77% of the sample. Controlling for endogeneity increases the VSL estimate from
$0.9 million in Model 3 to $3.4 million in Model 4 for Class 1 types. For the expenditure
models, the VSL is estimated to be $3.0 million using the coefficients from Model 5 and
$5.4 million using Model 6’s estimated coefficients. The other columns of Table 8 corre-
spond to VSL estimates using different high risk cut-off values for the water risk dummy.
Across most model specifications, as the high risk cut-off values increase, the VSL estimates
decrease. These results can perhaps be expected because, as shown in Table 3, the mean risk
reductions increase as the risk dummy cut-off values increase. Thus, the lower VSL estimates
are associated with higher mean risk reductions. For the choice models, the change in VSL
estimates is relatively small across Drisk0, Drisk1, and Drisk2 suggesting a certain degree
of proportionality across small changes in low risk levels. For the expenditure models, the
substantial decrease between Drisk0 and Drisk1 suggest nonlinearity in valuation of smaller
risk changes.

5.5 Robustness Analysis

In addition to our examination of the effects of the choice of the risk dummy variable cut-
off level, we conduct three additional robustness checks on our modeling results because
the appropriate first-stage model, distribution of the error term, and instrument variable are
specification issues. First, we use a linear probability model in the first stage equation instead

31 For the expenditure models, the estimated coefficient for Drisk1e represent the value individuals place on
a reduction in tap water mortality risk level of 0.0002814%. For the choice models, we can divide the Drisk1c
coefficient by the cost coefficient to derive the implied value for a reduction in general water mortality risk
level of 0.0002119%.
32 We also ran the models using a more limited sample which excluded the 5% of individuals with the highest
tap water risk perceptions. Welfare measures estimated using models without these extreme individuals were
generally higher by 20–40% across the different risk levels. For example, using the Drisk0 risk level and the
limited sample, the VSL estimate for the multinomial logit model (Model 2) is estimated to be $10.7 million
(32% higher than the full sample result) while the estimate for the latent class model (Model 4) is estimated
to be $4.8 million (41% higher).
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Table 8 Mean value of a statistical life (VSL) welfare estimates (2009 Canadian Dollars, millions)

Model approach Control for
Endogeneity

High risk cut-off value

Drisk0 Drisk1 Drisk2 Drisk10
(>0%) (>0.000001%) (>0.000002%) (>0.00001%)

Choice models

Model 1: No $2.63 $2.64∧ $2.12∧ $0.37∧
Multinomial logit (0.84) (0.71) (0.57) (0.20)

Model 2: Yes $8.12 $8.72 $7.23∧ $2.04

Multinomial Logit (4.12) (3.25) (2.46) (1.10)

Model 3: Latent No $0.91 $0.94 $0.80∧ Not sig.

Class (Class 1) (0.35) (0.26) (0.20)

Model 4: Latent Yes $3.37∧ $2.94 $2.79∧ $0.84

Class (Class 1) (1.80) (1.12) (0.90) (0.50)

Expenditure models

Model 5 Yes $2.96 $1.97 $1.71 $1.19

(Expenditure
equation only)

(1.75) (1.13) (0.98) (0.67)

Model 6 Yes $5.41 $3.63 $3.05 $2.14

(Both selection
model equations)

(2.96) (1.93) (1.58) (1.05)

Standard errors in parentheses. ∧ indicates that the cost variable for these models was divided by 100 for
computational reasons. Drisk0 considers any individual with a positive risk perception level as high risk,
Drisk1 uses a high risk cut-off level of 1 in 1,000,000 chance of death in a year, Drisk2 uses the high-risk cut-
off level of 2 in 1,000,000, and Drisk10 uses 10 in 1,000,000. The estimates for Model 1–4 were calculated
as the ratio of the Drisk and cost coefficients using the Krinksy–Robb procedure and 10,000 draws. The
standard errors for Model 6 were calculated using the bootstrap method and 400 draws. Not sig. denotes not
statistically different from zero at the 10% significance level. For the Latent ClassModels, values are presented
for Class 1 types (77% of sample for all risk levels) only as Class 2 types’ WTP values are not statistically
significant. Control function results are presented using the skin cancer variable interacted with age index,
gender, language in the first stage probit model

of a probit model. Second, we include higher-order polynomials of the residual terms to relax
the assumption that the residuals enter the second stage models as a simple linear term. Third,
we use alternative socio-demographic variables interacted with the skin cancer variables to
generate the three instruments for use in the first stage. We illustrate these robustness checks
with the results from the latent class model using the control function approach (Model 4).

Table 9 presents the VSL estimates for different combinations of these alternative speci-
fications. Comparing estimates between probit and linear first-stage specifications, we note
that the linear probability model generally estimates higher welfare measures. However, any
differences in results between probit and linear first stage specifications diminish substan-
tially as higher-order residual terms are included. This finding suggests may wish to adopt
more flexible control functions in place of a simple linear specification. The results from the
probit first stage specification are more sensitive to the inclusion of higher-order residuals
which tend to increases the VSL estimates. Polynomial transformations of the residuals from
the linear probability model do not lead to substantial changes in VSL estimates. Examining
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Table 9 Mean value of a statistical life (VSL) estimates using the latent class Model (Model 4) under
alternative specifications (2009 Canadian Dollars, millions)

Risk First-stage Interacted First-order Second-order Third-order
dummy specification Instrumental residuals residuals residuals
variable variables

Drisk0 Probit Age index,
gender,
language

$3.37 $4.08 $4.43

(1.80) (1.93) (2.35)

Linear $4.02 $3.89 $4.02

(1.68) (1.70) (1.86)

Drisk1 Probit $2.94 $3.09 $4.09

(1.12) (1.13) (1.54)

Linear $3.67 $3.70 $4.12

(1.24) (1.30) (1.40)

Drisk2 Probit $2.79 $3.11 $3.35

(0.90) (0.95) (1.21)

Linear $3.47 $3.54 $3.41

(1.07) (1.04) (1.21)

Drisk10 Probit $0.84 $1.37 $1.51

(0.50) (0.59) (0.79)

Linear $1.60 $1.79 $1.71

(0.66) (0.73) (0.83)

Drisk1 Probit Age index,
gender, college

$2.48

(1.19)

Linear $3.07

(1.35)

Probit Age index,
gender, hhsize

$2.53

(1.20)

Linear $2.96

(1.32)

Probit Age index,
gender, wrong

$2.32

(1.18)

Linear $2.88

(1.33)

Probit Age index,
gender, child

$2.22

(1.15)

Linear $2.70

(1.24)
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Table 9 continued

Risk First-stage Interacted First-order Second-order Third-order
dummy specification Instrumental residuals residuals residuals
variable variables

Probit All seven IV
dummies (age
index, gender,
language,
college, hhsize,
wrong, child)

$3.22

(1.18)

Linear $3.83

(1.23)

Standard errors in parentheses. Drisk0 considers any individual with a positive risk perception level as high
risk, Drisk1 uses a high risk cut-off level of 1 in 1,000,000 chance of death in a year, Drisk2 uses the high-risk
cut-off level of 2 in 1,000,000, and Drisk10 uses 10 in 1,000,000. The estimates were calculated as the ratio of
the Drisk and cost coefficients using the Krinksy-Robb procedure and 10,000 draws. The values are presented
for Class 1 types (∼77% of sample for all specifications) as Class 2 types’ WTP values are not significant

the second set of results in Table 9, we can note that the results are relatively robust to the
different socio-demographic variables interacted with the skin cancer risk variable.

While our study is illustrative of the direction and magnitude of the impact of endogeneity
and not on a specificmeasure of VSL, a comparisonwith the general VSL literature is instruc-
tive. The most comparable results are from a Canadian stated preferences study of cancer and
microbial disease risk reductions in municipal drinking water systems that estimated a VSL
of $14 to $20 million (2004 CAD) (Adamowicz et al. 2011). These VSL estimates are based
on willingness to pay to avoid public risk reductions and may include altruistic values in
contrast to our VSL estimates that capture only private risk reductions. The Treasury Board
of Canada Secretariat’s (2007) Cost-Benefit Guide recommends that federal departments use
a VSL value of $6.1 million (2004 CAD) based on an earlier meta-analysis by Chestnut et al.
(1999). In their global meta-analysis, Lindhjem et al. (2011) calculate an average VSL of
approximately $6.1 million (2005 USD) across all studies. The VSL estimates in this paper
are lower than these measures, but our estimates are based on averting expenditures, and as
such can be seen as lower bound estimates. Interestingly, Lindhjem et al. (2011) also present
an average VSL for studies with a specific health risk focus and their figure of $4.0 million
(2005 USD) is quite comparable to the range of values estimated in our study.

6 Conclusions

This paper estimates a series of averting behaviormodels for water alternatives using reported
choices and expenditures on drinking water options. In order to account for risk perceptions,
the models include a self-reported probability measure of risk of death obtained from the
use of a novel interactive risk ladder employed in our Internet-based survey of Canadian
respondents. The results suggest the presence of averting behavior with respect to water
and that perceived mortality is a significant predictor of water consumption choices. The
estimates of the economic value of risk reductions are generally similar between the choice
and expenditure modeling frameworks.

Naïve models that ignore endogeneity of risk perceptions underestimate the effect of risk
perceptions on water choices/expenditures. For the expenditure models, the risk coefficients
are insignificant in a simple selection model that does not account for endogeneity, but
they become positive and significant when the endogeneity of risk perceptions is taken into
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account. Across the choice model specifications, the average bias in the water risk coefficient
is −70% compared to models that correct for endogeneity. Accordingly, welfare measures
derived frommodels that control for endogeneity are around 3 times higher compared to naïve
model estimates and this result appears to be relatively robust over the different modelling
approaches, alternativemethods to treat endogeneity, and representations of risk. This finding
suggests that caution is required when estimating econometric models that include individual
perception variables and highlights the importance of properly testing and controlling for
endogeneity. More broadly, the techniques employed in this paper can be applied to other
econometric settings where the researcher is interested in including potentially endogenous
variables (e.g. individual attitudes, beliefs, opinions, etc.) either because these variables are
of interest or the researcher would like to include other potentially endogenous variables as
controls.

Using responses to survey questions as instruments to help address issues of endogeneity
also has its own limitations. On the one hand, surveys are an ideal setting for working with
instrumental variables because the researcher has complete control over survey design and
can include specific questions to be used as strong, valid instruments. In this research, the
specific question on skin cancer risks was included in the survey in this spirit. On the other
hand, completely satisfying the exogeneity criterion of instrumental variables will always
be difficult with survey data as long as the same individual is answering all the questions.
Respondent mood, attitudes, and other unaccounted for biases may raise concerns about links
between the instrumental variable and the dependent variable that bypass the potentially
endogenous variable. However, careful design and testing of survey questions can provide
useful instrumental variables that help address endogeneity issues in applied work.

Acknowledgements Thanks to Shelby Gerking for comments on an earlier version of this work. We would
like to thank the Canadian Water Network for financial support of the survey.
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