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Abstract Discrete-time stochastic models of management of groundwater resources have
been extensively used for understanding a number of issues in groundwater management.
Most models used suffer from two drawbacks: relatively simplistic treatment of the cost of
water extraction, and a lack of important structural results (such as monotonicity of extrac-
tion in stock and concavity of the value function), even in simple models. Lack of structural
properties impede both practical policy simulation and clarity of understanding of the result-
ing models and the underlying economics. This paper provides a unifying framework for
these models in two directions; first, the usual cost function is extended to encompass cases
where marginal cost of pumping depends on the stock and second, the analysis dispenses
with assumptions of concavity of the objective function and compactness of the state space,
using instead lattice-theoretic methods. With these modifications, a comprehensive investi-
gation of which structural properties can be proved in each of the resulting cases is carried
out. It is shown that for some of the richer models more structural properties may be proved
than for the simpler model used in the literature. This paper also introduces to the resource
economics literature an important method of proving convergence to a stationary distribution
which does not require monotonicity in stock of resource. This method is of interest in a
variety of renewable resource model settings.
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1 Introduction

In this paper, we consider the problem of managing groundwater under random recharge in a
single cell aquifer. There are twomainmodeling paradigms used in the large literature dealing
with this issue: the first based on optimal control of the continuous-time model, e.g., Brown
and Deacon (1972), Gisser and Sanchez (1980), Tsur and Graham-Tomasi (1991), Hellegers
et al. (2001), Tsur and Zemel (2004), Zeitouni (2004), Roseta-Palma andXepapadeas (2004),
Rubio andCasino (2001), and the second based on a dynamic programming formulation of the
discrete-timemodel, e.g.,Burt (1964, 1966, 1967, 1970), Provencher andBurt (1993),Knapp
andOlson (1995, 1996).Most continuous timemodels, due to the specific assumptionsmade,
yield explicit solutions. While several discrete-time dynamic programming formulations
have been proposed in the literature, few structural properties for this problem have been
established. In fact, it is only Knapp and Olson (1995) who provide a first proof of the
relatively straightforward property that extraction is increasing in current period stock.

Further,most of these formulations, in discrete- and continuous-time,make strong assump-
tions regarding the cost of extraction. In particular, two assumptions are made, usually
implicitly: (i) marginal cost of pumping is independent of the quantity pumped, (ii) cost
of pumping depends only on the beginning of period stock. Both of these are assumptions
with little empirical support, even for unconfined aquifers (another assumption implicit in
many studies). Yet, even with these assumptions, most structural properties of interest have
not been established.

Themain objective of this paper is to provide, in the canonical discrete-timemodel setting,
a unified treatment of the structural properties of the dynamic programming problem of
groundwater extraction. The unification is both in terms of methods of proof used (relying
on lattice-theoretic methods) as well as in extending the analysis to encompass a variety of
extraction cost functions. The analysis here is in the spirit of Mendelssohn and Sobel (1980),
who provide a unified treatment of stochastic renewable resource extraction models in a
stochastic growth framework. It differs from their analysis, however, in two key aspects: first,
we abandon all assumptions of concavity of the objective function and, working in a dynamic
programming framework, rely instead only on its monotonicity and supermodularity and
second, we use a new (to the resource economics literature) approach to proving convergence
to an invariant distribution of the stock of resource, one which needs neither monotonicity
of extraction nor compactness of state space.

In discrete-time stochastic groundwater management problems, the following structural
properties are of interest:

Property (a): The optimal withdrawal quantity in period t , w∗
t (x), is increasing in xt ,

the stock of groundwater at the start of period t .
Property (b): The optimal withdrawal quantity in period t , w∗

t (x), is the maximizer of a
concave function of w.
Property (c): xt − w∗

t (x), denoted the “re-investment function” in the literature, is non-
decreasing in x .
Property (d): w∗

t (x) is nondecreasing in t , where the periods are indexed forward in
time.
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Property (e): The Markov Chain generated by the optimal policy w∗
t (x), {Xt , t ≥ 0},

converges to a unique, stationary distribution.

We note first that in the case of groundwater models, many of the results in Mendelssohn and
Sobel (1980) are not directly applicable, primarily due to lack of concavity of the net benefit
function. Further, the question regarding concavity of the value function has been answered
in the negative in Knapp and Olson (1995). Models used in the literature are replete with
assumptions regarding smoothness, in particular (joint) concavity of the objective function
and convexity/compactness of the relevant spaces. Such assumptions appear to be an artifact
of the sufficient conditions for obtaining the structural properties listed above, rather than
arising from any underlying characteristic of the coupled natural-economic system being
studied.

Knapp and Olson (1995, 1996) move away from such smoothness conditions and work
in a lattice-theoretic framework, which we also adopt. However, their formulation of the
problem side-steps the issue of uncertainty. In their set up, uncertainty is resolved prior to
the farmer making the extraction decision. In such a set up, the decision maker (farmer) can
directly control the succeeding period stock, as a result of which they work directly with next
period’s stock. Thus, proof of monotonicity of the next period’s stock in current period stock
is sufficient for them to use existing results regarding convergence of monotonic Markov
chains.

The model we use, on the other hand, involves uncertainty being resolved after the farmer
has made extraction decisions, and corresponds better to a real world scenario in a developing
nation wherein farmers make decisions on extraction prior to recharge (rainfall) occurring.
Here, the inability to directly control the subsequent period stock leads to uncertainty being
central to the farmer’s extraction decisions. In this set up, as we show,monotonicity of extrac-
tion and reinvestment are not identical, even for the model studied in Knapp and Olson (1995,
1996). In addition, as a direct consequence of the assumptions made in prior literature, the
Markov chain generated by the optimal policy in those settings is monotone. This, along
with the assumed compactness of the state space, allows a direct application of standard the-
orems on convergence ofmonotoneMarkov processes to establish the necessary convergence
result. In this setting, we illustrate the use of more probabilistic methods guaranteeing the
existence of an invariant distribution even in cases where theMarkov Chain is notmonotonic.
The assumptions required for the use of this method are more benign than for the methods
commonly used in prior literature. These methods are applicable to a wide variety of natural
resource extraction problems and are of independent interest. Finally, we extend our results
on global stability to situations of stock-dependent recharge, the first such result (to our
knowledge) in the resource economics literature.

To summarize, themodel set-up here differs from that inMendelssohn and Sobel (1980) in
not assuming concavity of the net benefit function, and from those in Knapp andOlson (1995,
1996) in terms of the timing of uncertainty and the breadth of cost functions accommodated.
Our analysis of the effect of risk on optimal decisions, while simpler than that in Knapp
and Olson (1996), is more transparent and provides a link between the with- and without
risk scenarios; it also clarifies the type of assumptions necessary to obtain key results. In
addition, using more powerful and broadly applicable methods, we are able to establish
global stability for all the Markov chains generated by the dynamic systems studied here,
under weaker assumptions than in Mendelssohn and Sobel (1980), Knapp and Olson (1995,
1996).

We point out that many of the generalizations to the standard model of a single-user
managing a single-cell aquifer proposed here are motivated by the necessity of studying
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diverse real world systems of groundwater management, in particular those from the Indian
sub-continent, as we detail next. Single-user single-cell models of aquifer management have
been known to be particularly weak at modeling groundwater flow complexity and decision
interactions between multiple agents, some aspects of which have been explored in the recent
literature.1 This is an issue of significance in the case of semi-arid regions of the world, which
are the largest users of groundwater, and is particularly the case for the Indian sub-continent,
a large and hydro-geologically varied landmass, with extensive groundwater withdrawals
(see e.g. Shah 2007, 2010 and references therein).

Broadly speaking, groundwater reservoirs in semi-arid regions of the Indian sub-continent
are characterized by highly variable recharge, climate is highly monsoonal, with a very
short and intense rainfall season, and long dry periods during which extraction typically
occurs. Further, extraction is largely limited by availability of electric energywhile regulation
of extraction occurs (de facto) via altered electric supply (e.g. Shah et al. 2008; Fishman
et al. 2011). These features of the groundwater agriculture system illustrate the importance
of greater focus on extraction cost of groundwater, a characteristic not comprehensively
analyzed in the economics literature focused primarily on larger-scale agriculture in the U.S.
These special characteristics have resulted in a sparse yet interesting literature in economics
focused on modeling certain specific aspects of the problem (see e.g. Aggarwal and Narayan
2004; Athanassoglou et al. 2012). Nonetheless, the basic model of a single user managing
a single-cell aquifer has so far not been modified to accommodate the distinct features of
groundwater and agricultural systems in semi-arid regions in the developing world. These
features merit, we believe, greater focus on both the cost of pumping and on more complex
transition equations for groundwater (see also footnote 4). This study is an attempt to integrate
some of the most important features of groundwater management in the setting described
above into a standard stochastic resource economics framework.

Finally, while studies such as Athanassoglou et al. (2012), Brozović et al. (2010), Madani
and Dinar (2012) which model (heterogeneous or homogeneous) users with less restric-
tive hydrological assumptions advance understanding of the effect of complex interactions
on optimal policies, they are unable to account for the effect of uncertainty, among other
drawbacks. Our study, on the other hand, fully accounts for the effect of uncertainty on
stock dynamics and, in addition, attempts to improve modeling of certain hydrologic fea-
tures, while remaining within a single-cell framework. Thus, our analysis may be seen as
both complementing analyses seeking improved modeling of complex hydrologic interac-
tions and extending the current models of single-user groundwater management to more
hydrologically diverse settings.

The plan of the paper is as follows. Section 2 presents the details of the dynamic model,
including the two richer extraction cost functions. Section 3 provides an analysis of the
resulting stochastic dynamic program in a finite time horizon for all of the cost functions,
including extensions to risk averse agents. Section 4 discusses the properties which survive
a passage to an infinite time horizon. Section 5 provides the details regarding convergence
to a stationary distribution of the groundwater stock for all models discussed. Section 6 pro-
vides a discussion of possible policy applications and extensions, and concludes. Standard
definitions pertaining to lattice theory and convergence of Markov chains are provided in
an Appendix.2

1 See e.g. Athanassoglou et al. (2012), Brozović et al. (2006, 2010), Chakravorty and Umetsu (2003), Madani
and Dinar (2012).
2 A few additional details pertaining to Sects. 2.2, 3.3, and 5.3 are available in a working paper version,
Krishnamurthy (2012).
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2 Model Structure

2.1 Setup

We describe a discrete-time stochastic groundwater management model, based on the classic
paper byBurt (1964), which is standard in the literature.We consider a finite-horizon problem
where T is the planning horizon, and periods are indexed forward by t ∈ {1, 2, . . . , T }. Let
xt ≥ 0 denote the groundwater stock3 at the beginning of period t . The manager decides
the withdrawal quantity wt ≥ 0. Then a non-negative random variable corresponding to the
recharge to groundwater stock, Rt , is realized. We suppose that the {Rt } are i.i.d, but indicate
generalizations where appropriate and feasible. We assume that the state transition for the
groundwater stock level is given by4

xt+1 = X̃(xt , wt ) = xt − wt + Rt+1. (1)

Equation (1) corresponds to a reservoir of infinite capacity and is commonly used.Wehowever
illustrate (see Remark 5) which of our results survive when a more realistic finite reservoir
of groundwater (x < ∞) is assumed, with state transition

xt+1 = X̃(xt , wt ) = min (xt − wt + Rt+1, x) . (2)

The single-period benefit (or reward) is

G(x, w) = B(w) − C(x, w), (3)

where B(w), concave and increasing, is the net benefit of withdrawing w units of water
before deducting the pumping cost C(x, w) (which we address shortly). The objective is to
maximize the present value of the benefit

T∑

t=1

δt G(xt , wt ), (4)

where δ ∈ (0, 1] is the discount factor. Then, the value function of dynamic programming is
given by the recursion

Vt (xt ) = max
wt≥0

{G(xt , wt ) + δE[Vt+1(xt − wt + Rt )]} , (5)

where VT+1(xT+1) = 0.
Wenote that, unlike inmuchof the economics literature on the one-sector stochastic growth

model, wherein focus is on the infinite horizon problem, we begin with a finite horizon set
up and indicate extensions to an infinite horizon. The reason for this two step approach is
the added understanding provided in the finite horizon case, especially with regard to such
intuitive questions as the behavior of the optimal policy with a lengthening horizon. This

3 As is common in the literature, we work with the total stock of water instead of the ‘lift’, which is commonly
used in the engineering literature. However, since both are related monotonically (lift increases as groundwater
decreases) one may work with either without loss of generality.
4 The use of such a simplified balance equation, as remarked in Worthington et al. (1985, pp. 232–233) is a
gross over simplification. Taken literally, this equation implies an instantaneous capture of all recharge by any
pumping activity. However, this oversimplification can be remedied by either introducing relevant coefficients
on recharge such that only a fraction of the recharge is captured or by using more detailed and accurate
equations of motion for the stock. Note that in the case of many developing nations where discharge due to
pumping is much larger than recharge, such an assumption is less of an oversimplification, since a large part
of recharge is very likely captured within the region of pumping.
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approach also makes transparent which type of assumptions regarding the state space and
the benefit functions maybe relaxed. Finally, finite horizon models are also more commonly
used in the resource and agricultural economics literature.

We turn next to characterizing the cost functions we use, and comparing them to those
used in the existing literature.

2.2 Cost Functions

Pumping cost functions used in the literature mostly make the assumption of constant vol-
ume pumped as well as of constant (independent of wt ) marginal cost of pumping i.e. that
∂C(xt , wt )

∂wt
= c(xt ). Within this broad framework, with the exception of Worthington et al.

(1985) and Burness and Brill (2001), most studies (Zeitouni 2004; Aggarwal and Narayan
2004;Tsur andGraham-Tomasi 1991;Rubio andCastro 1996;Roseta-Palma andXepapadeas
2004; Provencher and Burt 1993) use a cost function of the form

C(xt,wt ) = c(xt )wt (6)

with c(xt ) (called the marginal cost function) either linearly decreasing in xt or decreasing

and convex, with the most common functions being (a − bxt ) and
a

bxt
. Burness and Brill

(2001) use a slightly different formulation for c(x), maintaining nonetheless the separability
outlined above, while Worthington et al. (1985) use a separable marginal cost function,
estimated (interpolated) from data.

In general, all cost functions used make the following two assumptions:

1. marginal cost of pumping does not depend upon the quantity pumped i.e.
∂C(xt , wt )

∂wt
=

c(x); and
2. cost of pumping (hence drawdown) does not vary within a given season. This leads to

specifications in which marginal costs are based entirely on beginning-of-period water
level. This assumption is implicit in most studies, discrete- and continuous-time.5

The first characteristic is a modeling assumption and is not always in accord with hydrologic
facts, as detailed subsequently. The second characteristic above is reasonable if the length of a
period is sufficiently small and decisions are made frequently, in which case continuous-time
models are more appropriate. In sum, in all of the literature, marginal costs of pumping do
not vary within season, and are independent of the quantity pumped during the period. The
implication is that, for the marginal cost of pumping in any given period, the only factor of
importance is the groundwater stock at the beginning of the period; the amount of abstraction
during the period does not matter. With this cost function, structural properties such as the
concavity of the optimization problem in each period have not been established.

In our analysis, we generalize this formulation for cost to reflect more realistic condi-
tions on marginal cost and study in detail the structural properties of the resulting dynamic
programs. In particular, we seek to address two important questions:

1. Under what conditions, for the given objective function(s), do intuitive properties (listed
in Sect. 1) hold?

2. Which of these properties hold under a setting where risk aversion is introduced?

5 It is made explicit only in Worthington et al. (1985), wherein (Table 1, p. 236) they estimate an annual
incremental drawdown given only the level of water table at the beginning of the season, independent of the
quantity of water pumped.
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We first provide some motivation for the two cost functions we develop. We have already
noted the importance of extraction cost in the context of agriculture in the Indian sub-
continent. We also point out that, in the context of a single user managed resource, the
effect of other users’ pumping on the user under consideration is typically assumed away.
Nonetheless, even with a single user in a more realistic aquifer, two essential features are
currently missing from discrete-time models in the literature: ‘path dependence’ of resource
stock and the effect of formation of localized ‘cones of depression’ around a pumping well
(Brozović et al. 2006, pp. 2–4).

In light of the remarks above, we generalize the cost function in two directions. In the
first,

C(x, w) =
∫ x

z=x−w

γ (z)dz, (7)

where γ is assumed to be non negative, decreasing and convex. This form of the cost function
takes into account changes in the groundwater stock that occur during the pumping period.
Further, the marginal cost of pumping depends, in general, on the quantity of water pumped.6

We stress that the commonly used approach via Eq. (6), implying that marginal cost is
independent of quantity pumped, is an assumption [recognized explicitly in Chakravorty and
Umetsu (2003, p. 5)], and has little empirical or theoretical support. The cost function in
Eq. (7), on the other hand, imposes a form of path dependence within a given season. This
is (arguably) quite reasonable in the context considered.7 We provide two interpretations
of this cost function. In the first (ignoring the effect of other pumping wells upon the well
under consideration), this is the cost function for a user extracting water over a relatively long
season, and whose extraction (relative to stock) is “large”. In the second, one may consider
two hypothetical pumping wells, of very similar size, located a small distance apart (since
both users are homogenous, and both wells identical, each user extracts the same amount).
In this scenario, this is the cost function of either user. Thus, pumping costs for either user
are a function only of x − aw, where a is a parameter.8

In the second,we generalize the cost function to accommodate finite aquifer transmissivity,
in the context of pumping wells located in close proximity. Note that even in the case of a
single-usermanaging an aquifer, the assumptionsmade inmostmodels are unlikely to hold for
any given aquifer. For instance, most continuous time models, following Gisser and Sanchez
(1980), assume an essentially bottomless aquifer. Further, most analyses assume implicitly
or explicitly an unconfined aquifer. However, for confined aquifers, ongoing pumping from
a well induces a localized ‘cone of depression’ around the well. These dynamics lead to

6 An intuitive property of this cost function is that extraction of thenth unit ofwater is less costly than extraction
of the (n + m)th, ∀m, n > 0, and for all stock levels. For the particular functional form used, the marginal

cost of extraction is γ (x − w), a function of both x and w, with
∂2C

∂x∂w
= γ ′ < 0 and

∂2C

∂w2 = −γ ′ > 0.

7 We note the intimate relationship betweenmodel time-step andmodel formulation. In the context considered
here, a time period is a full growing season, approximately of six-month duration, and in some part of the
growing season, groundwater is the only source of water available. Given the length of the season, it is not
clear that cost of extraction ought to depend upon beginning-of-period stock of water, especially if extraction
is likely a large part of the stock (as is the case for the Telangana region in southern India, see Fishman et al.
2011).
8 Note that the latter interpretation can be justified by an appeal to the discussion accompanying figure 1.2
in Brozović et al. (2006), which makes clear that for many aquifers, if two pumping wells are only a small
distance apart (certainly true for the context considered here) only pumping in the immediate past is of any
relevance. Given the definition of a season, and the relatively small distance separating pumping wells in
the context considered, our modeling of ‘path dependence’ in pumping as being restricted to a season, and
affecting cost but not stock, is quite natural.
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increases in the per-unit cost of extraction by increasing the effective lift.9 We seek a simplified
framework to account for the increased marginal cost of pumping as a result of the formation
of these cones of depression.

To understand the approach, consider first a finite difference cell approach to groundwater
modeling,10 at a relatively coarse scale (e.g. 25 × 25 km resolution, commonly used for
many developing countries). The drawdown calculated in these models does not represent
the actual drawdown around a pumping well. However, if the relevant physical parameters
are known, a term linear in extraction, q , derived from the Theis formula, may be added
to correct for this difference between actual and model predicted drawdown; the correction
leads to increased pumping costs.11 In our case, given that there is only one pumping well
and that therefore changes in stock due to limited aquifer transmissivity cannot affect subse-
quent period stock, we incorporate this effect as a linear (in w) term on the cost of extraction
i.e. as a change in stock level for purposes of computing pumping cost. Alternatively, this
may also be viewed as a first-order approximation to a more complicated (possibly poly-
nomial) correction factor, and at any rate serves as an approximation to the actual increase
in pumping cost. Abstracting away from parametrization, we translate this into our notation
as

C(x, w) = c (x̄ − x + aw)w, (8)

where the additive term aw captures the “correction” to the drawdown (change in stock)
and, depending upon the transition equation, x is interpreted as the effective or total stock.
Marginal cost, c (x − x + 2aw), is evidently a function of both x and w, and is based
on the beginning-of-period stock, unlike in Eq. (7). In the interests of minimizing the
number of constants used, the coefficient a on w is normalized to 1 in subsequent analy-
sis.

Again, there are two possible interpretations of Eq. (8). Similar to the case of the cost
function in Eq. (7), for a scenario focused on a single pumping well and a relatively long
season, accounting for cones of depression via the cost function captures the essence of the
issue, that of increased cost of pumping. In addition, if seasons are long enough, there are
unlikely to be effects upon next-season stock (to a first order) of finite aquifer transmissivity.
A second interpretation is also available, for two homogenous users (implying identical
extraction) pumping from similarly sized wells. A hydrologic fact, first, is that (to a first order
approximation) a well pumping larger quantities has a deeper cone of depression (Brozović
et al. 2006, p. 3). In addition, finite aquifer transmissivity implies a identical reduction in
lift in both pumping wells; given that these effects are unlikely to carry over to subsequent

9 This issue, evenwith the confined aquifer assumption, has been remarked on before. For instance, Provencher
and Burt (1994, p. 882) point out that groundwater levels do not adjust immediately after a local perturbation
caused by pumping from the well, due to the fact that the equilibrating flows are both slow and subject
to great variability. In particular, with heterogeneous aquifers and unequal pumping rates by farmers, they
clearly recognized a not insubstantial lateral flow of groundwater, leading to uncertainty regarding future
water availability. While their discussion was in the context of a common property problem, it is clearly
applicable in the context of our modification to the cost function.
10 The finite difference approach is the standard approach to two- and three-dimensional groundwater flow
modeling; e.g. the USGS’s MODFLOW (Harbaugh et al. 2000).

11 The precise correction is given by the formula 0.3665
qi, j (t)

mi, j Ti, j
log

(
�x

4.81rBH

)
, where i, j refer to the

finite difference cell index, m is the number of pumping wells in the cell with uniform pumping, T is the
transmissivity, �x and rBH are respectively the cell size and radius of the well. See e.g. Siegfried (2004, pp.
52–53) for a description and Prickett and Lonnquist (1971) for a derivation.
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season stocks (as already indicated), the effect of well interference upon each user then can
be modelled as an identical increase in each user’s pumping cost.12

3 Analysis: Finite Horizon

We consider separately the dynamic model of groundwater extraction using each of the
three cost functions, since many features, method of proof and conclusion differ between
them. The approach taken in our analysis is somewhat different from that conventionally
used in the resource and environmental economics literature. We abandon, for the most
part, all assumptions regarding smoothness (concavity, convexity and differentiability) of
the objective function and feasible set, except insofar as these properties can be proved
from physically or economically reasonable primitives. We use lattice-theoretic methods, in
particular the detailed exposition of dynamic programming using lattice-theoretic methods
developed in Heyman and Sobel (2003) and Topkis (1998, §3.9).

We relegate to the “Lattice Theory” section in the Appendix all standard definitions and
notations regarding lattice theory. Note that, for our optimization problems, W (x) will be
identified as the “feasible” set of optima i.e. wt (x) ∈ W (x), where wt (x) is extraction at
time t , with start of period stock x ; optimal extraction will be indicated by w∗

t (x). Unless
otherwise indicated, wt (x) and w∗

t (x) are (possibly singleton) sets. In order to minimize
notation, w∗

t (x) will also represent the largest element of the set w∗
t (x), where the context

should make it clear whether w∗
t (x) refers to a set or its largest element. Finally, we use �

and G interchangeably to denote the one-period benefit (profit) function.

Definition 1 (Re-investment function) a = x − w is the ‘reinvestment function’ which will
play an important role in our analysis. Note that A(x) is the analogue toW (x)when working
with reinvestment instead of with extraction.

We first list key assumptions regarding the model primitives made in our analysis, and
provide a brief discussion regarding their applicability, in relation to their usage in the lit-
erature. Note that not all assumptions are always in operation; we indicate, for each of our
results, the assumptions in force.

Assumption 1 �(x, w) is supermodular in (x, w) and increasing in x .

Assumption 2 �(x, a) is supermodular in (x, a) and increasing in x .

Assumption 3 X̃(xt , wt ) is increasing in xt , given (wt , Rt ) (or independent of xt ).

Assumption 4 �(x, w) ≥ 0, ∀(x, w) ∈ C := {(x, w);w ∈ W (x)}, x in X .

Assumption 5 � is finite on C.

Assumption 6 ∃B > −∞ s.t. �(x, w) ≥ B, ∀x, w.

Assumption 7 �(x, a) ≥ 0.

Assumption 8 W (x) (A(x)) is ascending in x on X , the state space.

12 This framework [cost in Eq. (8) and transition in Eq. (1)] is an uneasy combination of a particular form
for stock-dependent cost with an infinite depth aquifer. See Remark 5 for a generalization. The use of the
simplified transition Eq. (1) here is for the sake of unification, since our results with the cost function in Eq. (7)
do not extend to the more realistic transition in Eq. (2).
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Assumption 9 W (x) (A(x)) is expanding in x .

Assumption 10 W (x) (A(x)) is compact.

Assumption 11 X̃(xt , wt ) is stochastically supermodular.

Assumption 12 X̃(xt , at ) is stochastically supermodular

We begin with noting that Assumptions 1 and 2 shall be proved for eachmodel considered,
while Assumption 6 is clearly a very reasonable practical requirement. Assumptions 4 and 7
clearly follow from Assumption 6 (see Remark 3), and Assumption 5 is the only restrictive
one.We note that in the conventional dynamic programming framework, either Assumption 5
or Assumption 6 (along with a compact C), must hold; these are implicitly or explicitly
assumed in the existing literature. Finally, Assumption 5, the most restrictive assumption,
is only needed for proving that Vt → V , in Proposition 1. Turning now to assumptions
regarding W (x) (A(x)), Assumptions 8 and 9 are clearly reasonable, and are made in all
models in the literature; Assumption 10 is our only compactness assumption and is needed
only to ensure uniqueness of the maximizer. Finally, Assumption 3 holds for both of our state
transition Eqs. (1, 2) while Assumption 11 (and Assumption 12) is a restrictive but common
one in dynamic programming with lattice theory (see Heyman and Sobel 2003, pp. 381–383).

For instance, Knapp and Olson (1995, 1996) implicitly or explicitly make Assump-
tions 2, 3, 7, 5, 8–10 and 12, while Mendelssohn and Sobel (1980) [and its generalizations
in Heyman and Sobel (2003)] use, in addition, assumptions regarding concavity of G (or
postulate a special form for G); finally, traditional dynamic programming analyses [as in
Provencher and Burt (1993)] implicitly use Assumption 5 and other compactness and con-
vexity assumptions.

The dynamic programming recursion therefore is,

Vt (xt ) = max {Jt (xt , wt ); x ∈ X , w ∈ W (x)} (9a)

Jt (xt , wt ) = �(xt , wt ) + δE[Vt+1(xt − wt + Rt )]. (9b)

3.1 Conventional Cost Function

Recall that the cost function is

C(x, w) = c(x)w = c (x̄ − x)w, (6)

where x is as in Eq. (8). Thus, the objective function is

�(xt , wt ) = B(wt ) − c (x̄ − x)w. (10)

Two facts may be inferred from Eq. (10); first, � is not jointly concave13 and second, �

is supermodular in (x, w). The latter may be shown using the differential characterization:
a smooth (for instance C2) real valued function f (u, v) on a lattice is supermodular in

(u, v) iff
∂2 f (u, v)

∂u∂v
≥ 0. That this is unconditionally true is evident from the fact that

∂2�(x, w)

∂x∂w
= c > 0. Further, it is equally evident that �x (x, w) = cw > 0. We make a

further, technical, assumption before we state our main result for this section.

13 To see this, note that Cx = −c, Cxx = 0, thus �xw = −c, �xx = −Cxx = 0, �ww = −B′′ . For � to
be jointly concave in (x, w), the Hessian is required to be negative semi-definite, implying B′′Cxx ≥ (Cx )

2

which in this case is equivalent to c2 ≤ 0, evidently false.
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Assumption 13 Jt (xt , .) is upper semi-continuous on W (xt ) for each t ∈ {1, 2, . . . , T } and
VT+1(x) = 0

We are now ready to state our main theorem of this section, which is Heyman and Sobel
(2003, Corollary 8-5a). We provide a detailed proof for two reasons: many subsequent proofs
will be based on, or refer to, this theorem and no explicit proof is provided in Heyman and
Sobel (2003).

Theorem 1 Under Assumptions 1,3,4,8,9,11 and 13, Vt (x) (defined in Eq. (9a)) is
increasing in x and w∗

t (x) = argmax
x

{Jt (xt , wt );wt ∈ W (x)} is ascending in x on

{x; x ∈ X , argmax {Jt (xt , wt )} �= ∅}.
Further, under Assumption 10, there exists a least and a greatest element in the set w∗

t (x)
and these are both increasing in x.

Proof That Vt (x) is increasing in x is a straightforward consequence of two facts, VT+1(x) =
0 and �(x, w) is increasing in x , given w. These two facts can be used to set up a simple
inductive argument, as below.

VT+1(x) is trivially increasing in x , and so the induction is true for t = T + 1. Similarly,
VT = max {�(x, w);w ∈ W (x)} is increasing in x , since � is increasing and W (x) is
ascending and expanding; the hypothesis therefore holds for t = T . Let it be true for t = k <

T i.e. Vk(x) is increasing in x . Consider Vk−1(x) =maxw≥0{Jk−1(x, w)}, where Jk−1(x, w)

is increasing in x , since both its terms are (the second term, E(Vk(x −w + R)), is increasing
by the induction assumption and the fact that integration is order preserving) and thus, so too
is Vk−1. As an aside, observe that if � is bounded, so is Vt .

We next prove that E

[
Vt

(
X̃ (xt , wt )

)]
is supermodular in (x, w). We have already

proved that Vt is increasing and bounded, and have assumed that the distribution func-
tion of X̃ (xt , wt ), Fx,w, is supermodular. Therefore, by Topkis [1998, Corollary 9.1(b)],

E

[
Vt

(
X̃ (xt , wt )

)]
is supermodular. Thus, we have that Jt (xt , wt ) in Eq. (9b) is supermod-

ular (since the sum of two supermodular functions is supermodular).
Since W (x) is ascending and expanding in x , that w∗

t (x) = argmaxx∈X {Jt (xt , wt )} is
non-empty and ascending is the content of Topkis (1998, Theorem 2.8.1). Finally, if W (x)
is compact, then from Topkis [1998, Theorem 2.8.3(a)], w∗

t (x) is a sub-lattice of R+, with a
least and a greatest element, both of which are increasing in x . �
Remark 1 (Significance of Theorem 1) We note that Theorem 1 is a key result for a variety
of reasons. First, all of our results regarding the maximization (except those in Sect. 3.3)
are based upon it. Second, an extension of these results to the infinite horizon i.e. directly
beginning with a setting such as that in Eq. (13a), Eq. (13b), is immediate (to see this, replace
Vt and wt (x) with V (x) and w(x), and observe that all other conditions are unchanged).
Thus, this result represents a key contribution, and provides a unified, comprehensive, and
transparent treatment of both optimization problems, the finite [in Eqs. (9a), (9b)] and the
infinite horizon [Eqs. (13a), (13b)].

Proposition 1 Under Assumptions 4 and 5, Vt (x) is decreasing in t, for every x ∈ X .

Proof We provide a proof by induction. VT = maxwt∈W (x) (�(x, w)) ≥ 0 = VT+1. Let the
hypothesis hold for some k < T i.e. Vk(x) ≥ Vk+1(x). Consider now

Vk−1 = �(x, w) + δE[Vk(x − w + R)]
≥ �(x, w) + δE[Vk+1(x − w + R)]
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= Vk .

�
3.1.1 The Effect of Risk Aversion

We turn now to understanding the implications of moving away from a risk neutral setting
(implicitly assumed thus far) to a setting where risk does play a role. To be precise, we
now consider an economic agent whose objective is to maximize expected utility from profit
i.e. U (�(x, w)) where U is a strictly increasing and concave function. We note that the
importance of using more realistic objective functions, and in particular accounting for pos-
sible risk aversion of decision makers in dynamic decision models, has been emphasized in
the agricultural and resource economics literature (e.g. Krautkraemer et al. 1992; Kennedy
et al. 1994). Nonetheless, apart from Knapp and Olson (1996), there has been no analysis of
the structural properties of dynamic groundwater management models in a non-risk-neutral
setting.

Knapp and Olson (1996) consider the problem in a recursive utility framework and show
that optimal policies vary significantly when compared to a risk neutral setting. However,
the analysis there is limited in that only Properties (a) and (e) are proved, and despite being
an extension of Knapp and Olson (1995), there is no explicit link provided to the analysis
therein. In other words, important properties in Knapp and Olson (1996) are proved more as
a result of specific assumptions regarding model structure than as an extension of the model
in Knapp and Olson (1995).14 We work instead in a simpler setting using a popular utility
function, log utility. However, we treat the resultant model explicitly as an extension of our
analysis for the risk neutral setting and are able to provide a link between both settings.
Finally, we also show (see Remark 4) that the conditions we impose on the utility function,
in the risk averse case, are closely related to those assumed in Knapp and Olson (1996).

While it is evident that the maximizer cannot change by means of this alteration in the
objective function, new difficulties arise since supermodularity, unlike concavity, is a car-
dinal property i.e. g( f ), with g strictly increasing and f supermodular, is guaranteed to be
supermodular only if g is also convex. It turns out, however, that when restricted to the log
function (i.e. when U (�) := log (�)), some pleasing properties are retained. In particular,
the following is true:

Claim 1 �(x, w) is log super-modular (log s.p.m).

Proof A function f is log s.p.m if log f is s.p.m i.e. if
∂2 f

∂u∂v
≥ 0 (Topkis 1998, p. 64)

which implies f fuv ≥ fu fv . In our case, the verification exercise involves ��xw ≥ �x�w,
with �x = cw, �w = B ′ − c(x̄ − x), �xw = c. The condition to be verified yields
c
(
B − B ′w

) ≥ 0, which holds only if B ≥ B ′w. That this condition holds for the following
four benefit functions: (i) B(w) = aw − bw2; (ii) B(w) = aw; (iii) B(w) = ln(w + D),
D = 1; and (iv) B(w) = 1− exp(−aw), is easily seen.15 These benefit functions more than

14 To be more explicit, properties (a) and (e) are proved via assumptions on the objective function �—which
is recursive—rather than by considering a recursive utility function U operating on the profit function �, the
latter being defined as in Knapp and Olson (1995). Thus, it is not possible to trace a direct link between the
analysis in Knapp and Olson (1995) and Knapp and Olson (1996).
15 Consider first the function log(w + D), D = 1. For B > B′w for this function, it is required that

log(1 + w) ≥ w

1 + w
. That this holds is evident from the logarithmic inequality

w

1 + w
≤ log(1 + w) ≤ w.

For the function B(w) = 1 − exp(−aw), it is seen that B − wB′ = 1 − exp(−aw) (1 + aw). That this is
non-negative is evident from the following inequality: e−x (1 + x) < 1, with x = aw.
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span the range of the empirical functions used in the groundwater management literature [the
most popular of which is that in (i)]. �

Replacing �(x, w) in Eq. (9b) with log (�(x, w)), noting that
∂U (x, w)

∂x
= �x

�
≥ 0

(whenever � is bounded away from 0), it is evident that Theorem 1 is applicable, which is
the content of the following proposition:

Proposition 2 Theorem 1 is applicable if Assumption 1 is replaced with Claim 1, and
Assumption 4 with Assumption 6.

Remark 2 (Finiteness of Jt ) We comment now on the assumption of boundedness and non-
negativity of�. Note first that, for the purposes of Theorem 1, in particular, for themaximiza-
tion operation, it is required that either � be finite or that C = {(x, w);w ∈ W (x), x ∈ X }
is compact and Jt (x, w) is upper semi-continuous, the latter of which we assume in Theo-
rem 1. For these purposes, it is not sufficient that � is non-negative, an approach which is
most commonly used with dynamic programming for unbounded benefit functions.

Remark 3 (Boundedness of �) For the particular case of the logarithmic utility function
(unbounded both above and below), it is not sufficient that X is compact, since � = 0 is
always a possibility. However, this can be easily dealt with in a general manner, as follows:
let � be bounded below (trivially true whenever � is finite or defined over a compact set)
by B > −∞. Consider now the function �̃ = � + (1 + B). It is evident that �̃ > 0 and
further, that replacing � with �̃ yields the same optimal decision. Therefore, there is no loss
of generality in assuming � to be bounded away from 0.

Remark 4 (Log supermodularity) Knapp and Olson (1996), using a recursive utility frame-
work, consider an identical problem to that in Knapp and Olson (1995). Their main
assumption (A.4, p. 1007) regarding the function � is

σ��xw ≥ �x�w. (11)

It is obvious that, for σ ≥ 1, this condition is implied by the log supermodularity of �.
On the other hand, they use a value of σ < 1, for which this condition, in fact, is more
demanding. Using the integral of the linear demand function used in Knapp and Olson
(1995) and the standard cost function for the condition in Eq. (11) to hold, it is necessary

that a ≥
(

σ − 2

σ − 1

)
bw. That this condition is stronger than that implied by Bw(w) ≥ 0

( �⇒ a ≥ 2bw) for any σ < 1 is evident. They appear not to recognize the condition in
Eq. (11) as a (stronger) form of log supermodularity.

3.2 Cost Function Accounting for Local Cones of Depression

We begin first with the risk neutral setting and prove that the use of a seemingly more
complicated cost function does not complicate the analysis. Indeed, there is no change in the
structural results obtained above. Recall from Eq. (8) that the cost function is

C(x, w) = c (x̄ − x + w)w, (8 revisited)

while the objective function is

�(xt , wt ) = B(wt ) − c (x̄ − x + w)w. (12)
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From
∂2�

∂x∂w
= c > 0, it is evident that � is supermodular, and that �x = cw ≥ 0. This

leads immediately to the following propostion:

Proposition 3 For the net benefit function in Eq. (12), Theorem 1 is directly applicable.

Further, if we assume finiteness of �, then it is straightforward that Proposition 1 is
directly applicable.

Proposition 4 For the net benefit function in Eq. (12), Proposition 1 is directly applicable.

We turn next to characterizing the properties of the decision problem when one uses a
(strictly) concave transformation of net benefits. The issues confronted with this seemingly
simple transformation are substantial, as discussed in Sect. 3.1.1. However, even with this
cost function, we may show that the profit function is log supermodular, which is the content
of the following claim.

Claim 2 � in Eq. (12) is log supermodular, under Assumption 6.

Proof Consider �w = B ′ − c (x̄ − x + 2w), �x = cw, �wx = c, which yields

��xw − �x�w = c
(
B − wB ′) − c2w (−w)

= c
(
B − wB ′) + c2w2

≥ 0 if B > wB ′,

which holds for the four functions for B exhibited in the proof of Claim 1. �
This leads to the following proposition:

Proposition 5 Theorem 1 is applicable if Assumption 1 is replaced with Claim 2, and
Assumption 4 with Assumption 6.

Remark 5 Observe that the transition function in Eq. (2) [in common with that in Eq. (1)]
is increasing in x i.e. for x ≤ x ′, min (x − w + R, x) ≤ min

(
x ′ − w + R, x

)
. Noting that

the only property of the transition function used in the proof of Theorem 1 is precisely this,
of increasing in stock x , it is evident that all of the results in the preceding two sections,
using the cost functions in Eq. (8) and Eq. (6), hold for the more realistic, finite aquifer case
represented by the transition in Eq. (2).

Thus far, we have not touched upon an interesting result in Knapp and Olson (1995),
Corollary to Proposition 1. This Corollary is essentially a result regarding the Lipschitz
continuity of w(x), and requires that Xt+1 is increasing in Xt . In our set-up here, except for
the cost function in Eq. (7) (see Remark 8, Sect. 3.3), it is not the case that Xt+1 is increasing
in Xt . Nonetheless, we show that under relatively mild assumptions on w′, the derivative of
w(x), it is possible to establish a similar result for the other two cost functions [in Eq. (6) and
(8)]. To our knowledge, ours is the first study in resource economics to provide this result for
non-monotonic reinvestment functions. The key result is Claim 3:

Claim 3 w∗(x) is globally Lipschitz continuous.

Consider the following facts: w∗ (x) is monotonic in x , implying that it is a.e. differ-
entiable; making, in addition, the (relatively mild) assumption that the derivative, w∗′

, is
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continuous, it is immediate that w∗ (x) is locally Lipschitz.16 Given the intuitive property
that beyond a certain point we do not anticipate further increases in X to lead to increased
rate of pumping, we already anticipate that limx→∞w∗′

(x) is finite, say 0 < C1 < ∞; if in
addition we introduce the additional assumption that limx→0w

∗′
(x) = C2 < ∞, Claim 3

follows, as we show next.
We observe that it is reasonable thatw is concave in x , with bounded derivative on [0,∞).

However, while a concave w can certainly be made to satsify the above two conditions,
concavity is not required for, and hence not assumed in, our analysis.

Proof Claim 3 follows from standard results indicating that every continuously differentiable
function is locally Lipschitz. If in addition the derivative is bounded (by a number independent
of x), then the function is globally Lipschitz. By the two assumptions already made i.e.
w∗′

(x) is continuous and limx→0w
∗′

(x) = C2 < ∞, it is evident that K , defined as 0 <

K = sup
{
w′ (x) ; x ≥ 0

}
< ∞, may be used as the Lipschitz constant. �

The following result is therefore immediate:

Corollary 1 For x > x̂ > 0 denoting two different stock levels and w, ŵ denoting corre-
sponding optimal withdrawals, it is true that w − ŵ ≤ C

(
x − x̂

)
, for some 0 < C < ∞.

We observe that Corollary 1 holds for the more realistic transition functions in Eqs. (2)
and (18).WhileCorollary 1 requires assumptions regardingw∗′

, we note that these areweaker
than assumptions regarding differentiability of the value function which are common in the
literature using continuous timemodels [e.g. the existence of V ′′′ in Tsur andGraham-Tomasi
(1991)].

3.3 Accounting for Impact of Pumping on Marginal Cost

The results detailed next for the model with this cost function have already been published, in
Huh et al. (2011) (‘HKW’, henceforth). Consequently, we provide only an extremely concise
summary of the main result. These results are included here for two reasons. First, they
illustrate the breadth of properties obtainable using methods similar to those used for the
other two cost functions, and second, subsequent sections extend these to an infinite horizon
and characterize the invariant distribution (both aspects not considered in HKW). Results
from the current section are an integral part of, and a key to understanding, these extensions.

It is shown in HKW that all of Properties (a)–(d) hold for the model in Eq. (7). This is
in contrast to the models in Eq. (6) and Eq. (8), for which we are able to show that only
Property (b) holds. In a related model, Knapp and Olson (1995) are able to show that only (a)
holds—and that with the help of an additional condition on cost C(.), as defined in Eq. (6).17

We note that the proofs in HKW only rely on Assumptions 3, 5, 8, 9 and 10. In particular,
while � turns out to be supermodular, this fact is not used in the proof.

Remark 6 (Property (d)) Corollary 1 inHKWshows that withmore periods to go, the optimal
decision is more conservative i.e. for any x and t ≤ T , w∗

t (x) ≤ w∗
t+1(x).

16 A function f is locally Lipschitz if, for ∀x0 ∈ X , ∃r > 0 such that f is Lipschitz continuous on Br (x0),
an open ball centered at x0, with constant �(x0) i.e. if | f (z) − f (x0) | ≤ � (x0) ∀z ∈ Br (x0). If ∃r for
which the same Lipschitz constant � applies ∀x0 ∈ X then f is said to be globally Lipschitz.
17 The underlying assumption of Knapp and Olson (1995) is the supermodularity of B(x − y) −C(x, x − y)
in (x, y), where B(w) is the benefit of withdrawing w units of water, but this condition sometimes fails for the
model in Eq. (6); however, for Eq. (7), this supermodularity condition always holds, thereby enabling Property
(c) to hold.
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Remark 7 (Log supermodularity) We remark that the profit function associated with this
problem [Eq. (12)] is not log supermodular; hence, there is no result analogous to Proposi-
tion 5.

Remark 8 We remark that Theorem 1(iii) of HWK indicates that
∂w∗

t (xt )

∂xt
∈ [0, 1]. This

result is analagous to Corollary to Proposition 1 in Knapp and Olson (1995), and to our
Corollary 1.

4 Effects of the Time Horizon

We have already proved the following properties regarding the effect of the time horizon:
for the cost functions in Eq. (6) and Eq. (8), Vt is decreasing in t (and finite, for each t) in
Propositions 1 and 4; for the cost function in Eq. (7), it was proved in HKW, in addition,
that the optimal policy function wt (x) is decreasing in t . Consider next the following two
equations, the infinite horizon analogues of Eq. (9a) and Eq. (9b), which may or may not be
well defined at this stage,

V (x) = max {J (x, w); x ∈ X , w ∈ W (x)} (13a)

J (x, w) = �(x, w) + δE[V (x − w + R)]. (13b)

A natural next step therefore is to ask the following questions regarding the limit functions:

1. Does Vt converge? If so, does it converge to the Bellman equation, Eq. (13a)?
2. Does the optimal policy function w∗

t (x) converge?

(a) If so, does the limit function inherit monotonicity?
(b) Does the limit function maximize the right hand side of Eq. (13b)?

We answer each of them in turn. We begin with a series of brief remarks on convergence of
the value function and the one-period return function, as a prelude to answering the questions
posed above.

Remark 9 Wehave proved that Vt , for all three cost functions, is decreasing in t , increasing in
x , and is finite (bounded). It is therefore immediate that ∃V < ∞ s.t. Vt ↓ V and further, that
V is increasing in x . It is also evident from Eq. (9b) (and an easy recursion) that if Vt+1 ≤ Vt
then Jt+1 ≤ Jt . Further, either due to finiteness of � or Assumption 13 and compactness of
C, it is evident that Jt is bounded over C. Thus, {Jt } is a monotone, decreasing and bounded
sequence. It therefore follows that ∃J < ∞ s.t. Jt ↓ J for each (x, w) ∈ C.
Remark 10 Wehave already shown, inClaims 1 and 2, that the profit functions in Eq. (10) and
Eq. (12) are log supermodular. Remark 9 is therefore directly applicable to these formulations.

We make two final, technical, assumptions before we embark on our major result for this
section.

Assumption 14 Jt (x, .) is continuous in w on W (x).

Assumption 15 C = {(x, w); x ∈ X , w ∈ W (x)} is a sub-lattice of R
2+.

We now state our main result for this section, which is Heyman and Sobel (2003, Theorem
8–16), whose proof is provided in order to aid the reader’s understanding [Heyman and Sobel
(2003) do not provide a proof].
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Theorem 2 Under Assumptions 1, 6, 8, 9, 10, 11, 14 and 15, V (x) [defined in Eq. (13a)] is
non-decreasing in x and ∃w(x) non-decreasing in x which satisfies V (x) = J (x, w(x)) for
x ∈ X .

Proof We split the proof outline into two steps. The first step involves proving that (a) Vt ↓ V
and that (b) V satisfies Eq. (13a). (a) is Remark 9. A proof of (b) begins by noting that since
each Vt is bounded and increasing in x , by the monotone convergence theorem for integrals,
we have that

lim
t→∞ E{Vt [X̃(x, w)]} = E

{
V

[
X̃(x, w)

]}
. (14)

From this, it is immediate that Vt (x) = max {Jt (x, w)} ≥ max {J (x, w)} , which implies
lim
t→∞ Vt (x) = V (x) ≥ max {J (x, w)}. The proof will be complete if the inequality is proved

the other way i.e. if it is established that V (x) ≤ max {J (x, w)}. To prove this, consider

V (x) ≤ Vt (x) = sup {Jt (x, w);w ∈ W (x)} ,

and taking limits, observe that V (x) ≤ lim
t→∞

[
sup {Jt (x, w);w ∈ W (x)}]. The proof is com-

plete if

lim
t→∞

[
sup {Jt (x, w);w ∈ W (x)}] = sup

[
lim
t→∞ {Jt (x, w);w ∈ W (x)}

]
.

FromAssumptions 14 and 10, it follows that Jt (x, .) converges uniformly inw, for each x , to
J (x, .) and finally, Eq. (14) justifies interchange of integral and limit. Thus, the interchange
of lim and sup is valid.

The next step, to prove that w∗(x) is ascending in x and the greatest element of w∗(x)
is increasing in x , is a direct consequence of Theorem 1, and is plainly a result of the
supermodularity of J . �
Remark 11 Theorem 2 addresses question 1. We note that nothing yet has been said about
convergence of the optimal policy i.e. regarding w∗

t (x) → w∗(x) where w∗ is presumably
increasing in x and is the maximizer of the right hand side of Eq. (13b). We address in turn
questions 2, 2a and 2b. To begin addressing question 2a, we observe that if the limit function
w∗ exists, it must be increasing in x . The question thus to be addressed is 2. In the case
of the cost function in Eq. (7), we have already proved that w∗

t is decreasing in t . Thus,
using the upper bound X̄ for x , we have that {w∗

t } is a decreasing, bounded sequence, which
must converge. For the remaining two cost functions, we have been unable to prove that
w∗
t is decreasing in t , which is a sufficient condition for convergence. Thus, convergence

is not assured for the remaining forms of the cost function, including the conventional cost
function.18

5 Stationary Distribution of Stock

We turn now to understanding the conditions under which the Markov chain generated by
the dynamic decision problem for each of the three cost functions [in Eqs. (6)–(8)] con-
verges to an invariant distribution. Most analyses on establishing convergence to a unique

18 We have not been able to establish, for the cost function in Eq. (7), that question 2b can be answered in the
affirmative. This is due to the fact that existing sufficient conditions are inapplicable to our case, and a direct
proof is non-trivial. We leave this task for future work.
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invariant distribution (termed ‘global stability’) in renewable resource management rely on
the monotonicity of the ‘reinvestment function’, following the economic dynamics setting
in Hopenhayn and Prescott (1992) and Mendelssohn and Sobel (1980). This approach has
two major drawbacks: assumptions regarding compactness of the state space are needed,
leading to bounded shocks (an undesirable artifact in many applications), and it is difficult
to generalize to non-monotonic systems. There is an alternative approach, popularized in
economics in Stachurski (2009), overcoming both drawbacks mentioned above. This method
is particularly suited for an analysis of stability for the cost functions in Eqs. (6) and (8).

We illustrate here the use of a powerful theorem, applicable to both monotonic and non-
monotonic Markov Chains, under a set of mild assumptions which are likely satisfied in a
variety of natural resource extraction settings. This approach offers two major advantages
over more conventional methods alluded to above:19 (i) it allows the researcher to look
beyond monotonic systems, which in many cases in resource economics are an artifact of
model assumptions rather than any underlying feature of the natural-economic system being
studied; and (ii) releases the researcher from the strait-jacket of compact-state-space con-
ditions typically imposed on stochastic renewable resource models. Since the use of this
approach in economics is relatively recent, and since this approach has not been used (to
our knowledge) in a resource economics setting, we provide a more detailed outline of the
method of verifying the conditions sufficient for its applicability.

5.1 The Setup

The generic transition equation, which [following Stachurski (2009)] we label the “Stochastic
Recursive System” (S.R.S, henceforth), is

Xt+1 = f (xt ) + Rt+1 = F(xt , Rt+1), (15)

where, for now, we will assume Rt
i.i.d∼ 	, with	 a continuous distribution assigning strictly

positive probability to every subset ofR+, andE (R1) < ∞. For future reference, the state and
shock spaces are denoted X and R respectively, with P (X ) and P (R) the corresponding
set of all (Borel-) probability measures. For the S.R.S. in Eq. (15), we denote by M the
Markov operator associated with the stochastic kernel, P , whose definitions, along with
standard notations and definitions regarding Convergence ofMarkov Processes, are relegated
to “Convergence of Markov Processes” section of Appendix. We only define below two
notions which are directly used in the proof of the main result for this section, Proposition 6.

Definition 2 (Drift to small set) The kernel P , associated with the operator M , satisfies drift
to a small set if ∃v ≥ 1, v : X → R+, α ∈ [0, 1) and β ∈ R+ s.t

Mv(x) ≤ αv(x) + β,

and all sub-level sets of v are ‘small’ (see Definition 14).

Definition 3 (Global Stability) Viewing (P(X ), M) as a dynamical system, global stability
corresponds to the existence of a unique fixed point of this dynamical system.

19 While powerful, the method used here suffers from a drawback, in the need for finding a function v which
allows a verification of the condition of ‘drift to a small set’ (in Definition 2). The function v depends on the
functional form of F(.) in Eq. (16); it is therefore not possible to provide generic conditions for convergence
for arbitrary functional forms of F . Nonetheless, for commonly used functions for stock growth in renewable
resource economics (e.g. linear, as here, or power functions), it is possible to find a function v for which
convergence holds.
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5.2 Main Results

Consider next a (stationary) policy w(xt ), possibly sub-optimal and non-monotonic in xt .
Under this policy, the Markov chain that results maybe written as

Xt+1 = xt − w(xt ) + Rt+1 = a(xt ) + Rt+1 = F(xt , Rt+1). (16)

The fundamental questions concern existence of at least one invariant distribution to the
Markov chain generated by the policyw(xt ), and the uniqueness of the invariant distribution.
In the case of the cost functions in Eqs. (6) and (8), the optimal policy w(xt ) is increasing in
xt but it is not the case that a(x) = x −w(x) is also increasing. Thus, the S.R.S F(xt , Rt+1)

in Eq. (16) is not increasing in x and results on stability of monotone Markov chains are not
applicable. We indicate, following Stachurski (2009), a constructive method of proof which
relies on far simpler assumptions than those for monotone Markov chains. We first state an
important theorem and then indicate how the conditions required here are satisfied in the case
of the S.R.S in Eq. (16).

Theorem 3 (Stachurski 2009, Theorem 11.3.36) If the Stochastic Kernel P is aperiodic,
irreducible and satisfies drift to a small set, then the system (P(X ), M) is globablly stable
with a unique stationary distribution �∗ ∈ P (X ).

The verification of the conditions of Theorem 3 crucially depends upon the following
assumption:

Assumption 16 The function a(x) in Eq. (16) is continuous, satisfies

a(x) ≤ αx + c, (17)

with α ∈ [0, 1), c ∈ R+.
We now indicate why this assumption is reasonable in the context of our set up. First, note

that 0 < w(xt ) ≤ xt is necessary 20 for Assumption 16 to be satisfied for c = 0 (with which
we work, since it is not critical that c be positive). Thus, it is required that w(xt ) is bounded
away from 0 for all positive values of x , which of course is a reasonable assumption for any
relatively shallow aquifer. In other words, any agent who has incurred the not-insubstantial
fixed costs of accessing the resource (in the case of groundwater, pump and plumbing; in the
case of fishery, capital equipment in the form of boats and nets) is unlikely to extract zero
quantity for any positive stock level.

Conditions similar to Assumption 16 on stock, rather than extraction, are often imposed
in models of extinction of natural resources [for instance Olson and Roy (2000, p. 194)]. It is
important to note that Assumption 16 is not equivalent to stating that the stock of resources
is bounded away from 0 almost surely. Rather, the assumption indicates that even at very low
levels of stock, it is always optimal to extract a non-zero quantity of water and further, that this
quantity is bounded below. Such will always be the case if costs are not “too convex”, relative
to benefits. For instance, if costs are less convex than benefits are concave, it is very reasonable
to assume that extraction will always be positive. Given that Inada-like conditions to ensure
interior solutions cannot be used in this setting, this is an assumption, albeit a reasonable
one.21

20 It is not difficult to see that it is not sufficient: observe that what is required is w(x) ≥ x(1 − α), which is
not guaranteed by w(x) > 0, ∀x > 0.
21 Imposing constraints on controls, instead of on stocks, is rather unusual. However, conceptually at least,
one may think of this constraint as representing a ‘penalty’ on lack of water. For instance, if in the absence
of extracted groundwater, an alternative source of water has to be found, then the cost of extraction has to be
unrealistically high for zero extraction to occur.
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We now provide two approaches to setting the value of the coefficient α, which is the
essence of verification of the conditions in Assumption 16.

1. For a differentiable a, Assumption 16 is a condition on the derivative of a i.e. a′ ≤ α. For

the cost function in Eq. (7), HKWhave already shown that
∂w(x)

∂x
∈ [0, 1]. If, in addition,

we make the (mild) assumption that ∃β s.t. 1 ≥ β := inf

{
∂w(x)

∂x
; x ∈ X

}
> 0, then

we can set α = 1 − β < 1.
2. When w(xt ) is not differentiable, there are two possible alternatives for α:

(a) if 1 > K := sup {x − w(x); x ∈ X }, then set α = K ;

(b) Another alternative is to consider κ := inf

{
wt (x)

x
; x > 0

}
; if κ > 0, set α =

1 − κ < 1.

For the developments below, we assume one of the above is true. Thus, for all the models
considered here, we henceforthmakeAssumption 16.We now indicate the chain of reasoning
verifying all the properties required of P in Theorem 3. From Stachurski (2009, p. 293),
irreducibility of P follows, while it can be shown easily that every compact subset of X is
small for P , from which the aperiodicity of P follows (Stachurski 2009, p. 292). Finally,
finding a function v satisfying Definition 2 will suffice to prove drift to a small set, a task
taken up next.

Claim 4 For the function v = x, theMarkov operator M associatedwith the S.R.S in Eq. (16)
satisfies the conditions (set out in Definition 2) for drift to a small set.

Proof Using the definition of a Markov operator (Definition 8), and the expression for F

from Eq. (16), Mv(x) :=
∫

v [F(x, z)]	(dz), with F(x, z) = a(x) + z. Thus, we have

Mv(x) =
∫

(a(x) + z) 	(dz) ≤ αx + β = αv(x) + β,

where β := ∫
zφ(z)dz < ∞, and the inequality follows from Assumption 16 (with α taking

any of the three values already defined). It is immediate that all sublevel sets of v i.e. set of
the form {x ∈ X ; v(x) ≤ K }} , K ∈ R+, are compact.22 �

Thus, all the properties required of P in Theorem 3 are satisfied, which leads to the main
result of this section:

Proposition 6 For the groundwater models defined by cost functions in Eqs. (6), (7), and (8),
the stock of groundwater converges to a unique, invariant distribution, �∗.

We stress that this result is very general in that it depends only on three assumptions:

(i) The function F in Eq. (16) is of the form x − w(x), irrespective of the form of w(.)

(i.e. w(.) need not be monotonic);
(ii) a stationary policy exists; and

22 An alternate proof exists when the kernel P has a density, φ [which exists in this case, see Stachurski
(2009, Theorem 8.1.3)], of the form P(x, y) = φ(y − a(x)) > 0. Using Mv(x) = ∫

v(s)P(x, ds), and
change of variable, z = y − a(x), v = y, we have

∫
yφ(y − a(x))dy = ∫

(a(x) + z) φ(z)dz ≤ αx + β,
where β := ∫

zφ(z)dz < ∞.
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(iii) under a stationary policy, extraction (not necessarily monotonic) is bounded away from
0.

Note that (ii) is always true while (iii) is clearly an assumption and, we argue, a very reason-
able one in many renewable resource settings. This result is general, and applicable to any
renewable resource setting satisfying these three conditions.

5.3 Non-iid Shocks

We now revisit the issue of i.i.d shocks in the S.R.S in Eq. (16). Consider a scenario wherein
the random recharge,Rt , depends upon the current stock, as is true for aquifers in which
recharge depends upon lateral flows that are in turn a function of the current stock. Denote
by L(X) the lateral flow, with L increasing and (possibly) concave. We work with a slightly
less general formulation of the problem, using the log normal distribution, letting only the
mean of the recharge be a function of the stock.

Let η
i.i.d∼ LN (μ, σ ) and consider the following random variable: Rt = η + L (Xt ), with

E (R) = E (η)+ L (X) and V (R) = V (η) (both conditional on Xt ). Rt is a random variable
with a so-called “shifted” log normal distribution, whose mean is increasing in Xt . Using
this, we can reformulate our S.R.S as

X̃(Xt , wt ) = Xt+1 = Xt + L (Xt ) − wt (Xt ) + ηt+1, (18)

where ηt is now an i.i.d log normal randomvariable. To summarize, we have reduced an S.R.S
with a random variable whose mean depends upon stock Xt into a slightly different S.R.S
with an i.i.d recharge, with the addition of the term L (X). Thus, no additional technical
machinery is necessary to address the S.R.S in Eq. (18). Nonetheless, the use of the new
S.R.S, Eq. (18), instead of the previous one, raises many questions, in particular:

1. Is the main results regarding the nature of the optimization problem, Theorem 1, still
valid?23

2. Is the proof of global stability, Proposition 6, valid?

Q1 can be answered in the affirmative, since it only depends upon the monotonicity of the
transition, X̃ , in stock. Q2 can also be answered in the affirmative for the cost functions in
Eq. (6) and Eq. (8), as we indicate below.We note, however, that the added complexity of this
formulation necessitates correspondingly stronger assumptions. Nonetheless, we emphasize
these assumptions are no stronger than those made in the existing literature, and we are
unaware of any literature in resource economics which attempts to address explicitly this
issue of dependence of the “shock” R upon the stock X .

Letting ã (x) (= a (x) + L (x)) be the new ‘reinvestment function’, we observe that
the introduction of L (X) does not alter any of the previous properties regarding w∗

t (xt )
in Theorem 1 [and Theorem 2 for the two cost functions in Eqs. (6) and (8)], as already
noted. Thus, whenever a (.) is increasing in x , so is ã(.). However, in cases where a () is not
increasing in x , which is true for the cost functions in Eq. (6) and Eq. (8), no conclusions
can be drawn regarding ã (for e.g., if L is sufficiently ‘large’, ã may be increasing even if a
is not). For our purposes, we will not assume that ã is increasing in x , whenever a is not.

Our main result for this part is presented next.

23 Note that Propositions 1–4 do not depend upon the S.R.S, except insofar as Assumptions 3 and 11 are
satisfied (which they are; the former since L is increasing, the latter a maintained assumption through out). For
the cost functions in Eq. (6) and Eq. (8), Theorem 2 follows if Theorem 1 holds under the assumed conditions
(which it does). We note that an extension of the results in HKW to the case of the stock-dependent recharge
in Eq. (18), appears infeasible.
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Proposition 7 Theorem 3 is applicable, if a (x)is replaced with ã (x), for cost functions in
Eqs. (6) and (8).

We note that a proof of this result proceeds along lines identical to that of Proposition 6,
and is hence omitted. In the interest of brevity, we provide only a bare outline of the technical
issues involved. As for Proposition 6, an analogue of Assumption 16 is required for the
transition in Eq. (18); essentially, we replace a in Assumption 16 with ã. The key verification
step, as for the simpler case, involves finding a constant, α̃. Since lateral flow may be viewed
as being “small” (in relation to the stock, x), one can assume that L (x) is linear (or is
dominated by a linear function) with slope η and, finally, that α > η. Similarly, the condition
that extraction be bounded away from 0, ∀x > 0, is evidently necessary here; in addition,
given that there is a positive (in x) term, that condition is slightly more stringent. Thus, the
results for a are easily extended to accommodate ã.24

6 Conclusions and Extensions

This paper had two major objectives:

(i) to investigate the implications of using more hydrologically-grounded formulations of
cost functions for dynamic groundwater management, including accounting for risk aver-
sion; and

(ii) to provide weaker conditions for convergence of stock of resource.

The cost functionwas generalized in two directions, accounting for localized cones of depres-
sion (increasing the cost of extraction) and taking into account changes in groundwater stock
within a season.With the conventional cost function, itwas shown that only very fewstructural
properties hold, notably monotonicity of extraction in groundwater stock. Quite surprisingly,
this simple and intuitive result has been rigorously proved here for the first time. It was shown,
with the former generalization of the cost function, that extraction is increasing in the current
stock. With the latter generalization, however, it was shown, in addition, that reinvestment
(next periods stock) was increasing in current groundwater stock and further, that extraction
(reinvestment) was decreasing (increasing) over time.

In addition, we show that, when restricted to the log utility function, for both the conven-
tional cost function and the cost function accounting for formation of cones of depression
around a pumping well, all of the preceding results are directly applicable. Again, apart from
Knapp and Olson (1996), in whose set up uncertainty plays a less central role in decision
making, ours appears to be the only explicit proof of structural results for objective func-
tions displaying risk aversion in the groundwater management literature. In contrast to most
dynamic stochastic models in the existing literature, we are able to prove most of the prop-
erties previously conjectured for these class of models. Moving away from models which
require strong assumptions such as monotonic reinvestment or compact state space, we illus-
trate the use of a powerful method for proving convergence of the stock of resource to a
unique invariant distribution. This method requires only mild assumptions on the optimal

24 Possible values for α̃ are: (i) α̃ = 1 − β̃, with 0 < β̃ := inf

{
∂w (x)

∂x
− ∂v (x)

∂x
; x > 0

}
< 1, a more

demanding condition than for a (e.g., if w and v are dominated by linear functions with slopes ηw and ηγ ,
then it is necessary and sufficient that ηw > ηγ ); (ii) if 0 ≤ K̃ := sup {x + γ (x) − w (x) ; x > 0} < 1, then

α̃ = K̃ ; and (iii) if 0 < κ̃ := inf

{
w (x) − γ (x)

x
; x > 0

}
< 1, then α̃ = 1 − κ̃ .
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policy to yield convergence, and is potentially applicable to a wide variety of renewable
resource settings.

The motivation for the modifications to existing groundwater management models was
to accommodate specific scenarios encountered in many semi-arid countries, scenarios pre-
viously not modeled (or at least, not with models set up to accommodate features specific
to these settings). This suggests direct implications of the work here for informing public
policy, although such extensions are left for future work. First and foremost, one or both cost
functions introduced here may be used, as appropriate, to quantify the benefits of different
types of current, real-world policies [such as the flat-rate-with-capacity-restrictions policy
advocated in Shah et al. (2008)], with relatively minimal data requirements; such an evalua-
tion with existing cost functions is likely to lead to substantial underestimates of the cost of
pumping. The hydrologically realistic multi-user framework laid out in Brozović et al. (2006)
requires detailed data on pump locations and more hydrological/economic parameters than
are likely available for many developing countries, or at many locations.25 In such cases, sim-
ulations using themodels outlined here may provide a second best and relatively quickmeans
of evaluating the benefits of different policies [such as taxes, considered in Athanassoglou
et al. (2012)]. Secondly, by freeing the ‘reinvestment function’ from the artificial constraint
of monotonicity, a more realistic baseline is provided for evaluation of policy. Essentially,
using our approach, policy simulations of the kind carried out in Knapp and Olson (1995,
1996) may be more representative of, and useful for, the scenarios envisaged.

Two directions for extension of the current work are immediately evident. First, in the
case of groundwater, an important policy issue is the prevention of groundwater depletion by
means of regulation. In this context, even if the optimal policy is monotone, it need not be a
simple function of the stock. In the general setting of this paper, an important step towards
specific applications could involve characterizing (even in the admittedly simplified case of
a single-user) a variety of possibly sub-optimal but simple policies and quantifying their per-
formance in an empirical setting. Second, in the groundwater scenario which motivated this
work, crop choice determines groundwater water use and extraction, and exogenous prices
determine crop choices. In this setting, it is important for policy design (e.g. price support and
stabilization) to understand the conditions under which the variability in prices influences the
evolution of groundwater stock. Exploring this question in the model framework above, and
extending the sparse existing literature on variability and stock exploitation (see e.g. Sethi
et al. 2005), we feel, is both feasible and interesting.

Appendix: Definitions and Notations

Lattice Theory

We provide a few basic definitions of lattice theory, along with the needed notation, and
direct the reader to Heyman and Sobel (2003) or Topkis (1998) for details. Let X ⊂ R+be

25 To illustrate, in the single-user case, different policies are easily evaluated and intuitively interpreted using
only data on average depth to water and some measure of porosity, following Fishman et al. (2011). To extend
the analysis in Athanassoglou et al. (2012), carried out for the case of two hypothetical users in the Telangana
region (now state) in Southern India, to real-world aquifer systems with many users and with complex hydro-
geology is likely challenging.
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the state space (a lattice),26 W : X → L (X ), with L(X ) the set of all sub-lattices of X ,27

C = {(x, w); x ∈ X , w ∈ W (x)} be a sub-lattice of R
2+.

Definition 4 (Ascending functions) The set-valued function W is called ascending in x on
X (or simply ‘ascending’) if it is increasing on X . Thus, if x1, x2 ∈ X , then W (x1) and
W (x2) are in L(X ). Therefore, if x1 < x2, a ∈ W (x1) and b ∈ W (x2) and W is ascending
on X , then necessarily a ∧ b ∈ W (x1) and a ∨ b ∈ W (x2).

Definition 5 (Expanding Sets) The setW (x) is called “expanding” if x ′ < x �⇒ W (x) ⊂
W

(
x ′).

Definition 6 (Stochastically supermodular) X̃(x, w), a random variable parametrized by
(x, w), defined on a lattice X ×X , Fx,w its distribution function, is said to be “stochastically
supermodular” in (x, w) if either of the following conditions hold:

1.
∫
S dFx,w(s) is supermodular in (x, w).

2.
∫
h(s)dFx,w(s) (as a deterministic function of (x, w)) is supermodular in (x, w), for all

increasing and bounded functions h.

Convergence of Markov Processes

We provide here a very brief outline of key notions and definitions and refer the readers
to Stachurski (2009, §8, §9.2, §11) for details. Denote by X the state space, P(X ) the set
of all (Borel-) probability measures on the state space, by B(X ) the set of Borel subsets
of X , and by P (R) the set of all (Borel-) probability measures on the shock space, R.
For ease of identification, we distinguish two sets of random variables, the initial state X0

and the Markov chain {Xt , t ≥ 0}, and the random recharge {Rt }, with respective densities
(distributions) denoted by ψ (�) and φ (	).

Definition 7 (Stochastic Kernel) P is a stochastic kernel for the S.R.S in Eq. (15), defined
for B ∈ B(X ), x ∈ X , and 	 ∈ P (R) as

P(x, B) =
∫

IB [F(x, z)]	(dz),

with IB(.) an indicator function. To understand this definition, observe that P(xt , B) =
P (F(xt , Rt+1) ∈ B) = E

(
IB

[
F(xt , Rt+1)

])
.

Definition 8 (Markov Operator) Given a stochastic kernel P , an associated linear operator,
the Markov operator M, M : P(X) → P(X), maybe defined as

�M(B) =
∫

P(x, B)�(dx).

Let X0 ∼ � ∈ P(X ), and denote the distribution of (Xt )t≥0 as �t . Then it is the case
that the recursion �t+1 = �t M holds, which yields, by an inductive argument, the infinite-
dimensional version of the usual Markov chain identity: �t+1 = �Mt .

Definition 9 (Feller Property) A Markov operator M is said to possess the ‘Feller Property’
if it maps bounded, continuous functions into bounded continuous functions.

26 A partially ordered set X is a lattice if, ∀x, y ∈ X , it is the case that x ∧ y and x ∨ y ∈ X . When, as here,
X ⊂ R, with the usual order, then x ∧ y = min{x, y} and x ∨ y = max{x, y}.
27 Intuitively, a set � is a sub-lattice of X if, ∀x, y ∈ �, it is the case that x ∧ y and x ∨ y ∈ �.
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Remark 12 (Sufficient condition for Feller Property) It can be shown that if the map F(x, R)

is continuous in x for each R, then M satisfies the Feller Property. In fact, for F linear (affine)
in x , as in the S.R.S in Eq. (16), it is sufficient that F is bounded. Considering instead the
S.R.S corresponding to the transition equation for a finite aquifer in Eq. (2), it is evident that
due to the continuity of min(a(x), x) in x , F(x, R) is continuous and therefore, satisfies the
Feller property. Similar is the case for the S.R.S in Eq. (18).

Definition 10 (Iterates of M) We illustrate the connection between the t th iterate of M
applied to a function, h, and the same iterate applied to a distribution, �. Note first that since
Pt (x, dy) may be interpreted as the distribution of Xt given X0 = x , it is immediate that
Mth(x), defined as

Mth(x) :=
∫

h(y)Pt (x, dy) = E (h(Xt )|X0 = x) (x ∈ X),

may be interpreted as a conditional expectation. Then, it can be shown (Stachurski 2009,
Theorem 9.2.15) that �(Mh) = (�M)(h) = ∫ [∫

h(y)P(x, dy)
]
�(dx), and by induction,

�(Mth) = (�Mt )(h) = ∫ [∫
h(y)Pt (x, dy)

]
�(dx).

Definition 11 (Aperiodic kernel) A kernel P is said to be aperiodic if it has a (ν, ε)—small
set C with ν(C) > 0.

Definition 12 (Irreducible kernel) A kernel P is said to be μ—irreducible, with μ ∈ P(X ),
if ∀x ∈ X&B ∈ B(X ) with μ(B) > 0, ∃t ∈ N s.t. Pt (x, B) > 0. If P is irreducible for an
arbitrary μ ∈ P(X ), then it is called irreducible.

Definitions 11 and 12 are the infinite state analogues of the classical definitions for finite
state Markov Chains.

Definition 13 (Stability) Let �∗ be an invariant distribution. Denoting by ib(X ) (ibc(X ))

the set of increasing and bounded (continuous) functions on X , stability of �∗ is taken to
mean

∀� ∈ P(X )& h ∈ ib(X ),
(
�Mt) (h) → �∗(h) as t → ∞. (19)

Definition 14 (Small set) Let ν ∈ P(X ), ε > 0. A set C ⊂ B(X ) is called (ν, ε)—small for
P if ∀x ∈ C , it is the case that for A ∈ B(X ), P(x, A) ≥ εν(A). If this condition holds for
some ν and ε > 0, then the set C is called ‘small’.
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