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Abstract Meta-regression models are commonly used within benefit transfer to estimate
willingness to pay (WTP) for environmental quality improvements. Theory suggests that
these estimates should be sensitive to geospatial factors including resource scale, market
extent, and the availability of substitutes and complements.Valuationmeta-regressionmodels
addressing the quantity of non-market commodities sometimes incorporate spatial variables
that proxy for a subset of these effects. However, meta-analyses of WTP for environmental
quality generally omit geospatial factors such as these, leading to benefit transfers that are
invariant to these factors. This paper reports on a meta-regression model for water quality
benefit transfer that incorporates spatially explicit factors predicted by theory to influence
WTP. The metadata are drawn from stated preference studies that estimate per household
WTP for water quality changes in United States water bodies, and combine primary study
information with extensive geospatial data from external sources. Results find that geospatial
variables are associated with significant WTP variations as predicted by theory, and that
inclusion of these variables reduces transfer errors.
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1 Introduction

Meta-analyses in environmental economics are commonly used to evaluate systematic influ-
ences of study, economic, resource and population attributes on measures of nonmarket
willingness to pay (WTP) for environmental quality improvements, and to generate para-
meterized functions for use in benefit transfer (Bergstrom and Taylor 2006; Boyle et al.
2013, 2015; Johnston and Rosenberger 2010; Moeltner et al. 2007; Nelson 2015; Nelson
and Kennedy 2009; Smith and Pattanayak 2002). Within meta-regression models used for
such purposes, the dependent variable is most often a comparable mean or median welfare
measure (e.g., WTP) drawn from existing primary valuation studies.1 Independent variables
represent observable factors hypothesized to explain variation in this measure across obser-
vations. Meta-analyses of this type have been used to estimate benefit functions for changes
in both the quantity and quality of non-market goods, including water quality, air quality,
wetlands, fisheries, coral reefs, recreation sites, and others (Boyle et al. 2013; Johnston and
Rosenberger 2010; Nelson andKennedy 2009; Rolfe et al. 2015). Benefit transfers from these
functions have been used to support multiple cost benefit analyses (CBAs) of environmental
regulations (e.g., US EPA 2009, 2010, 2012, 2015).

With rare exceptions, theory suggests that these transferred welfare estimates should be
sensitive to geospatial factors including resource scale (the geographical size of improved
environmental resources or areas), market extent (the size of the market area over which
WTP is estimated) and the availability of proximate substitutes and complements (Schaafsma
2015). Yet despite significant advances in benefit transfer over the past decade, no published
meta-regression models of WTP for environmental quality changes enable simultaneous,
continuous adjustments for geospatial factors such as these. The resulting benefit transfers
do not exhibit sensitivity to spatial factors that should, according to theory, influence WTP.
This implies that one of the primary tools used for benefit transfer (Johnston et al. 2015b),
as commonly applied, is unable to account for spatial patterns expected in welfare estimates
(Schaafsma 2015).

Here, we make a distinction between meta-analyses addressing WTP for environmental
quality changes (e.g., water quality change) and similarmodels addressing values for quantity
changes (e.g., per recreation day; per acre of a natural resource). The latter are often more
amenable to spatial characterization, and primary studies often report at least some quan-

1 Comparability of welfaremeasures is required acrossmultiple dimensions. Commodity consistency requires
that the nonmarket commodity being valued is approximately the same across studies included in themetadata.
Welfare consistency requires that these welfare measures represent comparable theoretical constructs. Only
observations that satisfy a minimum degree of welfare and commodity consistency should be pooled within
metadata (Bergstrom and Taylor 2006; Nelson and Kennedy 2009; Smith and Pattanayak 2002), although
Moeltner and Rosenberger (2014) and Johnston and Moeltner (2014) show that the empirical relevance of
these consistency rules may be negligible for particular applications.
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titative spatial information.2,3 As a result, some past valuation meta-analyses addressing
quantities of non-market commodities have included spatial variables that capture aspects of
scale, substitutes and other factors (Brander et al. 2006, 2007, 2012a, b, 2015; Ghermandi
2015; Ghermandi et al. 2010; Ghermandi and Nunes 2013; Johnston and Duke 2009b; Lon-
doño and Johnston 2012). In contrast, spatial variables such as these are generally absent from
meta-regression models addressing WTP for environmental quality change. It is often these
quality-related meta-regression models that are most applied for benefit transfer (Griffiths
et al. 2012; US EPA 2009, 2010, 2012, 2015).

In the context ofwater quality valuation, for example, the geospatial scale of awater quality
change typically reflects the size of affected water bodies or watersheds. The sampled market
area would reflect the location of populations for which values were estimated by the primary
study (Loomis 2000; Loomis and Rosenberger 2006). For example, were valuesmeasured for
residents of a community, state or nation? As discussed below, the relevance of market area
to average per householdWTP is related to the expected correlation between market area and
the average distance between households and improved resources, ceteris paribus (Johnston
and Duke 2009a; Schaafsma 2015). Availability of substitutes and complements reflects the
quantity/quality of substitute and complement resources in proximate areas (Brander et al.
2012b; Johnston et al. 2002b; Loomis and Rosenberger 2006; Schaafsma 2015; Schaafsma
et al. 2012). For example, households’ WTP to improve water quality in a single lake might
depend on the existence and size of other, nearby lakes.

All of these factors are potentially relevant to the welfare gain from environmental quality
changes, and at least in principle should be incorporated within meta-analytic and other ben-
efit transfers (Schaafsma 2015). Yet while there has been significant attention to approaches
used to reconcile environmental quality measures across primary studies in valuation meta-
data [e.g., for water quality in Johnston et al. (2005) and Van Houtven et al. (2007)], there has
been less attention to spatial context. Among the reasons for this lack of attention is the ten-
dency of primary studies of environmental quality changes to omit information on geospatial
aspects of resources,market areas and populations (Loomis andRosenberger 2006). Inclusion
of these data in meta-regression models hence requires these variables to be reconstructed,
typically by combining information from primary studies with external spatial data from
geographic information system (GIS) data layers. Although some recent meta-analyses and
value maps have supplemented primary study metadata using external spatial data sources
(e.g., Brander et al. 2006, 2007, 2012a, b, 2015; Ghermandi 2015; Ghermandi and Nunes
2013; Ghermandi et al. 2010; Lindhjem 2006; Londoño and Johnston 2012; Schägner et al.
2013), none of these enable transfers that account for the simultaneous effects of scale, mar-
ket area and spatially proximate substitutes or complements, along with cardinal measures
of environmental quality change.

This paper reports on a meta-analysis that incorporates core geospatial variables pre-
dicted by theory to influence WTP for environmental quality improvements. The model is
designed to support benefit transfer for water quality improvements within US water bodies.
The resulting benefit functions allow heretofore unavailable adjustments for these variables,

2 For example, studies evaluating WTP for changes in the quantity of land conservation often report values
for specified changes in area within identified jurisdictions (e.g., Johnston and Duke 2008, 2009a, b). Studies
reporting average WTP per acre (e.g., for wetland ecosystem services; see reviews in Brander et al. 2012a;
Ghermandi et al. 2010) report values for sites that are often of known size. Similarly, recreational visits often
take place in parks or other natural areas forwhich sizes andother spatial features are reported or easily obtained.
3 Some meta-analyses also evaluate WTP for policy practices (e.g., forest protection) rather than explicit
quantity or quality changes. Some of these include spatial variables (e.g., Lindhjem 2006; Lindhjem and
Navrud 2008).
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enhancing the accuracy of benefit transfer. Results demonstrate that it is possible to develop
meta-regression models that better accommodate spatial patterns suggested by theory.

2 Geospatial Variables in Meta-analysis and Benefit Transfer

Geospatial scale is among the principal spatial factors relevant to benefit transfer (Schaafsma
2015). For example, one might expect WTP for an improvement in lake water quality to be
positively related to the size or number of improved lakes, ceteris paribus. Despite this expec-
tation, meta-regressionmodels used in environmental quality benefit transfer commonly omit
variables characterizing spatial scale. Others include ordinal variables identifying features
such as (1) whether quality changes affect single or multiple areas, (2) relative size categories
such as large, medium and small, or (3) the type of geopolitical areas addressed by the analy-
sis, e.g., improvements at a national, regional or local level (Brouwer et al. 1999; Johnston
et al. 2003, 2005; Lindhjem 2006; Lindhjem and Navrud 2008; Rosenberger and Loomis
2000b; Santos 2007; VanHoutven et al. 2007). Somemeta-analyses incorporate explicit mea-
sures of site area, for example as variables explaining value per day for recreation, per acre
for ecosystem service provision, or per kilometer of river in good health (Brander et al. 2006,
2007, 2012a, b, 2015; Ghermandi andNunes 2013; Ghermandi et al. 2010; Ghermandi 2015;
Londoño and Johnston 2012; Rolfe et al. 2015). However, to the knowledge of the authors,
no meta-analyses in the published valuation literature incorporate quantitative measures of
both the magnitude (i.e., scope)4 of an environmental quality change and the size of the area
(i.e., scale) over which the change occurs.

It is also established that mean WTP often declines, or decays, with distance to environ-
mental improvements (Bateman et al. 2006; Schaafsma et al. 2012; Sutherland and Walsh
1985). Theoretical expectations for (and the empirical extent of) distance decay depend on
the type of values under consideration (Hanley et al. 2003; Johnston and Ramachandran
2014; Johnston et al. 2015a; Rolfe andWindle 2012). When distance decay applies, accurate
benefit transfers require one to account for the expected distance between populations (for
whom WTP is being estimated) and improved resources (Schaafsma 2015). If quantitative
measures of distance or market area are omitted from valuation meta-analysis, the resulting
benefit transfers must use ad hoc assumptions to account for these expectedwelfare patterns.5

Although distances between households and affected resources are rarely reported by pri-
mary studies (and are hence unknown to meta-analysts), these distances are often correlated
with the size of the market area over which values are estimated (Loomis 2000; Loomis
and Rosenberger 2006). Larger market areas are often associated with larger average dis-
tances between individuals and improved resources, ceteris paribus, leading to lower mean
per household WTP (Johnston and Duke 2009a).6 Because sampled markets are generally
identified by primary valuation studies, the associated areas can be quantified using GIS data,
thereby providing a proxy for average resource distance.

4 For example, the scope or magnitude of a water quality change can be measured using a standard water
quality ladder or index (Johnston et al. 2003, 2005; Van Houtven et al. 2007).
5 For example, analysts may arbitrarily truncate the area over which benefits are estimated, assume an ad hoc
distance decay factor, or assume that average per household WTP is invariant to market area.
6 This correlation often holds empirically, but is only necessary under certain assumptions related to the shape
and distribution of resources, markets and populations. For example, average household distance to an affected
resource would be a monotonic function of market area for a circular market with the affected resource at
the centroid, and population randomly distributed. Similar relationships hold for other distance measures and
bounded shapes, as established by the theory of distance in bounded areas (García-Pelayo 2005).
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Finally, the expected economic value of environmental quality change is often related
to the availability of proximate substitutes and complements (Ghermandi and Nunes 2013;
Johnston et al. 2002b; Schaafsma 2015; Schaafsma et al. 2012). For example, WTP for
quality improvements to particular water bodies may be influenced by the availability of
substitute water bodies in the surrounding area (Jørgensen et al. 2013) or by the existence
of complementary land uses that enhance the public’s ability to benefit from improved water
quality (Johnston et al. 2002b). However, while some authors have speculated that meta-
regression model results may be related to differential spatial availability of substitutes (e.g.,
Brander et al. 2006), and others have included quantitative proxies for substitute availability
(e.g., Ghermandi et al. 2010), the authors are aware of no published valuation meta-analyses
that incorporate quantitative measures of substitutes and complements for environmental
quality changes.

3 Data and Empirical Model

The meta-regression model was designed to support benefit estimation for policies that
improve water quality in US water bodies including rivers, lakes and estuaries. Model design
was motivated by the need for benefit transfers to account for theoretically-anticipated WTP
variations associated with differences in spatial scale, market area and the availability of sub-
stitutes and complements, along with changes in scope (i.e., water quality). The metadata are
drawn from primary stated preference valuation studies that estimate per household (use and
nonuse) WTP for water quality changes in US water bodies that affect ecosystem services
including aquatic life support, recreational uses (such as fishing, boating, and swimming), and
nonuse values. The metadata exclude studies focusing primarily on drinking water supplies.

To develop model data, we began with the metadata of Johnston et al. (2005). These
original metadata were updated and expanded to enable the illustrated modeling. Primary
changes included the deletion of studies conducted prior to 19807 and others that did not meet
updated screening criteria; the addition of 21 studies not included in Johnston et al. (2005),
including 8 studies conducted since 20058; and the development of new, spatially-explicit
moderator variables. In addition, observations from two papers that were unpublished as of
2005 (Azevedo et al. 2001; Whitehead et al. 2002) were replaced with observations from
subsequently published versions of the same studies (Corrigan et al. 2009; Whitehead 2006).

Observationswere identified and added to themetadata following the guidelines of Stanley
et al. (2013) for research identification and coding. This included documentation of proto-
cols used to identify potential new studies, including (a) the databases and other sources
searched, (b) the precise combination of keywords, and (c) the date completed.9 Follow-
ing recommendations of Stanley et al. (2013), study review, identification and coding were

7 This was done based on the advances in stated preference methods that took place during the 1980s.
8 Some but not all of these additions were included in a previous update to the metadata (US EPA 2009).
9 Databases and other sources searched included: (1) general literature databases and search engines (EBSCO,
Google Scholar, Google), (2) online reference and abstract databases (Environmental Valuation Resource
Inventory (EVRI), Benefits Use Valuation Database (BUVD), AgEcon Search, RePEc/IDEAs), (3) webpages
of authors and university program known to publish stated preference studies and/or water quality valua-
tion research, (4) web sites of organizations and agencies known to environmental and resource economics
valuation research (e.g., Resource for the Future, National Center for Environmental Economics), (5) web-
sites of key resource economics journals for the years 2005-2013 (Land Economics, Environmental and
Resource Economics, Marine Resource Economics, Journal of Environmental Economics and Management,
Water Resources Research, and Ecological Economics). Details on keywords and dates are suppressed here
for conciseness, but are available from the authors upon request.
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completed and verified by multiple individuals, with all variables and coding documented.
To ensure welfare consistency, observations were limited to US studies that estimate total
(use and nonuse) value, use generally accepted stated preference methods and models, report
theoretically comparable and quantifiable Hicksian welfare measures, and provide sufficient
detail to verify methods applied (Boyle et al. 2013).

In addition to the required study characteristics identified above, studies were screened
to ensure applicability. Studies omitting information needed to document key resource, con-
text, and study attributes were excluded. Necessary data included information identifying
improved water bodies, the extent of water quality change, and sampled market areas, along
with core methodological attributes. Finally, studies were limited to those for which per
household WTP estimates could be readily linked to water quality changes measured on
the standard 100-point Water Quality Index (WQI); this index is a linear transformation of
the 10-point water quality ladder used by Johnston et al. (2005). This screening led to the
exclusion of studies for which WTP for water quality could not be disentangled from WTP
for other ecosystem changes (e.g., riparian land restoration). Additional details on the rec-
onciliation of water quality measures are provided below. Thirty-one studies were excluded
due to this additional screening.

The resulting metadata include 140 observations from 51 stated preference studies pub-
lished between 1985 and 2013. Multiple WTP estimates from a single study are available
due to in-study variations in such factors as the extent of amenity change, elicitation methods
applied, market area sampled, water body type and number, and uses affected. The inclusion
of multiple observations per study is standard in valuation metadata (Nelson and Kennedy
2009). All monetary values are adjusted to 2007 US dollars. The dependent variable for all
meta-regression models is the natural log of householdWTP for water quality improvements
measured on the 100-point WQI. Table 1 summarizes characteristics for studies included in
the metadata.

Table 2 summarizes the set of independent variables included in the meta-analysis. Inde-
pendent variables in the metadata characterize (1) study methodology and year, (2) surveyed
populations, (3) study site, improved resources and market extent, and (4) water quality
baseline and change. Study methodology variables characterize such features as the year in
which a study was conducted, payment vehicle and elicitation formats, and WTP estimation
methods. Region and surveyed populations variables characterize such features as the US
region in which the study was conducted, average household income and the representation
of users and nonusers within the survey sample. Study site, resource and market extent vari-
ables characterize geospatial factors discussed above, as well as hydrological features (i.e.,
water body type) and affected recreational uses. Finally, water quality baseline and change
variables characterize baseline conditions and the extent of the water quality change. These
variables were selected and specified based on guidance from theory and prior literature
(Bergstrom and Taylor 2006).

When specifying the model, emphasis was given to core economic and resource vari-
ables directly relevant to benefit transfer. Methodological variables were included to capture
related effects identified previously in the literature. Variables were also included to test for
systematic value patterns associated with different publication types (Rosenberger and John-
ston 2009). At the same time, care was taken to avoid over-parameterizing the model with
methodological variables, as this can lead to models with seemingly good statistical fit that
have poor benefit transfer performance (Bateman et al. 2011).

123



Enhanced Geospatial Validity for Meta-analysis and. . . 349

Ta
bl
e
1

Pr
im

ar
y
st
ud
ie
s
in

th
e
m
et
ad
at
a

R
ef
er
en
ce
s

O
bs
.i
n

m
et
ad
at
a

St
at
e(
s)

W
at
er

bo
dy

ty
pe
(s
)

W
ill
in
gn
es
s
to

pa
y
(p
er

ho
us
eh
ol
d/
ye
ar
,2

00
7

U
SD

)

M
ea
n

M
in
.

M
ax
.

A
ik
en

(1
98

5)
1

C
O

R
iv
er

an
d
la
ke

19
3.
18

19
3.
18

19
3.
18

A
nd

er
so
n
an
d
E
dw

ar
ds

(1
98

6)
1

R
I

Sa
lt
po

nd
/m

ar
sh
es

18
0.
71

18
0.
71

18
0.
71

B
an
zh
af

et
al
.(
20

06
)

2
N
Y

L
ak
e

57
.4
7

54
.0
9

60
.8
5

B
an
zh
af

et
al
.(
20

11
)

1
V
A
,W

V
,T

N
,N

C
,G

A
R
iv
er
/s
tr
ea
m

31
.3
0

31
.3
0

31
.3
0

B
oc
ks
ta
el
et
al
.(
19

88
)

1
D
C
,M

D
,V

A
E
st
ua
ry

14
9.
03

14
9.
03

14
9.
03

B
oc
ks
ta
el
et
al
.(
19

89
)

2
M
D

E
st
ua
ry

15
8.
30

75
.6
7

24
0.
93

B
or
is
ov
a
et
al
.(
20

08
)

3
W
V
,V

A
R
iv
er
/s
tr
ea
m

44
.9
4

18
.0
5

65
.8
2

C
am

er
on

an
d
H
up

pe
rt
(1
98

9)
1

C
A

E
st
ua
ry

49
.5
3

49
.5
3

49
.5
3

C
ar
so
n
et
al
.(
19

94
)

2
C
A

E
st
ua
ry

59
.4
0

41
.2
1

77
.5
9

C
lo
nt
s
an
d
M
al
on

e
(1
99

0)
3

A
L

R
iv
er
/s
tr
ea
m

10
3.
20

78
.3
1

12
7.
48

C
ol
lin

s
an
d
R
os
en
be
rg
er

(2
00

7)
1

W
V

R
iv
er
/s
tr
ea
m

18
.1
9

18
.1
9

18
.1
9

C
ol
lin

s
et
al
.(
20

09
)

7
W
V

R
iv
er
/s
tr
ea
m

12
0.
52

2.
84

21
7.
57

C
or
ri
ga
n
et
al
.(
20

09
)

1
IA

L
ak
e

12
3.
30

12
3.
30

12
3.
30

C
ro
ke

et
al
.(
19

86
)

9
IL

R
iv
er
/s
tr
ea
m

77
.4
7

61
.3
1

93
.6
8

D
e
Z
oy
sa

(1
99

5)
1

O
H

R
iv
er
/s
tr
ea
m

70
.1
8

70
.1
8

70
.1
8

D
es
vo
us
ge
s
et
al
.(
19

87
)

12
PA

R
iv
er
/s
tr
ea
m

59
.1
9

19
.8
4

13
7.
26

D
ow

ns
tr
ea
m

St
ra
te
gi
es

(2
00

8)
2

PA
R
iv
er
/s
tr
ea
m

12
.7
4

10
.7
0

14
.7
7

Fa
rb
er

an
d
G
ri
ne
r
(2
00

0)
6

PA
R
iv
er
/s
tr
ea
m

76
.1
6

16
.5
8

14
8.
59

H
ay
es

et
al
.(
19

92
)

2
R
I

E
st
ua
ry

39
7.
44

39
0.
68

40
4.
19

H
er
ri
ge
s
an
d
Sh

og
re
n
(1
99

6)
2

IA
L
ak
e

13
4.
55

61
.7
1

20
7.
40

123



350 R. J. Johnston et al.

Ta
bl
e
1

co
nt
in
ue
d

R
ef
er
en
ce
s

O
bs
.i
n

m
et
ad
at
a

St
at
e(
s)

W
at
er

bo
dy

ty
pe
(s
)

W
ill
in
gn
es
s
to

pa
y
(p
er

ho
us
eh
ol
d/
ye
ar
,2
00
7

U
SD

)

M
ea
n

M
in
.

M
ax
.

H
ite

(2
00

2)
2

M
S

R
iv
er
/s
tr
ea
m

60
.0
8

58
.2
4

61
.9
3

H
ua
ng

et
al
.(
19

97
)

2
N
C

E
st
ua
ry

25
8.
65

25
5.
01

26
2.
29

Ir
vi
n
et
al
.(
20

07
)

4
O
H

A
ll_

fr
es
hw

at
er

21
.6
7

19
.6
5

23
.2
3

Jo
hn
st
on

et
al
.(
19

99
)

1
R
I

R
iv
er
/s
tr
ea
m

18
0.
95

18
0.
95

18
0.
95

K
ao
ru

(1
99

3)
1

M
A

Sa
lt
po
nd
/m

ar
sh
es

21
8.
61

21
8.
61

21
8.
61

L
an
ta
nd

R
ob

er
ts
(1
99

0)
3

IA
,I
L

R
iv
er
/s
tr
ea
m

14
3.
93

12
4.
04

15
4.
31

L
an
ta
nd

To
bi
n.

(1
98

9)
9

IA
,I
L

R
iv
er
/s
tr
ea
m

55
.6
3

40
.5
8

67
.6
4

L
ic
ht
ko
pp
le
r
an
d
B
la
in
e
(1
99

9)
1

O
H

R
iv
er

an
d
la
ke

41
.9
3

41
.9
3

41
.9
3

L
in
ds
ey

(1
99

4)
8

M
D

E
st
ua
ry

66
.8
0

33
.4
0

10
2.
20

L
ip
to
n
(2
00

4)
1

M
D

E
st
ua
ry

63
.9
8

63
.9
8

63
.9
8

L
on

do
ño

C
ad
av
id

an
d
A
nd

o
(2
01

3)
2

IL
R
iv
er
/s
tr
ea
m

38
.6
8

35
.9
3

41
.4
4

L
oo

m
is
(1
99

6)
1

W
A

R
iv
er
/s
tr
ea
m

93
.0
7

93
.0
7

93
.0
7

Ly
ke

(1
99

3)
2

W
I

R
iv
er

an
d
la
ke

78
.7
5

59
.7
5

97
.7
4

M
at
th
ew

s
et
al
.(
19

99
)

2
M
N

R
iv
er
/s
tr
ea
m

21
.7
3

18
.1
4

25
.3
2

O
pa
lu
ch

et
al
.(
19

98
)

1
N
Y

E
st
ua
ry

13
8.
47

13
8.
47

13
8.
47

R
ob

er
ts
an
d
L
ei
tc
h
(1
99

7)
1

M
N
,S

D
L
ak
e

8.
35

8.
35

8.
35

R
ow

e
et
al
.(
19

85
)

1
C
O

R
iv
er
/s
tr
ea
m

13
4.
59

13
4.
59

13
4.
59

Sa
nd
er
s
et
al
.(
19

90
)

4
C
O

R
iv
er
/s
tr
ea
m

16
0.
69

81
.0
1

21
0.
04

Sc
hu
lz
e
et
al
.(
19

95
)

2
M
T

R
iv
er
/s
tr
ea
m

20
.8
4

17
.3
4

24
.3
3

Sh
re
st
ha

an
d
A
la
va
la
pa
ti
(2
00

4)
2

FL
R
iv
er

an
d
la
ke

15
6.
46

13
7.
97

17
4.
95

123



Enhanced Geospatial Validity for Meta-analysis and. . . 351

Ta
bl
e
1

co
nt
in
ue
d

R
ef
er
en
ce
s

O
bs
.i
n

m
et
ad
at
a

St
at
e(
s)

W
at
er

bo
dy

ty
pe
(s
)

W
ill
in
gn
es
s
to

pa
y
(p
er

ho
us
eh
ol
d/
ye
ar
,2
00
7

U
SD

)

M
ea
n

M
in
.

M
ax
.

St
um

bo
rg

et
al
.(
20

01
)

2
W
I

L
ak
e

84
.2
9

66
.7
3

10
1.
86

Su
th
er
la
nd

an
d
W
al
sh

(1
98

5)
1

M
T

R
iv
er

an
d
la
ke

14
6.
03

14
6.
03

14
6.
03

Ta
ka
ts
uk

a
(2
00

4)
4

T
N

R
iv
er
/s
tr
ea
m

28
6.
88

18
1.
90

39
1.
85

W
at
ta
ge

(1
99

3)
3

IA
R
iv
er
/s
tr
ea
m

53
.8
9

40
.2
4

74
.5
9

W
el
le
(1
98

6)
6

M
N

L
ak
e

16
7.
28

10
9.
60

23
8.
42

W
el
le
an
d
H
od

gs
on

(2
01

1)
3

M
N

L
ak
e

14
5.
10

10
.5
9

28
5.
06

W
ey

(1
99

0)
2

R
I

Sa
lt
po

nd
/m

ar
sh
es

14
7.
26

63
.9
5

23
0.
58

W
hi
te
he
ad

an
d
G
ro
ot
hu

is
(1
99

2)
3

N
C

R
iv
er
/s
tr
ea
m

41
.0
1

31
.9
0

53
.1
6

W
hi
te
he
ad

(2
00

6)
3

N
C

R
iv
er
/s
tr
ea
m

18
7.
18

27
.5
2

36
5.
54

W
hi
te
he
ad

et
al
.(
19

95
)

2
N
C

E
st
ua
ry

95
.4
4

78
.2
9

11
2.
59

W
hi
tti
ng
to
n
et
al
. (
19

94
)

1
T
X

E
st
ua
ry

19
4.
72

19
4.
72

19
4.
72

123



352 R. J. Johnston et al.

Table 2 Meta-analysis variables and descriptive statistics

Variable Definition Mean (SD)

ce Binary variable with a value of one for studies that
are choice experiments (default is any non-choice
experiment method)

0.107 (0.310)

thesis Binary variable with a value of one for studies
developed as thesis projects or dissertations (default is
studies not developed as theses)

0.114 (0.319)

lnyear Natural log of the year in which the study was
conducted (converted to an index by subtracting 1980,
before making the log transformation)

2.212 (0.928)

volunt Binary variable indicating that WTP was estimated
using a payment vehicle described as voluntary
(default is a binding and mandatory payment vehicle)

0.086 (0.281)

outlier_bids Binary variable indicating that outlier bids were
excluded when estimating WTP (default is studies that
did not exclude outlier bids)

0.193 (0.396)

nonparam Binary variable indicating that WTP was estimated
using non-parametric methods (default is studies
using parametric methods)

0.429 (0.497)

non_reviewed Binary variable indicating that the study was not
published in a peer-reviewed journal (default is
studies published in peer reviewed journals)

0.236 (0.426)

lump_sum Binary variable indicating that payments were to occur
on something other than an annual basis over an
extended or indefinite period of time (default is
payments on an annual basis over more than 5 years)

0.186 (0.391)

wtp_median Binary variable indicating that the study’s WTP
measure is the median (default is mean WTP)

0.071 (0.258)

northeast Binary variable indicating that the survey included
respondents from the USDA Northeast region (default
is respondents from the Mid-Atlantic, West or
multiple regions)

0.071 (0.259)

central Binary variable indicating that the survey included
respondents from the USDA Midwest or Mountain
Plains regions (default is respondents from the
Mid-Atlantic, West or multiple regions)

0.336 (0.474)

south Binary variable indicating that the survey included
respondents from the USDA Southeast or Southwest
regions (default is respondents from the Mid-Atlantic,
West or multiple regions)

0.157 (0.365)

nonusers Binary variable indicating that the survey was
implemented over a population of nonusers (default is
a survey of any population that includes users)

0.086 (0.281)

lnincome Natural log of median income (in 2007$) for the sample
area of each study based on historical U.S. Census
data. To ensure comparability this variable was
estimated for all studies in the metadata regardless of
whether the study reported income for the sample

10.745 (0.173)

mult_bod Binary variable that takes on a value of 1 if the studied
system includes multiple water body types (e.g., lakes
and rivers), and zero otherwise

0.078 (0.270)
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Table 2 continued

Variable Definition Mean (SD)

river A binary variable that takes on a value of 1 if the studied
system includes rivers, and zero otherwise

0.686 (0.466)

swim_use Binary variable identifying studies in which changes in
swimming uses are specifically noted in the survey
(default is surveys that do not describe effects on
swimming)

0.264 (0.442)

gamefish Binary variable identifying studies in which changes in
game fishing uses are specifically noted in the survey
(default is surveys that do not describe effects on game
fishing)

0.057 (0.233)

boat_use Binary variable identifying studies in which changes in
boating uses are specifically noted in the survey
(default is surveys that do not describe effects on
boating)

0.114 (0.319)

ln_ar_agr Natural log of the proportion of the improved resource
area which is agricultural based on the NLCD.
Improved resource area includes all counties that
intersect the improved resource

−1.433 (0.903)

ln_ar_ratio The natural log of the size of the sampled area (in square
kilometers) divided by the total area of all counties
that intersect the improved water resource(s)

−1.128 (2.606)

ln_ar_ratio2 (see “Appendix”) The natural log of the size of the sampled area (in square
kilometers) divided by the total area of all watersheds
(hydrologic unit code 10) that intersect the improved
water resource(s)

−0.458 (2.926)

ln_rel_size An index of the size of the improved water body
(defined by total shoreline length, in kilometers),
relative to the size of the sampled area, in square
kilometers. For a bay, shoreline length is given by the
variable bay_len. For a lake, shoreline is approximated
by lake circumference, lake_circ. For a river, shoreline
(assuming a left and right shoreline) is given by the
variable river_length*2, with river_length defined as
the length of the river in kilometers. The total
improved shoreline for any study is defined as
shoreline= river_length*2+lake_circ+bay_len.
From here, ln_rel_size=log(shoreline / sa_area),
where sa_area is the size of sampled area in square
kilometers

−1.198 (3.420)

prop_chg The proportion of water bodies of the same hydrological
type improved by the water quality change, within
affected state(s). For rivers, this is measured as the
length of the improved river reaches as a proportion of
all reaches of the same order or lower
(prop_chg_reach). For lakes and ponds, this is defined
as the area of the improved water body as a proportion
of all water bodies of the same National Hydrography
Dataset classification (prop_chg_area). For bays and
estuaries, this is defined as the shoreline length of the
water body as a proportion of all analogous (e.g.,
coastal) shoreline lengths (prop_chg_bay). The
variable prop_chg is defined as max(prop_chg_reach,
prop_chg_area, prop_chg_bay)

0.188 (0.291)
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Table 2 continued

Variable Definition Mean (SD)

lnquality_ch Natural log of the change in mean water quality valued
by the study, specified on the 100-point water quality
index (McClelland 1974; Mitchell and Carson 1989);
see main text for details

2.907 (0.604)

lnbase Natural log of the baseline (status quo) water quality
from which improvements would occur, specified on
the 100-point water quality index

3.589 (0.670)

3.1 Reconciling Measures of Water Quality Change

An important component of metadata development is the reconciliation of variables across
observations (Johnston et al. 2005; Smith and Pattanayak 2002; Smith et al. 2002; Van
Houtven et al. 2007). Although the calculation and reconciliation of most independent
variables requires little explanation, there are some variables for which additional detail
is warranted. These include variables characterizing surface water quality and its measure-
ment. To reconcile measures of water quality across studies we adapt the prior approach
of Johnston et al. (2005), mapping water quality changes to the 100-point WQI as noted
above.10

A large number of the studies in themetadata (30%of observations) includeWQIor related
10-point water quality laddermeasures as a native component. For these studies, no additional
transformations were required. In most other cases the descriptions of water quality rendered
mapping of water quality measures to the WQI straightforward. In cases where baseline and
improved (or declined) water quality was not defined by suitability for recreational activities
(e.g., boating, fishing, and swimming) or corresponding qualitative measures (e.g., poor, fair,
good) that could be readily mapped to the WQI, we used descriptive information available
fromstudies (e.g., amount/indication of the presence of specific pollutants; effects on sensitive
aquatic species) to approximate the baseline level of water quality and the magnitude of the
change. Preliminary meta-regression models failed to identify any systematic variation in
results associated with studies for which the WQI was a native component, versus those for
which quality changes were mapped to the WQI (see “Appendix”).

3.2 Geospatial Analysis and Variables

Attention was also given to the development and testing of variables characterizing geospa-
tial scale, market extent and proximate substitutes/complements. Variable development
was guided by theory and information available from primary studies and external data-

10 WQIs combine information on multiple physical and chemical water quality parameters into a single index
of water quality that is linked to the presence of aquatic species and suitability for different types of human use
(Abbasi 2012; Van Houtven et al. 2014). They are among the most common means to evaluate water quality
changes for applied valuation and benefit transfer (Griffiths et al. 2012). Additional details on theWQI and the
use of theWQI in survey instruments are provided byMcClelland (1974), Mitchell and Carson (1989, p. 342),
and Vaughan (1986). The WQI allows the use of objective water quality parameters (e.g., dissolved oxygen
concentrations) to characterize ecosystem services or uses provided by a given water body. The water quality
ladder of Vaughan (1986) is expressed on a scale of 0 to 10 and can be mapped to the WQI by multiplying by
10 (US EPA 2009). See Van Houtven et al. (2007) for a discussion of alternative means of reconciling water
quality measures.
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bases. Required data were extracted from the National Hydrography Dataset (http://www.
horizon-systems.com/NHDPlus/NHDPlusV2_home.php), Hydrologic Unit Code Water-
shed Boundary Dataset (http://water.usgs.gov/GIS/huc.html), National Land Cover Data-
base (NLCD; http://www.mrlc.gov), NOAA Global Self-Consistent, Hierarchical, High-
resolution Geography Database (GSHHD; http://www.ngdc.noaa.gov/mgg/shorelines/shore
lines.html), and US Census (http://www.census.gov/geo/maps-data/data/tiger.html). None
of these variables could be calculated using data reported in primary studies alone.

When considering water quality change, geospatial scale may be measured either using
the scale of improved water bodies or land areas surrounding these water bodies; economic
theory provides no guidance regarding which type of measure is preferred. Hence, we quan-
tify scale using both approaches, with each included in a separate meta-regression model.
The first approach measures geospatial scale using the shoreline length of each improved
water body. Shoreline length (shoreline) is calculated in kilometers using GIS data lay-
ers, and accounts for the fact that improved river reaches have both a left and right bank.
This provides a measure of geospatial scale that is quantifiable and comparable across all
improved water bodies, regardless of type.11 Measuring scale using shoreline length also
improved model performance relative to alternative measures of water body scale that varied
in measurability or interpretation across water body types (e.g., surface area).12 The second
approach measures geospatial scale using the total land area of all counties that intersect the
improved water resource(s), in square kilometers. The resulting variable, land_area, is also
directly measurable for all observations.13

Market area (sa_area), in contrast, is defined as the size of the geographic areas sampled by
the stated preference survey, in square kilometers. It may also be interpreted as the geographic
area over which sample-mean (or median) WTP was calculated. This area is calculated for
each observation using external GIS data layers, based on sampled market areas identified
by each primary study.

Multiple specifications including geospatial scale and market area were tested in prelim-
inary models. However, economic intuition suggests that these two effects may be related.
That is, the marginal effect of increasing water body size on WTP is expected to decline as
size of the sampled market area increases, and vice versa. Preliminary models support this
intuition; model performance is enhanced (e.g., in terms of model fit, variable significance,
and correspondence of results with theoretical expectations) when the effect of geospatial
scale (shoreline or land_area) is modeled as a function of market area (sa_area). This led
to the development of two composite geospatial index variables that are included in the
model as natural logs: ln_rel_size = ln(shoreline / sa_area) and ln_ar_ratio = ln(sa_area /
land_area). The first of these includes sampled market area (sa_area) in the denominator,
while the second includes this variable in the numerator. The former may be interpreted as
an index of the size of the improved water body relative to the size of the sampled market
area. The latter may be interpreted as an index of the size of sampled market area relative to
the size of the affected land area. Hence, we expect a positive marginal effect of ln_rel_size

11 Preliminary models did not support the inclusion of separate scale variables for different water body types
(e.g., rivers, lakes, bays). Also note that shoreline fails to capture the shape of water bodies. As shown by
Johnston et al. (2002a), the shape of natural resources can also influenceWTP, holding size constant.Moreover,
for large and/or irregularly shaped water bodies, water quality can vary significantly within the water body
itself, further complicating WTP estimation and benefit transfer.
12 For example, surface area estimates are often unavailable for rivers and small streams.
13 An alternative specification of this variable was defined using the total area of directly affected watersheds
(watershed_area) rather than counties. Model results are robust to this variation (see “Appendix” for details).
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on WTP, and a negative marginal effect of ln_ar_ratio. Table 2 provides additional details
on both variables.

Finally, the model includes variables to characterize proportional effects on regional
(potentially substitute) water bodies and the availability of complementary land uses. To
characterize proportional effects, we calculate the proportion of water bodies (of the same
hydrological type) improved by the water quality change, within affected state(s). For rivers,
this is measured as the length of improved river reaches, as a proportion of the all reaches of
the same order (prop_chg_reach).14 For non-river inland water bodies (e.g., lakes), the pro-
portion is defined as the area of the improved water body as a proportion of all water bodies of
the same National Hydrography Dataset classification (prop_chg_area). For bays and estu-
aries, the proportion is defined as the shoreline length of the water body as a proportion of all
analogous (e.g., coastal) shoreline lengths (prop_chg_bay). These are combined into a com-
posite variable, prop_chg, defined as max(prop_chg_reach, prop_chg_area, prop_chg_bay)
for each observation.15 Model performance does not improve when including separate
substitute variables for each water type (prop_chg_reach, prop_chg_area, prop_chg_bay);
hence the final meta-regression model includes only the composite index variable prop_chg
(Table 2).16

The expected influence of prop_chg on WTP may be interpreted from two perspectives.
First, it may be viewed as proportional measure of affected resource scale, with an expected
positive influence on WTP. Second, it may be viewed as inversely related to the existence of
substitute water bodies. That is, as the water quality improvement valued by each primary
study affects a larger proportion of regional waters, there are fewer remaining substitutes (i.e.,
water bodies that are not improved by the proposed policy). The quality of these potential
substitutes is unknown; they could be of higher or lower quality than the water bodies valued
within each primary study. Nonetheless, as the relative proportion of these potential substitute
waters declines (i.e., as prop_chg increases), ceteris paribus, we expect WTP to increase.
Hence, regardless of interpretation, the expected influence of prop_chg on WTP is positive.

Finally, potential land use complements to enhanced water quality (more specifically, the
lack of complementary land uses) are characterized using the variable ln_ar_agr, representing
the (natural log of the) proportion of the improved land_area with agricultural land use. The
rationale for this variable is that non-agricultural land uses (e.g., forests, residential, open
space) are often associatedwith recreational, residential and other human uses that potentially
magnify the per household value of nearbywater quality improvements (Johnston et al. 2002b;
Leggett and Bockstael 2000), relative to parallel values for water quality improvements in
heavily agricultural areas. Hence, the expected effect of this variable—reflecting the relative
lack of these complementary land uses—is negative.17

14 The concept if river order is used as a measure of relative size, with smaller-order streams flowing into
larger order streams. For example, the convergence of two first-order streams forms a second order stream,
etc.
15 This specification provides an unambiguous measure of this variable for a few observations that include
improvements to multiple water body types.
16 An alternative version of the model was estimated in which prop_chg was included as an interaction with
market area (sa_area), paralleling the treatment of geospatial scale. This specification led to reductions in
overall measures of model fit and the statistical significance of individual coefficients.
17 Weemphasize that these variables approximate substitutes and complements across themetadata. The extent
to which particular resources serve as substitutes or complements in any particular context is case-specific
and depends on numerous factors that are unobservable by the meta-analyst and unreported by primary stud-
ies (Ghermandi and Nunes 2013; Loomis and Rosenberger 2006). Hence, the best that is generally possible
with meta-analysis is to define and measure variables that serve as satisfactory approximations of substi-
tutes/complements across sites.
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It is also possible that the estimated effect of ln_ar_agr on WTP (along with estimated
effects of other variables) could be potentially biased by research priority selection in the
literature. Such issues are a potential concern for allmeta-analyses (Rosenberger and Johnston
2009). For example, it is possible that heavily polluted agricultural watersheds might be
systematically more (or less) likely to be targeted for valuation than more pristine watersheds
elsewhere. If the propensity to target an area for a valuation study is systematically related
to the extent of agricultural land use, then the resulting selection effects could potentially
bias model results. Heckman correction methods (Heckman 1979) can sometimes be used
to explore and ameliorate such biases, although results are often sensitive to assumptions
regarding the form of the selection equation (Hoehn 2006; Rosenberger and Johnston 2009).
We do not explore these issues formally here, but identify them as a relevant area for future
research.

3.3 The Meta-regression Model

We estimate the meta-regression model as a multi-level model of the type common in the
literature (Nelson and Kennedy 2009). The model allows for cross-sectional correlation
among observations from the same study. If left unaddressed, such correlation can lead
to heteroskedastic errors and inefficient, inconsistent parameter estimates (Rosenberger and
Loomis 2000a). For each study in themetadata, a central tendencymeasure (mean or median)
of WTP for the representative individual is given by ȳ js , which is the measured effect size
in the meta-regression model:

ȳ js = x̄ jsβ + ε js . (1)

Here, ȳ js is the welfare measure for observation s in study j (here the natural log of WTP),
and x̄ js is the vector of independent variables discussed above. The vector β represents a
conforming vector of parameters to be estimated.

To allow for potential effects of study-specific unobservable factors, we partition ε js into
two components such that

ε js = us + e js . (2)

Here, us represents a systematic, normally distributed, study-level random effect with
E(us) = 0 and Var(us) = σ 2

u , and e js is a standard iid estimation level error, distrib-
uted with a zero mean and constant variance σ 2

e (Shrestha and Loomis 2001). Clustering
by study to account for within-study correlation is standard practice. Other aspects of the
econometric model follow standard conventions for valuation meta-regression models; we
estimate the model using an unweighted GLS random-effects model with robust standard
errors (Nelson and Kennedy 2009).18

Three model specifications are estimated. The first (model one) is an unrestricted model
including variables that characterize scale, market area and non-improved substitutes using
the two index variables ln_rel_size and prop_chg. The second (model two) is an unrestricted
model characterizing these effects using ln_ar_ratio and prop_chg. As discussed above, the
difference between these two specifications is that the former characterizes resource scale
using the shoreline length of improved water bodies, while the latter characterizes scale using

18 Similar results are obtained when using cluster-robust OLS estimation. It is standard practice in meta-
regression models outside of the valuation literature to estimate models using weighted least-squares with
inverse variances or standard errors from the primary studies as analytical weights (Nelson 2015; Nelson and
Kennedy 2009). Such practices are rarely applied withinWTPmeta-analyses because (1) variances or standard
errors are often unreported by primary studies, (2) WTP variances and standard errors (as well as proxies such
as sample sizes) cannot be directly compared across model types (e.g., linear vs. discrete choice regressions;
mixed vs. conditional logit).
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the area of intersecting counties. The third model is an otherwise identical restricted model
that omits these variables; thismodel is akin to commonmeta-regressionmodel specifications
in the literature.

A trans-log specification is used for all meta-regression models. This specification incor-
porates the natural log of the dependent variable (WTP per household) on the left hand side
and the natural logs of household income (lnincome), water quality change (lnquality_ch),
relative geospatial scale (ln_rel_size or ln_ar_ratio), and the proportion of agricultural land
in the improved area (ln_ar_agr) on the right hand side (Table 2). All other variables enter
in linear form. Advantages of this functional form for meta-analysis are discussed by John-
ston et al. (2005). These include an ability to capture curvature in the valuation function, a
multiplicative rather than additive effect of independent variables on WTP, and the implied
constraints thatWTP approaches zero when water quality change, income, and the geospatial
index variables (ln_rel_size and ln_ar_ratio) approach zero.19 Other tested functional forms
included linear, semi-log, log-log and structural reduced forms, including those with alterna-
tive measures of the dependent variable.20 None of these led to unambiguous improvements
in model performance.

4 Results and Discussion

Table 3 shows results for both the unrestricted and restricted models. Wald χ2 tests for
both unrestricted models indicate that parameter estimates are jointly significant at p <

0.01 (χ2 = 658.64 and 729.61, df. 24), with model R2 statistics of 0.628 and 0.633. All
measures of model fit decline for the restricted model (χ2 = 415.47, df. 21; R2 = 0.54).
Waldχ2 tests also indicate that omission of the parameters on the spatial variables ln_rel_size
or ln_ar_ratio, prop_chg, and ln_ar_agr is a statistically significant restriction (p < 0.01),
compared to either unrestricted model (χ2 = 243.17 and 314.14, df. 3). Of 23 non-intercept
parameter estimates in the unrestricted models, 20 are statistically significant at p < 0.10,
with the majority significant at p < 0.01. Breusch–Pagan Lagrangian multiplier tests for
random effects reject the null hypothesis that σu = 0 in both unrestricted models (p < 0.04
and p < 0.05 for models one and two).21

Signs of statistically significant parameter estimates in all meta-regression models match
those suggested by theory and intuition. For example, within both unrestricted models, WTP
is positively related to the scope of water quality change (lnquality_ch), household income
(lnincome), and one-time payments (lump_sum), among other factors. Nonuser samples
(nonusers) are associated with systematically lower WTP estimates than user or general

19 Regardless of this imposed restriction, one should use caution when conducting benefit transfers in regions
for which there is no data support for the estimated function (i.e., outside the range of the data).
20 One may also re-specify the dependent variable as the natural log of household WTP per unit of water
quality change. This is done by dividing the dependent variable (average per household WTP) by units of
water quality change, prior to the log transformation. Given the functional form of the model this is a trivial
change. The only effect is a re-scaled coefficient on water quality change (lnquality_ch), equal to the original
coefficient estimate minus one (cf. US EPA 2015). Other coefficients are unaffected.
21 Fixed-effects panel data models are infeasible in our case given the loss of degrees of freedom and because
multiple studies provide only one observation to themetadata (Nelson andKennedy 2009).A suite of horizontal
(inclusion/exclusion of variables) and vertical (inclusion/exclusion of observations or studies) robustness tests
were conducted on the unrestricted models (Boyle et al. 2013). As is the case with most meta-regression
models, these tests find evidence of horizontal and vertical fragility in certain dimensions. However, the weight
of evidence suggests the meta-regression is robust. This includes robustness associated with the primary policy
variables of interest, including the effect of water quality change.
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Table 3 Meta-regression model results (ln(WTP)): random effects model, robust standard errors

Variable Unrestricted model one
(ln_ar_ratio)

Unrestricted model two
(ln_rel_size)

Restricted modela

Coefficient estimates Coefficient estimates Coefficient estimates
(SE) (SE) (SE)

Methodological variables

ce 0.489 0.487 0.593

(0.198)** (0.210)** (0.262)**

thesis 0.609 0.557 0.732

(0.196)*** (0.195)*** (0.209)***

lnyear −0.477 −0.478 −0.544

(0.080)*** (0.080)*** (0.127)***

voluntary −1.315 −1.296 −0.939

(0.228)*** (0.209)*** (0.215)***

outlier_bids −0.421 −0.429 −0.468

(0.120)*** (0.120)*** (0.169)***

nonparametric −0.499 −0.477 −0.406

(0.129)*** (0.126)*** (0.137)***

non_reviewed −0.656 −0.679 −0.535

(0.165)*** (0.171)*** (0.202)***

lump_sum 0.777 0.727 0.524

(0.137)*** (0.136)*** (0.141)***

WTP_median −0.288 −0.264 −0.368

(0.225) (0.239) (0.204)*

Region and surveyed populations

northeast 0.542 0.549 0.867

(0.245)** (0.249)** (0.275)***

central 0.606 0.601 0.335

(0.108)*** (0.112)*** (0.134)**

south 1.399 1.366 1.251

(0.133)*** (0.127)*** (0.161)***

nonusers −0.440 −0.455 −0.474

(0.122)*** (0.121)*** (0.126)***

lnincome 0.679 0.628 0.497

(0.373)* (0.375)* (0.380)

Study site, resource and market extent

mult_bod −0.532 −0.525 −0.163

(0.140)*** (0.145)*** (0.168)

river −0.192 −0.226 −0.395

(0.133) (0.128)* (0.164)**

ln_ar_ratio −0.072 – –

(0.026)*** – –

ln_rel_size – 0.052 –

– (0.019)*** –
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Table 3 continued

Variable Unrestricted model one
(ln_ar_ratio)

Unrestricted model two
(ln_rel_size)

Restricted modela

Coefficient estimates Coefficient estimates Coefficient estimates
(SE) (SE) (SE)

ln_ar_agr −0.347 −0.351 –

(0.093)*** (0.095)*** –

swim_use −0.395 −0.391 −0.223

(0.221)* (0.220)* (0.237)

gamefish 0.342 0.303 0.385

(0.194)* (0.207) (0.194)**

boat_use −0.318 −0.314 −0.303

(0.171)* (0.183)* (0.140)**

prop_chg 0.693 0.525 –

(0.194)*** (0.189)*** –

Water quality baseline and change

lnquality_ch 0.282 0.281 0.269

(0.106)*** (0.106)*** (0.112)**

lnbase −0.068 −0.064 −0.214

(0.122) (0.123) (0.116)*

Model intercept

intercept −3.030 −2.281 0.461

(4.269) (4.225) (4.329)

N 140 140 140

Num. Groups 51 51 51

R2 0.63 0.63 0.54

σu 0.061 0.063 0.234

σe 0.541 0.541 0.574

a Restricted model omits variables characterizing geospatial scale, market extent and substitute/complement
availability
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10

population samples. These and other non-spatial results are similar to those reported in prior
meta-analyses. Given these findings, we move on to results associated with our geospatial
variables of interest. Those interested in a broader discussion of systematic patterns in water
quality values are referred to Johnston et al. (2003, 2005) and Van Houtven et al. (2007).

Coefficient estimates associated with the geospatial variables ln_rel_size, ln_ar_ratio,
prop_chg and ln_ar_agr are statistically significant at p < 0.01 (Table 3). Signs of coefficient
estimates match expectations; with positive marginal effects associated with ln_rel_size and
prop_chg, and a negative marginal effect associated with ln_ar_ratio and ln_ar_agr. For
example, the coefficient estimate for ln_ar_ratio (model one) implies that per household
WTP decreases with the size of the surveyed market area, relative to the size of counties that
intersect improved water bodies. When viewed across and within different studies from the
literature, studies over larger market areas are associated with lower per household WTP,
ceteris paribus. This is intuitive, because larger sampled market areas imply greater mean
distances between households and improvedwater bodies.Also as expected, there is a positive
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relationship between geospatial scale (i.e., the area of counties that intersect improved water
bodies) and per householdWTP. Combining these effects within the index ln_ar_ratio allows
the marginal effect of market area to depend on geospatial scale, and vice versa.

Parallel intuition applies to ln_rel_size in model two, although the expected coefficient
sign is reversed because geospatial scale is in the numerator of the index. The positive sign
for this variable implies that per household WTP increases with the size of improved water
bodies (measured by shoreline length in kilometers) relative to the size of the surveyedmarket
area (measured in square kilometers). As above, combining these effects within the single
index variable ln_rel_size allows the marginal effect of geospatial scale to depend on market
area size.

Other results are robust across the unrestricted models. Measures of fit are similar, and
parameter estimates are similar in sign, significance and magnitude. This finding suggests
that model results are robust to the choice of variables used to characterize geospatial scale
and market area (ln_rel_size vs. ln_ar_ratio). It is also expected given the high degree of
(negative) correlation between ln_rel_size and ln_ar_ratio (−0.92). Similar robustness is
found when watershed rather than county area is used as a measure of the affected land area
(see “Appendix”).

This is the first published valuationmeta-regressionmodel to incorporate these joint effects
(i.e., scale and market area) in quantitative, continuous form. As discussed above, these
adjustments can be crucial to the content validity of benefit transfers. Consider, for example,
a water quality improvement to a single lake in Massachusetts, USA. A meta-regression
model without an adjustment for spatial scale would predict identical per household WTP
for this improvement, regardless of lake size. A model without an adjustment for market area
would predict identical mean per householdWTP, regardless of whether one was forecasting
WTP for residents in: (a) the community surrounding the lake, (b) the state of Massachusetts,
or (c) the USA as a whole.22 In contrast, the present model predicts mean per householdWTP
to be successively smaller in (a), (b) and (c), respectively, as expected based on theoretical
intuition.

The coefficient estimate for the variable prop_chg (p < 0.01) further implies that per
household WTP increases when a larger proportion of regional water bodies (of the same
type) are improved by the proposed policy, ceteris paribus. For example, the model pre-
dicts larger per household WTP for a water quality improvement over 30% of a state’s river
kilometers, compared to an otherwise identical policy that affects only 10% of river kilome-
ters (of equivalent river order; Table 2), ceteris paribus.23 Finally, the negative coefficient
on ln_ar_agr (p < 0.01) implies that heavily agricultural landscapes are associated with
reduced WTP for water quality improvements, consistent with the expectation that many
non-agricultural land uses serve as complements for water quality change.24

The importance of these findings for benefit transfer depends not only on their statistical
significance, but also on the magnitude of each effect. The partial elasticities associ-

22 To avoid unrealistic aggregate WTP measures in cases where national benefit measures are required (Grif-
fiths et al. 2012), analysts have used ad hoc assumptions such as truncating WTP at specified distances or
within particular jurisdictions.
23 Ghermandi and Nunes (2013) include the total quantity of wetlands with a fixed 20km buffer of each site
as a proxy for substitute wetlands. However, this variable does not quantify affected versus unaffected areas.
24 Compared to non-agricultural rural areas, agricultural areas may not be as highly prized for water-based
recreation and may not have the type of nonuse values associated with more pristine areas; this is expected to
decrease WTP for improvements in agricultural areas. Improvements to water bodies in suburban areas, for
example, may be more valued, on average, because these areas may support extensive recreation and other
uses. As noted above, these and other results could possibly be confounded by the potential for research
priority selection.
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ated with these effects appear to be relatively small, at least on an individual basis. For
example, the partial elasticities of WTP with respect to the log variables ln_rel_size and
ln_ar_ratio are 0.05 and −0.07, respectively. The partial elasticity of ln_ar_agr is some-
what larger (−0.35 in both unrestricted models). Parallel elasticities (at mean values) for
the linear variable prop_chg vary from 0.13 to 0.09 in models one and two, respectively.
These individual elasticities viewed in isolation, however, can provide a misleading per-
spective on the practical policy relevance of these value surfaces, particularly given that
these variables vary in concert. Implications for benefit transfer accuracy are illustrated
below.

The model also provides results that—when combined with findings for the geospatial
variables discussed above—provide additional insight into WTP patterns. For example,
the negative and statistical significant parameter estimate for mult_bod in both unre-
stricted models (p < 0.01) implies that for a given geospatial scale, WTP is lower
when elicited for multiple rather than single water bodies. This implies that WTP is
greater for improvements to one large water body compared to multiple smaller ones,
ceteris paribus. This effect only emerges when controlling for other geospatial vari-
ables; the same parameter estimate is not statistically significant in the restricted model.
Other core economic variables such as lnincome are similarly significant in the unre-
stricted models, but insignificant in the restricted model. Findings such as these sug-
gest that the addition of theoretically-supported geospatial variables to meta-regression
models can enable other statistically significant and theoretically intuitive patterns to
emerge.

5 Implications for Benefit Transfer

Implications for benefit transfer are illustrated using two approaches. The first is an extreme
case illustration that shows the extent to which transfer estimates vary when geospatial
variables take onmaximum andminimumvalues from themetadata, holding all else constant.
The second analysis uses an iterative leave-one-out cross-validation convergent validity test
(Brander et al. 2007; Londoño and Johnston 2012; Stapler and Johnston 2009), to characterize
the average effect of these variables on transfer errors. Both analyses show that the inclusion
of geospatial variables reduces transfer errors, in some cases by large percentages.

5.1 Effects of Geospatial Variables on Transfer Error: Extreme Case Illustrations

To illustrate implications of model results for benefit transfer, we project per householdWTP
for illustrative water quality improvements within policy sites that differ in geospatial scale,
market extent and substitute/complement availability. This parallels the process that would
be used to conduct benefit transfer using meta-regression model results. Results are forecast
using coefficient estimates in Table 3. Other than differences in geospatial variables, the
illustrative sites and scenarios are identical, and are designed to represent a typical scenario
for which WTP might be forecast.

For illustration, we assume a water quality change equal to the mean over the metadata
(lnquality_ch = 2.907). This is equivalent to 18.301 = e2.907 on the 100-point WQI, begin-
ning from a baseline of lnbase = 3.589 (36.194 on the WQI). We assume annual mean WTP
per household (lump_sum = 0; wtp_median = 0; volunt = 0), and a general population sam-
ple (nonusers = 0) in the US mid-Atlantic region (northeast = central = south = 0), for a
water quality improvement in a single river (river = 1; mult_bod = 0). These assignments
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ensure consistency of the resulting WTP estimates. Other variables are held at mean values
from the metadata.25 Forecasts incorporate the standard intercept adjustment (σ 2

e /2) prior
to the exponential transformation to obtain an estimate of mean WTP. Although we illus-
trate results for a single policy scenario, results are robust across alternative scenarios and
illustrations (all of which show the relevance of spatial variables for benefit transfer).

Grounded in this policy setting,we forecast per household, annualWTP for five illustrative
geospatial scenarios, chosen to span the range of in-sample values for prop_chg, ln_ar_agr,
ln_ar_ratio and ln_rel_size. Scenario 1 assumes that these variables take on mean values
from the metadata. Scenario 2 assumes that prop_chg and ln_rel_size take on their minimum
values from the metadata, and ln_ar_ratio and ln_ar_agr take their maximum values; these
together imply the smallest in-sample ratio of geospatial scale to market extent, the smallest
proportional effect on regional water bodies, and the smallest availability of complemen-
tary land uses. Scenario 3 assumes that prop_chg and ln_rel_size take on their maximum
values, and ln_ar_ratio and ln_ar_agr take minimum values. Scenarios 4 and 5 allow the
combined indices of geospatial scale and market area (ln_ar_ratio and ln_rel_size) to take
their corresponding maximum and minimum values, respectively, holding other variables at
their means. These final scenarios illustrate the implications of varying only geospatial scale
and market area, holding other variables constant.

Three WTP estimates are generated for each scenario. The first is the per household
WTP estimate generated by model one, including ln_rel_size. The second is a WTP estimate
generated by model two, including ln_ar_ratio. The third is the WTP estimate for each
scenario from the restricted model. Because the restricted model omits all core geospatial
variables,WTP estimates from thismodel are identical across all scenarios. Results are shown
in Table 4.

Results suggest that researchers should exercise cautionwhen conducting benefit transfers
that do not account for geospatial scale,market extent, and substitute/complement availability,
particularlywhen these variables take on relatively high or lowvalues (Table 4). The restricted
model generates a WTP estimate of $58.15 for all scenarios, illustrating the invariance to
geospatial factors common in published meta-regression models. As expected, the restricted
model forecast ($58.15) is similar to the unrestrictedmodel forecasts that assumemean values
for all geospatial variables ($54.52 and $54.60). However, the unrestricted and restricted
model WTP estimates diverge as geospatial variables depart from their mean values. For
example, within Scenario 2, the restricted model leads to WTP estimates that are 240 and
216% larger than parallel estimates from the unrestricted models ($58.15 vs. $17.12 or
$18.38). Within Scenario 3, the restricted model leads toWTP estimates that are 87 and 84%
smaller than those from the unrestricted models ($58.15 vs. $433.58 or $360.54).

Scenarios 4 and 5 illustrate effects associated with only variations in geospatial scale
and market area (ln_ar_ratio or ln_rel_size). In this case, the restricted model produces a
WTP forecast ($58.15) that under/over-states values by as much as 37 and 87% respectively,
compared to unrestricted model forecasts ($92.56 and $31.14 from model one). Hence,
omission of even a single geospatial variable from meta-regression models can, in some
cases, have substantial implications for benefit transfer.

25 Given a log linear regression, assuming mean values for these methodological variables does not lead to
an estimate of mean WTP over the sample (Johnston et al. 2006; Moeltner et al. 2007). We use mean values
for these variables to mirror common practice in applied benefit transfer, thereby illustrating implications for
accuracy in these common situations. Very similar results are produced if one forecasts WTP individually
for each observation in the metadata (using values for these variables observed for each observation) then
averages the resulting WTP forecasts. This mirrors prior results of Stapler and Johnston (2009).
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Table 5 Benefit transfer errors (iterative leave-one-out convergent validity test)

Meta-regression model Mean absolute
value error ($)

SD ($) Mean absolute
value error (%)

SD (%)

Unrestricted model
one (ln_ar_ratio)

$42.32 $49.08 64.20 173.45

Unrestricted model
two (ln_rel_size)

$41.65 $46.02 63.31 162.74

Restricted Model $45.50 $45.52 69.02 155.78

5.2 Effects of Geospatial Variables on Transfer Error: Mean Transfer Errors

The above analysis demonstrates implications for benefit transfer when spatial variables
take on maximum or minimum values from the metadata. To provide a perspective on more
typical or average effects, we conduct an iterative leave-one-out cross-validation convergent
validity test that compares the out-of-sample performance of the restricted and unrestricted
models (Brander et al. 2007; Londoño and Johnston 2012; Stapler and Johnston 2009). We
begin with n = 1. . .N observations from the metadata. The first step is the omission of
the nth observation. The model is then estimated using the original model specification for
the remaining N − 1 observations. This is iterated for each n=1…N observation, resulting
in a vector of N unique parameter estimates, each corresponding to the omission of the
nth observation. For each of these n=1…N model runs, the nth observation represents an
out-of-sample observation corresponding to the vector of parameter estimates resulting from
that iteration. Parameter estimates for the nth iteration are then combined with independent
variable values for the nth observation to generate aWTP forecast for the omitted observation.
The result is N out-of-sample WTP forecasts, each drawn from a unique model estimation.
Transfer error is assessed through comparisons of the predicted and actual WTP value for
each of the N observations, and is reported as absolute value percentage error. Results of this
test are compared for the unrestricted and restricted models.

Results of the test are illustrated by Table 5. Results verify that the inclusion of geospa-
tial variables within meta-regression models reduces transfer error, but that the reduction in
average error (as expected) is smaller than that found in the extreme cases shown above.
The restricted model that omits core geospatial variables produces an average absolute value
transfer error of 69.02%, when used to predict out-of-sample values. This is equivalent to
an average absolute value error of $45.50. In contrast, unrestricted models one and two pro-
duce transfer errors of 64.20 % ($42.32) and 63.31% ($41.65), respectively. Hence, average
transfer errors increase by approximately 5–6% when geospatial variables are omitted.

These results, combined with those from the extreme value cases illustrated above, lead to
three general conclusions. First, the inclusion of geospatial variables reduces mean transfer
errors. Second, effects on benefit transfers can be substantial when geospatial variables take
on large or small values. Third, the average effect of these variables on transfer accuracy,while
positive, is smaller. We note that these effects will likely vary across WTP for different non-
market commodities, and in some cases could be larger or smaller than those illustrated here.

6 Conclusion

The illustrated meta-regression models quantify systematic WTP variation associated with
theoretically motivated geospatial factors. In some cases, the influence of these factors on
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WTP forecasts can be of greater magnitude than those associated with attributes traditionally
included in benefit functions and associated meta-analyses. Comparison to a restricted meta-
regression model that omits these variables illustrates the increased transfer errors that can
occur when these effects are overlooked. Valuation meta-regression models in the published
literature generally omit variables such as these, leading to concerns related to the accuracy
of benefit transfers.

Results of this analysis must be interpreted within the context of our case study. The
illustrated model specification was chosen after preliminary modeling to evaluate alter-
native means to account for these patterns. Nonetheless, other specifications are possible.
Additional research is required to evaluate whether similar findings are applicable to other
types of environmental changes and policy contexts. For example, it is unknown whether
the present geospatial variables—while effective in the present meta-regression model—
represent a widely applicable means to quantify similar patterns in other valuation metadata.
Moreover, it is well known that the influence of spatial factors on WTP can vary across
different types of resources and environmental improvements. Additional work is required
to evaluate whether and how results such as these apply to other resource types and valuation
contexts.

These and other caveats aside, results of the analysis demonstrate that meta-regression
models and subsequent benefit transfers can accommodate geospatial factors suggested
by economic theory. Beyond case study empirical findings, results suggest avenues for
broader improvements in meta-analysis and benefit transfer. These include the capacity to
use theoretical expectations as a basis for more extensive metadata supplementation, using
externally-available GIS and other data to characterize potentially influential variables whose
inclusion is supported by theory, but for which information is unreported by primary studies.
In addition to supporting more accurate benefit transfers, such work can help evaluate and
document whether empirical welfare estimates adhere to theoretically expected patterns.

Acknowledgements The authors acknowledge the assistance of Ann Speers and Anna Belova (Abt Asso-
ciates) with portions of the analysis. Supported by US EPA Contract No. EP-C-13-039.

Appendix

Table 6 illustrates results of an alternative specification of unrestricted model one, in
which ln_ar_ratio is replaced with an alternative index of market area to geospatial scale,
ln_ar_ratio2. Recall, ln_ar_ratio = ln(sa_area / land_area), where land_area is defined as
the area of all counties that intersect with the improvedwater bodies. In contrast, ln_ar_ratio2
= ln(sa_area / watershed_area), where watershed_area is defined as the area of all water-
sheds (of hydrologic unit code 10, or HUC 10; https://water.usgs.gov/GIS/huc.html) that
intersect with improved water bodies. Results parallel those shown in Table 3, with transfer
error implications very similar to those shown in Tables 4 and 5.

Table 7 illustrates another preliminary version of model one estimated to test for system-
atic differences between studies for which the WQI was a native component, versus those
for which descriptive information from each study was used to map water quality baselines
and changes onto the standard WQI (see main text). The model includes a dummy variable
(WQI_study) identifying studies that incorporate the WQI as a native component. This vari-
able is included both as an individual variable and as an interaction with water quality change
(WQI_study × lnquality_ch). As shown by Table 7, the associated coefficient estimates are
not statistically significant (p > 0.67 and p > 0.73, respectively), and other model outcomes
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Table 6 Alternative model
results: improved area defined as
intersecting watersheds (HUC 10)

Variable Coefficient estimates (SE)

Methodological variables

ce 0.469

(0.206)**

thesis 0.584

(0.194)***

lnyear −0.469

(0.080)***

voluntary −1.275

(0.223)***

outlier_bids −0.428

(0.117)***

nonparametric −0.516

(0.128)***

non_reviewed −0.619

(0.172)***

lump_sum 0.747

(0.134)***

WTP_median −0.305

(0.220)

Region and surveyed populations

northeast 0.530

(0.257)**

central 0.565

(0.106)***

south 1.345

(0.131)***

nonusers −0.473

(0.122)***

lnincome 0.618

(0.376)

Study site, resource and market extent

mult_bod −0.538

(0.132)***

river −0.207

(0.129)

ln_ar_ratio2 −0.059

(0.022)***

ln_ar_agr −0.337

(0.092)***

swim_use −0.385

(0.220)*

gamefish 0.315

(0.206)
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Table 6 continued

∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.10

Variable Coefficient estimates (SE)

boat_use −0.363

(0.171)**

prop_chg 0.638

(0.188)***

Water quality baseline and change

lnquality_ch 0.293

(0.108)***

lnbase −0.046

(0.125)

Model intercept

intercept −2.369

(4.256)

N 140

Num. Groups 51

R2 0.63

σu 0.054

σe 0.541

Table 7 Alternative model
results: includes dummy variable
identifying studies using water
quality indices as a native
component (WQI_study)

Variable Coefficient estimates (SE)

Methodological variables

ce 0.511

(0.226)**

thesis 0.599

(0.214)***

lnyear −0.477

(0.091)***

voluntary −1.302

(0.224)***

outlier_bids −0.413

(0.124)***

nonparametric −0.499

(0.144)***

non_reviewed −0.657

(0.176)***

lump_sum 0.784

(0.141)***

WTP_median −0.278

(0.234)

WQI_study 0.280

(0.672)
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Table 7 continued

∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.10

Variable Coefficient estimates (SE)

Region and surveyed populations

northeast 0.515

(0.262)**

central 0.606

(0.119)***

south 1.407

(0.139)***

nonusers −0.446

(0.127)***

lnincome 0.637

(0.394)

Study site, resource and market extent

mult_bod −0.522

(0.144)***

river −0.218

(0.153)

ln_ar_ratio −0.066

(0.028)**

ln_ar_agr −0.355

(0.107)***

swim_use −0.391

(0.230)*

gamefish 0.323

(0.194)*

boat_use −0.318

(0.183)*

prop_chg 0.719

(0.206)***

Water quality baseline and change

lnquality_ch 0.311

(0.110)***

lnbase −0.078

(0.131)

WQI_study × lnquality_ch −0.075

(0.221)

Model intercept

intercept −2.633

(4.503)

N 140

Num. Groups 51

R2 0.63

σu 0.122

σe 0.542
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are unaffected (compare to Table 3). Nearly identical results are generated for model two.
Because only 30% of the sample (43 observations) includes the WQI as a native component,
degrees of freedom constraints prevent estimation of the full models using these observations
alone. However, no preliminarymodel was able to identify statistically significant, systematic
differences between the two groups of studies.
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