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Abstract We investigate the role of potential regime shifts in Argentinean hake fishery and
the inter-linkage between ecological and economic resilience.We develop a theoreticalmodel
incorporated with the hazard function for resource management under alternative conditions,
and derive the corrective tax. Applying the model to the case of Argentinean hake fishery, we
obtain insights for fishery management in the presence of risk for a regime shift. Based on
three value functions, our model simulation indicates that the higher the relative loss from
the fishery collapse, the more important the risk management would be with the resilience
value taken into account. A higher level of fish stock leads to a higher optimized value and
a lower corrective tax rate. When the stock level is lower, we need to introduce a higher tax
rate to best avoid the fishery collapse. Decomposing the marginal value of the fish stock into
a stock service value for fish production and a resilience value for flip risk reduction, we find
that a higher fish stock leads to a lower tax rate because of the higher resilience of the fish
stock, and hence the corrective tax rate as an instrument for managing fishery becomes less
important.

Keywords Regime shifts · Resilience · Corrective tax · Marine ecosystems · Argentinean
hake fishery (Merluccius hubbsi)

B Sebastian Villasante
sebastian.villasante@usc.es

1 Department of Economics, Uppsala University, Uppsala, Sweden

2 Department of Applied Economics, University of Santiago de Compostela-Campus Do*Mar,
International Campus of Excellence, A Coruña, Spain

3 Environmental Economics and Natural Resources Group, Wageningen University, Wageningen,
The Netherlands

4 Faculty of Political Sciences, University of Santiago de Compostela, Av Angel Echevarry s/n,
Santiago de Compostela, A Coruña, Spain

5 The Beijer Institute, Royal Swedish Academy of Sciences, Stockholm, Sweden

6 School of Business, Ningbo University, Zhejiang, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10640-016-0038-y&domain=pdf


624 C.-Z. Li et al.

1 Introduction

Marine ecosystems play a crucial role in supporting economic prosperity and social welfare
in the adjacent human communities Costanza et al. (2014). However, coastal areas and their
ecosystems are subject to an increasing number of competing and conflicting activities as the
world’s population continues to grow (Folke et al. 2011). The impacts of human activities
are altering the structure and functioning of ecosystems, thus reducing ecosystems’ capacity
to generate ecosystem services (MEA 2005) and crossing planetary boundaries which can
put at risk the welfare of the human being (Steffen et al. 2015).

These outcomes result from a long-standing approach to managing marine ecosystems
basedonaflawedconceptualmodel that consists on thenarrowlydefined “optimal” harvesting
of targeted stocks in systems that are assumed to be stable (Hughes et al. 2005). An emerging
approach in favor of management practices that recognize coupled social-ecological systems
is characterized by complex, non-linear and dynamic thresholds and inherent uncertainties
(Scheffer and Carpenter 2003).

By this approach, thresholds play a key role in identifying critical points (Crépin et al.
2011). Thresholds are defined as the critical levels of one or more drivers or state variables
that, when crossed, trigger abrupt changes (i.e. regime shifts) in the system (Hughes et al.
2005). In the same way but with different meaning and implications, a tipping point is a
threshold for transformation from an old to a new system controlled by different critical slow
variables and feedbacks (Chapin et al. 2009). When resilience has been eroded, a disturbance
that previously shook and revitalized the resilient system, might now push the fragile system
over a threshold into an alternative state with a new trajectory of change (Chapin et al. 2009a).
In some cases, crossing the threshold brings about a sudden, large, and dramatic change in
the responding state variables (Folke et al. 2011).

In this paper we model the hazard of potential regime shifts for the Argentinean hake
(Merluccius hubbsi) fishery. We consider a representative resource manager in an optimal
control theory setting to explore the implications of ignoring the risk of fishery collapse
and the corrective taxes for harvests. Our model bears certain resemblance to Pindyck (1984)
with an essential difference in that the loss-in-value is caused by the potential fishery collapse
rather than the risk aversion loss from stock uncertainty. Under the ideal situationwith perfect
surveillance and compliance of the fishermen, we analyze the value of the biological stock
for consumption and resilience services.

The objective of this paper is twofold. First, we explore the interlinkage between eco-
logical and economic resilience in industrial fisheries in developing countries; and next we
investigate the role of potential regime shifts in the Argentinean hake fishery. The remaining
part of the paper is structured as follows. Section 2 presents the main biological character-
istics of the Agentinean hake fishery. Section 3 outlines the theoretical model incorporated
with the hazard function and derives the Hamilton-Jacobian-Bellman equations for resource
management under alternative conditions, i.e. with and without taking into account the risk
of regime shifts. We also derive formulas for the corrective tax and the value of resilience
services from the model. Section 4 describes the data on the biological growth as well as the
economic data on demands and harvest costs, and estimates the model parameters for numer-
ical optimization process. Section 5 presents our simulation results based on the key model
parameters and perform sensitivity analyses from uncertain parameters. Optimal and subop-
timal value functions are derived and the marginal stock value decomposed into consumption
value and resilience services. In Sect. 6, we sum up the study.
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2 The Argentinean Hake (Merluccius hubbsi) Fishery

TheArgentinean continental shelf extends for 769, 400 km2, its EEZ surface is 1,164,500km2

and the length of its coastline is 4725 km (FAO 2014), with an extension reaching 640km in
the Falkland (Malvinas) Islands and ending to the east with a steep slope that starts at 180
meter deep (Boltovsky 1981).

The Argentinean hake is a demersal and benthopelagic species distributed along the con-
tinental shelf off Argentina and Uruguay, occasionally reaching Brazilian waters (Aubone
et al. 2000). The Argentinean hake fishery is one of the most relevant demersal fishery in
Latin America (Villasante and Österblom 2015). Due to its abundance, broad distribution,
and scale of landings, the fishery sector is a driver for development in Argentina (Villasante
et al. 2014). The fishery sector includes around 50% of Argentinean fishing vessels, more
than 10,000 direct jobs, and 40% of fisheries exports in recent years (Villasante et al. 2016).

During the period of high exploitation between 1987 and 1997, landings of Argentinean
the hake fishery (including bothNorthern and Southern 41 ◦ S stocks) increased from 435,000
to 645,000 tonnes (Dato et al. 2006). In response to the growing risks of collapse, the Federal
Fisheries Council reduced the total allowable catch to 189,000 tonnes in 1999, compared to
298,000 tonnes in the previous year, which leads to the decline of total biomass and land-
ings. At the same time, there has been an increase in discards, mainly juveniles (between 11
and 24% of total landings during the period 1990–1997) (Dato et al. 2006), which repre-
sents economic losses of 11–77 million US$ (Villasante et al. 2014). Recent analysis of the
Argentine hake fishery suggest that total removals (including reported catches, discards and
illegal, unreported and unregulated catches) from Argentinean waters are 50% higher than
reported catches (Villasante et al. 2016). This phenomenon is putting at risk the sustainability
and resilience of the fishery. In fact, the latest evidence indicates that stocks of the fishery
are declining over time (Irusta 2015; Santos and Villarino 2015), in particular the total and
reproductive biomass of the Northern stock that diminished 80% in the period 1984–2014
(Irusta 2015).

3 The Model

In this section, we develop a model of fishery management by taking into account the risk
of fishery collapse1 due to fish stock changes. We distinguish three value functions: ideal,
optimal and non-optimal value functions. The ideal value is the one where there is no risk
of fishery collapse. The optimal value is the one where we take into account the risk of flips
in fishery, and the non-optimal value is the one ignoring the risk of fishery flips. With these
value functions, we will be able to characterize the loss caused by the risk of flips and the
loss due to non-optimal management.

Let x (t) be the stock of the hake population at time t , and x̃ some threshold stock level
below which a fishery collapse would occur. As long as the actual stock is greater than the
threshold level, the stock dynamics is assumed to follow the standard logistic growth function,

ẋ(t) = f (x(t)) − q(t) = r x(t)

(
1 − x(t)

K

)
− q(t),with x(0) = x0 (1)

where r and K are the instrinsic growth rate and the carrying capacity, respectively, and q (t)
denotes the harvest rate at time t (the dot above x denotes time derivative). Initially, we have

1 In this paper,we use the three terms regime shifts of fishery, fishery collapse andfishery flips interchangeably.
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a normal regime. As time goes, however, there is always a risk for the actual stock to cross
the threshold level with x < x̃ such that the growth process may undergo abrupt changes
in the parameter values, which may result in substantial economic losses (cf. Polasky et al.
2011; de Zeeuw 2014).

Let p (q) be the inverse demand function, which takes a functional form p (q) = aq−b for
a, b > 0, with price elasticity of demand, b−1. Then, the net social surplus can be expressed
as B (q) = ∫ q

0 p (q) dq − cq , or more explicitly B (q) = a
1−b q

1−b − cq , where c is the
unit harvest cost. We impose 0 < b < 1, since the social inputs would be infinite if b is
equal or greater than 1 with an inelastic demand. If the stock would always be greater than its
threshold such that the stock dynamics equation (1) holds, we can express the present value
of social surplus from the stream of future harvest q (t), t ≥ 0, as

J (x0) =
∫ ∞

0
B (q (t)) exp (−ρt) dt, (2)

where ρ is the discount rate.
As time goes, there is a probability for the fish stock to go below its threshold level causing

a regime shift. This may reduce the future value of stocks through different channels such
as an abrupt downward jump in the carry capacity and/or the intrinsic growth rate (Polasky
et al. 2011; de Zeeuw 2014). Suppose that a regime shift occurs at a known date T > 0, then,
the post-event value function becomes

φ (x (T )) =
∫ ∞

T
B (q̄ (t)) exp (−ρ (t − T )) dt (3)

where q̄ (t) represents the best management practice for t ≥ T , conditional on the “initial”
stock x (T ) but a disturbed and less desirable dynamic process with lower intrinsic growth
rate and carrying capacity. Facing the risk of a future flip, the decision-maker is assumed to
maximize the expected present value at time 0 with respect to q (t) over the pre-event period
[0, T ], i.e.

V (x0) = ET

{∫ T

0
B (q (t)) exp (−ρt) dt + φ (x (T )) exp (−ρT ) dt

}
(4)

where the expectation operator is taken with respect to the stochastic flip date T . While the
first term in the curved brackets represents the present value of the stream of social surplus
over the period of the normal regime, the second term is the present value of the “scrap”
value at the start of the post regime-shift period.

Following Cropper (1976), Clarke and Reed (1994), Tsur and Zemel (2004, 2006) and
Maler and Li (2010), among others, we can use the integration-by-parts formula to re-express
the objective function in (4) as

V (x0) =
∫ ∞

0
S (t) [B (q (t)) + λ (x (t)) φ (x (t))] exp (−ρt) dt (5)

where λ (x (t)) is the hazard rate for a given stock x (t) at time t , and S (t) =
exp

[
− ∫ t

0 λ (x (s)) ds
]
is the survival probability up to time t ≥ 0, with S (0) = 1. Since

the survival function is an exponential function, as known in the literature, it is also pos-
sible to merge it with the original discount factor to arrive at an effective discount factor

exp
[
− ∫ t

0 (ρ + λ (x (s))) ds
]
. Note that the expression in (5) is the present value of the

expected stream of social surpluses over an infinite time horizon, in contrast to the expected
sum of the benefits from the normal and post-event present values.
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The present value function, conditional upon survival at time t > 0, with a stock x (t),
can be written as

W (x (t)) =
∫ ∞

t

S (s)

S (t)
[B (q (s)) + λ (x (s)) φ (x (s))] exp (−ρ (s − t)) ds (6)

which is time-autonomous since the time horizon is infinite and the harzard rate function is
not explicitly dependent on time.

In this paper, for convenience, we work directly on the hazard of fishery collapse (and
hence the conditional probabilities over time) rather than the density functions defined on
the threshold stock level. In particular, we adopt the following functional form

λ (x (t)) = −dS (t) /dt

S (t)
= − ln

[
1 − exp

(
− x2 (t)

2σ 2

)]
(7)

where σ > 0 is a scale parameter measuring the degree of uncertainty in the threshold
stock. It can be readily shown that the hazard rate function satisfies the properties λ (0) =
∞, λ′(x) < 0 and λ (∞) = 0. At a zero stock level, the hazard rate is infinite i.e. the regime
would shift immediately, whereas when the stock level would be infinitely large, the hazard
rate would be zero meaning that it is completely resilient and thus safe. In practice, however,
the fish stock is finite and constrained by the carry capacity with a positive hazard rate, and
thus there is no stock level that is completely safe.

The decision-maker is assumed to optimize the stream of harvests, and the Bellman equa-
tion over the pre-event period can be expressed as (with the time argument suppressed):

0 = max
q

[B (q) − λ (x) (W (x) − φ (x)) − ρW (x) + Wx (x) ( f (x) − q)] (8)

where f (x) denotes the logistic growth equation with normal growth parameters as in (1).
The first-order optimality condition becomes

B ′ (q) = Wx (x) (9)

i.e. the marginal social surplus per unit of harvest equals the shadow price of the fish stock.
Using the inverse demand function, p (q) = aq−b, together with (8), we can derive the
feedback harvest rule as

q (Wx ) =
(

a

c + Wx

) 1
b

(10)

which indicates that the larger a unit of fish stock is valued, the smaller amount would be
harvested for immediate consumption. The potential value for future consumption would be
higher if the unit is left for growth. Together with the hazard function in (7) and the Bellman
equation in (8), this rule leads to the following first-order nonlinear differential equation:

ρW (x) = a

1 − b
(q (Wx ))

(1−b) − cq (Wx ) − λ (x) (W (x) − φ (x))

+Wx (x) ( f (x) − q (Wx )) (11)

As compared to Pindyck [1984, equation (14)], we have an expected concurrent loss term
λ (x) (W (x) − φ (x)) caused by the risk of a regime shift rather than the risk-aversion loss
from stock uncertainty. Conditional on survival today, the flip probability over an infinitesimal
period dt is λ (x) dt and if a flip occurs, the loss would be W (x) − φ (x) i.e. the difference
in the capitalized value based on the two different regimes. Following Weitzman (2003), the
sum of the other terms on the right-hand side of (11) can be interpreted as the stationary
equivalent of future social surplus, under the ideal normal regime condition with no flip
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risk. Together with this loss term, the whole expression represents the risk-adjusted constant
equivalent value of future social surplus (cf Tsur and Zemel 2006). In other words, the present
discounted value of the realized future social surplus is exactly equal to the present value of
a hypothetical constant flow of benefit given by (11).

By solving the differential equation (11) for the value function W (x), we can determine
the feedback harvest decision rule according to (10), and characterize the optimal time path
for the harvest and stock variables using equation (1), i.e. (q∗ (s) , x∗ (s)), for s ≥ t . With
the total functional value with a stock level x given by

W ∗ (x) =
∫ ∞

t

S (s)

S (t)

[
B

(
q∗ (s)

) + λ
(
x∗ (s)

)
φ

(
x∗ (s)

)]
exp (−ρ (s − t)) ds (12)

The marginal stock value can be derived to be

∂W ∗ (x)

∂x
=

∫ ∞

t

[
S (s)

S (t)

(
B ′ (q)

∂q∗ (s)

∂x
+ λ

(
x∗ (s)

)
φ′ (x∗ (s)

) ∂x∗ (s)

∂x

)]
D (s, t) ds

+
∫ ∞

t

1

S (t)

[
∂S (s)

∂x
B

(
q∗ (s)

) + ∂θ (s)

∂x
φ

(
x∗ (t)

)]
D (s, t) ds (13)

where D (s, t) = exp (−ρ (s − t)) is the discount factor and θ (s) = S (s) λ (x (s)) is the
probability density with respect to flip time s. Note that the first integral in (13) represents
the contribution of an extra unit of the resource to stock services for fish production (i.e. the
scarcity value), and the second integral can be interpreted as the resilience value of the stock
for reducing the risk of future regime shifts.

In addition to the optimal value function W ∗ (x) in (12), we are also interested in two other
value functions as defined below. First, we consider the ideal case without any risk of regime
shifts. Then, the decision-maker would maximize the ideal objective function (2) subject
to the stock dynamics Eq. (1) under the normal growth parameter values. By denoting the
optimal solution to this hypothetical problem with (q̃ (s) , x̃ (s)), we define the ideal value
function, for any given stock x at time t , as W̃ (x) = ∫ ∞

t B (q̃ (s)) exp (−ρ (s − t)) ds.
Technically, the ideal value function W̃ (x) can be found by solving the differential equation
in (11) by ignoring the expected loss term λ (x) (W (x) − φ (x)). In the presence of fishery
collapse risks, however, the solution (q̃ (s) , x̃ (s)) is obviously not optimal since the risks
are ignored in the optimization process. Then, we define the non-optimal value function as

W 0 (x) =
∫ ∞

t

S̃ (s)

S̃ (t)

[
B (q̃ (s)) + λ (x̃ (s)) φ (x̃ (s))

]
exp (−ρ (s − t)) ds (14)

i.e. the value of the objective functional (6) evaluated along the “wrong” solution (q̃ (s) , x̃ (s))
derived from completely ignoring the risks of regime shifts. As compared to the case with
optimal solution, the survival probability S̃ (s) for s > t is expected to be smaller.

By using the three different value functions, the ideal value function, the optimal value
function and the non-optimal value function, we will be able to characterize the welfare loss
caused by the risks of fishery collapse and to determine the corrective taxes (cf. Arrow et al.
2004). The corrective tax per unit of harvest can be readily derived as

τ (x) = W ∗
x (x) − W̃x (x) (15)

i.e. the deviation between the marginal stock values based on the optimal and the ideal value
functions with W ∗

x (x) = ∂W ∗ (x) /∂x and W̃x (x) = ∂W̃ (x) /∂x , respectively. Without
taking into account the risk of regime shifts, i.e. by ignoring the resilience service value of
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the stock, the resulting marginal value W̃x (x) is smaller than the optimal one W ∗
x (x), and

therefore the corrective tax should be positive.

4 Data and Model Parameter Estimates

As discussed above, if the Hake stock undergoes some threshold level, the fishery collapse
would be unavoidable with serious economic losses associated. In this section, we estimate
the bio-economic model using time series data on fish stock, catch, price and cost in order to
examine the optimal harvest strategy and the economic losses caused by neglecting the risk
of regime shifts.

The time series data for both stocks and landings as well as the price and consumption
of the Argentinean hake originate from Irusta and D’Atri (2009) and Renzi et al. (2009)
covering the period from year 1986 to 2007.

Using the stock and catch data, we have estimated the logistic growth function as

f (x) = 0.8806x
(
1 − x

2.1736

)
(16)

where x denotes the total stock of the Argentinean hake and f (x) the annual growth both
in million tonnes. The estimated carrying capacity is 2.1736 million tonnes, at which the net
growth rate would be zero even without human harvests since the regeneration and mortality
rate are balanced at such a stock level. Note that in our dataset, the stock value ranges from
about 0.49 to 1.96 million tones, outside of which we do not have any observations. What
happens when the stock is below 0.49 is not known with certainty, but scientific evidence
and earlier experience in fisheries management indicate that if some critical level is crossed,
the fisheries may collapse with serious economic losses (Da Rocha et al. 2012).

In this paper, we consider the threshold stock to be stochastic due to exogenous shocks,
which is different from the endogenous threshold problem (Tsur and Zemel 2004). Even if
it is safe today and the fish stock is non-declining, there is still a risk that a regime shift
would occur tomorrow due to stochastic shocks. In the scientific community, there has been
no consensus on how to determine the threshold level. Following Myers et al. (1997), a
reference biomass of 20% of the virgin biomass (i.e. the carrying capacity) is a commonly
used biological threshold. In this study with an estimated carrying capacity being 2.1736
million tonnes, this threshold becomes 2.1736 · 0.2 ≈ 0.4347 million tonnes, somewhat
below the lowest hake stock level available in our dataset. However, the threshold defined as
such does not mean that crossing it would lead to an immediate regime shift2. When the fish
stock is below such a level, it is the mean recruitment per unit of the stock that is expected
to be lower than in the normal case. This means that it is possible for a regime shift to occur
even if the stock is above 0.4347 million tonnes and it is not for sure that a regime shift would
occur when the actual stock is below that level. To calibrate our model, we assume that the
probability of a regime shift over a year, evaluated at the biological threshold according to the
20% rule, to be the usual statistical significance level of 5%. Then, by solving the hazard rate

equation λ (0.4347) = − ln
(
1 − exp

(
− 0.43472

2σ 2

))
= 0.05, we obtain the scale parameter to

be about σ = 0.1776.
The demand function is estimated using the price and catch data (Renzi et al. 2009)

according to p (q) = exp (6.6262) q−0.1646. The unit cost of harvesting the fish is on average

2 The difficulty of setting such a reference level is a general problem not limited to this particular study. See
Cai et al. (2012) on climate thresholds.
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Table 1 A description of the basic model parameters

Parameter Value Description

a 630 A demand function parameter

b 0.1646 Demand elasticity (−1/b)

c 404 Harvest cost in US$ per tonne

τ 0.8806 The intrinsic growth rate

K 2.1736 The carrying capacity in million tonnes

ρ 0.10 The annual discount rate

β 0.30 The relative value loss of fishery collapse

σ 0.1776 The scale parameter on threshold uncertainty

c = 404 US dollars per tonne. To apply the model outlined in the previous section, we also
need to specify the other economic parameters. To start with, we consider the annual discount
rate to be ρ = 10%, and assess the post-event value function to be φ (x) = (1 − β)W (x)
with β = 0.3 (i.e. the present value of the same fish stock in the disturbed regime corresponds
to only 70% of the value in the normal regime). We attribute the loss here to possible
reductions both in the carrying capacity and the intrinsic growth rate of the fish stock (cf.
Polasky et al. 2011; de Zeeuw 2014). For simplicity, however, we directly specify the loss in
the value function rather than deriving it from the assumed shift in the underlying parameters
since the technical details as such are not the main focus of this paper. We will analyze
the fishery management problem using the parameter values in Table 1, and then conduct
sensitivity analyses for other parameter values.

5 Optimization and Simulation Results

To solve the optimization problem, we apply a modified version of the stochastic control
moduleScsolve in the Matlab ToolboxCompEcon developed by Miranda and Fackler (2004).
Instead of modeling the risk aversion loss caused by stochastic variations in the resource
stock dynamics in the package, we consider the expected loss from a potential regime shift
λ (x) (W (x) − φ (x)) in our problem. Similar to earlier studies on abrupt environmental
changes (Cai et al. 2012) with some percentage loss of GDP, we assume here a certain
percentage loss in the optimal value. For example, if the relative loss from a fishery collapse
is β = 30%, then the post-event value would be φ (x) = (1 − 0.3)W (x) = 0.7W (x) .

We adopt the optimization techniques as Miranda and Fackler (2004) by value function
iteration and the collocation method for functional approximation3. The first step involves a
polynomial approximation of the unknown value functionW (x) at a number of n Chebyshev
nodes x ∈ [xmin, xmax ], i.e.W (x) = ∑n−1

i=0 ci xi with an “educated guess” of the coefficients
c0i , i = 0, 1, 2, . . . , n − 1. Such an “initial” value function, say, W 0 (x), implies a certain
harvest rule and stock dynamics according to (10) and (1). This, in turn, implies a value
functionW 1 (x) in the next iteration according to (11). The next step attempts to fit the value
function W 1 (x) with a new set of coefficients c0i , i = 0, 1, 2, . . . , n − 1, in the polynomial
approximation. We iterate the process with j = 0, 1, 2, . . . , until convergence satisfying
W j (x) − W j−1 (x) < ε, with ε as a pre-determined tolerance level (the default level is

3 The Matlab codes are available by request.
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Fig. 1 The ideal, optimal and non-optimal value functions

Table 2 The different value functions and corrective taxes

Resource The ideal Optimal Non-optimal Corrective
stock value function value function value function Tax

X W̃ (x) W∗ (x) W 0 (x) τ (x)

0.1 1584 1220 1132 2097.0

0.2 1723 1570 1266 1634.6

0.3 1813 1766 1414 598.5

0.4 1882 1870 1627 174.8

0.5 1938 1936 1845 42.8

0.6 1987 1986 1968 8.4

0.8 2067 2067 2067 0.2

1.0 2132 2132 2132 0.0

1.4 2236 2236 2236 0.0

1.8 2316 2316 2316 0.0

10−8). According to the Weierstrass theorem, any continuous real-valued function W (x)
defined on a bounded interval can be approximated to any degree of accuracy by a proper
polynomial, and empirical evidence indicates that the Chebyshev nodes are the points for
efficient approximation.

Based on the model parameters in Table 1, we study three cases: ideal, optimal and non-
optimal as mentioned in Sect. 3. We first study the ideal case in the absence of any risk of a
regime shift with the hazard rate λ (x) = 0 in (11). The resulting ideal value function W̃ (x)
under a normal regime is depicted in Fig. 1 (marked by ’+’) with some sample values reported
in the second column in Table 2. By solving the differential equation (11) with the hazard
rate defined in (7), i.e. by taking into account the risk of a regime shift, we can determine the
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optimal value function W ∗ (x) as shown in Fig. 1 (marked by “*”) and in the third column
of Table 2.

Compared to the ideal solution, the optimal value is smaller due to the regime shift risk,
especially for the lower stock levels. This can be better visualized in Fig. 1, in which the curve
marked by ’+’ depicts the ideal value function, while that marked by ’*’ the optimal value
function. Although the ideal value is higher, it is not attainable without eliminating the flip
risks. The optimal value is the best attainable one by trading-off the benefits of harvest and the
cost of potential flips. In comparison, the worse case is the non-optimal management where
the decision-maker would disregard the real risk of a regime shift, resulting the lowest value
function as shown in the fourth column (Table 2) and in the curve marked by ’o’ in Fig. 1.
Take x = 0.2 for example, the non-optimality loss in value becomes 1766 − 1414 = 352
million US$. In other words, the benefit from harvesting an extra unit of fish cannot cover
the cost from the increased flip risk caused by harvesting the extra unit.

By inspecting the three curves in the figure, we can see that they seem to converge to the
same curve when the fish stock level increases to a certain level. The reason for this is that the
risk of a regime shift becomes virtually zero according to the calibrated probability density
function of the stochastic threshold. For example, when the actual stock level is x = 0.6, the
flip probability is about 0.003. This may imply that a sufficiently high stock provides certain
insurance to prevent the regime shift from happening.

From Fig. 1, we can also see that the slope of the optimal value curve is steeper than the
non-optimal one. This implies that the assigned shadow price along the optimal value curve
is higher than that along the non-optimal one: the difference is mainly due to the insurance
or resilience value against the risk of the undesirable regime shift.

To induce the fisheries management to be socially optimal, we may introduce a corrective
tax on harvest according to the difference between the two shadow prices. As can be seen
from Table 2, the calculated tax rates are extremely high for low stock levels. For x = 0.2,
for example, the tax rate is about US$ 1635 per tonne, far greater than the demand price
exp (6.6262) · 0.2−0.1646 ≈ US$984, which would render any fish harvest unprofitable.
The corrective tax rate for x = 0.3 is about US$ 599, which together with the harvest
cost US$ 404 leads to a total cost of US$ 1003 per tonne. Since the demand price is only
exp (6.6262) · 0.3−0.1646 ≈ US$920, harvesting at this stock level is not profitable either. In
effect, the higher tax rate would imply a ban on any harvest for the lower stock situations. For
the stock from x = 0.4 onwards, harvest becomes profitable, and the corrective tax would
apply.

It is instructive to decompose the optimal shadow price per tonne of fish stock into two
components: the stock service value (for fish production) and the resilience value (for flip
risk reduction), as depicted in Figure 2.

It is seen that while the marginal stock service value follows the law of diminishing rate
of return, the resilience value of an extra stock (for flip risk reduction) from an economic
standpoint has a bell-shaped form. At a relatively higher stock level with a higher ecological
resilience, the risk of flip is negligible and thus the effect of an extra stock for flip risk
reduction is also negligible. On the other hand, when the resource stock is relatively low
with low ecological resilience, the flip risk is very high, and the optimal value as well as the
resilience value would be rather low. In this case, the expected economic benefit of reducing
the risk would also be small. Mainly in the middle area, where the probability density of the
threshold is high, the resilience values are higher.

To examine how the objective functional values and corrective taxes respond to the parame-
ter values ofρ,σ,β and c,we conduct a series of sensitivity analyses as reported inTables 3 and
4. For the base case, with an arbitrary stock level x = 0.2 and ρ = 0.1, β = 0.3, σ = 0.1776
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Table 3 Sensitivity analysis at low resource stock x = 0.2

The
cases

Parameter
value

Corrective tax
τ (x)

Ideal value
W̃ (x)

Relative value
W∗(x)
W̃ (x)

Relative value
W0(x)
W̃ (x)

Base
case

ρ = 0.10, β = 0.3 1635 1723 0.91 0.74

σ = 0.1776, c = 404

ρ ↓ ρ = 0.05, β = 0.6 3742 3823 0.91 0.72

σ = 0.1776, c = 404

β ↑ ρ = 0.10, β = 0.6 3274 1732 0.82 0.47

σ = 0.1776, c = 404

σ ↑ ρ = 0.10, β = 0.3 1745 1732 0.87 0.73

σ = 0.2131, c = 404

c ↓ ρ = 0.10, β = 0.3 2352 2471 0.91 0.74

σ = 0.2131, c = 202

and c = 404, the ideal value in the absence of flip risks is 1723 million US$. In comparison,
the realized value from optimizing the flip risks is about 91% of the ideal value, whereas
the realized value from ignoring the flip risks is only 74% of the ideal value. The corrective
tax is about US$ 1635 per tonne in this base case. When the rate of time preference ρ is
reduced from 10 to 5%, the ideal value and the corrective tax are more than doubled but the
relative values from optimizing and ignoring the flip risks remain almost the same. When
the relative loss in present value from a fishery collapse β goes up from 30 to 60%, we
see that the relative optimal and non-optimal values become much lower, as expected. It is
interesting to notice that although the ex-post loss from a definite flip would increase by
30%, the expected value loss in the optimized value is only about 9% (from 0.91 to 0.82)
under proper risk management. In contrast, ignoring the flip risk leads to an expected loss by
25% (i.e. 0.72 − 0.47 = 0.25).
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Table 4 Sensitivity analysis at the biological threshold x = 0.4347

The
cases

Parameter
value

Corrective tax
τ (x)

Ideal value
W̃ (x)

Relative value
W∗(x)
W̃ (x)

Relative value
W0(x)
W̃ (x)

Base
case

ρ = 0.10, β = 0.3 110 1902 0.99 0.90

σ = 0.1776, c = 404

ρ ↓ ρ = 0.05, β = 0.6 218 4020 0.99 0.85

σ = 0.1776, c = 404

β ↑ ρ = 0.10, β = 0.6 211 1902 0.99 0.80

σ = 0.1776, c = 404

σ ↑ ρ = 0.10, β = 0.3 260 1902 0.99 0.83

σ = 0.2131, c = 404

c ↓ ρ = 0.10, β = 0.3 146 2735 0.99 0.90

σ = 0.2131, c = 202

On the fifth row in Table 3, we show how an increased uncertainty from σ = 0.1776 to
σ = 0.2131would affect the realized values. It turns out that the results are almost the same as
in the base case, indicating that our result “proper risk management improves the optimized
objective value” is robust to the probability distributional assumptions on the thresholds.
The sixth row in Table 3 shows how the harvest cost per tonne influences the values and
tax rate. Lowering the unit harvest cost from c = 404 to c = 202 would increase the ideal
value by 42% and tax rate by 35%. When the unit harvest cost is lower, we need to use a
higher tax rate to prevent overfishing. A lower unit harvest cost also leads to a much higher
optimal value and therefore the relative optimal value with respect to the ideal value is higher.
However, ignoring the flip risk under a lower unit harvest cost might not improve the relative
non-optimal value.

In Table 4, we repeat the sensitivity analyses of different parameter values of ρ, σ , β and
c, but at x = 0.4347, the biologically determined threshold level. It is seen that the ideal
value in the absence of flip risk varies a lot depending on the model parameters. However,
a surprising result is that the maximized functional value from optimal risk management
remains approximately the same, i.e. some 99% of the ideal value. The expected value loss
from ignoring the flip risks is in comparison considerably larger. Compared to Table3, where
the fish stock is 0.2, the corrective taxes in Table4 with a higher fish stock level being 0.4347
are much lower, somewhat between US$ 100 and 300 per tonne. The reason is that with a
higher fish stock, the service value of fish stock is higher. Corrective tax as an instrument
for managing fishery becomes less urgent under a higher fish stock and therefore a lower tax
rate could be applied.

To see how the optimal trajectory of harvest (with the risk of flip taken into account)
differs from the non-optimal trajectory (by ignoring the flip risk), we depict the curves in
Fig. 3.

Approximately, from a stock level around 0.75, the trajectories almost coincide with each
other, converging to the steady state. Below 0.75, however, the optimal harvest is significantly
lower than the non-optimal one. The main reason is that at a lower harvest level, the resulting
higher fish stock has a larger insurance or resilience value. It is worth mentioning that, for a
constant hazard rate, the steady state under the risk of regime shifts may substantially differ
from the steady state without the regime shift risks, as it modifies the effective discount rate.
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In our figure here, however, the steady state remains approximately the same and the reason
for this is that, evaluated at the steady state stock level, the hazard rate is virtually zero.

6 Concluding Remarks

Regime shifts in marine resource systems highlight the importance of understanding the
resilience and vulnerabilities of the systems for improving management. However, little
research has been done on the economic dimension of regime shifts applied to fisheries
management.

In this paper we have investigated the role of regime shifts and the interlinkage between
ecological and economic resilience in industrial fisheries. Based on a theoretical model where
the hazard function is incorporated for resource management under alternative conditions,
i.e. with and without taking into account the risk of regime shifts, we derive the corrective tax
for fishing activity. Particularly, we applied the model to the case of Argentinean hake fishery
to obtain insights for fishery management in the presence of regime shift risks. Using the
stock and catch data in 1986–2010, we calibrated the model and derived the logistic growth
function of the Argentinean hake fishery. Using the price and consumption data, we derived
the demand function.

We distinguished the ideal, optimal and non-optimal value functions in themodel for com-
parison purposes. Using different levels of fish stocks we simulated the three value functions
and the corresponding corrective tax rates. The model allows us to illustrate how thresholds
and resilience can play a role in marine conservation under different value functions. We
obtained robust results, indicating that a higher fish stock leads to higher values but lower
tax rates. When the stock level is lower, we need to introduce a higher tax rate to avoid the
fishery collapse.
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Sensitivity analyses show that a lower discount rate leads to a higher ideal value but the
relative optimal value to the ideal value does not change much because the future value is
appreciated and the risk of flips is taken into account well. However, the corrective tax rate
becomes higher in order to reduce the exploitation of the fish stock. The higher relative
loss from the fishery collapse leads to the lower values of ideal, optimal and non-optimal
functions as such risk management becomes more effective. A lower unit- harvest cost leads
to a higher ideal value but even a higher relative optimal value due to a higher stock service
value. A higher fish stock level leads to a lower tax rate because the resilience value of the
fish stock is higher and the corrective tax rate as an instrument for managing fishery becomes
less important.

It is worth mentioning that we have adopted the standard biological growth model for
single species to study the resilience issue and the corrective tax in the presence of a stochastic
threshold in the fish stock. Alternative models with more detailed cohort structure and even
multi-species fisheriesmay need to be introduced in the future research. In that case, the single
threshold model should also be extended to a model with multiple thresholds for different
species and cohorts, and the optimization problem extended to the multivariate stochastic
control problem under uncertainty.
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