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Abstract We analyze optimal multi-species management in a dynamic bio-economic model
taking into account both harvesting profit and biodiversity value. Within an analytical model,
we show that extinction is never optimal when a global biodiversity value is taken into account.
Moreover, a stronger preference for species diversity leads to a more even distribution of stock
sizes in the optimal steady state, and a higher value of biodiversity increases steady state stock
sizes for all species when species are ecologically independent or symbiotic. For a predator–
prey ecosystem, the effects may be positive or negative depending on relative prices and
the strength of species interaction. The analytical results are illustrated and extended using
an age-structured three-species predator–prey model for the Baltic cod, sprat, and herring
fisheries. In this quantitative application, we find that using stock biomass or stock numbers
as abundance indicators in the biodiversity index may lead to opposite results.

Keywords Biodiversity · Ecosystem management · Fishery · Ecological-economic
modeling · Marine resources · Baltic sea
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1 Introduction

Ecosystems, in particular the oceans, provide a wide range of goods and services directly
supporting human societies and economies. But in spite of heightened awareness, “the
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ocean remains chronically undervalued, poorly managed and inadequately governed” (GOC
2014). Similar concerns apply for other types of ecosystems. Conflicting interests between
short-term economic uses and conservation continue to cause their over-use and degradation
(Kumar 2010; Millennium Ecosystem Assessment 2005; Stavins 2011). In particular, current
ocean governance arrangements do not ensure sufficient protection of marine biodiversity,
and they do not foster the sustainable use of marine living resources (Visbeck et al. 2014).

Fisheries management has to some extent reacted to these developments by adopting
the goal of employing ecosystem-based approaches. This implies that not only economic
profits should be maximized but that conservation goals also need to be taken into account
(Pikitch et al. 2004). Consequently, bio-economic models, which can be used to derive
recommendations for fisheries management, should not only include multiple species but also
multiple values. Against this background, we reconsider optimal multi-species management
in a bio-economic model taking into account both harvesting profit and biodiversity value.
More specifically, we analyze how optimal management decisions change when a biodiversity
index is introduced in the objective function of a bio-economic dynamic optimization model
to capture the value of biodiversity.

There may be two different reasons for introducing biodiversity into such a model. One
is to use a biodiversity value as a place holder for ecosystem services that are not explicitly
modeled via ecological interactions in a bio-economic model. The unit value of biodiversity
could thus also be interpreted as a proxy for the value of some external effects that are too
complex to be integrated explicitly in the model. Such an approach would emphasize the
extrinsic value of biodiversity to humans. A second approach is to base the consideration of a
biodiversity value on ethical arguments about the intrinsic value of nature, so that biodiversity
should be conserved for its own sake (Weitzman 2014), or to attach a value to in-situ stocks of
species simply for their existence (Bulte and van Kooten 2000; Eichner and Tschirhart 2007).
In this case, the unit value of biodiversity could thus be interpreted as a social willingness-to-
pay for species conservation. In our application, this value would not be attributed to a single
species but to the entire state of the multi-species ecosystem reflected by a biodiversity index.

In this paper, we explicitly model (provisioning) ecosystem services directly in terms of
harvesting benefits. An extrinsic value of biodiversity is thus included by the explicit modeling
of species interactions rather than using a biodiversity index as a proxy. In addition, we capture
the non-use value of biodiversity. This may be a social benefit due to the compliance with
ethical considerations, or a benefit derived from the knowledge that the ecosystem exists in
a diverse form, including all species. Therefore, our model includes a biodiversity measure
that can be used to track changes in biodiversity over time.

The literature on renewable resources and bio-economic modeling has dealt with the
inclusion of existence values before but mostly considers single-species models. For example,
Alexander (2000) includes existence values in a one-species model and derives implications
for the potential optimality of extinction. More recent papers also include existence values
in multi-species models. Kellner et al. (2010) introduce an existence value for each single
species in a multi-species predator–prey model but they do not aggregate the values into
one index. Voss et al. (2014b) also consider a multi-species predator–prey model, but the
existence value they introduce only applies to one stock. With a slightly different focus,
Quaas and Requate (2013) include a constant elasticity of substitution (CES) function in a
bio-economic model, but preferences for diversity are attached to the consumption of fish,
not to the biodiversity of the ecosystem. Finally, Noack et al. (2010) use a biodiversity index
similar to the one we are using in this paper, but they do not consider the context of fisheries
management and, more importantly, do not investigate the effects of the introduction of this
index on the single species stocks captured by the index.
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Since multi-species applications are increasingly prominent in bio-economic modeling
and biodiversity conservation is high on the international political agenda, it is important
to investigate the properties of a bio-economic model when an aggregate biodiversity index
based on species abundances is included to capture biodiversity values. Buckland et al.
(2005) state axioms which an index based on species abundances should fulfill if it was used
for monitoring biodiversity developments over time. These axioms include the requirement
that the index value should decrease if overall abundance is decreasing while the number
of species as well as species evenness stay constant. Prominent ecological indices such as
the Simpson-Index or the Shannon-Index do not fulfill this axiom. Here, we consider the
class of CES-functions to aggregate single stocks into one index. CES-functions fulfill the
axioms stated in Buckland et al. (2005)1 and thus seem well-suited to track biodiversity
developments over time. Moreover, the class of CES-functions is a frequently used and well-
studied specification to describe production processes or consumer preferences in economics
(Arrow et al. 1961; Dixit and Stiglitz 1977).

We explore the effects of introducing such an index in a multi-species model of a harvested
ecosystem on the optimal steady state, which has, to our knowledge, not been investigated
before. In addition, we exemplify the effects in a more complex age-structured model applied
to the example of a predator–prey system of three Baltic Sea fish species (cod, sprat, and
herring). The age-structured framework enables us to study the effects of switching from an
index calculated using biomasses to an index calculated using the number of individuals.
We also illustrate the role of the elasticity of substitution for optimal management. We find
that both aspects of the biodiversity index crucially influence optimal management, which
has important implications for actual management decisions when biodiversity indices are
applied.

The remainder of the paper is structured as follows: Sect. 2 presents a generalized
framework for abundance-based biodiversity indices and compares our approach to other
approaches that have been used in the ecological and economic literature. Section 3 presents
a dynamic biomass model and compares optimal multi-species management without biodi-
versity value to optimal multi-species management with biodiversity value. We analytically
show the effects of changes in the unit value of biodiversity, in market prices, and in the
elasticity of substitution between species in the biodiversity index on optimal steady state
stocks for different kinds of ecological interactions. Section 4 introduces an age-structured
model and simulates the effects of changing the unit value of biodiversity and of changing
the elasticity of substitution on steady state stocks, profits, and biodiversity levels for the
example of a three-species predator–prey ecosystem in the Baltic Sea. We also compare the
effects when switching from a biodiversity index using biomass to an index using the number
of individuals. Section 5 discusses the results and concludes.

2 Measuring Biodiversity

One of the most established ways to measure species-level biodiversity is to calculate a
diversity index based on individual species abundances.2 The elements that influence such
a biodiversity index are the number of different species (species richness), and the evenness

1 More specifically, a CES-function fulfills the first four axioms mentioned in Buckland et al. (2005). Axiom
5 and 6 refer to characteristics of the biodiversity measures related to their empirical estimation, which is not
relevant in the theoretical context of this paper.
2 Species-level biodiversity can also be measured by phenotypic variation. Higher diversity scores would then
be assigned to collections of species that are evolutionarily more divergent (Armsworth et al. 2004). Appli-
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in the distribution of species abundances. A large number of such indices exist, and they are
widely used in ecology to measure species-level biodiversity (Magurran 2004). Buckland et al.
(2005) explore the characteristics of such indices when measuring changes in biodiversity
over time. They note that species abundance can be measured either in terms of biomass
or in terms of the number of individuals to compute these indices. Different weightings for
different species are also possible. They also state axioms which a biodiversity index should
fulfill if it was used for monitoring biodiversity over time. These axioms are:3

1. For a system that has a constant number of species, overall abundance and species
evenness, but with varying abundance of individual species, the index should show no
trend.
2. If overall abundance is decreasing, but number of species and species evenness are
constant, the index should decrease.
3. If species evenness is decreasing, but number of species and overall abundance are
constant, the index should decrease.
4. If number of species is decreasing, but overall abundance and species evenness are
constant, the index should decrease.

The axioms of Buckland et al. (2005) are thus based on three factors that characterize
an ecosystem: i) the number of different species, for which we use the symbol n, ii) overall
species abundance, for which we use At , and iii) species evenness, for which we use Et .
In the following, we propose a generalized framework to be able to compare the different
biodiversity indices used in the ecological and economic literature with each other and with
the approach used in this paper. To be more specific about the three factors used by Buckland
et al. (2005), we use xit to denote the absolute abundance of species i = 1, . . . , n at time t .
Consequently, overall abundance, At , at time t is given by:

At = At (x1t , . . . , xnt ) =
n∑

i=1

xit . (1)

There are many alternative ways to measure species evenness. Here we use a measure based
on the inequality measure by Atkinson (1970, p. 257), which we extend by introducing
weighting factors wi :

Et = Et (x1t , . . . , xnt ) =
⎛

⎝
n∑

i=1

wi

(
xit∑n
j=1 x jt

) ω−1
ω

⎞

⎠

ω
ω−1

. (2)

The parameter ω measures the degree to which individual species can be substitutes for one
another. Put differently, 1/ω is a measure of the degree of inequality aversion between the
species (Atkinson 1970, p. 257), or, in more simple terms, 1/ω measures the preference for
species evenness.

We propose to use a power function of the weighted geometric mean of overall abundance,
At , and species evenness, Et , to obtain a generalized biodiversity index, Bt :

Bt = Bt (x1t , . . . , xnt ) = (
Aα
t E

1−α
t

)β
, (3)

cations in the economic context using phenotypic variation as a measure for biodiversity include Weitzman
(1992) and Nehring and Puppe (2004).
3 These are the first four out of six axioms in Buckland et al. (2005); Buckland et al.’s last two axioms refer
to the sampling and empirical estimation of the indices and are thus not relevant in the theoretical context of
this paper.
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Table 1 Biodiversity indices used in ecology and economics

Type of biodiversity
index

Functional form Parameter values

Simpson-Index Bt =
(

∑n
i=1

(
xit∑n
j=1 x jt

)2
)−1

α = 0, wi = 1,

ω = −1, β = −2

Shannon-Index Bt = exp

(
−∑n

i=1

(
xit∑n
j=1 x jt

)
ln

(
xit∑n
j=1 x jt

))
α = 0, wi = 1,

ω → ∞, β = ω − 1

Kellner et al. (2010) Bt = ∑n
i=1 wi x

1/2
i α = 1/2, wi ≥ 0,

ω = 2, β = 1

This paper Bt =
(

1
n

∑n
i=1 x

ω−1
ω

i t

) ω
ω−1

α = 1/2, wi = 1/n
ω > 0, β = 2

with weighting parameter 0 ≤ α < 1 and a real-valued scaling parameter β that is needed
to make the various existing biodiversity indices comparable. Several of the most commonly
used biodiversity indices can be obtained by specifying values for the parameters α and β

in (3) and for the parameters wi and ω in the measure for species evenness (2). Table 1
provides an overview of important biodiversity indices used in the ecological and economic
literature and how they relate to the generalized form presented in equation (3).

Ecological biodiversity indices such as the Simpson-Index (Simpson 1949) and the
Shannon-Index (Shannon 1948a, b) are constructed using information on relative abundances
only. In the context of the above generalized index, this implies that the weight they put on
absolute species abundances is zero, α = 0. In addition, they apply equal weights to the
species such that wi = 1. The Simpson-Index and the Shannon-Index are then obtained by
specifying the values for ω and β as indicated in Table 1. For our application, it is important to
note that these indices, which are based only on relative species abundances, violate Axiom
2 of Buckland et al. (2005)—they remain constant if overall abundance is decreasing while
the number of species and species evenness are constant. Thus, they do not allow a consistent
comparison of biodiversity levels over time.

In the economic application of Kellner et al. (2010), non-fishing values are modeled such
that overall species abundance and species evenness are each weighted equally, α = 1−α =
1/2. In addition, the parametric specification of Kellner et al. (2010) implies that the index is
a CES-function over the individual species abundances, with the special case that an elasticity
of substitution of ω = 2 is considered.

Before we turn to the specification considered in this paper, we shall briefly point out
the relationship between (3) and the naturalness-index introduced by Eichner and Tschirhart
(2007). The naturalness-index does not intent to measure biodiversity, and thus it follows
a slightly different logic than the indices presented above. It is based on divergences from
natural population levels rather than on a measure of species evenness. To be able to capture
this index by the generalized form given in equation (3), the evenness index Et in (3) would
have to be replaced by

EN
t =

⎛

⎝
n∑

i=1

wi

(
|xit − x̂i |∑n

j=1 x jt

) ω−1
ω

⎞

⎠

ω
ω−1
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where x̂i denotes the natural reference population level of species i in absolute terms. Using
the index EN

t instead of species evenness Et in (3) and specifying parameter values α =
1/2, wi = ϕ2/x̂2

i t , ω = −1, and β = 2, one obtains the naturalness index

Bt = −ϕ

(
n∑

i=1

( |xi − x̂i |
x̂i

)2
)1/2

proposed by Eichner and Tschirhart (2007).
In this paper, we aim at studying how taking into account a biodiversity value changes

optimal management of a multi-species ecosystem. Thus, we use the standard approach and
consider species evenness as the goal to be considered in the biodiversity index (3). We
follow Kellner et al. (2010) and propose to use equal weights for overall abundance and
species evenness, and thus to set α = 1/2 as well as β = 2, such that the biodiversity index
becomes the product of At and Et . Further, we follow the biological literature and assign
equal weights to all species, wi = 1/n for all i . Allowing the preference for species evenness
to change, the biodiversity index used in this paper is

Bt = Bt (x1t , . . . , xnt ) =
(

1

n

n∑

i=1

x
ω−1
ω

i t

) ω
ω−1

. (4)

The index (4) satisfies the following conditions (using subscripts to denote partial deriv-
atives with respect to the corresponding variables):

Bxi > 0 and Bxi xi < 0 and Bxi x j > 0 ∀ i, j. (5)

The functional form (4) with a constant elasticity of substitution, ω, does not only fulfill
the axiomatic conditions specified in Buckland et al. (2005) for functions that can be used to
measure and compare biodiversity levels over time; it is also a common form for production
functions (Arrow et al. 1961) or utility functions (Dixit and Stiglitz 1977) in economics and
resource economics (Quaas and Requate 2013). In economic terms, the parameter ω > 0
measures the elasticity of substitution between the stocks of the n species. For ω → 0, the
elasticity of substitution would be zero and the stocks would be perfect complements. For
ω → ∞, the elasticity of substitution would be infinitely large and the stocks would be
perfect substitutes. The index (4) may also be interpreted as a generalized mean of species
abundances. For ω → ∞, the index (4) simply gives the arithmetic mean of species. For
ω → 1, the index (4) becomes the geometric mean of species abundances.

The axioms stated in Buckland et al. (2005) do not restrict the functional forms of potential
biodiversity indices regarding the structure of the exponent outside the parentheses in (4). Any
monotone transformation of the CES-function in (4) would fulfill the axioms as well. Here,
we assume a structure of the exponent such that the resulting index is linear homogeneous.
This is different from the structural form of the exponent used in the ecological indices that
are based on relative abundances. Our specification implies that the index value is measured
in terms of species abundances, just as the individual stock sizes, xi , which alleviates the
interpretation of the index.

Regarding the role of the elasticity of substitution, ω, note that the value of the biodiversity
index, Bt , ceteris paribus increases as ω increases. Only for equal abundances of all stocks,
the value of Bt is not affected by a change in ω. For the case of complements, ω < 1, the
biodiversity index, Bt , approaches zero if the stock xi of any species i , is driven towards zero.
The marginal biodiversity values, Bx j , of the other species j �= i also go to zero if xi → 0.
Substituting a species stock, xi , by another stock, x j , thus becomes less acceptable, the smaller
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the stock of species i already is. For the case ω > 1, substitution between the species is more
easily possible, i.e., the biodiversity index would continuously increase with an increasing
stock of at least one species even if all other species are driven towards zero or go extinct.
More formally, for xi → 0 both Bt and Bx j , j �= i with x j > 0, are finite and stay positive.

Note, however, that for the case ω ≤ 1, Axiom 4 cannot be applied because in this case
the index is defined only for a constant number of species and not defined if the abundance
of any one species becomes zero. Considering the different species as complements, ω ≤ 1,
is thus only reasonable for issues where species extinction is out of scope, such as the three-
species fishery in the Baltic Sea, considered in Sect. 4.3 below. Consequently, for biodiversity
considerations where species richness can vary, an index of the form (4) can be applied under
the restriction that different species are substitutes, i.e., under the assumption ω > 1. As a
varying species diversity is of particular relevance at the global level, we refer to this case as
‘global’ biodiversity value.

Also note that in all cases, the weight of the abundances of the single species in the CES-
function (1/n) needs to be determined once, based on the initial number of species, and may
not be changed afterwards, even if the number of species changes, e.g., due to extinction.
Changing the weight when measuring biodiversity over time would violate Axiom 4 from
Buckland et al. (2005).

3 Dynamic Model of Optimal Multi-species Ecosystem Management

3.1 Model Framework and Optimal Management

In this section, we introduce an analytical biomass model and compare optimal manage-
ment solutions with biodiversity value to optimal management solutions without biodiversity
value. Section 3.2 presents comparative static effects of parameter changes on optimal steady
states, differentiating between cases with and without ecological interactions. We use a
general set-up with n species and possible ecological interactions. In addition, we use the
CES-function (4) aggregating the biomasses of the different species to capture the value of
biodiversity in the objective function.

3.1.1 Species Dynamics

There are n species (i = 1, . . . , n). The dynamics of each stock xit are determined by its
natural growth, Git , and the biomass harvested, hit , at time t :

ẋi t = Git (x1t , . . . , xnt ) − hit for ∀ i, t. (6)

We assume perfectly selective harvesting, i.e., harvest of species i does not directly affect
the dynamics of any other resource stock j �= i .4 Species may interact ecologically, which is
captured by the dependency of species i’s growth function Git (·) on the other species’ stock
sizes x j . For some parts of the analysis, however, we will reduce the complexity of the model
by assuming that species are ecologically independent, i.e., we impose the assumption that
all species i = 1, . . . , n are ecologically independent:

Assumption: Gix j ≡ 0 ∀ j �= i. (A.1)

4 This is a reasonable assumption for the Baltic Sea as different species are caught by different fleets (Voss
et al. 2014a). We thus use this assumption in the analytical part of this paper as well as in the application to
Baltic Sea fisheries.

123



328 C. Bertram, M. F. Quaas

Time subscripts are dropped for notational clarity from now on unless needed to avoid
confusion. Furthermore, we use the vector notation x ≡ (x1, . . . , xn) and h ≡ (h1, . . . , hn).

3.1.2 Objective Function

We now consider socially optimal multi-species management. An ecosystem manager simul-
taneously chooses harvest quantities for all species over time such that the present value of
benefits, i.e., the sum of net benefits from harvest plus biodiversity value, is maximized:

max
h

∫ ∞

0
e−ρt

[
�(h, x) + v B(x)

]
dt (7)

subject to the stock growth equations (6) and given the initial stock sizes xi0 for all species
i . Here, we use ρ to denote the social discount rate and �(h, x) to denote the economic
net benefit derived from harvesting the multi-species ecosystem at time t . The net benefit
per species, �i , is composed of a fixed price, pi , multiplied with harvested biomass, hi ,
minus possibly stock-dependent harvesting costs, Ci (xi , hi ) with Cihi > 0 and Cixi < 0.
The parameter v measures the unit value of biodiversity relative to harvest benefits in the
objective function.

A couple of remarks are in place to discuss the meaning of using the biodiversity index (4)
in the objective function (7). Firstly, we interprete the parameter v as the unit value of bio-
diversity. It converts biodiversity into monetary units. As Eq. (4) is linear homogeneous,
biodiversity is measured in units of species abundance. Thus, v is measured in monetary
units per species abundance (euros per ton of biomass, for example). As discussed above,
however, the value of the biodiversity index (4) changes with ω. Thus, when a biodiver-
sity index (4) is applied, it has to be kept in mind that v has to be adjusted when using
different values of ω in the objective function. In other words, the parametrization of B(x)
implies that the biodiversity index assumes a certain value, say B̄, for a given value of ω

and given stock sizes. If stock sizes stay constant but ω decreases, for example, the value
of the biodiversity index B(x) also decreases. Thus, v has to be adjusted upwards to keep
the value of vB(x) constant in the objective function if a different value is assumed for
ω.

Secondly, the assumption of linear homogeneity of the biodiversity index (4) carries
economic meaning. Specifically, the particular specification of the exponent outside the
parentheses in (4) becomes important because it determines (a) the elasticity of intertem-
poral substitution between the abundances of species, and (b) the elasticity of substitution
between biodiversity and (monetary) income. In both respects, more general specifications
of biodiversity are conceivable, but we think that the linear homogeneous index (4) is a sim-
ple and appealing specification. Thus we focus on analyzing the implications of using this
particular index in the objective function (7).

Thirdly, using a CES-function to aggregate the stocks implies that the marginal biodiversity
value of one species depends not only on the own stock but also on the stocks of the other
species. This introduces an interdependency between the species on the management side.
Hence, species have to be managed jointly even in a case where species are modeled as
ecologically independent, i.e., when Assumption A.1 holds. This is in contrast to Kellner
et al. (2010), where marginal biodiversity or non-fishing values are non-linear but only
depend on the own resource stock. See Sects. 3.1.4 and 3.1.5 for a detailed discussion of
the resulting implications.
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3.1.3 Necessary First Order Conditions and Optimal Steady State

To derive the conditions for optimal multi-species management, we consider the current-value
Hamiltonian

Hc = �(h, x) + v B(x) +
n∑

i=1

λi (Gi (x) − hi ). (8)

Applying the maximum principle, the necessary conditions for optimal management are

∂Hc

∂hi
= 0 ⇔ �hi = λi (9a)

−∂Hc

∂xi
= λ̇i − ρλi ⇔ ρ = λ̇i

λi
+ Gixi +

∑

j �=i

λ j

λi
G jxi + �xi

λi
+ v

Bxi

λi
(9b)

with λi , hi , xi ≥ 0, initial stock sizes given, and transversality conditions for all i = 1, . . . , n.
The first condition (9a) states that the marginal net benefit of harvesting species i should
equal the marginal opportunity costs of reducing stock i , captured by the shadow price of
this stock, λi . This shadow price is determined by condition (9b). We will have a closer
look at the different terms in that condition when discussing the optimal steady state, i.e., the
long-run optimal stock sizes and harvest levels for the multi-species ecosystem in Sect. 3.1.4.
The steady state conditions are obtained by using (9a) and the conditions ẋi = 0 in (6) and
λ̇i = 0 in (9b):

Gi (x̄) = h̄i (10a)

ρ = Gix̄i +
∑

j �=i

�h̄ j

�h̄i

G j x̄i + �x̄i

�h̄i

+ v Bx̄i

�h̄i

(10b)

both for all i = 1, . . . , n.
When taking species interactions into account, corner solutions to the dynamic optimiza-

tion problem (7) may become possible. Here we focus on interior solutions described by
the necessary conditions (9). To this end, we assume that species interactions are such that
the maximized Hamiltonian is concave in the stock variables, i.e., the sufficiency conditions
for the dynamic optimization problem are fulfilled (Arrow and Kurz 1970). We discuss this
assumption in “Appendix 1”.

Condition (10b) states that in the optimal steady state the social discount rate, ρ, has to
equal the interest rate earned on a marginal increase of each stock xi . In the general case
considered here, this own interest rate is determined by the marginal stock growth of the
species itself, the marginal increase of stock growth of all other species j �= i , the value of
the marginal stock effect reducing future harvesting costs, and the marginal contribution to
biodiversity value.

3.1.4 Optimal Steady State Solutions for Different Cases of Ecological Interaction
and Fishery Structure

To shed some light on the implications of (10b) for optimal steady state solutions, consider
the case of ecologically independent species, i.e., impose Assumption A.1. In this case,
the second term on the right-hand side (RHS) of (10b) would vanish. Note that even in
this case the RHS of Eq. (10b) does not only depend on the stock of species i but also on
the stocks of the other species j �= i if biodiversity values are considered in addition to
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harvesting values, i.e., if v > 0. Thus, the biodiversity value modeled as a CES-function
introduces an interdependency in steady state conditions even if the species are modeled
as ecologically independent. It tends to balance steady state stocks and to reduce one-sided
stock concentrations.

We argue that this interdependency on the management side is sensible given that so
far only the most important, direct interactions between marine species can be explicitly
accounted for in bio-economic models such as predator–prey relationships or competition
for food, and not all interrelationships are known. This holds particularly for the role of species
for ecosystem functioning and regulation (Rockström et al. 2009). It thus seems sensible to
consider the whole ecosystem also when determining optimal stock levels for single species.

If, in addition to ecological independence, the economic benefits of harvest were indepen-
dent of stock size, �xi = 0, and if there was no biodiversity value, v = 0, the optimal steady
state stock sizes would be below the maximum-sustainable-yield (MSY) stock sizes, xi,MSY,
defined by Gixi (xi,MSY) = 0 for all species i . This is a well-known result of discounting at a
positive rate ρ > 0. The two effects of stock-dependent harvesting costs, �xi > 0, and of bio-
diversity value,v > 0, both tend to increase optimal steady state stock sizes. If these effects are
strong enough, the optimal steady state stock sizes in absence of biological interactions will
all be larger than xi,MSY. Thus, taking into account biodiversity values with a positive weight,
v > 0, has a similar effect to introducing stock-dependent harvesting costs and implies a
positive differential between ρ and Gix̄i , i.e., ρ > Gix̄i in optimal steady state with v > 0.

This result still holds in the case of ecological interactions, i.e., if Assumption A.1 does
no longer hold, as long as all other species j depend positively on the stock of species i , i.e.,
G j x̄i > 0 for all j �= i . This would imply that there is an additional positive external effect of
the stock xi . Negative ecological interactions, i.e.,G j x̄i < 0, can induce a negative differential
between ρ and Gix̄i , which would imply that steady state stocks of species i are lower. Brown
et al. (2005) analyze this effect in a predator–prey model without biodiversity values.

Slightly rearranging (10b), multiplying with xi and summing over all species i leads to
the following condition:

n∑

i=1

⎛

⎝(ρ − Gix̄i )�h̄i
− �x̄i −

∑

j �=i

G j x̄i �h̄ j

⎞

⎠ x̄i = v

n∑

i=1

x̄i Bx̄i = v B. (11)

The RHS of equation (11) is the weighted value of biodiversity in steady state, i.e., the total
biodiversity value attached to aggregate steady state stock levels. The LHS of equation (11)
represents the opportunity costs connected to introducing biodiversity values and increasing
steady state stock levels such that a higher share of fish remains unfished. These opportunity
costs are given by the sum of the economic net benefits of each steady state stock multiplied
with the differential between the social discount rate and the marginal growth rate, but they
are reduced by the positive effect of larger stocks on harvesting costs and further affected
by the effect of increased stock sizes of species i on the other species due to ecological
interdependencies.

3.1.5 Implications for the Optimality of Extinction

To proceed with the theoretical analysis, we focus on the effect of the biodiversity value and
simplify the analysis by neglecting harvesting costs, i.e., we impose the following assumption:

Assumption: �(h, x) = p′ h =
n∑

i=1

pi hi . (A.2)
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It has been shown in the literature that extinction can be optimal under certain circum-
stances. More specifically, for the case without biodiversity value, v = 0, and in the case
of ecologically independent species (Assumption A.1 holds), extinction may be optimal for
species with Gixi (0) ≤ ρ (Clark 1973).

Proposition 1 Under Assumptions A.1 and A.2, and if 1 < ω < ∞ and v > 0 hold,
extinction is never optimal, i.e., xi > 0 for all i = 1, . . . , n.

Proof Under the given assumptions, the condition for the optimal steady state simplifies to

(ρ − Gixi ) pi = v Bxi (12)

for all i = 1, . . . , n. Here,

Bxi = 1

n
x

− 1
ω

i

⎛

⎝ 1

n

n∑

j=1

x
ω−1
ω

j

⎞

⎠

ω
ω−1 −1

= n
ω

1−ω

⎛

⎝1 +
n∑

j �=i

(
xi
x j

) 1−ω
ω

⎞

⎠

1
ω−1

.

For xi → 0 and 1 < ω < ∞, Bxi diverges to infinity. Thus, the RHS of Eq. (12) diverges
to infinity while the LHS of Eq. (12) is positive but finite. Equation (12) will thus never be
balanced for xi → 0. ��

Thus, extinction is never optimal when a biodiversity value specified as above is part of
the objective function, and for 1 < ω < ∞, i.e., the specification of the biodiversity index
that is applicable with a changing number of species. The reason for this result is that the
marginal biodiversity value, Bxi , diverges to infinity in this case if the stock xi approaches
zero. For the case ω < 1, Proposition 1 makes no statement. The reason is that for this case,
the marginal biodiversity value, Bxi , is bounded from above if the stock xi approaches zero
since the CES-function (4) does not fulfill the corresponding Inada condition.

Extinction can, however, be optimal if the elasticity of substitution is infinitely large, i.e.,
in the case of perfect substitutes, ω = ∞, but only for a species with Gixi (0) < ρ − v n

pi
.

This implies that extinction can only be optimal in the case of perfect substitutes when the
intrinsic growth rate is sufficiently small. Note that given that v, n, and pi are all positive,
extinction in the case with biodiversity value is ceteris paribus optimal at lower levels of
intrinsic growth rates than in the case without biodiversity value.

3.2 Effects of Parameter Changes on Optimal Management

In this section, we analyze how changes in the unit value of biodiversity, v, the market prices
of the different species, pi , and the elasticity of substitution, ω, influence optimal steady state
solutions. We discuss the results for different cases of ecological interactions, i.e., case i) for
ecologically independent species (Assumption A.1 holds), case ii) for a symbiotic system,
Gix j > 0 for i �= j , case iii) for a competitive system, Gix j < 0 for i �= j , and case iv)
for a predator–prey system, G1x2 > 0 and G2x1 < 0 or the other way around. In all cases,
we assume that there are no harvesting costs, i.e., Assumption A.2 holds, and we reduce
complexity by considering a two-species ecosystem.

3.2.1 Comparative Statics with Respect to the Unit Value of Biodiversity

We now analyze how changes in the unit value of biodiversity, v, influence optimal steady state
stocks in a two-species ecosystem. Under Assumption A.2, but with ecological interactions,
we derive the following conditions:
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dx̄1

dv
= 1




(
Bx̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

)

−Bx̄1

(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
(13)

dx̄2

dv
= 1




(
Bx̄1

(
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

)

−Bx̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

))
(14)

The derivation and the definition of 
 is contained in “Appendix 2”. As, by assumption,
the sufficient conditions for optimality are met, it follows that 
 > 0. The signs of the
comparative static effects of a change in the unit value of biodiversity, v, on the optimal
steady state stock sizes depend on the types of ecological interactions (cases i-iv) and, in case
iii) of competition, or case iv) of a predator–prey relationship, also on output prices and the
marginal value of biodiversity. Only for case i) of ecologically independent species or case ii)
of a symbiotic relationship, the sign is unambiguous, as stated in the following proposition.

Proposition 2 The optimal steady state stocks x̄i of species i = 1, 2, increase with v,

d x̄i
dv

> 0 (15)

if i) species j and i are ecologically independent, i.e., if Gi x̄i x̄ j = 0, or if ii.) species i and j
have a symbiotic relationship, i.e., if Gi x̄ j x̄i > 0 ∀ i, j with i �= j .

Proof See “Appendix 3”. ��
We shall briefly discuss all possible cases of ecological relationships between the two

species.
Case i) In the case of ecologically independent species, the term p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2

vanishes such that the effect of v on steady state stocks can be directly and unambiguously
determined.
Case ii) In the case of symbiosis, the term p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 is unambiguously positive
such that the RHS of (13) and (14) are positive, and the effect of v on steady state stocks
can be unambiguously determined.
Case iii) In a competitive ecosystem, the effect of v on both steady state stocks is ambiguous
as p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 < 0.
Case iv) In a predator–prey system, the sign of p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 is ambiguous and
depends on the relative prices and the predation relationship between the species.

Consider the example of a Lotka-Volterra predator–prey relationship such that the term
modifies to p1 d1 + p2 d2, with constants d1 and d2. Assume without loss of generality
that species 1 is the prey (d1 < 0) and species 2 is the predator (d2 > 0). Now, the term
p1 d1 + p2 d2 would only be positive if the predator is an “efficient converter of biomass in
terms of value” (Hannesson 1983, p. 341). This is the case if the predator is sufficiently more
valuable than the prey, p2 > (−d1/d2) p1, or if the predation coefficient d2 is sufficiently
larger than d1 in absolute terms, d2 > (−p1/p2) d1, In this case, again, the effect of v on
both predator and prey stocks would be positive in steady state.

In order to illustrate the effect of the biodiversity index on the optimal steady state for the
case of predator–prey interactions, consider the phase diagrams in Fig. 1. These diagrams
show the state space of the two-species predator–prey system, with the stock of the prey on
the horizontal and the stock of the predator on the vertical axis. The solid (red) curve shows
the nullcline for the dynamics of the prey stock under optimal management, as characterized
by conditions (9) and the stock dynamics (6). If the prey stock, given a particular stock of
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ẋ2 = 0
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Fig. 1 The effect of biodiversity considerations in a predator–prey model for an “efficient predator”. Solid
red curves show condition (10b) for the prey (i = 1), dotted blue curves for the predator (i = 2). Biological
parameter values are taken from Hannesson (1983): r1 = 0; r2 = 0; d1 = −0.05; d2 = 0.01. Furthermore,
p = 10; ρ = 0.25; ω = 2. The unit value of biodiversity is v = 0 in the top left graph; v = 0.1 in the top
right graph; v = 1.0 in the bottom left graph and v = 2.5 in the bottom right graph

the predator, is larger (smaller) than the size indicated by that line, it is optimal to change
harvest such that the stock is reduced (increased), as indicated by the arrows. In a similar
fashion, the dotted (blue) curve shows the nullcline for the dynamics of the predator stock
under optimal dynamics, with optimal dynamics indicated by the arrows.

We are considering a case where, without taking a biodiversity value into account, it would
be optimal to eliminate the predator because of the large discount rate (graph on the top left
in Fig. 1; Hannesson 1983, p. 341). Even with a tiny unit value of biodiversity, v = 0.1, the
optimal steady state is at a small but strictly positive stock size for the predator (graph on
the top right). This shows that the result from Proposition 1 holds true also in this example
with predator–prey species interaction. With a higher unit value of biodiversity (graph on the
bottom left), the optimal steady state stock sizes of both species increase compared to the
case with a smaller v.
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If the unit value of biodiversity becomes very large, the optimal steady state is at the
“border” of the phase diagram, which is determined by the condition that the harvest of the
prey may not become negative. The corresponding limit to the steady state stock sizes of
the prey species is depicted as the dotted straight line h1 = 0 in the bottom right graph of
Fig. 1. If the unit value of biodiversity, v, would be further increased, the optimal steady state
predator stock would further increase, but the optimal steady state stock of the—relatively
abundant–prey species would decrease. As the arrows indicate, the optimal steady state is
unique and globally stable in all cases considered.

3.2.2 Comparative Statics with Respect to Output Prices

We now analyze how changes in the market prices of the two species, pi , influence optimal
steady state stocks in a two-species ecosystem. Under Assumption A.2, but with ecological
interactions, we derive the following conditions (cf. “Appendix 4”):

dx̄1

dp1
= 1




(−G1x̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

)

+ (ρ − G1x̄1)
(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
(16)

dx̄2

dp1
= 1




(−(ρ − G1x̄1)
(
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

)

+G1x̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

))
(17)

with 
 > 0 as above. From these conditions, we derive the following result.

Proposition 3 The optimal steady state stocks x̄ j of species j = 1, 2 decrease with pi ,

d x̄ j
dpi

< 0 (18)

if i) species j and i are ecologically independent, i.e., if Gi x̄ j = 0 and Gi x̄i x̄ j = 0,
or if ii) species j and i have a symbiotic relationship, i.e., if Gi x̄ j > 0 and Gi x̄ j x̄i >

0 ∀ i, j with i �= j .

Proof See “Appendix 5”. ��
The sign of the comparative-static effect of output prices on optimal steady state stock sizes

is unambiguous only for case i) of ecologically independent species or case ii) of a symbiotic
relationship. In the other cases, the sign also depends on output prices and the marginal value
of biodiversity. Again, we shall briefly discuss all possible cases of ecological relationships
between the two species.
Case i) In the case of ecologically independent species, equations (16) and (17) simplify
such that the RHS of both are unambiguously negative. The negative effect of an increase
in the price of species i on the steady state stock of species j is in contrast to a model of
independent species without biodiversity value. For the case v = 0, a change in the price
of either species would not affect the optimal steady state stock sizes, as then ρ = Gix̄i for
i = 1, 2. The negative cross price effect follows from the consideration of the biodiversity
value which tends to balance steady state stock sizes among species. More specifically,
increasing the price of species i leads to larger harvesting of this species and thus lower stock
sizes in steady state. This in turn implies that the marginal value of conserving species j also
decreases such that the steady state stocks of both species decrease.
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Case ii) In the case of symbiosis, the term p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 is unambiguously positive
such that the effect of pi on steady state stocks can be unambiguously determined as for case
i).
Case iii) In a competitive system, the effect of p on both steady state stocks is ambiguous as
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 < 0.
Case iv)For a predator–prey system, the effect depends on the relative prices and the predation
relationship between the two species.

Consider, again, the example of a Lotka-Volterra model with species 1 being the predator
and species 2 being the prey, such that p1 d1 + p2 d2 is the decisive term. If the predator
is sufficiently more valuable than the prey or if the predation coefficient d1 is sufficiently
larger than d2 in absolute terms, the effect of changes in the price of the predator species is
negative on both predator and prey. The effect of changes in the price of the prey species is
still ambiguous in this case.

3.2.3 Comparative Statics with Respect to the Elasticity of Substitution ω Between
Species in the Biodiversity Index

We now analyze how changes in the elasticity of substitution between the two species,
ω, influence optimal steady state stock sizes. We focus on a two-species ecosystem n = 2.
Unambiguous conclusions for the effect ofω on steady state stocks are, however, only possible
for ecologically independent species, i.e., for case i). Under Assumptions A.1 and A.2, we
derive the following conditions:

dx̄1

dω
= v




(
∂Bx̄2

∂ω
v Bx̄1 x̄2 − ∂Bx̄1

∂ω

(
p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
(19)

dx̄2

dω
= v




(
∂Bx̄1

∂ω
v Bx̄2 x̄1 − ∂Bx̄2

∂ω

(
p1 G1x̄1 x̄1 + v Bx̄1 x̄1

))
. (20)

We have (using the notation x̂ = x1/x2):

∂Bx̄1

∂ω
= Bx̄1

ω2 (1 − ω)
(

1 + x̂
1−ω
ω

)
(
ω2

(
1 + x̂

1−ω
ω

)
ln

(
2 Bx̄1

) + x̂
1−ω
ω ln x̂

)
. (21)

It turns out that the comparative static effect of a change in the elasticity of substitution,
ω, on the optimal steady state stock sizes, is rather complicated. The reason is that a change
in ω has two effects on the biodiversity index. One effect is that with a higher value of ω the
decision maker cares somewhat less for the evenness in species abundances. In addition, for
a given unit value of biodiversity, v, the biodiversity value decreases with ω, as pointed out in
Sect. 2. The following proposition states conditions under which the former effect dominates
over the latter. We use ω̂ to denote the solution of ω̂ + ln(ω̂ − 1) = 0, which is ω̂ ≈ 1.28.

Proposition 4 (a) Ifω ≥ ω̂, the smaller steady state stock decreases withω; the effect on the
larger stock is ambiguous. (b) Ifω < ω̂, there exists a 0 ≤ x̂ < 1 such that the smaller steady
state stock decreases with ω for all x̂ ∈ (x̂, 1); the effect on the larger stock is ambiguous.

Proof See “Appendix 6”. ��
The sign of the comparative static effect of a change in the elasticity of substitution, ω,

on the optimal steady state stock sizes is ambiguous for the larger steady state stock and
negative for the smaller one if ω is large enough. The intuition behind this result is that a
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Fig. 2 Historic development of spawning stock biomasses and levels of the biodiversity index using spawning
stock biomasses as abundance indicators for cod, sprat, and herring in the Baltic Sea

larger elasticity of substitution allows a larger divergence between optimal stock sizes in
steady state. Consequently, the smaller stock decreases with ω in steady state. Again, this
result only holds for case i) and cannot be unambiguously derived for the other three cases
of possible ecological interactions.

4 Application to Baltic Sea Fisheries

4.1 Baltic Sea Fisheries

The marine ecosystem in the central Baltic Sea is dominated by three fish species: cod, sprat,
and herring. These species also form the basis of the economically most important fisheries
in the Baltic Sea. In addition, their stocks are closely connected by strong ecological inter-
connections among species (Köster and Möllmann 2000), as cod preys on both sprat and
herring. In economic terms, the cod fishery used to be the most important of the three.
Overfishing, however, caused a decline in the cod stock during the last decades, and only
recently the introduction of a long-term management plan has led to some signs of stock
recovery again.

The upper panel in Fig. 2 shows the development of the stock sizes of cod, sprat, and herring
from 1974 to 2012 measured in units of spawning stock biomass, i.e., the biomass of all fish
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in spawning age. The lower panel shows the corresponding levels of the biodiversity index (4)
using spawning stock biomasses as abundance indicators for a relatively large elasticity of
substitution (ω = 2) and for a relatively small elasticity of substitution (ω = 0.5). It becomes
obvious that the biodiversity indices for both elasticities of substitution follow the same trend
in general. Biodiversity measured using the smaller elasticity of substitution, however, always
is below biodiversity levels measured using a larger elasticity of substitution. This reflects
the influence of ω discussed in Sect. 2. The effect of ω, however, is lower when species are
more evenly distributed. In addition, when the elasticity of substitution between the species
is low, i.e., ω is low, the relative importance of the species with the smallest stock increases.

4.2 Description of the Age-Structured Model

For the application to the Baltic sea fisheries, we replace the biomass model of resource
dynamics (equation 6) by a state-of-the-art age-structured population model. Considering the
more complex age-structured model allows us to compare the effects of using biodiversity
indices calculated in terms of biomasses and in terms of the number of individuals as measures
of species abundance. The model we employ here builds on Voss et al. (2014a, b), who provide
a bio-economic fishery model for the Baltic cod, sprat, and herring fisheries, taking the
predator–prey relationship between cod and the two other species into account. This model
is an extension of a single-species age-structured fishery model (Tahvonen 2009; Tahvonen
et al. 2013). A second deviation from the continuous-time model used in Sect. 3 is that we
consider a discrete-time, discrete age-structured setting for the quantitative application.

In the following, we use xist to denote the number of fish of species i ∈ {C, S, H},
where C stands for cod, S for sprat, and H for herring, in age group s = 1, . . . , S and at
the beginning of period t = 0, 1, . . .. Using the indices i ∈ {C, S, H} for the species, and
s = 1, . . . , S for the age group, where S > 1 is the oldest age group considered in the
model, we use αis > 0 to denote age-specific survival rates, γis > 0 to denote age-specific
proportions of mature individuals, and wis to denote the mean weights (in kilograms). For
cod, all of these parameters are assumed to be constant (Tahvonen 2009) as in the standard
biological stock assessments for the Eastern Baltic cod (ICES 2012). For sprat and herring,
we assume that proportions of mature individuals and weights are constant, but the survival
rates of both depend on cod spawning stock biomass. For the age-specific survival rates, we
use the specification

αis = exp (−M2is − δis xC0t ) for i = S, H, (22)

where M2is is instantaneous natural mortality of sprat (i = S) and herring (i = H ) cohort
s in the absence of cod, and δis > 0 is a parameter that measures the dependency of instan-
taneous natural mortality of sprat (i = S) and herring (i = H ) cohort s on cod spawning
stock biomass, xC0t . Denoting the recruitment function for species i by ϕi (·) and the spawn-
ing biomass by xi0t , the age-structured population model with harvesting activity can be
summarized as

xi0t =
S∑

s=1

γis wis xist (23a)

xi1,t+1 = ϕi (xi0t ) (23b)

xi,s+1,t+1 = αis (xist − hist ) for s = 1, . . . , S − 2 (23c)

xi,S,t+1 = αi,S−1
(
xi,S−1,t − hi,S−1,t

) + αi S (xi St − hi St ) . (23d)
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Here, we use hist to denote the number of fish harvested from cohort s of species i in period
t . We maintain the assumption of perfect selectivity of harvest with respect to the species,
which is a reasonable assumption for the Baltic, as different species are caught by different
fleets. Aggregate instantaneous fishing mortality Fit for species i in year t translates into age-
specific fishing mortalities, captured by the constant, age-specific catchability coefficients
qis ≥ 0, such that

hist = qis xist (1 − exp (−Fit )) . (24)

For cod and herring, we assume stock-recruitment functions of the Ricker (1954) type (Voss
et al. 2014b), i.e., we assume

ϕi (xi0t ) = φi1 xi0t exp

(
− xi0t

φi2

)
(25)

with φi1, φi2 > 0. For sprat, we assume a Beverton-Holt type (Tahvonen et al. 2013), i.e.,
we assume

ϕS(xS0t ) = φS1 xS0t

1 + xS0t
φS2

(26)

with φS1, φS2 > 0. For modeling the profits of the cod fishery, we use the specification from
Quaas et al. (2012) with age-specific prices and a cost function of the Spence type (Spence
1974). Thus, profits of the cod fishery in year t are

πCt =
S∑

s=1

pCs wCs hCst − cC FCt , (27)

where pCs are prices for cod in age group s, instantaneous fishing mortality FCt equals
instantaneous effort, and cC is the unit effort cost for the cod fishery. Sprat and herring are
modeled as schooling fisheries (Tahvonen et al. 2013), where the market price pi is assumed
to be independent of age. The profits in the sprat and herring fisheries thus are

πi t = (pi − ci )
S∑

s=1

wis hist (28)

with analogous interpretations for the symbols as for the cod fishery. The values for the
parameters of the population model and for prices and harvesting costs are taken from Voss
et al. (2014a) and can be found in “Appendix 7”. Prices are assumed to be constant for all
species. Thus, the model treats species as independent on the market.

For the harvesting benefits �(h, x), we assume that the fishery manager has some aversion
against income inequality across fisheries. This captures the empirical observation that policy
makers tend to preserve fishing opportunities for the different fleet segments (Voss et al.
2014b). We thus specify

�(h, x) =
(

1

3
π

1−η
Ct + 1

3
π

1−η
St + 1

3
π

1−η
Ht

) 1
1−η

. (29)

In our simulations, we use η = 0.25.
We assume that the aim is to maximize (7) with harvesting benefits (29) and taking a

biodiversity value (4) into account. Here, we use two versions of the biodiversity index: In
one version, we use the spawning stock numbers,

∑S
s=1 γis xist , as abundance indicators

for species i , in the other one, we use the spawning stock biomasses, xi0t , as abundance
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indicators. We vary the unit value of biodiversity, v, and use a discount rate of zero, ρ = 0,
in the numerical optimization.

The numerical optimization is performed using Knitro (version 8.1) with AMPL. Pro-
gramming codes are available as online appendix.

4.3 Numerical Optimization Results

The results of our numerical optimization show the effects of changes in the unit value of
biodiversity, v, on the optimal steady state stocks of cod, sprat, and herring as well as on
the optimal profits of the three fisheries and on optimal biodiversity levels. We show the
sensitivity of the results to the unit value of biodiversity, v, for a relatively large elasticity of
substitution (ω = 2) and for a relatively small elasticity of substitution (ω = 0.5), and we do
so for formulating the biodiversity index in the objective function in terms of biomass and in
terms of number of individuals.

4.3.1 Main Effects of Stock Changes on Biodiversity

Before interpreting the simulation results in more detail, we would like to point out that a
change in the steady state stock of one species has two main effects on biodiversity that drive
the results to be presented. Firstly, there is the stock or abundance effect: Increasing overall
abundance, in terms of biomass or numbers, ceteris paribus increases biodiversity. Secondly,
there is the diversity or scarcity effect: If the stock of a scarce species increases, this increases
the evenness of stock sizes in the ecosystem, which ceteris paribus increases biodiversity. If
the stock of a relatively abundant species increases, however, the evenness of the stock sizes
in the ecosystem is reduced, which ceteris paribus decreases biodiversity.

In our application, the relatively scarce predator species cod crucially influences the bio-
diversity of the ecosystem. Firstly, there is a positive scarcity or diversity effect: Cod is a
relatively scarce species; in terms of number of individuals, it even is the scarcest species
among the three species in the Baltic ecosystem considered here. Thus, increasing cod stocks
is positive for biodiversity as it increases the evenness of the species distribution. Secondly,
however, there is a negative effect on the stocks of the prey species: An increase in the cod
stock leads to decreasing stocks of sprat and herring. If this leads to a reduction of total stock
biomass or number of individuals, this tends to reduce the biodiversity index.

4.3.2 Effects on Optimal Steady State Stocks

Figure 3 shows the results of a change in the unit value of biodiversity, v, for a relatively large
elasticity of substitution, ω = 2. The optimal stocks of the prey species sprat and herring
increase with v while the optimal stock of the predator species cod decreases with v. This
holds for optimal stocks measured in biomass (first row) and for optimal stocks measured in
numbers (second row). This shows that the species interaction makes a qualitative difference
compared to an ecosystem with ecologically independent species. As our theoretical results
derived in Sect. 3.2.1 have shown, the effect of v on optimal steady state stocks would be
unambiguously positive if there was no ecological interactions between the species.

The results for ω = 2 are quite similar when comparing whether the objective is to
maximize biodiversity in terms of biomass (left panel in Fig. 3) or in terms of numbers (right
panel in Fig. 3), although the evenness of species is very different when abundances are
measured in terms of biomasses or in terms of numbers. With abundances measured in terms
of numbers, the stock size of cod is about two orders of magnitude smaller than the stock
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Fig. 3 Effects of varying the unit value of biodiversity v for a biodiversity objective with relatively large
elasticity of substitution, ω = 2. Panels on the left-hand side show results when the biodiversity objective is
formulated with spawning stock biomasses, SSB, as abundance measures, panels on the right-hand side show
results for biodiversity objective with spawning stock numbers, SSN, as abundance measures. The panels
in the rows show, from top to bottom, optimal steady state stock sizes in terms of SSB and SSN, profit and
biodiversity indices with abundance measures SSB and SSN

sizes of sprat and herring, while with biomasses as abundance measures the difference is
much smaller. The relatively large elasticity of substitution, however, implies that an even
distribution of species abundances is relatively less important than the absolute aggregate
biomass or number of individuals such that the main aim is to increase overall abundances.

Figure 4 shows the results for a relatively low elasticity of substitution, ω = 0.5. In this
case, the evenness of species abundances plays a relatively large role. The figure shows that
this leads to interesting differences in the effect of a change in v on optimal stocks between
the objective to maximize biodiversity in terms of biomass and in terms of numbers. For the
biodiversity objective measured in terms of numbers, the optimal stock of cod now increases
while the optimal stock of sprat first increases and then decreases with v. The reason is
that cod is particularly scarce when abundance is measured in numbers of individuals. This
scarcity effect dominates the overall abundance effect such that the cod stock increases with
v, although this causes increased predation on the more numerous sprat and herring stocks.
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Fig. 4 Effects of varying the unit value of biodiversity v for a biodiversity objective with relatively small
elasticity of substitution, ω = 0.5. Panels are as in Fig. 3

4.3.3 Effects on Optimal Levels of Biodiversity

For ω = 2, we observe the expected effect that biodiversity levels both measured in terms
of biomass and number of individuals increase with v. For ω = 0.5, in contrast, we find a
trade-off between the two types of biodiversity measures for large values of the unit value
of biodiversity. The left panel of Fig. 4, where the biodiversity objective is formulated in
biomass, shows that the biodiversity index in terms of biomass unambiguously increases with
v, as expected. If we measure the biodiversity outcome in terms of numbers of individuals,
however, we observe a decline in biodiversity when the unit value of biodiversity increases
beyond a level of about 20 euros per ton of spawning stock biomass. Looking at the right-hand
panel of Fig. 4, we find the reverse pattern for unit values of biodiversity beyond about 100
euros per million fish: While the biodiversity index in terms of numbers (the one included in
the objective function in this case) continues to slightly increase with v, biodiversity measured
in terms of biomass decreases with the unit value of (number) biodiversity.

The reason for this trade-off is that in terms of biomass the unevenness between the three
stock sizes is by far not as pronounced as in terms of numbers of individual fish. Thus, when
caring for biodiversity in terms of biomass, the desire for an overall larger abundance of fish
dominates the desire for evenness, and one tends to slightly decrease the cod stock in order to
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build up the other two stocks. Measuring biodiversity in terms of numbers, however, implies
that the unevenness increases so strongly that the biodiversity index decreases despite an
overall increasing abundance of fish. This effect is reversed if the fishery manager cares for
biodiversity measured in terms of numbers of individual fish (right-hand panel of Fig. 4),
which in this case leads to a decrease in the biomass-biodiversity index when the unit value
of biodiversity in numbers increases beyond a certain value.

As discussed in Sect. 3.1, the unit value of biodiversity, v, is not independent of the elas-
ticity of substitution, ω, and the index value, B, which is also reflected in the numerical opti-
mization results. Comparing Figs. 3 and 4, it becomes obvious that for the same objective and
the same stock sizes, the value of B is lower for ω = 0.5 than for ω = 2.0. This is particularly
pronounced for biodiversity in terms of numbers for the case ω = 0.5, for which the uneven-
ness is highest and (number) biodiversity is two orders of magnitudes smaller than for ω = 2.

4.3.4 Comparison Between Optimal and Historic Stocks and Biodiversity Levels

Comparing optimal biodiversity levels and stock sizes to historic ones (Fig. 2), we observe
that current biodiversity levels measured in biomass are below the optimal levels, even if
one considers v = 0. The same applies to current stocks of herring and cod, which are also
below optimal levels. Both results hold for ω = 0.5 and for ω = 2.0. Current stocks of
sprat, in contrast, are above optimal levels for low values of v. In the case of ω = 0.5 and
when biodiversity in terms of numbers is the objective, current sprat stocks are higher than
optimal levels even for a larger range of values for v. Comparing optimal biodiversity levels
to historically high levels that prevailed for example during the 1980s, we observe that these
historically high levels are in the range of optimal levels for all cases except the one in which
ω = 0.5 and the objective is to maximize biodiversity in terms of numbers.

4.3.5 Effects on Optimal Profits

The effects of v on fishing profit are mostly negative, and aggregate profits always fall with
the introduction of biodiversity values. Increasing the unit value of biodiversity, v, has this
negative effect on profits because harvested amounts of fish go down in order to increase the
standing stocks. For ω = 2, a positive effect of v on profits only occurs for the herring fishery
when the objective is to maximize biodiversity in numbers. The reason is that the concern for
biodiversity leads to a decreasing cod stock, thus alleviating predation pressure on herring.
The resulting larger steady state stock size of herring enables a more profitable fishery.

For ω = 0.5, and small values of the unit value of biodiversity, we also see an increase in
cod profits with v. The reason is that without biodiversity value, it is optimal to reduce the
cod stock below the single-species optimal steady state stock size (i.e., the steady state stock
size that would result when neglecting the predation effect on the two other species), in order
to reduce fishing pressure on the two prey species. As cod is the scarcest species among the
three in terms of stock numbers, increasing the biodiversity value leads to an increased cod
stock size in steady state. Thus, the cod stock approaches its single-species optimal stock
size and profit increases. For still higher unit values of biodiversity, also the cod stock is built
up beyond the single-species profit-maximizing stock level and profits decrease again.

5 Discussion and Conclusions

In this paper, we have studied how the consideration of a biodiversity value in the objective
function of a dynamic bio-economic model affects the optimal management of a multi-species
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ecosystem with and without ecological interactions. The biodiversity index used in this
paper is a constant-elasticity-of-substitution (CES) function of in-situ species abundances.
This index fulfills all axioms of Buckland et al. (2005) if the species are assumed to be
(imperfect) substitutes, ω > 1. Such an index thus seems well-suited to monitor developments
of biodiversity over time, in particular if the number of species might change over time as it
is the case for global biodiversity. Specifying the substitution elasticity to a value below or
equal to one, ω ≤ 1, however, is sensible only for situations where extinction is out of scope
because the biodiversity index would be undefined in that case.

We have shown analytically that species extinction is never optimal when biodiversity,
measured as a CES-function with 1 < ω < ∞, plays a role in the objective function. This
is in contrast to prior findings such as by Alexander (2000), where existence values made
extinction less likely but not impossible in optimal steady states. The reason for our result
is that for the case of imperfect substitutes, the marginal contribution of a species to the
biodiversity index goes to infinity if its stock size approaches zero.

Our analysis has also revealed the implications of varying the unit value of biodiversity,
v, in the objective function. This unit value controls how strongly conservation goals are
weighted in the objective function. Without ecological interactions, increasing v unequivo-
cally increases the steady state stock sizes of all species in the system. With predator–prey
interactions, optimal steady state stock sizes may increase or decrease with v, depending on
the strength of species interaction and the relative market price of predator and prey species.
A quantitative application to the three-species fishery in the Baltic Sea has shown that the
steady state stock of a relatively scarce predator species may decrease with the unit value of
biodiversity. This is the case if substitutability between the species is relatively high such that
the objective of increasing overall abundance dominates the objective of increasing species
evenness.

In our simulations, we have studied how optimal multi-species management depends
on v, without fixing v to a particular value. Indeed, obtaining a reliable value for v for
some particular ecosystem may impose some challenges. One approach could be to elicit
individual willingness-to-pay for existence values of biodiversity by means of a contingent
valuation approach. Our analysis has shown, however, that for such an approach there needs
to be agreement on the appropriate biodiversity indicator first. In our framework, this means
that an agreement has to be obtained with respect to the questions how to measure species
abundance (for example, in terms of biomass or in terms of numbers of individuals), and on
the elasticity of substitution, ω, between the different species.

We have further shown how the specification of the substitution elasticity, ω, between
species, and the choice of abundance indicators in the biodiversity index influence optimal
management solutions. The larger the elasticity of substitution, ω, between the species, the
more valuable it is to increase aggregate abundance compared to ensuring an even distribution
of species abundances. In the case of the Baltic fisheries, cod is significantly less abundant
than sprat and herring. This relative scarcity of cod is particularly pronounced when species
abundance is measured in terms of numbers, as individual cod are much larger than individual
sprat or herring. Consequently, optimal cod stocks increase with the unit value of biodiversity,
v, when the objective is to maximize biodiversity in numbers and ω is relatively small. In
all other cases, the optimal cod stocks decrease with v, in order to reduce cod predation on
herring and sprat stocks and thus increase the overall abundance of fish in the ecosystem.

These results show that the exact specification of the biodiversity index has important
implications for optimal management. Results can change qualitatively when the indicator
of species abundance or the value for the elasticity of substitution is changed. One conclusion,
however, seems to be robust: as long as species diversity (as measured by a CES-function)
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plays a role in the objective function, and species are imperfect substitutes, species extinction
is never optimal.
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Appendix 1: Sufficiency Conditions

It is straightforward to verify that the sufficiency conditions are always fulfilled in the absence
of species interactions, i.e., if Assumption A.1 holds, and if the biomass growth functions
are concave.

For problems of optimal harvesting in multi-species systems however, non-concavities can
easily arise, thus potentially violating the Arrow/Kurz (1970) sufficiency condition. Since
the biodiversity index we are considering here is a concave function of stock sizes, the only
way how including a biodiversity index may affect the sufficiency conditions is that the
maximized Hamiltonian tends to become “more” concave. We formally illustrate this in the
following by considering optimal harvesting of an ecosystem with competing species, based
on Flaaten (1991). Consider the optimal harvesting of two competing species, where biomass
dynamics are described by

ẋ1t = r1 x1t (1 − xt1 − γ x2t ) − h1t (30)

ẋ2t = r2 x2t (1 − xt2 − γ x1t ) − h2t (31)

with no harvesting costs and prices p1 and p2 for the harvest of the two species. To keep
the analysis simple, we assume symmetric competition coefficients, γ . From the first-order
conditions (9) for this case, we obtain that the maximized Hamiltonian is given by

Hmax = p1 r1 x1t (1 − xt1 − γ x2t ) + r2 x2t (1 − xt2 − γ x1t ) − h2t + v B(x1t , x2t ).

(32)

For v = 0, the leading principal minors of the Hessian matrix for Hmax are

M1 = −2 p1 r1 (33)

M2 = −γ 2 (p1 r1 + p2 r2)
2 + 4 p1 r1 p2 r2. (34)

The Hessian of the maximized Hamiltonian is negative definite if the leading principal minors
have alternating signs. M1 is always negative. M2 is positive if

γ <

√
p1 r1 p2 r2

1
2 (p1 r1 γ + p2 r2 γ )

, (35)

i.e., if the competition coefficient γ is smaller than the ratio of the geometric to the arithmetic
mean of p1 r1 and p2 r2.

For v > 0, the leading principal minors of the Hessian matrix for Hmax are

M1 = −2 p1 r1 − Bx1x1(x1, x2) (36)

M2 = −γ 2 (p1 r1 + p2 r2)
2 + 4 p1 r1 p2 r2

+ v

⎛

⎜⎝2 γ (p1 r1+ p2 r2) Bx1x2(x1, x2)︸ ︷︷ ︸
>0

−2 p1 r1 Bx2x2(x1, x2)︸ ︷︷ ︸
>0

−2 p2 r2 Bx1x1(x1, x2)︸ ︷︷ ︸
>0

⎞

⎟⎠
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+ v2

⎛

⎜⎝Bx1x1(x1, x2) Bx1x1(x1, x2) − (
Bx1x2(x1, x2)

)2

︸ ︷︷ ︸
>0

⎞

⎟⎠ . (37)

Consequently, a value v > 0 increases the range of values for γ for which the second principal
minor of the Hessian is positive.

Appendix 2: Comparative Statics w.r.t. v

Under Assumption A.2, but with ecological interactions, condition (10b) simplifies to
⎛

⎝ρ −
n∑

j=1

p j

pi
G jxi

⎞

⎠ pi = v Bxi . (38)

Differentiating (38) with respect to v, we obtain

− (
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

) dx̄1

dv

− (
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

) dx̄2

dv
= Bx̄1 (39)

− (
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

) dx̄1

dv

− (
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

) dx̄2

dv
= Bx̄2 . (40)

Solving yields
dx̄1

dv
= 1




(
Bx̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

)

−Bx̄1

(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
(41)

dx̄2

dv
= 1




(
Bx̄1

(
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

)

−Bx̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

))
(42)

with


 = p2
1

(
G1x̄1 x̄1 G1x̄2 x̄2 − G2

1x̄1 x̄2

) + p2
2

(
G2x̄1 x̄1 G2x̄2 x̄2 − G2

2x̄1 x̄2

)

+ p1 p2
(
G1x̄1 x̄1 G2x̄2 x̄2 + G2x̄1 x̄1 G1x̄2 x̄2 + 2 G1x̄1 x̄2 G2x̄1 x̄2

)

+ v

(
Bx̄1 x̄1

(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2

) + Bx̄2 x̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1

)

−2 Bx̄1 x̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2

) )

+v2 (
Bx̄1 x̄1 Bx̄2 x̄2 − B2

x̄1 x̄2

)
> 0

= p2
1

(
G1x̄1 x̄1 G1x̄2 x̄2 − G2

1x̄1 x̄2

) + p2
2

(
G2x̄1 x̄1 G2x̄2 x̄2 − G2

2x̄1 x̄2

)

+ p1 p2
(
G1x̄1 x̄1 G2x̄2 x̄2 + G2x̄1 x̄1 G1x̄2 x̄2 + 2 G1x̄1 x̄2 G2x̄1 x̄2

)

+ v

(
Bx̄1 x̄1

(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2

) + Bx̄2 x̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1

)

−2 Bx̄1 x̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2

) )
> 0. (43)
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Appendix 3. Proof of Proposition 2

For Gix̄i x̄ j = 0, the expressions (13) and (14) simplify to

dx̄1

dv
= 1




(
Bx̄2 v Bx̄1 x̄2 − Bx̄1

(
p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
> 0 (44)

dx̄2

dv
= 1




(
Bx̄1 v Bx̄2 x̄1 − Bx̄2

(
p1 G1x̄1 x̄1 + v Bx̄1 x̄1

))
> 0 (45)

with

 = p1 p2 G1x̄1 x̄1 G2x̄2 x̄2 + v Bx̄1 x̄1 p2 G2x̄2 x̄2 + v Bx̄2 x̄2 p1 G1x̄1 x̄1 > 0. (46)

This concludes the proof of part (i) of the proposition.
For Gix̄i x̄ j > 0, p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 > 0 such that the RHS of (13) and (14) are

positive. This concludes the proof of part (ii) of the proposition.

Appendix 4: Comparative Statics w.r.t. p

Differentiating (38) with respect to p1 for i = 1, 2 we obtain

(
ρ − G1x̄1

) − (
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

) dx̄1

dp1

− (
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

) dx̄2

dp1
= 0 (47)

−G1x̄2 − (
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

) dx̄1

dp1

− (
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

) dx̄2

dp1
= 0. (48)

Solving yields

dx̄1

dp1
= 1




(
(−G1x̄2

(
p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 + v Bx̄1 x̄2

)

+(ρ − G1x̄1)
(
p1 G1x̄2 x̄2 + p2 G2x̄2 x̄2 + v Bx̄2 x̄2

))
(49)

dx̄2

dp1
= 1




(−(ρ − G1x̄1)
(
p1 G1x̄2 x̄1 + p2 G2x̄2 x̄1 + v Bx̄2 x̄1

)

+G1x̄2

(
p1 G1x̄1 x̄1 + p2 G2x̄1 x̄1 + v Bx̄1 x̄1

))
(50)

with 
 as above.

Appendix 5: Proof of Proposition 3

For Gix̄ j = 0 and Gix̄i x̄ j = 0, the expressions (16) and (17) simplify to

dx̄1

dp1
= 1



(ρ − G1x̄1)(p2 G2x̄2 x̄2 + v Bx̄2 x̄2) < 0 (51)

dx̄2

dp1
= −1



(ρ − G1x̄1)v Bx̄2 x̄1 < 0 (52)
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with

 = p1 p2 G1x̄1 x̄1 G2x̄2 x̄2 + v Bx̄1 x̄1 p2 G2x̄2 x̄2 + v Bx̄2 x̄2 p1 G1x̄1 x̄1 > 0. (53)

This concludes the proof of part (i) of the proposition.
For Gix̄ j > 0 and Gix̄ j x̄i > 0, p1 G1x̄1 x̄2 + p2 G2x̄1 x̄2 > 0 and (ρ − G1x̄1) > 0 such

that the RHS of (16) and (17) are negative. This concludes the proof of part (ii) of the
proposition.

Appendix 6: Proof of Proposition 4

We first determine the sign of the following term in (19):

∂Bx̄2

∂ω
Bx̄1 x̄2 − ∂Bx̄1

∂ω
Bx̄2 x̄2

= −2−2 ω
ω−1

x̂
1
ω

(
1+ x̂

1−ω
ω

) 2
ω−1

x2 ω2

1

1−ω

⎛

⎝ x̂
1−ω
ω

1+ x̂
1−ω
ω

ln
(
x̂
)+ln

(
1+ x̂

1−ω
ω

2

) ω
ω−1

⎞

⎠

︸ ︷︷ ︸
≡�

≤ 0.

(54)

Lemma 1 � ≥ 0 with � = 0 only for x̂ = 1.

Proof � has a global minimum � = 0 at x̂ = 1, as

d�

dx̂
= x̂

1−ω
ω ln(x̂)

ω x̂
(

1 + x̂
1−ω
ω

)2 (55)

is zero if and only if x̂ = 1, negative for all x̂ < 1, and positive for all x̂ > 1. ��

Lemma 1 implies that dx̄1/dω < 0 if
∂Bx1
∂ω

< 0. To determine the sign of this last
expression, we define

� ≡ 1

1 − ω

⎛

⎝ x̂
1−ω
ω

1 + x̂
1−ω
ω

ln
(
x̂
) + ω ln

(
1 + x̂

1−ω
ω

2

) ω
ω−1

⎞

⎠ . (56)

Note that
∂Bx1
∂ω

� 0 if and only if � � 0.
We have � = 0 for x̂ = 1, and furthermore

d�

dx̂
= d�

dx̂
+ x̂

1−ω
ω

x̂
(

1 + x̂
1−ω
ω

) = x̂
1−ω
ω

ω x̂
(

1 + x̂
1−ω
ω

)2

(
ln(x̂) + ω

(
1 + x̂

1−ω
ω

))
. (57)

Thus, for x̂ ≥ 1, d�/dx̂ > 0. Thus, � > 0 for all x̂ > 1. This shows that for the larger stock,
the effect of ω on x̄ is ambiguous.

If x1 is the smaller stock, i.e., x̂ < 1, the situation is more complicated. For the following
lemma, we use ω̂ to denote the solution of ω̂ + ln(ω̂ − 1) = 0, which is ω̂ ≈ 1.28.

Lemma 2 (a) If ω ≥ ω̂, � < 0 for all 0 < x̂ < 1.
(b) If ω < ω̂, it exists an 0 ≤ x̂ < 1 such that � < 0 for all x̂ ∈ (x̂, 1).
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Proof In the following we show that for ω ≥ ω̂, d�/dx̂ > 0 for all x̂ > 0, and that for
ω < ω̂, � has a unique minimum where it assumes some negative value.

To this end, we consider the expression � ≡ ln(x̂) + ω
(

1 + x̂
1−ω
ω

)
, which determines

the sign of d�/dx̂ , i.e., d�/dx̂ � 0 if and only if � � 0. We show that the equation � = 0
has no solution (i.e., � is monotonic) if ω > ω̂, and (at least) one solution if ω ≤ ω̂.

Note that for x̂ = 1, � = 2 ω > 0, and lim
x̂→0

� = +∞ for ω > 1, as

lim
x̂→0

ln(x̂)

1 + x̂
1−ω
ω

= lim
x̂→0

1
x̂

1−ω
ω

x̂
1−ω
ω

−1
= lim

x̂→0

ω

1 − ω
x̂

ω−1
ω = 0. (58)

Furthermore,
d�

dx̂
= 1

x̂

(
1 − (ω − 1) x̂

1−ω
ω

)
. (59)

Case ω ≥ ω̂: � has a minimum �∗ = ω
ω−1 (ω + ln (ω − 1)) at x̂� = (ω − 1)

ω
ω−1 . This

minimum is non-negative if ω ≥ ω̂ and thus � ≥ 0 for all x̂ < 1 in this case. This implies
that � monotonically increases with x̂ if ω ≥ ω̂. Since � = 0 for x̂ = 1, this implies that
� < 0 for all 0 < x̂ < 1. This concludes the proof of part (a) of the lemma.

Case ω < ω̂: The minimum of � is negative, �� < 0. As � = 2ω > 0 for x̂ = 1, this
implies that there exist a value x̂ > x̂� where � = 0. At x̂ , � assumes a minimum, i.e., for
values of x̂ < x̂ , � decreases with x̂ . Depending on the value of ω < ω̂, � may or may not
intersect with zero for some value x̂ < x̂ . Let x be the maximum of that value of x̂ where
� = 0 and zero. This concludes the proof of part (b) of the lemma. ��

Appendix 7: Parameter Values for the Age-Structured Bio-economicModel

Age Maturity γis Weight wis [g] Catchability qis Mortality M2 δis [10−4] Price pCs

C H S C H S C H S C H S H S C

1 0.00 0.0 0.17 80 11 52 0.00 0.28 0.27 0.0 0.170 0.132 3.32 8.74 0.00
2 0.13 0.7 0.93 179 20 84 0.11 0.44 0.49 0.2 0.173 0.137 2.31 7.08 0.35
3 0.36 0.9 1.0 511 25 96 0.42 0.66 0.79 0.2 0.178 0.132 0.45 6.74 0.35
4 0.83 1.0 1.0 838 31 105 0.81 0.82 0.85 0.2 0.188 0.132 0.45 6.74 0.35
5 0.94 1.0 1.0 1204 37 111 1.00 0.97 1.00 0.2 0.188 0.132 0.45 6.74 0.48
6 0.96 1.0 1.0 1796 43 113 1.00 0.96 1.00 0.2 0.188 0.132 0.45 6.74 0.48
7 0.96 1.0 1.0 2596 48 111 1.00 1.00 1.00 0.2 0.188 0.132 0.45 6.74 0.64
8 0.98 1.0 1.0 4068 53 113 1.00 1.00 1.00 0.2 0.188 0.132 0.45 6.74 0.73

cC = 55.2 million euros, pS − cS = 0.039 euros/kg, and pH − cH = 0.100 euros/kg.

Type of stock-recruitment function φi1 φi2

Cod Ricker 1.7 549.0
Herring Ricker 30.33 2156.0
Sprat Beverton-Holt 104.2 503.2
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