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Abstract A substantial literature exists combining data from revealed preference (RP) and
stated preference (SP) sources, aimed either at testing for the convergent validity of the two
approaches used in nonmarket valuation or as a means of drawing on their relative strengths
to improve the ultimate estimates of value. In doing so, it is assumed that convergence of
the two elicitation approaches is an “all or nothing” proposition; i.e., the RP and SP data
are either consistent with each other or they are not. The purpose of this paper is to propose
an alternative framework that allows for possible divergence among individuals in terms
the consistency between their RP and SP responses. In particular, we suggest the use of a
latent class approach to segment the population into two groups. The first group has RP and
SP responses that are internally consistent, while the remaining group exhibits some form
of inconsistent preferences. An EM algorithm is employed in an empirical application that
draws on the Alberta and Saskatchewan moose hunting data sets used in earlier combined
RP and SP exercises. The empirical results suggest that somewhere between one-third and
one-half the sample exhibits consistent preferences. We also examine differences in welfare
estimates drawn from the two classes.

Keywords Nonmarket valuation · Stated preference · Revealed preference · Latent class

1 Introduction

A substantial literature has emerged in the nonmarket valuation arena aimed at combining
data from revealed preference (RP) and stated preference (SP) sources. The goal of such
efforts vary. In some cases, the objective is to test the convergent validity of the RP and SP
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approaches (e.g., Azevedo et al. 2003; Huang et al. 1997, and Whitehead et al. 2010). In
other instances, the two data sources are viewed as complementary, with RP data providing
values grounded in individual behavior (rather than intentions), while SP data both expands
on the range of variation in environmental amenities from what is observed in RP data and
introduces experimental control over the impact of unobservable factors (e.g., vonHaefen and
Phaneuf 2008). To the extent that the RP and SP data are generated by the same underlying
preferences, this approach argues that combining the two provides more accurate measures
of value. Early examples along these lines include Cameron (1992) and Adamowicz et al.
(1994), while more recent applications include Dosman and Adamowicz (2006) and Eom
and Larson (2006). In either case, it is typically assumed that convergence between the
RP and SP data sources is an “all or nothing” proposition; i.e., the RP and SP data are
either consistent with each other or they are not. The purpose of this paper is to propose
an alternative framework that allows for possible divergence among individuals in terms the
consistency between their RP and SP responses. In particular, we suggest the use of a latent
class approach to segment the population into two groups. The first group has RP and SP
responses that are internally consistent, while the remaining group exhibits some form of
inconsistent preferences. Examining differences between the preferences of the two groups
provides additional insights into the wedge between RP and SP responses. The framework
also opens up the possibility of modeling class membership, along the lines employed by
Boxall and Adamowicz (2002), with the goal of mitigating the behavior of those in the
“inconsistent” class in subsequent RP/SP exercises.

The remainder of the paper is organized as follows. Section 2 provides a brief overview of
the literature combining stated and revealed preference data. We then describe the proposed
latent class model in Sect. 3, along with a description of the EM algorithm used in estimation.
Section 4 presents a generated data experiment to illustrate the performance and character-
istics of the model under different parameterizations, with particular attention paid to the
size of the “inconsistent” class as a share of the population. These Monte Carlo exercises
illustrate the impact, both in terms of parameter and welfare estimates, of ignoring discrep-
ancies between the underlying RP and SP data generating processes, particularly when the
“consistent” class is only a small share of the target population. We illustrate our framework
in Sect. 5 using two data sets. The first is the Alberta Moose Hunting data first introduced
by Adamowicz et al. (1997) in their RP/SP exercise. The second is the similar Saskatchewan
Moose Hunting data set used by Haener et al. (2001) to compare and contrast the predictive
power of RP, SP and combined RP-SP models. Both data sets were subsequently employed
by von Haefen and Phaneuf (2008). Our results indicate that somewhere between one-half
and two-thirds of the samples provide responses that suggest different RP and SP data gener-
ating processes and that welfare predictions are sensitive to the choice of which subgroup is
used in valuing changes to the environment. The paper wraps up in Sect. 6 with a summary
and conclusions.

2 The Literature on Combining RP/SP Data Sources

The idea of combining information from revealed preference and stated preference sources
is by no means a new one, with papers appearing in the marketing, transportation, health and
environmental economics literatures. In their recent review,Whitehead et al. (2008) note that
the earliest efforts along these lines appeared in the transportation and marketing literatures
nearly twenty-five years ago, with papers byBen-Akiva andMorikawa (1990) andBen-Akiva
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et al. (1994). Comparisons betweenRP- and SP-basedwelfaremeasures have, of course, been
around for years in the environmental arena, including the pioneering goose hunting permit
study by Bishop and Heberlein (1979). However, the objective of such comparisons was
typically a convergent validity test, with the usual, though not universal, presumption being
that the RP results were more reliable as they were based on actual behavior.1

The earliest efforts to explicitly combine the two sources in the environmental literature
appeared somewhat later, with papers by Cameron (1992) and Adamowicz et al. (1994).
These authors argued that RP and SP data should be viewed as complementary, rather than
competing, sources of information. In particular, two key limitations of the revealed pref-
erence data are (a) insufficient variation in environmental amenities of interest and (b) the
potential for the environmental amenities to be confoundedwith other observed or unobserved
factors. Proposed environmental policy scenarios often involve changes that are outside of
the range of historical environmental conditions, making extrapolation of preferences for
such changes tenuous and dependent on strong assumptions regarding the form of individual
preferences. More fundamentally, there may simply not be sufficient historical variation in
the environmental attribute of interest to identify its impact on preferences. A related prob-
lem is that what variation is observed for an environmental amenity may be correlated with
other observed or unobserved factors impacting consumer preferences, making it difficult to
disentangle its causal effect on consumer behavior. Stated preference data, on the other hand,
provides the researcher with greater control over the variation in environmental conditions
presented to survey participants. In many cases, orthogonal treatments can be employed,
though such treatments may be limited by the need to present realistic choice scenarios.
von Haefen and Phaneuf (2008) highlight the fact that the experimental control associated
with stated preference surveys can be used to isolate the causal impact of an environmental
amenity on individual behavioral, avoiding problems of omitted variables bias encountered
in stand-alone RP exercises. Eom and Larson (2006) illustrate the use of SP data, in combina-
tion with RP data, to identify non-use (or passive use) values that simply cannot be identified
with RP data alone.

The major concern with stated preference data sources is that they might be susceptible to
hypothetical bias. Revealed preference data can be used to “discipline” the stated preference
responses with information on choices observed in the marketplace. One strategy is to rely
primarily upon RP data to estimate the key preference parameters, such as themarginal utility
of income, leaving SP with the role of “filling-out” the marginal impacts of environmental
amenities on individual preferences (e.g. von Haefen and Phaneuf von Haefen 2003). Alter-
natively, if both sources are viewed as suspect, combining the two data sources may provide
the best overall picture of consumer preferences.

The evidence regarding combining RP and SP data sources is mixed. Adamowicz et al.
(1994) and Adamowicz et al. (1997), for example, find “…RP-SP parameter equality, once
variance heterogeneity is accounted for, and …that joint RP-SP models are superior to RP
models alone.” In contrast, vonHaefen andPhaneuf vonHaefen andPhaneuf (2008), using the
same data asAdamowicz et al. (1997), reject consistency between theRP and SP responses, as
do Azevedo et al. (2003) in a different setting. Both Jeon and Herriges (2010) andWhitehead
et al. (2008) reject consistency between RP and SP responses in their respective studies,
though the differences between the welfare measures derived from the RP and SP sources are
not substantial. In all these studies, the tests for consistency are for the sample as a whole. In

1 See Randall (1994) and Azevedo et al. (2003) for alternative perspectives on the presumed reliability of RP
results.
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the next section, we outline a latent class model that estimates the proportion of the sample
that exhibits inconsistent RP and SP preferences.

3 Model

This section begins by describing a single class joint model of RP and SP data in a repeated
discrete choice setting. The structure of the model is similar to the one employed by von
Haefen and Phaneuf (2008). The model is then extended using a latent class framework,
allowing for some portion of the sample (s) to exhibit consistent RP and SP preferences,
while the RP and SP parameters diverge for the remainder of the sample. As is typical of
the recent literature on latent class models (e.g., Breffle et al. 2011; Evans and Herriges
2010; Kuriyama et al. 2010), we propose estimating the parameters of the model using of an
EM algorithm so as to avoid numerical difficulties often encounter with standard maximum
likelihood estimation of latent class models (see, e.g., Train 2009).

3.1 Combining RP and SP Data

There are two common issues encountered when combining RP and SP recreation demand
data. First, the relevant site attributes are generally different for the two data sources. Of
particular concern in the context of the modeling RP choices is the fact that the analyst
may observe only a subset of the choice attributes impacting an individual’s decision. To
the extent that there are unobserved choice attributes that are correlated with the attributes
available to the researcher, steps must be taken to control for potential omitted variables
bias. In contrast, stated preference choices can be thought of as providing the analyst with
complete information on the relevant choice attributes, assuming of course that the SP study
is well-designed and the respondents fully understand the instructions. To the extent that
there are unobservable individual or site attributes impacting an individual’s choices, the
random assignment of observable treatment affects should avoid potential omitted variables
bias. Second, given the differences in the decision making processes underlying the RP and
SP data sources, there are likely to be differences in the unobservable factors impacting the
corresponding decisions. These differences manifest themselves in differences between the
scale parameters associated with the RP and SP portions of the model. Control for changes
in the scale parameters of the two models is important in testing for consistency between the
two data sources (see, e.g., Adamowicz et al. 1994 and Adamowicz et al. 1997).

Starting with the revealed preference portion on the model, the data provide information
on the number of times (nRP

i j ) individual i chooses to visit each of j sites over the course of Ti
trips.2 The utility (URP

i jt ) that individual i receives from choosing site j on trip t is assumed to

be a linear function of observed (X RP
j ) and unobserved (X̃ RP

j ) site specific attributes, travel

costs to the site (pi j ), and an idiosyncratic error component (μRPεi j t ), where εi j t is an i id
Type I extreme value error term and μRP is the associated scale factor.3 Formally,

2 Themodel specified here is a site selectionmodel, rather than amodel that also characterizes the participation
decision, as in the repeated logit framework of Morey, Rowe and Watson Morey et al. (1993). We focus on
the site selection aspect of the individual’s decision to be consistent with the earlier analyses of these same
databases by Adamowicz et al. (1997), Haener et al. (2001), and von Haefen and Phaneuf (2008).
3 Individual specific characteristics such as age, gender and education can also impact the site utilities, typically
through interactions between individual and site characteristics. For now, we ignore these interaction effects
for the sake of notational simplicity, but incorporate them later in both theMonte Carlo analysis and subsequent
application.
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URP
i jt = X RP

j βRP + X̃ RP
j β̃RP + pRPi j γ RP + μRPεi j t

= X RP
j βRP + ξ RP

j + pRPi j γ RP + μRPεi j t (1)

= αRP
j + pRPi j γ RP + μRPεi j t (2)

= V RP
i j + μRPεi j t

where Vi j ≡ αRP
j + pRPi j γ RP , ξ RP

j ≡ X̃ RP
j β̃RP and

αRP
j ≡ X RP

j βRP + ξ RP
j . (3)

Historically, analysts have often included observable factors in the conditional utility speci-
fication without controlling for possible unobservable sites attributes. As noted by Murdock
(2006), there are two advantages of explicitly introducing unobservable sites attributes into
the model. First, to the extent that unobserved and observed site attributes are correlated,
including only the observed site attributes at this stage of the estimation process would lead
to omitted variables bias. Segmenting off the site attributes into a second stage analysis insu-
lates the parameters in Eq. (2) (particularly the key travel cost parameter) from this potential
source of bias. Second, as Murdock (2006) demonstrated, ignoring the unobservable site
attributes and including only the observable attributes in (1) inflates the precision with which
the site attribute parameters are estimated. It is important to keep in mind that the observed
attributes are not missing from the utility specification in Eq. (2). Rather, they are simply
imbedded in the alternative specific constants. As suggested by Murdock (2006), a second
stage regression can then be used to recover βRP by estimating Eq. (3) using fitted values for
the alternative specific constants (i.e., the αRP

j ’s) and, if necessary, properly instrumenting

for the X RP
j .

Turning to the stated preference data, the individuals are presented with a series of H
choice scenarios, with each choice scenario involving K alternatives (K = 3 in both Moose
Hunting data sets). The utilityUSP

ikh that individual i associates with alternative k from choice
scenario h is assumed to be a linear function of the designed characteristics for each of the
choice alternatives (XSP

ikh), the cost of the presented alternative (pikh), and an idiosyncratic

error components (μSPεikh), where εikh is an i id Type I extreme value error term and μSP

is the associated scale factor. Formally

USP
ikh = XSP

kh βSP + pSPikhγ
SP + μSPεikh . (4)

There are several features of (4) worth noting. First, there are no unobservable factors asso-
ciated with the SP choice utilities, except of course those imbedded in the idiosyncratic
error term. The random assignment of choice characteristics breaks the potential correlation
between the observable treatments and any unobserved factors influencing the individual’s
decision. This is one of the key strengths of the stated preference approach. Second, while
URP
i jt is constant over the choice alternatives (with, of course, the exception of the idiosyn-

cratic error term), the utilities associated with the SP choices can vary substantially over the
alternative choice occasions. This is a second key strength of the SP data.

Without further restrictions on the two sources of preference information, neither of the
scale parametersμRP andμSP are identified andmust be normalized to 1. The corresponding
contribution of an individual to the likelihood function is then given by:
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LIC
i

(
θ IC

)
=

⎧⎪⎪⎨
⎪⎪⎩

J∏
j=1

⎡
⎣ exp

(
αRP
j + pRPi j γ RP

)

∑J
m=1 exp

(
αRP
m + pRPim γ RP

)
⎤
⎦
nRPi j

⎫⎪⎪⎬
⎪⎪⎭

·
H∏

h=1

⎡
⎣

K∏
k=1

{
exp

(
XSP
ikhβ

SP + pSPikhγ
SP
)

∑K
r=1 exp

(
XSP
irhβ

SP + pSPirhγ
SP
)
}1SPikh

⎤
⎦ , (5)

where 1SPikh = 1 if individual i chose alternative k in SP choice scenario h and equals zero
otherwise and θ IC ≡ (αRP• , γ RP , βSP , γ SP ) denotes the parameter of the model, with
αRP• ≡ (αRP

1 , . . . , αRP
J−1) denoting the complete vector of ASC’s. The IC superscript (i.e.,

“inconsistent”) on the likelihood function is used to indicate that this specification does not
impose consistency between preferences underlying the RP and SP responses.

The insight of von Haefen and Phaneuf (2008) is that, by combining the two data sources
and imposing consistency in the underlying data generating processes, portions of the RP
preferences parameters can now be identified. Specifically, assuming that βRP = βSP = βC

and γ RP = γ SP = γ C , the corresponding likelihood function becomes:

LC
i

(
θC

)
=

⎧⎪⎪⎨
⎪⎪⎩

J∏
j=1

⎡
⎣ exp

(
X RP

j βC + ξCj + pRPi j γ C
)

∑J
m=1 exp

(
X RP

j βC + ξCj + pRPim γ C
)
⎤
⎦
nRPi j

⎫⎪⎪⎬
⎪⎪⎭

·
H∏

h=1

⎡
⎣

K∏
k=1

{
exp

[
ω
(
XSP
ikhβ

C + pSPikhγ
C
)]

∑K
r=1 exp

[
ω
(
XSP
irhβ

C + pSPirhγ
C
)]
}1SPikh

⎤
⎦ . (6)

where ω ≡ μRP/μSP is the ratio of RP and SP scale parameters and θC ≡ (ξC• , γ C , βC , ω)

and ξC• ≡ (ξC1 , . . . , ξCJ−1). Note that, unlike in the case when consistency was not imposed,
we can now estimate the composite impact of the unobservable factors (i.e., the ξCj ’s). Also
note that in imposing consistency we are not requiring that the scale parameter be the same
across the two data sources, but we still need to normalize μRP = 1.

3.2 Latent Class Model

The standard approach in the literature is to estimate both the consistent and inconsistent
models (i.e., using the likelihood functions in Eqs. (6) and (5), respectively) and to choose
between the two specifications based standard tests. The model being proposed in this paper
is to consider an in-between approach, allowing for the possibility that individuals differ in
terms of the consistency of their RP and SP responses. In particular, we adopt latent class
model with two distinct groups: Class C in which individual exhibit consistent preference
parameters across their RP and SP data sources as in depicted in (6) and Class IC in which
individuals have disparate RP and SP parameters as depicted in (5). Class membership is not
known to the analysts. Therefore, the overall likelihood function (i.e., unconditional on class
membership) for individual i can be formulated as

Li (θ) = sLC
i

(
θC

)
+ (1 − s)LIC

i

(
θ IC

)
(7)

where s ∈ [0, 1] is the probability of being in the consistent class and θ ≡ (θC , θ IC , s)
denotes the full set of parameters to be estimated. The class membership probability can
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be modeled as a function of individual characteristics, including the individual’s socio-
demographic or attitudinal characteristics (see, e.g., Boxall and Adamowicz 2002). The
advantage of this approach is that, by understanding the factors that influence membership
in the inconsistent class, researchers may be able target corrective measures to avoid the
inconsistencies themselves. For now, however, we focus on the simpler case is which the
probability of class membership is a constant.4

Equation (7) can be used directly to estimate all of the model’s parameters, including
the class membership probability s, by standard maximum likelihood techniques. However,
latent class models are notoriously difficult to estimate directly. Instead, following the current
practice in the latent class literature (e.g., Morey et al. 2006; Evans and Herriges 2010), we
employ an Expectation-Maximization (EM) algorithm. The next subsection briefly describes
steps involved in the EM algorithm used in our applications.

3.3 EM Algorithm

EM algorithms can be useful for maximizing a likelihood function when standard optimiza-
tion procedures can be numerically challenging, which is often the case in the presence of
latent variables and particularly the case in latent class models. In our framework, the latent
variable is class membership ci , which equals C if the individual belongs to the consistent
class and equals IC if the individual belongs to the inconsistent class, with Pr(ci = C) = s.

The EM algorithm is an iterative procedure, alternating between two steps: (1) Calculating
an expectation as a function of the current iteration’s parameter values and (2) maximizing
that expectation with respect to the parameters of the model. Specifically, following the
general notation in chapter 14 of Train (2009), let θt denote the value of the parameters at
iteration t. To maximize (7) using the EM algorithm, we define a new function evaluated at
θt that can be used to obtain the parameter vector’s next iteration; i.e., θt+1. Specifically, let

E(θ |θt ) ≡
N∑
i=1

{
hCit ln

[
sLC

i (θC )
]

+ hIC
it ln

[
(1 − s)LIC

i (θ IC )
]}

=
N∑
i=1

[
hCit ln(s) + hIC

it ln(1 − s)
]
+

N∑
i=1

hCit ln
[
(LC

i (θC )
]
+

N∑
i=1

hIC
it ln

[
LIC
i (θ IC )

]

(8)

where s is the share of the population in classC and hcit denotes the probability ofmembership
in class c (c = C, IC) conditional on the individual’s observed choices. Using Bayes rule:

hcit = h(ci = c|y•, st ) = stLc
i (θ

c)

stLC
i (θC ) + (1 − st )LIC

i (θ IC )
(9)

where y• denotes the full set of choices (i.e., the nRP
i j ’s and 1SPikh’s). Forming this expectation

represents the first step in the EM algorithm.
The second step involves maximizing E(θ |θt ) with respect to θ . Conveniently, as can

be seen in Eq. (8), E(θ |θt ) is separable into three distinct components that can be inde-

4 The emphasis in our paper is on relaxing the assumption that consistency between the RP and SP responses
is an all or nothing proposition. However, as suggested by a reviewer, a natural generalization of our framework
would be to allow heterogeneity within each of the consistent and inconsistent classes. This could be done
using a continuous mixture (random parameters) model for each class or by introducing latent subclasses for
both the consistent and inconsistent classes. In the latter case, information criteria (e.g., AIC and BIC) could
be used in selecting the number of subclasses.
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pendently maximized. In particular, maximizing E(θ |θt ) with respect to s corresponds to
maximizing

E(s|θt ) =
N∑
i=1

[
hCit ln(s) + hIC

it ln(1 − s)
]
, (10)

yielding

st+1 =
∑N

i=1 h
C
it∑N

i=1

(
hCit + hIC

it

) . (11)

Maximizing E(θ |θt ) with respect to θc (c = C, IC) corresponds to maximizing

E(θc|θt ) =
N∑
i=1

hcit ln
[
(Lc

i (θ
c)
]
, (12)

which is just class-specificmaximum likelihood estimation using hcit as weights. The updated
parameters (i.e., θct+1) are the corresponding solutions to these maximizations; i.e.,

θct+1 = argmax
θc

N∑
i=1

hcit ln
[
(Lc

i (θ
c)
]
. (13)

Thus, the steps for estimation of the latent class model using the EM algorithm are

1. Specify initial values for the share and coefficients in each class. We set s0 = 0.5 and
obtain θc0 for class c using unweighted maximum likelihood for that class.

2. Calculate the probability of being in each class conditional on the observed choices using
(9).

3. Update the share s of class C using (11).
4. Update the parameters of each class by estimating weighted MLE using (13)
5. Repeat steps 2–4 until convergence.

4 Generated Data Experiments

In this section, we describe a series of generated data experiments designed to illustrate the
latent class model introduced in Sect. 3. Particular attention is paid to the performance of
the model given different sample sizes and the proportion of the population belonging to the
consistent class, as well as the impact of erroneously assuming that this class proportion is
either zero or 1. Throughout, the pseudo-data sets were structured so as to mimic the general
structure of the data sets used in the applications in Sect. 5.

As described in previous section, each individual is assumed to belong to either the con-
sistent class (ci = C) or inconsistent class (ci = IC), with Pr(ci = C) = s. Using a
slight generalization of the model from the previous section (i.e., incorporating interactions
between site and individual characteristics), theRP and SP conditional utilities for individuals
belonging to the consistent class are assumed to take the form:

URP
i jt = X RP

j βC + Zi X
RP
j ρC + pRPi j γ C + ξ RP

j + μRPεi j t

U SP
ikh = XSP

k βC + Zi X
SP
k ρC + pSPik γ C + μSPεikh (14)

where Zi denotes an individual characteristics such as age, gender, or education. On the other
hand, for individuals belongs to the inconsistent class, these conditional utilities are assumed
to take the form:
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URP
i jt = X RP

j βRP + Zi X
RP
j ρRP + pRPi j γ RP + ξ RP

j + μRPεi j t

U SP
ikh = XSP

k βSP + Zi X
SP
k ρSP + pSPik γ SP + μSPεikh (15)

In the generated data experiments, we consider a total of 15 scenarios varying the scenarios
along two dimensions:

1. Theprobability ofmembership in the consistent class,with s ∈ {0.1, 0.25, 0.5, 0.75, 0.9};
and

2. The number of observations, with N ∈ {200, 500, 1000}.
In all of the scenarios, the number of alternatives available on each choice occasion is fixed
in the RP and SP settings, with J = 20 and K = 3, respectively. The corresponding total
number of choice occasions are likewise fixed for the RP and SP settings, with T = 10 and
H = 15, respectively. Finally, for each scenario, 100 generated data sets were constructed.

The specific steps used to generate data sets are as follows:

1. The vector of individual characteristics (Zi ), site characteristics (X j ), and travel costs
(pi j ) were drawn from the following distributions:

Zi ∼ N (0, 1)

X RP
j ∼ N (0, 1)

XSP
k ∼ N (0, 2)

pRPi j ∼ log N (0, 1)

pSPik ∼ log N (0, 2)

ξ RP
j ∼ N (−2, 0.05)

2. Each individual in the sample was then randomly assigned to either the consistent class
(i.e., ci = C) or the inconsistent class (i.e., ci = IC), with Pr(ci = C) = s.

3. Depending upon the class to which they were assigned, either Eqs. (14) or (15) were
then used to generate the conditional utilities URP

i jt and USP
ikh for each choice occasion

and alternative employing the following parameters:

• βC = −2.0;
• ρC = −3.0;
• γ C = −0.8; and
• ω = 0.4

for the consistent class and

• βRP = −1.2;
• ρRP = −0.7;
• γ RP = −1.8;
• βSP = −0.6;
• ρSP = −0.5; and
• γ SP = −0.4.

for the inconsistent class. For both classes, the error terms (i.e., εi j t ’s and εikh’s) were
drawn from the Type I extreme value distribution.

4. Given the conditional utilities URP
i jt and USP

ikh for each choice occasion, the individual’s

choices (i.e., 1RPi j t and 1SPikh) were then determined by the alternative yielding the highest
utility.
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For each generated sample, we estimate three different models:

• Model 1. The latent classmodel described in Section 4 and based on the likehood function
in Eq. (7);

• Model 2. The fully inconsistent model based on the likelihood function in Eq. (5); and
• Model 3. The fully consistent model based on the likelihood function in Eq. (6).

We then compare and contrast the three models in terms of the implied welfare impact from
closing the most popular site in the sample.

Table 1 summarizes the resulting parameter estimates for Model 1.5 In particular, for each
scenario (i.e., combination of s and N ), the table reports the mean parameter estimates across
the 100 replications, as well as the corresponding 5th and 95th percentile values. SinceModel
1 is consistent with the underlying data generating process, it is not surprising that the mean
parameter estimates are generally quite close to the true parameters. However, the estimates
are less stable when the share of individuals in the consistent class (i.e., s) is small. This
is to be expected since the estimation then relies on relatively few individuals to identify
the parameters for the consistent class. Somewhat unexpected is the fact that the parameter
estimates are not as varied at the other extreme (i.e., when s = 0.9).

Parameter estimates using the other two models (i.e., Models 2 and 3), are provided in
Appendix Tables 8 and 9, respectively. Since these models are not consistent with the under-
lying data generating process, it is not surprising that they tend to yield greater departures
from the underlying parameters of the model. In general, Model 2 performs relatively well
when most of the population is drawn from the inconsistent class (e.g. s = 0.1), whereas
Model 3 performs relatively well when most of the population is drawn from the consistent
class (e.g., s = 0.9).6

Perhaps more important than the performance of a model in terms of individual parameter
estimates is its performance in estimating the welfare impacts of a proposed policy scenario.
Table 2 summarizes the performance of the three models in terms of estimating the average
welfare impact of two policy scenarios:

• Scenario A. Closure of site 1.
• Scenario B. Improvement in site quality for site 1. This corresponds to a fifty percent

reduction in X RP
1 , where X RP

1 is a bad (i.e., βRP < 0).

For the latent class model (i.e., Model 1), the appropriate welfare measure is a weighted
average of the compensating variation from the consistent and inconsistent class models,
with the weights being the corresponding class probabilities; i.e.,

CV = s × CVC + (1 − s)CV RP (16)

5 Estimates for the alternative specific constants αRP
j and ξCj are not reported in Table 1 for the sake of space,

but are available from the authors upon request. Also, estimates for the parameters βRP are obtained through
a second stage regression based on the fitted alternative specific constants from the first stage and using the
relationship in (3).
6 As noted in footnote 4 above, a generalization of our modeling framework would be to allow for hetero-
geneous preferences within each of the consistent and inconsistent classes. As an initial exploration into this
possibility, we also conducted a generated data experiment using two latent subclasses for each of the main
classes. Our model was then estimated using (a) a single subclass for each of the main classes and (b) two
subclasses for each of the main classes. The results from this exercise are reported in Appendix Table 10. In
all of the Monte Carlo runs, the two subclass model was consistently preferred to the single subclass model
on the basis of both AIC and BIC measures and the two subclass model parameter estimates were generally
consistent with the underlying data generating process. This is an area for future research, but beyond the
scope of the current manuscript.
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Table 2 Generated data
experiments: mean abs.
percentage errors of welfare
estimates

Scenario N Class
ratio
(s)

Latent
class
weighted

Single class

Consistant Inconsistent

A 200 0.10 10.11 21.64 44.49

0.25 11.82 29.99 38.46

0.50 11.69 35.88 32.42

0.75 11.14 28.12 30.61

0.90 11.79 17.23 32.56

500 0.10 7.07 19.90 45.04

0.25 7.50 28.42 39.31

0.50 6.68 34.56 33.84

0.75 7.75 29.47 30.93

0.90 7.63 16.26 32.34

1000 0.10 4.90 19.20 46.44

0.25 4.94 26.57 40.44

0.50 5.35 32.81 34.70

0.75 5.45 25.90 32.69

0.90 5.28 13.99 34.00

B 200 0.10 70.37 128.93 56.16

0.25 65.26 401.35 68.26

0.50 21.37 60.02 75.25

0.75 24.30 54.80 96.97

0.90 29.00 32.91 109.65

500 0.10 36.24 118.71 56.37

0.25 35.74 92.42 65.99

0.50 14.03 141.91 78.15

0.75 27.42 274.40 190.96

0.90 14.60 27.67 109.58

1000 0.10 30.72 110.55 56.81

0.25 13.08 81.49 66.47

0.50 9.50 88.28 74.95

0.75 10.11 67.33 123.67

0.90 12.78 24.34 248.24

where s is the probability of being in the consistent class, with CVC and CV RP denote
the standard log-sum calculations based on the consistent class and inconsistent class RP
parameter estimates, respectively.

In contrast, the standard approaches in the literature are to either not impose consistency
across the RP and SP data source (as in Model 2), computing compensating variation based
on the RP parameter estimates alone, or to impose consistency for all individuals (as inModel
3), computing compensating variation based on the constrained parameter estimates derived
from the two data sources.

Table 2 summarizes the mean absolute percentage errors (MAPE) associated with these
three approaches, i.e.
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MAPE = 1

N

N∑
i=1

∣∣∣∣
True welfare lossi − Welfare loss estimatesi

True welfare lossi

∣∣∣∣ (17)

For all six experiments, the MAPEs are generally lowest for the latent class model (i.e.,
Model 1), which should be the case since it is in accord with the underlying data generating
process. For Scenario A (the closure of site 1), the MAPE’s from the latent class model lie
between 5 and 12%, with the errors diminishing as the available sample size increases. The
errors are larger for both single class specifications.

The MAPE’s are substantially larger for Scenario B, ranging from approximately 10
percent when N = 1000 and s = 0.5 to over 70 percent when N = 200 and s = 0.10.
This pattern is not surprising. The larger errors for Scenario B are expected, since welfare
calculation in this case depends crucially on estimates of βRP , which are obtained from a
second stage regression of only J = 20 site alternative specific constants on site attributes
X RP

j . The MAPE’s are typically smallest for the latent class model when s = 0.5, with
the population evenly divided between the inconsistent and consistent classes, effectively
providing a more balanced bases for estimating the underlying class parameters. In contrast,
when s = 0.1, only 10 percent of the sample is assumed to be from the consistent class,
providing little information for gleaning the parameters of that class. As was the case for
Scenario A, Scenario B generally yields higher MAPE’s for the single class specifications.
The consistent class model performs best as the proportion of individuals in the consistent
class is largest (i.e., s = 0.9), whereas the inconsistent class model performs best as the
portion of individuals in the inconsistent class is largest (i.e., s = 0.1).

The generated experiments in this section illustrate the potential of our model to recover
the underlying preference parameters in a setting where individuals differ in terms of the
consistency between their RP and SP responses, as well as the biases induced by assuming
that consistency is an all or nothing proposition. To the extent that households fall largely
into the consistent or inconsistent categories (i.e., s is close to one or zero, respectively),
the traditional approach provides a reasonable approximation to preferences. However, if
the population is more evenly divided between the two possibilities, both the preference
parameters and corresponding welfare estimates can be significantly biased.

5 Application

5.1 Data

To illustrate our proposed latent class model, we reconsider two Moose Hunting data sets
used by Adamowicz et al. (1997), Haener et al. (2001), and von Haefen and Phaneuf (2008)
to examine the potential for combining RP and SP data sources. The first of the data set (the
Alberta Moose Hunting Study) was collected from a sample of 422 individuals drawn from
moose hunting license holders living in theCanadian towns ofDraytonValley, Edson,Hinton,
Edmonton, and Whitecourt. Individuals were initially contacted by mail, with a follow-up
phone call inviting them to attend a meeting. Of the 422 hunters initially contacted, 312
individuals (74%) agreed to attend themeeting.Of the 312hunterswho confirmed attendance,
271 (87%) actually attended the meeting.7

The Alberta study provides both revealed preference (RP) and stated preference (SP)
data. The RP data consists of reported moose hunting trips to 14 wildlife management units

7 See McLeod et al. (1993) for additional details regarding the sampling and data collecting procedures.
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Table 3 Summary statistics

Variables Mean SD Minimum Maximum

a. Alberta moose hunting study

Socioeconomic attributes

Age (year) 39.63 10.71 18 70

Income ($) 51,722 22,809 10,000 110,000

Total number of trip 3.62 5.68 0 41

General hunting experience (year) 20.19 10.24 2 51

Moose hunting experience (year) 16.88 9.87 1 49

Edmonton resident dummya 0.45 0.48 0 1

High school diploma dummy 0.91 0.27 0 1

Site attributes

Travel cost ($) 219.71 101.69 88.64 558.92

Moose population(effects coded)b

Less than 1 moose per day 0.14 0.52 −1 1

1–2 moose per day 0.5 0.63 −1 1

3–4 moose per day 0.07 0.46 −1 1

b. Saskatchewan Moose Hunting Study

Socioeconomic attributes

Age (year) 42.06 11.53 12 77

Income ($) 47,068 22,252 10,000 110,000

Total number of trip 1.37 2.56 0 27

General hunting experience (year) 23.23 12.04 1 60

Urban resident dummy 0.81 0.39 0 1

High school diploma dummy 0.89 0.31 0 1

Site attributes

Travel cost ($) 251.48 110.42 0.00 762.00

Moose population (effects coded)

Less than 1 moose per day 0.55 0.66 −1 1

1 moose per day 0.18 0.57 −1 1

a Edmonton is unique urban region in this data set, which is relatively far from hunting area.
b Seeing or hearing moose or seeing fresh sign such as tracks browse or droppings McLeod et al. (1993)

(WMUs) during 1992, aswell as respondent socio-demographic characteristics. SP data takes
the form of a choice experiment in which each respondent was presented with a series of 16
choice scenarios (i.e., H = 16) each including three alternatives (i.e., K = 3), with two of
the alternatives involving hypothetical sites while the third alternative was an opt-out (i.e.,
not hunting) option.8

Table 3.a reports summary statistics from the Alberta Moose Hunting Study for both
individual and site characteristics. The mean age of hunters in the sample was just under
forty years, and they had an average of about 20 years of general hunting experience and
about 16 years of experience hunting moose. More than half of hunters completed high

8 In the empirical setting, we include a dummy variable for ‘not hunting’ (SP dummy) to capture impact of
the opt-out option.
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school and most of them reported incomes in the ranges of $20,000–$60,000. For both real
(RP) and hypothetical (SP) sites, the alternatives are defined in terms of six attributes: travel
cost, moose population, level of congestion, access within hunting area (no trail, cutlines or
seismic lines), quality of road and the presence of forest activity (logging).

The second data set (the Saskatchewan Moose Hunting Study) is similar in structure to its
Alberta counterpart, extracting both RP and SP information from 532 moose hunting license
holders. In the Saskatchewan database, respondents provide RP information on trips to 11
wildlife management zones (WMZ’s), together with SP data on response to up to 14 choice
scenarios. Table 3.b provides the corresponding summary statistics for the Saskatchewan
study.

5.2 Results

A total of four models were estimated using the two moose hunting data sets:

1. SC-C. A single class (SC)model imposing consistency across theRP and SP data sources;
2. SC-RP. A single class model of preferences based only on the RP data;
3. SC-SP. A single class model of preferences based only on the SP data;
4. LC. A latent class model with a portion s belonging to the consistent class (denoted LC-

C) and a portion (1− s) belong to the inconsistent class (denoted by LC-RP and LC-SP
for the revealed and stated preference components, respectively).

Tables 4 through 6 provide the resulting parameter estimates.9 Table 4 focuses on the core
parameters for both data sets; i.e., the class share s in the case of the latent class model,
the relative RP/SP scale parameter ω identified only when consistency is imposed for a
class, and the travel cost parameters (i.e., the γ ’s). Tables 5 and 6 report the main effect of
site characteristics (i.e, the β’s) and interactions between site characteristics and individual
attributes (i.e., the ρ’s) for the Alberta and Saskatchewan data sets, respectively.10

Starting with Table 4a, the latent class model in the Alberta setting indicates that the
population is roughly evenly divided between the consistent and inconsistent classes, with
s = 0.51. Both the single and latent class models yield a significant difference in scales
between theRP and SP responses, withω in the range of 0.19–0.22. This indicates that there is
greater variability in the unobservable components of individual preferences in the case of SP
data relative toRPdata (i.e.μRP < μSP ). Finally,while all of the specifications yield negative
and statistically significant travel cost coefficient, the γ ’s vary substantially. Cross-model
comparisons of the estimated γ ’s is difficult, since the scale parameter differences between
the RP and SP models cannot be estimated when consistency is not imposed. However, it
does appear as though the latent class structure highlights the gap between consistent and
inconsistent preferences. As indicated by Table 4b, a similar pattern of results emerges in
the Saskatchewan data set. The most obvious difference is that the consistent class is a
significantly smaller proportion of the population, with s roughly equal to one-third (rather
than one-half) of the population.

Turning to Tables 5 and 6, note that there are two sets of parameters being presented.
In each table, the first column of parameters are the main effects associated with the site

9 The log-likelihood values for the estimatedmodels are as follows. For the Alberta data set: SC-C:−5377.94;
SC-RP: −1868.11; SC-SP: −3468.56; LC: −4813.10. For the Saskatchewan data set: SC-C: −7482.15; SC-
RP: −1162.66; SC-SP: −6301.20; LC: −6896.32.
10 The parameter estimates reported here for the single class models have the same signs and are similar in
magnitude to those reported in von Haefen and Phaneuf (2008), though the specifications differ in that von
Haefen and Phaneuf incorporate a mixed logit structure.
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Table 4 Core parameter estimates

Parameter Model Class Est. t stat

a. Alberta study

Class share (s) Latent Class (LC) – 0.51 12.19

RP/SP scale (ω) Single Class—Consistent (SC-C) – 0.22 17.06

Latent Class (LC-C) Consistent 0.19 10.29

Travel cost (γ ) Single Class—Consistent (SC-C) – −1.65 −25.12

Single Class—Inconsistent—RP Portion (SC-RP) – −1.50 −6.12

Single Class—Inconsistent—SP Portion (SC-SP) – −0.42 −11.55

Latent Class—Consistent (LC-C) Consistent −3.58 −13.54

Latent Class—Inconsistent—RP Portion (LC-RP) Inconsistent −0.96 −6.07

Latent Class—Inconsistent—SP Portion (LC-SP) Inconsistent −0.33 −7.62

b. Saskatchewan study

Class share (s) Latent Class (LC) – 0.34 13.88

RP/SP scale (ω) Single Class—Consistent (SC-C) – 0.10 4.93

Latent Class (LC-C) Consistent 0.05 8.64

Travel cost (γ ) Single Class—Consistent (SC-C) – −2.46 −5.31

Single Class—Inconsistent—RP Portion (SC-RP) – −2.35 −4.85

Single Class—Inconsistent—SP Portion (SC-SP) – −0.26 −11.06

Latent Class—Consistent (LC-C) Consistent −7.46 −12.45

Latent Class—Inconsistent—RP Portion (LC-RP) Inconsistent −0.80 −5.62

Latent Class—Inconsistent—SP Portion (LC-SP) Inconsistent −0.25 −13.47

characteristics; i.e., the β’s in Eq. 1. For those models involving only the RP data, the β’s can
generally only be recovered in a second stage regression using the estimated ASC’s (i.e., the
α j ’s) andEq. (3).11 However, in theAlberta study,with J = 14, themain effects for the eleven
site characteristics used by von Haefen and Phaneuf (2008) cannot be reasonably estimated
and are not reported here. A similar problem emerges for the Saskatchewan study, with J =
11. In each table, the second set of parameters are the ρ’s in Eq. (14), reflecting interactions
between individual and site characteristics. In general, these parameters vary substantially
across the various RP and SP specifications, often changing signs and significance. The
pattern of these parameters for the single class models are similar to those reported in von
Haefen and Phaneuf (2008).

Interpreting the individual parameters in Tables 5 and 6 is difficult. In order to illustrate
the differences across the various models, we consider their implications in terms of welfare
estimates for the three scenarios considered for the Alberta (Saskatchewan) data set by von
Haefen and Phaneuf (2008) :

• Scenario A. The closure of site WMU #344 (WMZ #5).
• Scenario B. A decrease moose population from more than 4 per day to 3-4 per day at

WMU #348 (WMZ #7).
• Scenario C. An increase moose population from less than 1 per day to 1-2 moose per day

at WMU #344 (WMZ #5).

11 One exception is the main effect for the “unpaved” site access, since this characteristic varies across sites
and individuals because individuals choose different roads to access the sites.
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Table 5 Parameter estimates for site characteristics—Alberta study

Parameter Model Main Interaction effect

Gen hunt exp Edmonton HS diploma

Est. t-stat Est. t stat Est. t-stat Est. t stat

Unpaveda SC-C 0.41 1.20 −1.19 −2.61 0.51 2.27 −0.45 −1.34

SC-RP 0.88 1.17 −1.29 −0.58 − − −0.88 −1.76

SC-SP −0.02 −0.14 −0.33 −1.32 0.11 2.10 0.04 0.37

LC-C −0.44 −0.10 −0.41 −0.38 0.80 1.09 0.08 0.02

LC-RP 2.55 −6.07 −2.93 −1.42 − − −3.04 −0.51

LC-SP −0.18 −7.62 0.22 0.22 0.12 0.81 0.12 0.09

No trail SC-C −1.73 −1.75 0.44 0.21 −1.93 −5.36 1.44 1.72

SC-RP − − − − − − − −
SC-SP −0.38 −1.48 0.02 0.04 −0.45 −3.69 0.33 1.49

LC-C 2.15 0.20 −2.05 −0.47 −4.6 −5.30 −1.07 −0.10

LC-RP − − − − − − − −
LC-SP −1.19 −0.59 1.37 0.94 −0.16 −0.68 0.58 0.30

Old trail SC-C 1.12 2.35 −1.95 −2.47 1.89 11.85 0.01 0.03

SC-RP − − −1.21 −0.93 1.33 3.05 0.62 1.03

SC-SP 0.17 0.64 0.12 0.17 0.15 1.18 0.12 0.44

LC-C 0.13 0.02 −2.16 −1.08 3.68 8.72 0.21 0.03

LC-RP − − − − − − − −
LC-SP 0.45 0.27 0.10 0.08 −0.21 −1.12 0.14 0.09

4WD Trail SC-C 0.65 1.47 1.76 2.22 0.20 1.24 −0.50 −1.29

SC-RP − − − − − − − −0.56

SC-SP 0.32 1.35 0.07 0.12 0.20 1.79 −0.30 −1.47

LC-C −2.06 −0.35 5.85 3.29 0.70 1.94 1.17 1.94

LC-RP − − − − − − − −
LC-SP 0.96 0.57 −1.25 −0.90 0.17 0.85 −0.56 −0.37

No hunters SC-C 2.61 2.10 −3.57 −1.41 −0.12 −0.29 1.10 0.99

SC-RP −3.66 −1.21 2.60 3.89 −0.48 −0.56

SC-SP 0.56 2.56 −0.79 −1.81 0.04 0.37 0.24 1.38

LC-C 0.98 0.11 −4.28 −0.81 0.44 0.48 3.54 0.40

LC-RP − − −7.63 − 1.50 − 10.41 .

LC-SP 0.97 0.41 −1.13 −0.72 0.02 0.09 −0.06 −0.03

On ATV SC-C −0.93 −1.29 0.39 0.26 0.91 3.88 −0.73 −1.28

SC-RP − − − − − − − −
SC-SP −0.38 −1.79 0.22 0.48 0.09 1.02 0.05 0.27

LC-C 0.05 0.01 3.00 0.92 1.08 1.91 −2.31 −0.43

LC-RP − − − − − − − −
LC-SP −1.01 −0.57 1.31 0.80 0.12 0.57 0.39 0.22

No logging SC-C −0.21 −0.62 1.57 3.61 0.10 0.83 0.03 0.10

SC-RP − − 1.01 0.77 −0.39 −1.11 −0.05 −0.15

SC-SP 0.05 0.38 0.31 0.83 0.01 0.16 −0.09 −0.86
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Table 5 continued

Parameter Model Main Interaction effect

Gen hunt exp Edmonton HS diploma

Est. t-stat Est. t stat Est. t-stat Est. t stat

LC-C −0.18 −0.04 2.28 2.45 0.08 0.29 −0.23 −0.05

LC-RP − − −3.90 −0.63 −2.13 −2.18 2.50 0.31

LC-SP 0.26 0.18 −0.29 −0.33 −0.02 −0.13 −0.15 −0.10

LC-SP 0.26 0.18 −0.29 −0.33 −0.02 −0.13 −0.15 −0.10

<1 Moose SC-C −5.94 −9.79 1.64 2.69 −0.04 −0.22 0.13 0.29

SC-RP – – 0.97 0.56 0.36 0.62 0.32 0.63

SC-SP −1.00 −3.84 −0.24 −0.32 −0.03 −0.24 −0.19 −1.04

LC-C −7.14 −2.65 4.06 2.28 −1.73 −1.69 −0.77 −0.29

LC-RP – – −4.25 −1.51 4.50 5.45 0.63 0.08

LC-SP −1.00 −0.61 −0.20 −0.14 −0.19 −0.95 −0.11 −0.07

1–2 Moose SC-C −0.49 −1.33 −2.72 −5.42 1.64 12.17 0.19 0.61

SC-RP – – −3.35 −1.67 2.53 5.94 0.25 0.55

SC-SP −0.04 −0.21 −0.04 −0.07 −0.09 −0.97 0.05 0.29

LC-C −0.12 −0.04 −0.06 −0.05 2.12 4.38 −0.04 −0.01

LC-RP – – −4.25 −1.51 4.50 5.45 0.63 0.08

LC-SP −0.18 −0.09 0.28 0.20 −0.19 −0.91 0.04 0.02

3-4 Moose SC-C 1.67 4.46 1.03 1.70 −0.29 −1.98 0.31 1.13

SC-RP – – 0.62 0.34 0.34 0.65 0.27 0.37

SC-SP 0.31 1.57 0.31 0.61 0.01 0.10 0.08 0.51

LC-C 2.96 1.28 −0.13 −0.09 0.41 0.94 −0.36 −0.15

LC-RP – – 0.41 0.14 0.28 0.40 3.69 0.91

LC-SP 0.21 0.10 0.19 0.12 0.07 0.29 0.15 0.07

SP outside dummy SC-C −5.99 −8.42 −3.65 −2.64 −1.35 −5.70 −0.49 −0.89

SC-RP – – – – – – – –

SC-SP −1.45 −3.41 −0.81 −0.80 −0.31 −1.41 −0.12 −0.35

LC-C −8.93 −3.72 8.04 2.58 1.76 2.98 −1.25 −0.56

LC-RP – – – – – – – –

LC-SP −0.62 −0.15 −9.17 −4.62 −1.21 −4.05 −0.32 −0.08

Boldface indicated statistical significance at the 5% level. We exclude one site attribute, ‘On foot’ (Encounters
with other hunters on foot), which is used in von Haefen and Phaneuf (2008) since ‘On foot’ has the same
value as ‘No Hunter’, which make perfect multicolliearity problem.
a Unpaved site characteristics varies across sites and individual because individuals choose different roads to
assess the sites

In order to see the alternative CV measures one can compute using the competing models,
consider a generic model of the form:

Ui jt = X jβ + Zi X jρ + pi jγ + ξ j + μεi j t = Vi j + μεi j t , (18)

where Vi j = X jβ + Zi X jρ + pi jγ +ξ j = α j + Zi X jρ + pi jγ. The compensating variation
(per choice occasion) associated with the loss of a single site (as in Scenario A), say site 1,
would have the familiar form:
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Table 6 Parameter estimates for site characteristics—Saskatchewan study

Parameter Model Main Interaction effect

Gen hunt exp HS diploma Urban

Est. t stat Est. t stat Est. t stat Est. t stat

2WD access SC-Consistent 2.54 2.33 0.02 1.17 −0.35 −0.51 −1.40 −2.48

SC-RP – – −0.08 −1.52 −0.15 −0.08 2.31 1.47

SC-SP 0.37 2.43 0.00 0.59 −0.13 −1.19 −0.15 −1.87

LC-Consistent 6.83 2.29 0.01 0.15 0.24 0.14 −3.08 −1.81

LC-RP – – −0.09 -1.42 2.33 0.56 4.67 3.04

LC-SP 0.37 1.97 0.00 1.49 −0.29 −1.94 −0.10 −0.81

4WD access SC-Consistent −0.11 −0.13 0.00 −0.14 1.33 1.84 −0.23 −0.43

SC-RP – – – – – – – –

SC-SP −0.10 −0.75 0.00 −0.14 0.23 2.39 −0.01 −0.08

LC-Consistent 7.22 1.85 −0.17 −2.34 −0.43 −0.18 0.17 0.08

LC-RP – – – – – – – –

LC-SP −0.33 −1.55 0.00 0.28 0.47 2.70 −0.07 −0.64

No hunters SC-Consistent 5.13 2.76 −0.09 −2.60 1.49 1.37 −0.07 −0.10

SC-RP – – 0.01 0.29 −2.15 −1.00 2.41 1.75

SC-SP 0.55 3.62 −0.01 −3.20 0.15 1.39 −0.02 −0.20

LC-Consistent 0.02 0.16 0.00 0.87 −0.12 −1.27 0.03 0.47

LC-RP – – 0.05 0.07 2.65 0.08 2.11 0.11

LC-SP 0.52 1.99 −0.01 −2.96 0.23 1.09 −0.08 −0.64

On foot SC-Consistent −0.26 −0.27 0.05 2.54 −1.67 −2.23 0.74 1.18

SC-RP – – – – – – – –

SC-SP 0.02 0.16 0.00 0.87 −0.12 −1.27 0.03 0.47

LC-Consistent 2.52 0.75 0.11 1.80 −6.89 −2.76 −1.99 −1.17

LC-RP – – – – – – – –

LC-SP 0.03 0.09 0.00 0.23 −0.08 −0.31 0.07 0.45

Forest SC-Consistent 0.74 0.97 0.01 1.27 1.43 2.82 −0.42 −0.92

SC-RP – – 0.01 0.81 1.51 1.32 −0.99 −1.38

SC-SP 0.07 0.79 0.00 0.14 0.18 3.22 −0.03 −0.59

LC-Consistent 1.08 0.64 −0.02 0.61 5.23 0.01 0.96 0.20

LC-RP – – 0.02 0.04 −0.34 −0.02 −1.01 −0.11

LC-SP 0.15 0.58 0.00 0.22 0.03 0.13 0.01 0.09

<1 Moose SC-Consistent −6.04 −4.69 0.00 −0.16 −0.26 −0.68 0.17 0.57

SC-RP – – −0.04 −1.58 0.33 0.37 1.49 2.02

SC-SP −0.51 −3.71 0.00 1.49 −0.12 −1.11 −0.15 −2.14

LC-Consistent −14.43 −5.46 0.04 1.29 0.45 0.44 −0.15 −0.16

LC-RP – – −0.02 −0.74 1.30 0.76 2.56 3.65

LC-SP −0.27 0.35 0.01 0.08 −0.45 0.10 −0.14 0.17
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Table 6 continued

Parameter Model Main Interaction effect

Gen hunt exp HS diploma Urban

Est. t stat Est. t stat Est. t stat Est. t stat

1 Moose SC-Consistent 0.89 0.99 0.03 2.38 −0.39 −0.73 −1.00 −2.13

SC-RP – – – – – – – –

SC-SP 0.00 0.01 0.00 1.47 −0.04 −0.48 0.00 0.04

LC-Consistent 0.57 0.30 0.08 2.23 1.19 1.15 −1.62 −1.71

LC-RP – – – – – – – –

LC-SP 0.01 0.03 0.00 1.07 −0.02 −0.09 −0.06 −0.66

Common species SC-Consistent −2.25 −2.47 0.00 0.12 0.37 0.60 0.72 1.63

SC-RP – – 0.04 0.08 0.31 0.74 −0.71 0.40

SC-SP −0.12 −0.96 0.00 1.95 −0.14 −1.55 0.01 0.14

LC-Consistent −1.40 −0.43 0.01 0.14 −1.13 −0.55 −0.83 −0.41

LC-RP – – 0.03 0.24 −0.28 0.89 −0.97 0.19

LC-SP 0.02 0.96 0.01 0.10 −0.41 0.38 0.05 0.66

Unseen species SC-Consistent −0.30 −0.26 −0.02 −0.79 1.18 1.28 0.11 0.20

SC-RP – – – – – – – –

SC-SP −0.03 −0.27 0.00 −0.92 0.13 1.47 0.01 0.13

LC-Consistent 3.19 0.63 −0.13 0.31 1.58 0.69 0.84 0.83

LC-RP – – – – – – – –

LC-SP −0.23 −0.68 0.00 −0.15 0.28 0.88 0.01 0.10

SP outside dummy SC-Consistent −8.38 −2.54 0.07 1.16 −6.46 −2.70 −4.37 −2.44

SC-RP – – – – – – –

SC-SP −0.90 −2.93 0.01 1.21 −0.68 −3.20 −0.45 −2.70

LC-Consistent −53.93 −6.51 −0.21 −2.91 44.41 6.07 1.54 0.72

LC-RP – – – – – – – –

LC-SP −0.40 −1.65 0.02 4.63 −2.86 −14.09 −0.47 −2.94

Boldface indicated statistical significance at the 5% level

CVi1A = 1

γ /μ

⎧⎨
⎩ln

⎡
⎣∑

j �=1

exp

(
Vi j
μ

)⎤
⎦−ln

⎡
⎣

J∑
j=1

exp

(
Vi j
μ

)⎤
⎦
⎫⎬
⎭= 1

γ /μ
ln (1−Pi1) , (19)

where

Pi1 =
exp

(
Vi1
μ

)

∑J
j=1 exp

(
Vi j
μ

) (20)

denotes the probability of choosing site 1 under baseline conditions. Note that we have
explicitly carried through the scale parameter μ to emphasize its role in the CV calculation.
There are several implications of Eq. (19). First, becausewe are interested in valuing a specific
site, parameters from models based on SP data alone (i.e., SC-SP or LC-SP) cannot be used
to compute CVi1A. Equation (19) requires estimated of the ξ j ’s or α j ’s in order to compute
Vi j ’s and the RP data in this case is the only source of information on these parameters.
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Second, the scale parameter used in the calculation of Pi1 must be the same as the scale
parameter used in computing the normalized marginal utility of income γ /μ. This leaves
five possible measures of CVi1A using the estimated models above:

1. Measure 1: Single Class ConsistentModel. Using themodel imposing consistency across
the RP and SP data sources, we can compute

CV SC−C
1A = 1

γ SC−C
ln
(
1 − PSC−C

i1

)
, (21)

where γ SC−C denotes the estimate of γ C based on the model in Eq. (6). PSC−C
i1 is

computed using the corresponding parameter estimates. This measure combines data
from both the RP and SP data sources, but imposes consistency across the two sources.

2. Measure 2: Single Class RP Model. Using only the RP data source, we can compute

CV SC−RP
1A = 1

γ SC−RP
ln
(
1 − PSC−RP

i1

)
, (22)

where γ SC−RP denotes the estimate of γ RP based on the model in Eq. (5). The measure
makes no use of the SP data sources.

3. Measure 3: Latent Class Model—Consistent Class Only. Using our latent class model
results for the consistent class, we can compute

CV LC−C
1A = 1

γ LC−C
ln
(
1 − PLC−C

i1

)
, (23)

where γ LC−C denotes the estimate of γ C for the consistent class in the latent classmodel.
While this measure draws on both the RP and SP data sources, it does so only for the
consistent class, and thus may not be representative of the population as a whole.

4. Measure 4: Latent Class Model—Inconsistent Class RP Results Only. Using our latent
class model results for the RP portion of the inconsistent class, we can compute

CV LC−RP
1A = 1

γ LC−RP
ln
(
1 − PLC−RP

i1

)
, (24)

where γ LC−RP denotes the estimate of γ RP for the inconsistent class in the latent
class model. This measure ignores both SP data and the consistent class portion of the
population.

5. Measure 5: Latent ClassModel—Weighted Average. Using our latent class model results,
we can compute weighted average of class-specific CV estimates following (16); i.e.,

CV
IC
1A = s · CV LC−C

1A + (1 − s) · CV LC−RP
1A , (25)

The advantage of this, our preferred measure, is that it incorporates information from
both classes and, for the class indicating consistency between the RP and SP data sources,
it draws on the SP data to improve the estimate of the associated welfare loss.

In the case of a quality changes to the characteristics of a single site (as in Scenarios B and C),
the possibilities are more limited. The general compensating variation formula for a change
in the observed attributes of site 1 from X1 to X1 + �X1 takes the generic form
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CVi1B = 1

γ /μ

⎧⎨
⎩ln

⎡
⎣exp

(
Vi1 + �X1β + Zi�X1ρ

μ

)
+
∑
j �=1

exp

(
Vi j
μ

)⎤
⎦

−ln

⎡
⎣

J∑
j=1

exp

(
Vi j
μ

)⎤
⎦
⎫⎬
⎭

= 1

γ /μ
ln

[
Pi1 · exp

(
�X1β + Zi�X1ρ

μ

)
+ (1 − Pi1)

]
. (26)

The available welfare measures are few in the current application. In particular, we can no
longer construct the counterparts to Measures 2, 4 or 5 above, since for the Inconsistent class
we are not able to isolate βRP .12 This leaves two possibilities:

1. Measure 1: Single (Consistent) Class Model. Using the model imposing consistency
across the RP and SP data sources, we can compute

CV SC−C
1B = 1

γ SC−C
ln
[
PSC−C
i1 exp(�X1β

SC−C + Zi�X1ρ
SC−C ) +

(
1 − PSC−C

i1

)]
.

(27)

2. Measure 3: Latent Class Model—Consistent Class Only. Using our latent class model
results for the consistent class, we can compute

CV LC−C
1B = 1

γ LC−C
ln
[
PLC−C
i1 exp(�X1β

LC−C + Zi�X1ρ
LC−C ) +

(
1 − PLC−C

i1

)]
.

(28)

Note that both of these measures are available only when consistency is imposed, either for
the entire population (in the case of Measure 1) or for the consistent class (in the case of
Measure 3).

Table 7 provides the resulting welfare estimates for the three scenarios for each of the
data sets. Starting with the Alberta study, the closure of site WMU #344 (Scenario A) yields
welfare losses that vary substantially across the 5 measures. For example, the compensating
variation is more than three times larger for the inconsistent class (Measure #4) relative to its
consistent class counterpart (Measure #3). Our preferred measure in this case (Measure #5)
provides a compromise, drawing on the SP to improve thewelfare estimated for the consistent
class (i.e., when consistency between the RP and SP sources is suggested), while drawing
only on the RP source when consistency is not suggested. However, many of the welfare
measures would not appear to be statistically significant from each other. Indeed, Measures
#2, #4, and #5, all of which rely heavily on the RP data, are each imprecisely measured
and not individually significantly different from zero.13 On the other hand, Measures #1 and
#3, which impose some form of consistency between the RP and SP data, are statistically
significantly different from zero and would appear to be significantly different from each
other. Unfortunately, a formal test in this case is not possible without an estimate of the
correlation between the two measures, which we lack.

12 In general, one could estimate βRP using a second stage regression, as suggested by Murdock Murdock
(2006). Doing so would allow for a total of five welfare measures, paralleling those available for the site loss
scenario. However, in the current case we have too few of sites to do so. Even with more sites, endogeneity
concerns would require the use of suitable instruments, which may not always be available.
13 Since the parameters used in constructing Measures #3 through #5 are jointly estimated, we can test for
pairwise differences among the measures. In all pairwise comparisons, the differences are not statistically
significant.
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Table 7 The results of welfare
analysis

Bootstrapped standard errors in
parentheses

Measure Scenario A Scenario B Scenario C

a. Alberta Study

Measure #1: Single class
Consistent

−3.46 −9.12 100.30
(0.34) (0.96) (20.28)

Measure #2: Single class,
RP Only

−4.09 – –

(2.96)

Measure #3: Latent Class,
Consistent Class Only

−2.10 −6.71 56.97
(0.68) (7.75) (21.37)

Measure #4: Latent Class,
Inconsistent Class RP
Only

−7.61 − –
(12.03)

Measure #5: Latent Class,
Weighted Average

−4.76 – –
(5.88)

b. Saskatchewan Study

Measure #1: Single class:
Consistent

−14.95 −14.23 147.29
(0.91) (1.09) (21.87)

Measurement #2: Single
class RP Only

−16.17 – –
(4.28) – –

Measure #3: Latent Class:
Only Consistent Class

−299.47 −111.42 0.17
(47.4) (28.86) (0.67)

Measure #4: Latent Class:
Only Inconsistent Class
RP Only

−37.59 – –
(11.83) – –

Measure #5: Latent Class:
Weighted Average

−126.22 – –
(18.98) – –

In the case of the Saskatchewan data set, we again see substantial differences among
the competing welfare measures. However, in this study all of the welfare measures are
individually significant at a one percent significance level and most would appear to be sig-
nificantly different from each other. Indeed, because the parameters used in constructing
Measures #3 through #5 are jointly estimated, we can explicitly test for pairwise differences
among the measures. In all pairwise comparisons, the differences are statically signifi-
cant.

Turning to the other two scenarios, there are substantial differences between the available
measures for both studies and both scenarios. In the case of the Saskatchewan study, in
particular, there would appear to be large and statistically significant differences between
Measures #1 and #3. Unfortunately, there are also substantial limitations associated with
both of the available welfare measures. Specifically, Measure #1 relies on the assumption
that the RP and SP data are drawn from the same underlying preference, a restriction that
is rejected by the data. Measure #3, on the other hand, only combines the RP and SP data
for the consistent class, but the resulting welfare measure is applicable only for that class.
There are two solutions to this problem in a more general setting. First, the latent class
model could be generalized to make class membership a function of individual attributes.
In this way, one could better characterize the subpopulation belonging to the consistent
class and for whom Measure #3 would be applicable.14 Second, in a setting with more

14 This generalization was estimated using the Alberta Moose Hunting data, but none of the available demo-
graphic factors were found to significantly impact class membership.

123



1078 H. Jeon, J. A. Herriges

sites, a second stage regression could be used to estimate marginal effect of individual site
attributes, as suggested in Murdock (2006). In this case, five welfare measures analogous
to the five welfare measures for site closure would be available, including Measure #5 that
uses a class-weighted average of the welfare measures from the consistent and inconsistent
classes.

6 Conclusion

Models of consumer preferences that draw on both stated and revealed preference data have
the potential to improve upon models that rely on either data source alone. This potential,
however, is predicated on the implicit or explicit assumption that the SP and RP data are
truthful revelations of the same underlying preferences. To date, the literature has assumed
that the consistency between RP and SP data is an “all or nothing” proposition. If con-
sistency is not rejected by the data, then a combined RP/SP model is used to generate
welfare estimates, whereas if consistency is rejected then the typical response is to rely
upon revealed preference data alone. The purpose of this paper has been to suggest a middle
ground, explicitly modeling the RP and SP data using a latent class framework in which
the population is segmented into two classes; i.e., consistent and inconsistent classes. We
see two distinct advantages to this approach. First, the resulting welfare calculations (our
Measure #5 above) represents a compromise between the existing two extremes (Measures
#1 and #2). For the consistent class, the welfare impact draws on both the RP and SP data
sources, using the latter to increase the precision with which a given compensating varia-
tion is estimated, whereas for the inconsistent class the RP portion of the model alone is
used. Second, the latent class model structure would allow class membership itself to be
modeled as a function of individual characteristics or attitudinal metrics. In this case, one
could potentially identify which respondents aremore likely to fall into the inconsistent class,
information that could potentially be used to mitigate such inconsistencies in future survey
applications.
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