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Abstract This research estimates the impact of climate on European agriculture using a
continental scale Ricardian analysis. Climate, soil, geography and regional socio-economic
variables are matched with farm level data from 41,030 farms across Western Europe. We
demonstrate that a median quantile regression outperforms OLS given farm level data. The
results suggest that European farms are slightly more sensitive to warming than American
farms with impacts from +5 to −32% by 2100 depending on the climate scenario. Farms in
Southern Europe are predicted to be particularly sensitive, suffering losses of −5 to −9%
per degree Celsius.
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1 Introduction

Although there have been several economic analyses of the impact of climate change on
American agriculture (Mendelsohn et al. 1994; Mendelsohn and Dinar 2003; Schlenker et al.
2005; Deschênes and Greenstone 2007), there have been few studies in Europe. Because data
collected by countries across Europe was traditionally incompatible, European Ricardian
studies were long limited to single country analyses such as in Germany (Lang 2007; Lippert
et al. 2009) and Great Britain (Maddison 2000). Previous studies of the impact of climate
change on European-wide agriculture relied on crop models (e.g. Ciscar et al. 2011). These
crop studies carefully describe how climate affects many crops but usually assume limited
and exogenous adaptations by farmers. Crop studies also leave out impacts to livestock. The
crop studies may thus underestimate the adaptation potential in agriculture.

This study addresses these shortcomings in the literature by analysing EU-wide farm
level data. The data set is collected by the European Union (EU) to administer farm policies.
This data set contains individual data about farms in small geographic units (similar to US
counties) across Europe. The study relies on a sample of over 41,000 farms that have been
selected by the European Union to be representative of the agricultural sector in the EU-15
(Western Europe). A recent study by Moore and Lobell (2014) has also relied on this data
source to study farm adaptation. This study estimates the impact of climate on farmland
values.

The Ricardian method estimates the long-run relationship between agricultural land val-
ues and climate (Mendelsohn et al. 1994). The Ricardian model captures the underlying
productivity of land, the annual net revenue that land generates. The model tests whether
climate explains why some land is more productive than others. With competitive land mar-
kets, agricultural land productivity is capitalized into the value of land (Ricardo 1817). A
complementary view is that the Ricardian method is an hedonic model of farmland value that
explains what fraction of value is due to climate.

The Ricardian approach captures two phenomena. On the one hand, the model captures
the direct effect of climate on individual crops. This corresponds to the results of crop
experiments and crop models that predict changes in yields for specific crops as climate
changes.Themodel also captures howclimate affects the climate-sensitive choices of farmers.
Research studies have found that crop choice (Seo andMendelsohn 2008a; Wang et al. 2009;
Kurukulasuriya et al. 2011), livestock choice (Seo andMendelsohn 2008b), and irrigation are
all climate sensitive choices. Unfortunately, many crop modelling exercises fail to capture
this second effect and so overestimate the likely damages associated with climate change.
One of the strengths of the Ricardian model is its ability to reflect endogenous adaptation.

One of the important insights of agronomic research on crop yields is that the climate
response of most crops is hill-shaped. In order to capture this nonlinearity, the Ricar-
dian method has tested nonlinear climate response functions. Agronomy also suggests
that the climate sensitivity of crops varies with their stage of development. It is therefore
important to test for seasonal climate effects. Unfortunately, this complexity makes the
climate response model difficult to interpret. The literature consequently evaluates Ricar-
dian models by showing marginal impacts, the effect of changing climate just slightly
from observed values, and by estimating nonmarginal impacts, exploring how the Ricardian
model responds to very different climates. We follow this tradition and show the response
to both small and large changes in both temperature and precipitation. In order to exam-
ine realistic climates, we turn to a range of climate predictions made by climate models
for 2100. Note that this exercise is not intended to be a forecast of outcomes in 2100,
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which would require extensive knowledge of other factors that may be very different by
that time.

One of the advantages of this study is that there are so many observations being examined.
In order to take advantage of all this micro data, the paper explores quantile regressions to
estimate the Ricardian model. The quantile regression offers some advantages over the more
traditional OLS regression by separating out the behaviour of different segments of the farm
sector. For example, the quantile regressions reveal how climate affects the more marginal
farms of Europe as well as the most valuable. The quantile regressions thus permit a closer
view of how the huge diversity of farms in Europe (from vineyards to grazing) will respond
to climate change.

There is an extensive literature that has used the Ricardian method to study the cli-
mate sensitivity of agriculture in 32 countries around the world (Mendelsohn and Dinar
2009). There is also a rich literature examining possible weaknesses of the Ricardian
technique. The technique does not capture future technical change to either crops or new
farming methods. As with all uncontrolled experiments, unmeasured factors correlated
with climate can bias the results. It is consequently important that Ricardian analyses
measure likely factors that might influence crop productivity such as soils and market
access. Especially, as emphasized by Fisher et al. (2012), it is critical that climate is mea-
sured carefully. The Ricardian method does not measure either price sensitivity (Cline
1996) or carbon fertilization since both prices and the level of carbon dioxide remain
the same across the entire sample. The absence of price effects causes the Ricardian
method to overestimate large global damages or global benefits of warming (Mendelsohn
and Nordhaus 1996). The beneficial effects from carbon dioxide fertilization (Kimball
2007) must be added exogenously using the results of crop experiments. The Ricardian
approach is a comparative static analysis of long run equilibriums. It does not cap-
ture the cost or the dynamics of moving from one equilibrium to another (Kelly et al.
2005). Intertemporal analyses of weather are much more appropriate tools for captur-
ing the short run dynamics associated with weather changes (Deschênes and Greenstone
2007).

There has also been an extensive debate concerning whether the Ricardian technique
properly accounts for irrigation (Schlenker et al. 2005). SomeRicardian studies have carefully
controlled for the availability of surface and groundwater (Mendelsohn and Dinar 2003;
Kurukulasuriya et al. 2011; Massetti and Mendelsohn 2011a, b). Unfortunately, such data
are not available for this study. We do examine the climate response function of both rainfed
versus irrigated farms in order to demonstrate how important these choices are to farm
outcomes. As shown in the literature for Africa (Kurukulasuriya et al. 2011; Kala et al.
2012), South America (Seo and Mendelsohn 2008a) and China (Wang et al. 2009), the
climate response functions of rainfed and irrigated farms are different.

A special concern in Europe is whether the EU Common Agricultural Policy distorts
climate sensitivities. For example, farm subsidies can hide (exaggerate) climate sensitivity if
the subsidies are higher for farms in adverse (favourable) climates. We control for subsidies
at the farm level. The analysis also includes country fixed effects to remove the influence of
country level policies.

The paper is organized as follows. In Sect. 2, we briefly explain the theory behind the
Ricardian analysis. Section 3 presents the data and the model specifications of the Ricar-
dian model using farm level data. In Sect. 4 the empirical findings are presented as well as
measures of the impacts of different future climate scenarios by General Circulation Climate
Models (GCM). The paper concludes with a summary of the results, policy conclusions, and
limitations.
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2 Methodology

The Ricardian model assumes that each farmer i chooses which output (Qi, j ) and howmuch
inputs (Xi,k) to maximize net revenues (NRi ) each year:

NRi =
∑

j
PjQi,j

(
Xi,k,Zi

) −
∑

k
MkXi,k (1)

where Pj is the market price of each output j , Qi, j is the quantity of each output j at farm
i , Xi , k is a vector of purchased inputs k(other than land), Mk is a vector of input prices,
and Zi is a vector of exogenous variables at the farm. Farmers will choose both the type of
output and their inputs to maximize net revenue given prices and exogenous factors. Looking
at the final outcomes across a large set of farmers in different settings, net revenue will be a
function of just the exogenous factors. Farmland value (Vi) is equal to the present value of
future net revenue:

Vi = ∫∞
t NRte

−ϕ tdt (2)

where ϕ is the interest rate and Vi is therefore a function of only the exogenous variables:

Vi = f (Zi ) . (3)

The cross sectional Ricardian regression estimates Eq. (3). Endogenous variables selected by
the farmer such as fertilizer or crop choice should not be included as independent variables
in the regression. When endogenous variables are included in the Ricardian regression, those
factors are “controlled” or held fixed and not allowed to vary with climate. Exogenous
variables can be grouped into different subgroups: climate variables (temperature, T , and
rainfall, R), and exogenous control variables (E) such as geographic, soil variables, and
socio-economic variables including market access (which may proxy for price variation).

We use data on farmland value per hectare (Vi) from the FADN (Farm Accountancy Data
Network). Farmland value is measured as the replacement value of agricultural land in owner
occupation. The farm accountancy data are harmonized, applying the same bookkeeping and
valuation principles across the entire sample.

Althoughwe have tested a linear functional form,we find that a log-linear formfits the data
best because land values are log-normally distributed (Schlenker et al. 2006; Massetti and
Mendelsohn 2011a, b).1 Weuse the climatology of each location (the 30 year average seasonal
temperature and rainfall) to measure climate. We include four seasons because agronomic
and Ricardian studies reveal that seasonal differences in temperature and precipitation have
a significant impact on farmland productivity (see review in Mendelsohn and Dinar 2009).
Some authors (e.g. Schlenker et al. 2006; Moore and Lobell 2014) have promoted the idea
of using just climate during the growing season. But perennials and winter crops are very
relevant in Europe so that the growing season is all year long. Further, the climate during the
“nongrowing season” has an impact on land value and is correlatedwith the climate during the
growing season. Failure to include all seasons leads to biased climate coefficients. Finally, the
agronomic and economic literature also suggests that the relationship between climate and
land values is nonlinear (see review in Mendelsohn and Dinar 2009). We therefore estimate
the following model for each farm i :

ln Vi = α + βTTi + γTT
2
i + βRRi + γRR

2
i + ηEi + ξD + ui (4)

1 Comparing the ratio of the predicted value using OLS to the actual value in each decile, we found that the
log-linear model has a more uniform predictive power compared to the linear model.
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where T and R are vectors reflecting seasonal temperatures and precipitations, E is a set of
exogenous control variables; D is a set of country fixed effects and ui is a random error term
which is assumed not to be correlated with climate.

For a random variable Y with cumulative distribution F (F (y) = P (Y < y)), the τ-th
quantile is defined by Qy (τ) = inf {y : F (y) ≥ τ}. The most frequently examined quantiles
are the median (τ = 0.5), the first and last deciles (τ = 0.1 and τ = 0.9) and the first and last
quartiles (τ = 0.25 and τ = 0.75). Based on Eq. 4, we can run a quantile regression (Koenker
and Bassett 1978) for each different value of τ:

Qln Vi (τ |T, R, E, D) = α (τ) + βT (τ)Ti + γT (τ)T2
i + βR (τ)Ri + γR (τ)R2

i

+η (τ)Ei + ξ (τ)D (5)

The median quantile regression estimate is more robust against outliers compared to OLS
because the effect of the outliers is relegated to the extreme quantiles. In contrast, OLS
regressions can be strongly influenced by extreme observations because the regression is
minimizing squared errors across the entire sample.

Although the entire sample is subject to the rules and regulations of the European Union,
these rules are often applied in a different fashion by each country. We control for coun-
try specific factors that affect farms by using country fixed effects. Although in principle
finer geographic controls for unmeasured spatial correlates, an overuse of fixed effects can
significantly inflate the variability of the estimates of other covariate coefficients (Koenker
2004). The risk of ever-finer controls is a reduction in the climate variation within the sample.
The climate signal becomes weaker with each additional layer of fixed effects. In the end,
measurement error can dominate the results and bias the climate coefficients towards zero
(Fisher et al. 2012).

The marginal impact of seasonal temperature Ti on land value per hectare at farm i is
equal to: [

∂QVi (τ |T, R, E, D)

∂Ti

]
= Vi (τ) (βT (τ) + 2γT (τ)Ti) (6)

Note that themarginal impactsmay differ over quantiles (i.e. different values of τ) and that we
use a quadratic specification of climate variables. Temperature and precipitation marginals
consequently vary depending on both the underlying land value and climate. In order to
calculate the marginal impact of warming across all of Europe (or a particular member state),
one must sum the effects at every farm:

MITr (e)
def=

[
∂QVi,r (τ |T, R, E, D)

∂Ti,r

]
=

n∑

i=1

Vi (τ) (βT (τ) + 2γT (τ)Ti)ωi (7)

with n the total number of sampled farms in region r and whereωi is a weight that reflects the
total amount of farmland that each farm represents. This expression evaluates a small change
in Ti at each region r and reports the expected response across all regions. One can also
calculate the percentage change in land value associated with a small change in temperature:

MITr (%)
def=

[[
∂QVi,r (τ |T, R, E, D)

∂Ti,r

]/
Vi,r (τ)

]
=

n∑

i=1

(βT (τ) + 2γT (τ)Ti)ωi (8)

In order to test the effect of very different climates, one can compare the predicted land value
of a hypothetical climate (T1,R1) to the estimated value of land with the original climate
(T0,R0):
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�Wr =
n∑

i=1

[
QVi (τ) (T1,R1) − QVi (τ) (T0,R0)

]
ωi (9)

where QVi = exp
(
α + βTTi + γTT2

i + βRRi + γRR2
i + ηEi + ξD

)
.

3 Data and Model Specifications

3.1 Data Description

This is the first study that utilizes the FADN (farm accountancy data) across Western Europe
to estimate a Ricardian model. The FADN data has also been used recently to estimate farm
adaptation (Moore and Lobell 2014). The FADN data is a sample of farms drawn by the
European Union to manage their agricultural policies. The 2007 sample of 58,360 farms is
designed to be representative of the underlying population of 15million farms acrossWestern
Europe (EU15) and includes populationweights for each farm (EC2009).2 We havemodified
the FADN sample by removing greenhouses, farms with less than a hectare of owned land,
and outliers, leaving a final sample of 41,030 farms.3

The FADN data set divides Western Europe into a set of geographic units called NUTS3
(Nomenclature of Territorial Units for Statistics) regions. The average area of each NUTS3
region is 3425 km2 and there are 935 NUTS3 regions in the data set.

EachMember State conducts the survey using a consistent instrument. This has eliminated
an earlier problemacrossEuropewhere each country collected slightly different farmdata and
used different definitions of key variables. The resulting farm data is exceptionally valuable.
For example, the property value of each individual farm is measured consistently across
countries from observed farmland sales. The farm data also provides information about the
source of gross revenue on the farm. This information allows us to classify farms depending
upon what source provides the largest share of gross revenue. We distinguish between four
types of farms: irrigated versus rainfed and crops versus livestock. It is consequently possible
to conduct distinct climate studies by farm type using the FADN data. In comparison, the
US Census of Agriculture only reports aggregate land values for all types of farms in each
county so that livestock and crop and rainfed and irrigated farm outcomes are often mixed
together.

The observed climate data for eachNUTS3 regionwas derived from theClimatic Research
Unit (CRU) CR 2.0 dataset (New et al. 2002). The climatologies for temperature and precipi-
tation rely on measurements from 1961 to 1990. Soil data are from the harmonized world soil
database, a partnership between the Food and Agriculture Organization (FAO) and the Euro-
pean Soil Bureau Network. An overview and detailed description of all model variables and
sources can be found in “Appendix 1”. Additional socioeconomic (population density) and
geographic variables (e.g. distance from urban areas, distance from ports, mean elevation)
were matched to each NUTS3 region.

Table 4 in the “Appendix 1” shows the descriptive statistics of our model variables for
the entire sample. The average farm level land value is nearly 16,000 Euro per hectare but

2 FADN is well documented on http://ec.europa.eu/agriculture/rica/index.cfm. and the information about
weighting can be found on http://ec.europa.eu/agriculture/rica/methodology3_en.cfm.
3 The following farms are removed: 2230 duplicates, 654 farms in out or range islands (e.g. Azores, Tenerife,
Madeira), 1700 farms with missing spatial information, 3203 farms under glass, 8864 farms with less than 1
hectare land in ownership, 597 farms with low total land value (<50 e), and 82 outliers (e.g. farms with zero
output or with a high output with (nearly) no farmland).
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there is a wide range in values. The amount of land actively farmed exceeds the amount of
land owned. Many farmers in Europe rent land from landowners, a practice which varies by
country.

It is helpful to understand how farm types vary across Europe. The mean values of some
key characteristics of farms are reported in Table 5 for each farm type. Note that the value of
irrigated land is generally much higher than rainfed land. The active size of rainfed farms, in
contrast, is much higher than for irrigated farms. The optimal size to operate a farm is larger
for rainfed farms. Irrigated farms tend to be located in warmer regions of Europe. Livestock
farms are also quite different from crop farms. The utilized agricultural area of livestock is
larger. Moreover, specialised livestock farms are located in cooler and wetter areas.

3.2 Model Specifications

We explore a number of different analyses to test the robustness of our results. We estimate
both OLS and quantile regression models of the entire sample to measure the overall cli-
mate sensitivity of European farms. We also estimate separate regressions for subsamples of
rainfed, irrigated, crop and livestock farms.

In all regressions, we weight each farm within the sample using total owned agricul-
tural land in that farm to control for heteroscedasticity. We also test for aggregation bias by
comparing the results using the micro data versus the aggregate data for each NUTS3 region.

It is not possible to correct for spatial correlation with the micro data because we do not
know the precise location of each farm. However, we do apply controls for spatial correlation
using the aggregate data. Treating eachNUTS3 region as an observation, we followSchlenker
and Roberts (2009) and apply the Conley (1999) non-parametric method to correct the matrix
of covariances for spatial dependence among observations.

We then interpret the coefficients of the Ricardian models by first calculating the marginal
impacts of small changes in temperature and precipitation change (away from the current
climate). Because the model is nonlinear, these marginal effects change with large changes
in climate. In order to learn how the Ricardian model responds to very different climates,
we then calculate the consequence of predicted climate outcomes in 2100 for three different
climates predicted by General Circulation Climate Models (GCMs): Hadley CM3 (Gordon
et al. 2000), ECHO-G (Legutke and Voss 1999), and NCAR PCM (Washington et al. 2000).
These specific climate scenarios are based on the A2 SRES (Special Report on Emissions
Scenarios) emissions scenario (Nakićenović et al. 2000). Note that our purpose in choosing
these three climate scenarios is not to predict realistic outcomes in 2100 but simply to show
what the Ricardian model predicts would happen with a range of plausible climate scenarios.

We interpolate from the climate grids of the GCMs to each NUTS3 region centroid using
inverse distance weights to the four nearest grid points.4 The absolute change of temperature
and the percentage change in precipitation are defined as the difference in the climate model’s
predictions for 2071–2100 versus 1961–1990. These changes are then applied to the CRU
1961–1990 observed climate data for each NUTS3 region.

Across Western Europe, the Hadley CM3 model predicts an average warming of 4.4 ◦C
with a 34% loss of annual precipitation, the ECHO-G model predicts a warming of 4.3 ◦C
with a 21% loss of precipitation, and the NCAR PCM model predicts a warming of 2.8 ◦C
with a 5% loss of precipitation by 2100. The three climate scenarios effectively represent
a severe, moderate, and mild possible outcome, respectively. However, the precise climate

4 The grid sizes for the three climate models are considerably larger than the NUTS3 regions. The statistical
downscaling we rely on generates a smooth prediction across space. It should be understood that these local
predictions are plausible but highly uncertain.
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732 S. Van Passel et al.

change for each country in Europe varies across the scenarios so that some parts of Europe
are predicted to warm or dry at different rates. The mean temperature and precipitation in
each member state for each scenario can be found in Table 7 in “Appendix 2”.

4 Results

Section 4.1 presents the regression results across Western European farms. The first set of
regressions use the entire sample in order to understand the impact climate has on the entire
farm sector (Eq. 4). A second set of regressions focuses on subsamples (rainfed and irrigated
farms and cropland and livestock farms) to understand the climate sensitivity of different
components of European agriculture. The third set of regressions uses quantile regression to
examine each quintile of the sample (Eq. 5). The expected nonmarginal impacts of future
climate scenarios are calculated in Sect. 4.2. Section 4.3 analyses the robustness of the
Ricardian regressions.

4.1 Ricardian Regressions

Table 1 compares the coefficients and standard errors using both OLS and median quantile
regressions for the entire sample of farms. In the median quantile regression, thirteen of
the sixteen seasonal climate coefficients are statistically significant revealing that climate
has a significant impact on the value of European farmland. The coefficients of squared
temperature and precipitation (except summer precipitation) are significant implying effects
are nonlinear. While Table 1 only reports the median quantile regression, we also estimate
quantile regressions for the lowest 10%, lower 25%, upper 75%, and upper 10% of the
distribution (shown in Table 8 in “Appendix 3”).

In order to interpret the coefficients in Table 1, we first analyse the impact of a small
(marginal) change from the current climate. We later address the nonlinearity of the climate
function by examining larger movements away from the current climate. Figure 1 reveals
the marginal percentage effects of seasonal temperature and precipitation across Western
Europe for each of the five quantile regressions. The marginals were calculated using the
climate coefficients in Tables 1 and 8 (in Appendix 3). The temperature marginals reflect
the percentage change in farmland value per ◦C and the precipitation marginals reflect the
percentage change in farmland value per cm/month. Across all the quantiles, land values fall
with warmer winter and summer temperatures and they increase with warmer spring temper-
atures. The top two quantiles have significantly stronger positive and negative responses to
spring and summer temperature respectively compared to the rest of the sample. Themarginal
impacts of autumn temperature are generally positive but not for the two lowest quantiles.
These general seasonal results mirror the results from US studies (Mendelsohn et al. 1994;
Mendelsohn and Dinar 2003; Massetti and Mendelsohn 2011a, b). A colder winter is benefi-
cial because cold limits pests, a warmer spring and autumn are valuable because they lengthen
the growing season, and a warmer summer is harmful because the high temperatures stress
crops.

Precipitation also significantly affects land values. For the median EU farm, rain is bene-
ficial in winter and summer but harmful in spring and fall. There is adequate rainfall already
in the spring and fall in Europe, so that more rainfall only diminishes much needed solar
radiation. In contrast, there is not currently enough rainfall in summer to compensate for
the heat, and so more rainfall is beneficial. More rainfall in the winter can lead to plenti-
ful soil moisture for the beginning of growing season. These seasonal patterns for marginal
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Table 1 EU-15 Ricardian regressions

EU-15 (median regression) EU-15 (OLS regression)

Coef SE Coef SE

Temperature winter −0.242*** 0.023 −0.251*** 0.021

Temp. winter sq 0.004** 0.002 0.008*** 0.001

Temperature spring 0.375*** 0.045 0.291*** 0.042

Temp. spring sq 0.003 0.002 0.014*** 0.002

Temperature summer 0.054 0.076 0.083 0.072

Temp. summer sq −0.008*** 0.002 −0.010*** 0.002

Temperature autumn 0.363*** 0.079 0.620*** 0.066

Temp. autumn sq −0.013*** 0.003 −0.027*** 0.003

Precipitation winter 0.110*** 0.015 0.086*** 0.016

Prec. winter sq −0.001* 0.001 0.001** 0.001

Precipitation spring −0.223*** 0.027 −0.313*** 0.028

Prec. spring sq 0.014*** 0.001 0.015*** 0.001

Precipitation summer 0.055*** 0.020 0.003 0.019

Prec. summer sq −0.001 0.001 0.004*** 0.001

Precipitation autumn 0.060*** 0.016 0.103*** 0.015

Prec. autumn sq −0.008*** 0.001 −0.011*** 0.001

Gravel (t_gravel) −0.052*** 0.004 −0.046*** 0.003

Silt (t_silt) −0.001 0.003 −0.008*** 0.002

Sand (t_sand) −0.007*** 0.002 −0.013*** 0.001

pH 0.774*** 0.154 0.214* 0.117

pH squared −0.041*** 0.012 0.005 0.009

Rented land 0.065*** 0.017 0.124*** 0.018

Population density (Pdnsty) 0.340*** 0.025 0.347*** 0.023

Subsidies 0.294*** 0.013 0.408*** 0.015

Distance to cities (Cities500k) −0.618*** 0.090 −0.530*** 0.082

Distance to ports (PortsML) −1.075*** 0.076 −1.110*** 0.070

Elevation mean −0.179*** 0.046 −0.129*** 0.048

Elevation range 0.023* 0.012 0.063*** 0.012

Austria (AT) −2.454*** 0.054 −2.647*** 0.051

Belgium (BE) −0.096** 0.042 0.032 0.050

Denmark (DK) 0.846*** 0.057 0.942*** 0.044

Spain (ES) −0.430*** 0.056 −0.504*** 0.053

Finland (FI) −0.357*** 0.086 −0.515*** 0.086

France (FR) −1.267*** 0.044 −1.118*** 0.039

Greece (GR) 0.117 0.073 −0.050 0.072

Ireland (IE) 1.155*** 0.030 1.068*** 0.029

Italy (IT) 0.807*** 0.060 0.847*** 0.051

Luxembourg (LU) −0.417*** 0.047 −0.353*** 0.046

Netherlands (NL) 1.043*** 0.040 1.017*** 0.037

Portugal (PT) −2.107*** 0.074 −2.378*** 0.062
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Table 1 continued

EU-15 (median regression) EU-15 (OLS regression)

Coef SE Coef SE

Sweden (SE) 0.035 0.068 0.056 0.058

West Germany (WDE) 0.332*** 0.041 0.307*** 0.035

East Germany (EDE) −0.898*** 0.053 −0.914*** 0.041

United Kingdom (UK) (Omitted) (Omitted)

Constant 2.799*** 0.646 4.156*** 0.466

Pseudo R2 / Adj. R2 0.4439 0.6217

Number of observations 41,030 41,030

*** p < 0.01; ** p < 0.05; * p < 0.1

changes are similar to American results. Figure 1 shows the impact of spring precipitation
has especially wide rangingmarginal effects across quantiles ranging from−23% in the 10th
percentile to +7% in the 90th percentile.

Looking across all of Europe, one can summarize the annual marginal effects of both
temperature and precipitation. The median regression of the entire sample of farms (Table 1)
reveals that a uniform increase of 1 ◦C in the EU-15 increases farmland value +8.2% (482
e/ha) and a uniform increase of 1 cm per month of precipitation increases farmland value
+2.4% (143e/ha). Marginal warming and marginal increases in precipitation are beneficial
to EU-15 agriculture as a whole.

The marginal climate effects, however, differ a great deal across member countries within
the EU-15 because each country has a different initial precipitation and temperature. A small
warming (cooling) is beneficial (harmful) to cooler countries and harmful (beneficial) to
warmer countries. A small increase (decrease) in precipitation is beneficial (harmful) to
drier (wetter) countries and harmful (beneficial) to wetter countries. The marginal percent-
age change for each country is reported in the supplementary materials Table S.1 (Eq. 8),
the absolute marginal values are reported in Table S.2 (Eq. 7), and Figures S.1 and S.2
map the temperature and precipitation marginal impacts at the NUTS3 level. A marginal
increase in annual temperature has a beneficial effect on the northern countries: Austria,
Belgium, Germany, Denmark, Finland, Ireland, Luxembourg, Netherlands, Sweden, and
Great Britain and a negative effect on the southern countries: Spain, Greece, Italy, and Por-
tugal. The magnitude of the marginal effects varies by countries. The marginal benefit is
the highest in Sweden and Finland which gain about 16% of land value, whereas the mar-
ginal loss is highest in Greece and Portugal which lose 9% of land value. A small increase
in rainfall (see Figure S.2 in supplementary materials) is beneficial to Austria, Belgium,
France, Germany, Luxembourg, Portugal, and Spain but harmful to Denmark, Finland, and
Sweden.

Several of the control variables in Table 1 are also significant. Gravel soils tend to be
harmful. Because neutral soils are more beneficial than either acidic or alkaline soils, soil pH
has a concave impact on land value. Higher population density increases land values, which
makes sense because higher density implies land is scarce.Greater distance tomarkets reduces
landvaluewhether it is to large cities or ports. The coefficient is twice as large for ports as cities
suggesting ports (and therefore exports) lead to more valuable markets for farmers. Higher
elevation is harmful. Higher elevation may be harmful for many reasons including higher
diurnal temperature variance, decreased access, or increased slope. Country fixed effects
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Fig. 1 Marginal impact in percentage of land value of temperature and precipitation across quantiles. Color
coding: red (Q10), orange (Q25), blue (Q50), yellow (Q75) and green (Q90). (Color figure online)

are generally significant implying higher average land values in Denmark, Ireland, West
Germany, Italy, and the Netherlands, but lower values in Austria, France, East Germany, and
Portugal.
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Table 1 also compares the results of themedian regression and an identical OLS regression
using the whole sample. The coefficients from both models are quite similar. The median
regression leads to a flatter overall climate response function (smaller marginal results) than
the OLS regression. The extreme data points that tend to have more influence in the OLS
regression lead to a slightly more sensitive climate response function.

We use the Morgan–Granger–Newbold (MGN) significance test to compare the fore-
casting accuracy of the median regression and OLS models (Diebold and Mariano
2002). We use a random sample of 80% of our farms to estimate the Ricardian func-
tion and we forecast the land values of the remaining 20% of farms. We repeat the
MGN test 1000 times and we reject the null hypothesis of equal forecasting accuracy
in favour of the median regression in 99% of the repetitions. The median regression
model outperforms the OLS model with an average t-statistic of 10.12. We conse-
quently focus on the results of the median quantile regression in the remainder of the
paper.

In addition to understanding how climate affects the entire farm sector, it is also helpful
to estimate how climate affects subsamples of farms as shown in Table 2. The regression in
the first column in Table 2 is estimated on only rainfed farms. The second column shows
the results for irrigated farms. The climate coefficients for the irrigated farms are quite
different from the climate coefficients of the rainfed farms. Irrigation allows farms to exist
in dryer locations, as can be seen in Europe (Table A-2). However, irrigation also affects
temperature sensitivity. The optimal summer temperature for irrigated farms (14.5 ◦C) is
higher than the optimal temperature for rainfed farms (13.6 ◦C). As both agronomic and
economic studies have previously shown, irrigation increases the tolerance of plants to higher
temperatures (Mendelsohn and Dinar 2003; Elliott et al. 2014; Nendel et al. 2014). Figure 2
presents the marginal climate results for Table 2. A marginal increase in warming increases
the value of irrigated farms slightlymore than rainfed farms.A slight increase in precipitation,
however, has a powerful positive marginal effect on irrigated farms and only a small effect
on rainfed farms. Partly, this is because irrigated farms are located in the driest and warmest
part of Europe so added rainfall is particularly valuable. However, controlling for climate,
the net revenues of irrigated farms are clearly more sensitive to precipitation than rainfed
farms.

Rainfed and irrigated farms also have different seasonal responses. Warmer tempera-
tures in winter and spring benefit rainfed more than irrigated farms but warmer autumn
temperatures are especially beneficial to irrigated farms. Irrigated farms respond especially
well to wetter springs but especially poorly to wetter autumns compared to rainfed farms.
These seasonal differences could be caused by the different crops that each type of farm is
growing.

The coefficients of the control variables in Table 2 are also quite different for irrigated
versus rainfed farms. Gravel soils are only harmful to rainfed farms. Irrigated farms have a
much higher negative reaction to sandy soils. This is probably because such soils cannot hold
irrigated water and the water just seeps through. A higher share of rented land increases the
land value of rainfed farms but decreases the land value of irrigated land. Renters have less
long run incentive to invest in the capital required for irrigation compared to landowners.
Access to ports is more beneficial to irrigated farms but access to cities is more beneficial
to rainfed farms. One explanation is that irrigated farms could be growing crops directly for
export whereas rainfed farms are selling more of their output to nearby cities.

Another important distinction between farms is whether they grow crops or raise livestock.
The third and fourth columns in Table 2 are regressions on subsamples of crop farms and
livestock farms. The seasonal temperature coefficients have similar patterns for both crops
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Fig. 2 Percentage land value marginal effects at temperature and precipitation of all farms, only rainfed, only
irrigated land, only crop farms and only grazing farms (median regressions). color coding: red (all farms),
orange (rainfed farms), blue (irrigated farms), yellow (crop farms) and green (grazing farms). (Color figure
online)

and livestock. However, examining the magnitude of marginal climate responses in Fig. 2
reveals that warming is more beneficial to livestock than crop farms. This is especially clear
in spring.
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Some of the crop and livestock coefficients of the control variables are also different.
Gravel soils are more harmful to crops but sandy soils and high elevation are more harmful
to livestock. Alkaline soils, population density, and being closer to cities are more beneficial
to crops whereas being closer to ports is more beneficial to livestock. The livestock may be
dependent on the import of feed (e.g. soya) from the ports.

4.2 Alternative Climates

In this section, we examine the impact of alternative climates that are quite different
from the current climate. Because the Ricardian model is nonlinear, it predicts differ-
ent outcomes as climate changes dramatically. We use three different climate models
(Hadley CM3, ECHO-G and NCAR PCM) to select a range of plausible future climates.
All three climate scenarios were based on the SRES A2 (no mitigation) GHG emission
scenario.

We use the coefficients from the estimated median quantile regression of all farms
(Table 1) to calculate the land values in each NUTS3 region for each climate scenario
(including the current climate). Subtracting the land values of the current climate from the
three climate scenarios provides a measure of the welfare change. The calculation takes
into account changes in both temperature and precipitation at each NUTS3 location. The
effects are then aggregated across space to measure country impacts and EU-15 impacts
(Eq. 9).

Table 3 reports the change in aggregate farmland value for Western Europe. The Hadley
CM3 scenario generates a loss of 32% of farmland value by 2100. The ECHO-G scenario
generates a loss of 16% and NCAR PCM generates a 5% gain. These impact estimates are
calculated keeping the rest of the model constant. This is consequently not a forecast of the
future but simply a measure of what climate might do if it alone changed. We also do not
consider carbon fertilization. If carbon dioxide concentrations double between now and 2100
(from 400 to 800 ppm), crop yields are expected to increase by 30% (Kimball 2007). Carbon
fertilization would moderate the results reported in Table 3.

In order to quantify the uncertainty surrounding the welfare estimates in Table 3, we
build bootstrap confidence intervals. Samples were created using a random selection of
farms with replacement. The median regression was then estimated for each sample. The
impact of each climate scenario was then calculated. The process was then repeated 1000
times to generate 1000 values for each climate scenario. The results illustrate that the dam-
age predicted in the ECHO-G and Hadley CM3 scenarios is significantly different from
zero at EU-15 level while the gain of the NCAR PCM scenario is not significant differ-
ent from zero. The uncertainty across the climate models is large as one can see from
the results across three climate models. The uncertainty of the Ricardian model is also
large.

It is also important to note that the impact of temperature and precipitation change is not
at all uniform across the EU-15. Figs. 3, 4, and 5 present maps of the impacts of each climate
scenario on each NUTS3 region. Several countries are damaged by future temperature and
precipitation changes.OnlyBelgium,Germany,Denmark, theNetherlands,UnitedKingdom,
and especially Ireland benefit in theNCARPCMclimate scenario.Denmark, Finland, Ireland,
Sweden, and the UK benefit slightly in the ECHO-G climate scenario, and only Ireland and
the UK show a benefit in the Hadley CM3 climate scenario. Italy has the largest aggregate
loss of farmland value. Italy loses e 120 billion (−71%) of farmland value in the Hadley
CM3 scenario, e 101 billion (−60%) in the ECHO-G scenario, and e 58 billion (−34%)
in the NCAR PCM climate scenario. The future climate scenarios, in general, are beneficial
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Fig. 3 Percentage change in farmland values predicted by Hadley CM3 climate scenario (2100)

to agriculture in northern countries and harmful in southern countries. But the effect is not
uniform across the future scenarios because the magnitude of annual climate change varies
and because there are important seasonal changes. For example, the Ricardianmodel predicts
Finland to be harmed by warming because the winter temperature there increases by 8 ◦C in
some scenarios. This effect is predicted to be more harmful than the gains from warming in
the other seasons.

4.3 Robustness Checks

We estimate a number of alternative regressions as a robustness check.We look at regressions
with and without country fixed effects (see Table 9 in “Appendix 3”). Dropping the country
fixed effects causes the climate coefficients to change. The annual marginal temperature
effect in the EU-15 drops from +8.2% (with country fixed effects) to +5.7% (without
country fixed effects) while the annual marginal precipitation effect increases from +2.4 to
+11.5%.

We also examine what happens when even more refined spatial fixed effects are included.
Instead of using 15 country dummies, we include 63 regional dummies to capture broad
regions within each country. The results are reported in Table 9 in “Appendix 3”. With more
spatial fixed effects, there is less remaining variation in climate. This magnifies measurement
error biasing the climate coefficients towards zero. All the climate coefficients drift towards
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Fig. 4 Percentage change in farmland values predicted by ECHO-G climate scenario (2100)

zero with the regional dummies. This same phenomenon can be seen in the panel regression
results of Deschênes and Greenstone (2007). If fixed effects remove too much of the climate
signal, measurement error begin to dominate the results leading the coefficients to be biased
towards zero (Fisher et al. 2012). We consequently advise against using the regional fixed
effects.

We test whether aggregation has a significant effect on the results. We aggregate the
data on all farms to the NUTS3 region. This effectively treats each NUTS3 region as an
observation, dropping all the information on the individual farm.The result reported inTable 9
in “Appendix 3” reveals that the temperature coefficients remain stable but the significance
of the coefficients declines. With the aggregated data, spring and autumn temperature and
winter and autumn precipitation have a significant impact on farmland value. The annual
marginal temperature effect using the aggregate data is comparable with the marginal effect
using the farm level data: 7.2 versus 8.2%. However, the aggregate annual precipitation
marginal effect is clearly different (−4.0 vs.+2.4%) and is only significant at the 10% level.
The aggregation affects the measurement of the effect of precipitation (a similar result was
found for England by Fezzi and Bateman 2015).

Using this aggregate data, we also explore the importance of spatial correlation using the
Conley (1999) non-parametric method. Controlling for spatial correlation does not change
the coefficients but it reduces the t-statistics. Only the coefficients of spring temperature
and autumn precipitation remain significant. A similar test using individual farm data is not
possible because the location of each farm within a NUTS3 region is not known.
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Fig. 5 Percentage change in farmland values predicted by NCAR PCM climate scenario (2100)

5 Conclusion

This study utilizes farmland data for Western Europe to understand the role that climate
plays in determining the value of current European farmland. Utilizing a number of dif-
ferent regressions, we estimate the impact of seasonal temperature and precipitation on
current farmland values. Seasonal climatic variables have a strong influence on European
farmland values. Farms with warmer autumn and spring temperature, and cooler summer
and winter temperature have higher values (ceteris paribus). Similarly, farms with wet-
ter winter and summers and drier spring and autumns also have higher values (ceteris
paribus).

The research provides indications of how changes in climate would affect European farms
in the future. Marginal temperature increases from current levels in spring and autumn would
increase farmland values but similar increases in summer and winter temperature would
reduce farmland value. Adding together these marginal seasonal effects yields a significant
annual marginal benefit of +8% in Western Europe. Marginal precipitation increases in
spring and autumn are harmful but marginal precipitation increases in winter and summer
are beneficial. Summing these seasonal effects across the year reveals that amarginal increase
in annual precipitation would also be beneficial (+2%) for Western European agriculture.
However, marginal effects are not the same in each country. Warmer marginal temperatures
are harmful in southern European countries whereas they are beneficial in northern European
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countries. Amarginal increase in precipitation would benefit most European countries except
for the Scandinavian countries.

These results are consistent with the results found in country level studies. Ricardian
studies in Great Britain and Germany find similar positive marginal impacts of tempera-
ture in those countries (Maddison 2000; Lang 2007; Lippert et al. 2009) whereas analyses
of Italy suggest a harmful effect (Bozzola et al. 2014). The crop model studies also find
similar patterns of marginal impacts across Western Europe with benefits in the northern
countries and damages in the southern countries (Ciscar et al. 2011). Ricardian stud-
ies in the United States also find similar patterns of seasonal effects (e.g. Mendelsohn
et al. 1994; Massetti and Mendelsohn 2011a, b). Regional effects within the US also vary
in a similar way as warming is beneficial in northern states and harmful in southern
states.

This study is the first Ricardian analysis to use quantile regressions. Using a Morgan–
Granger–Newbold test, we found that the median quantile regression outperforms the more
traditional OLS regression. The median quantile regression is less sensitive to extreme obser-
vations. Further, the full set of quantile regressions offer a rich and varied view of the entire
population of farms. It shows that the climate effects are similar across the sector though not
identical.

In order to measure the climate sensitivity of the entire agricultural sector, it is important
to estimate a Ricardian model with all farms included. The climate sensitivity of irrigated
farms is not the same as the climate sensitivity of rainfed farms. The climate sensitivity of
rainfed farms cannot be used to predict the climate outcome of the entire agricultural system
(as suggested by Schlenker et al. 2005, 2006). Irrigated farms are less temperature sensitive
than rainfed farms and whether a farm is irrigated or not is climate sensitive. The analysis
also suggests that the climate sensitivity of crops and livestock are different. These results
for Europe are similar to results found in studies across the world (Mendelsohn and Dinar
2009).

The climate coefficients suggest that climate has a large impact on farmland in Europe
now. Further, climate change is going to have a strong influence on future farmland values
in Europe. The results suggest that warmer temperature and precipitation changes by 2100
will generally be harmful to European agriculture. The impacts range from a +5% gain
with the NCAR PCM climate model, to a −16% loss with the ECHO-G climate model, to
a −32% loss with the Hadley CM3 climate model. Including the likely benefit (30% gain)
that farmers will experience by 2100 from carbon fertilization, however, the net effect of
greenhouse gases is more ambiguous and may even be beneficial

The impact of climate change is not uniform across Europe. With all three climate scenar-
ios, the impact is more severe in southern Europe, which is harmed in all cases. In contrast,
with the two milder climate scenarios, several northern European countries benefit from
climate change.

We assume in this analysis that the only thing that changes over time is climate. Of
course, many things may change. Prices may be very different in the future. That applies
to both the prices of agricultural outputs as well as inputs. Technology and infrastructure
may also change. Finally, government policies may change. This is especially important
given the strong role of current EU farm policy. But this also applies to the role that gov-
ernment may play to develop new farm technologies, crops and breeds. The government is
also responsible for managing water, which is a key input to agriculture. In several countries,
the government also regulates how land can be used. Changes in government policy can
therefore play a large role in helping farmers adapt to climate change. Hopefully, govern-
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748 S. Van Passel et al.

ments will be careful to avoid policies that actually make adapting to climate change more
difficult.

There remain several promising topics for future research. It is important to under-
stand how European farmers can best cope with future climates. Estimating how farmers
have already adapted to the different current climates in Europe would provide valuable
insights. It would be desirable to expand this analysis to include the new European mem-
ber states of Eastern Europe. Future studies should also explore how future climates may
affect water supplies and how best to cope with these changes. Finally, both the impact
and adaptation research should examine a wide array of climate models and emission
scenarios.
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Appendix 1: Overview of the Model Variables and Descriptive Statistics

See Tables 4, 5 and 6.

Table 4 Descriptive statistics all farms

Variable Mean Min Max SD

Farm specific socio-economic variables

Agricultural land value (Euro/ha) 15,616.38 3.28 498,991.10 25,379.04

Land owned (ha) 37.36 1.00 2695.53 72.81

Utilized agricultural area (ha) 78.24 1.00 7845.25 197.13

Farms represented (number) 56.59 1.00 105,50.00 203.68

Subsidies (Euro/ha) 443.91 0.00 9820.98 523.12

Share rented land (ha/ha) 0.32 0.00 1.00 0.33

Regional socio-economic variables

Pdnsty (Cap/km2) 156.73 2.00 3048.00 212.43

Regional specific climatic variables

Temp. winter (◦C) 3.47 −14.94 12.01 4.02

Temp. spring (◦C) 9.54 −2.77 15.96 2.93

Temp. summer (◦C) 18.47 6.83 26.15 3.27

Temp. autumn (◦C) 11.78 −1.81 19.67 3.46

Prec. winter (10mm) 7.09 1.89 25.54 2.82

Prec. spring (10mm) 6.27 2.08 17.06 2.26

Prec. summer (10mm) 5.77 0.15 20.98 3.40

Prec. autumn (10mm) 7.43 3.56 28.71 2.49
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Table 4 continued

Variable Mean Min Max SD

Regional specific soil characteristics

t_gravel (%vol) 9.17 2.44 18.35 2.74

t_silt (%wt) 31.54 10.83 45.99 6.00

t_sand (%wt) 46.27 28.25 83.02 9.72

t_clay (%wt) 21.32 5.79 40.22 4.81

pH 6.28 4.18 7.88 0.70

Regional specific geographic variables

Cities500k (km) 115.56 0.97 842.84 81.29

PortsML (km) 162.52 0.91 536.51 109.40

Elevation mean (m) 382.26 0.01 2091.87 330.08

Elevation range (m) 1144.81 1.00 4255.00 905.78

Latitude (◦) 46.22 35.14 67.71 6.08

Longitude (◦) 7.52 −9.19 29.97 8.86

Variable Total owned land Total farmland Total land represented

Austria (ha) 49,826 76,456 2,378,137

Belgium (ha) 13,400 46,278 1,140,623

Germany (ha) 248,350 1,134,656 13,300,000

Denmark (ha) 142,743 203,360 2,172,787

Spain (ha) 240,442 334,755 17,300,000

Finland (ha) 35,230 55,407 1,995,606

France (ha) 70,516 263,091 12,100,000

Greece (ha) 15,868 35,297 2,648,096

Ireland (ha) 49,299 60,832 4,517,713

Italy (ha) 269,483 405,861 10,200,000

Luxembourg (ha) 20,449 42,346 129,084

Netherlands (ha) 30,323 48,993 1,718,364

Portugal (ha) 33,364 40,702 1,624,416

Sweden (ha) 47,127 82,076 1,938,696

United Kingdom (ha) 266,603 380,125 10,700,000

EU-15 (ha) 1,533,024 3,210,235 83,900,000
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Table 5 Descriptive statistics of farm types

Variable All farms Rainfed Irrigation Crops Grazing

Farm specific socio-economic variables

Agricultural land value (Euro/ha) 15,616.38 12,715.60 25,915.03 13,867.45 11,297.84

Land owned (ha) 37.36 42.79 18.09 46.57 42.32

Utilized agricultural area (ha) 78.24 92.19 28.71 98.69 79.63

Farms represented (number) 56.59 53.33 68.16 50.46 40.06

Subsidies (Euro/ha) 443.91 425.87 507.99 447.17 578.47

Share rented land (ha/ha) 0.32 0.35 0.25 0.36 0.38

Regional socio-economic variables

Pdnsty (Cap/km)2 156.73 155.76 160.16 148.57 145.66

Regional specific climatic variables

Temp. winter (◦C) 3.47 3.09 4.83 3.43 2.73

Temp. spring (◦C) 9.54 9.15 10.92 9.85 8.51

Temp. summer (◦C) 18.47 17.95 20.31 19.10 16.97

Temp. autumn (◦C) 11.78 11.30 13.50 12.08 10.65

Prec. winter (10mm) 7.09 6.95 7.59 6.27 8.16

Prec. spring (10mm) 6.27 6.16 6.66 5.67 7.12

Prec. summer (10mm) 5.77 5.98 5.04 5.15 6.90

Prec. autumn (10mm) 7.43 7.33 7.77 6.78 8.38

Regional specific soil characteristics

t_gravel (%vol) 9.17 8.76 10.65 9.30 8.71

t_silt (%wt) 31.54 31.59 31.37 31.51 31.63

t_sand (%wt) 46.27 46.83 44.26 45.96 46.94

t_clay (%wt) 21.32 20.94 22.68 21.96 20.57

pH 6.28 6.19 6.63 6.47 5.97

Regional specific geographic variables

Cities500k (km) 115.56 115.42 116.07 110.47 131.15

PortsML (km) 162.52 164.58 155.20 149.66 157.05

Elevation mean (m) 382.26 348.98 500.38 343.52 398.40

Elevation range (m) 1144.81 968.92 1769.30 1091.53 1096.42

Latitude (◦) 46.22 47.39 42.06 45.93 48.02

Longitude (◦) 7.52 6.70 10.44 9.00 5.31

Number of observations 41030 32013 9017 9608 13,768
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Table 6 Overview of the model variables

Variable Description Source

Farm specific socio-economic variables

Agricultural land value
(Euro/ha)

The replacement value of agricultural land
per utilized agricultural area in owner
occupation

FADN

Rented land (ha/ha) Total leased land per total utilized
agricultural land

FADN

Subsidies (Euro/ha) Total farm subsidies per utilized agricultural
area

FADN

Regional socio-economic variables

Pdnsty (1000 cap/km2) The population density in 2010 ESRI, MBR and
EuroGeographics

Regional specific climatic variables

Temp. winter(◦C) Average air temperature 1961–1990 during
winter

CRU

Temp. spring(◦C) Average air temperature 1961–1990 during
spring

CRU

Temp summer(◦C) Average air temperature 1961–1990 during
winter

CRU

Temp. autumn(◦C) Average air temperature 1961–1990 during
spring

CRU

Prec. winter(cm/mo) Precipitation 1961–1990 during winter CRU

Prec. spring(cm/mo) Precipitation 1961–1990 during spring CRU

Prec. summer(cm/mo) Precipitation 1961–1990 during summer CRU

Prec. autumn (cm/mo) Precipitation 1961–1990 during autumn CRU

Regional specific soil characteristics

t_gravel (%vol) Volume percentage gravel (materials in a soil
larger than 2mm) in the topsoil

World Soil
database

t_sand (%wt) Weight percentage sand content in the topsoil World Soil
database

t_silt (%wt) Weight percentage silt content in the topsoil World Soil
database

t_clay(%wt) Weight percentage clay content in the topsoil World Soil
database

pH pH measured in a soil–water solution World Soil
database

(Regional) specific geographic variables

Cities500k (1000 km) Distance from cities with population >

500,000
Natural Earth data

PortsML (1000 km) Distance from medium and large ports World port index

Elevation mean (km) Mean level of elevation ESRI

Elevation range (km) Range of elevation ESRI

Country dummies AT (Austria), BE (Belgium), WDE
(West-Germany), EDE (East-Germany), DK
(Denmark), ES (Spain), FI (Finland), FR (France),
GR (Greece), IE (Ireland), IT (Italy), LU
(Luxembourg), NL (Netherlands), PT (Portugal),
SE (Sweden), UK (United Kingdom)

FADN
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