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Abstract We introduce learning in a dynamic game of international pollution, with eco-
logical uncertainty. We characterize and compare the feedback non-cooperative emissions
strategies of players when the players do not know the distribution of ecological uncer-
tainty but they gain information (learn) about it. We then compare our learning model with
the benchmark model of full information, where players know the distribution of ecologi-
cal uncertainty. We find that uncertainty due to anticipative learning induces a decrease in
total emissions, but not necessarily in individual emissions. Further, the effect of structural
uncertainty on total and individual emissions depends on the beliefs distribution and bias.
Moreover, we obtain that if a player’s beliefs change toward more optimistic views or if she
feels that the situation is less risky, then she increases her emissions while others react to this
change and decrease their emissions.
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1 Introduction

Although it is widely acknowledged that greenhouse gas (GHG) concentrations are respon-
sible for global climate change,1 it is also accepted that the evolution of the climate system
is far from being deterministic. Rather, it is subject to considerable ecological uncertainty.
To illustrate, the scientific community still lacks information about randomness in, e.g., the
oceans’ and forests’ ability to decay pollution, the exact effect of greenhouse gases on climate
change, and the precise change in temperature we may face in the future. On the economic
side, we also face many uncertainties. For example, our knowledge of how production and
abatement technologies will develop and improve over time is imperfect (see Pindyck 2007
for a review). These features clearly invite us to adopt models where we account for (at
least some of) these uncertainties, as in, e.g., Pindyck (2000, 2007), Yeung and Petrosyan
(2008) and de Zeeuw and Zemel (2012). Further, as the environmental battle is necessarily
a long-term one–it is indeed hard to believe that technology and consuming habits can be
changed overnight–decision-makers will have the opportunity to learn about the unknowns
further down the road.

Several contributions have addressed the issues of uncertainty and learning in climate
change and environmental management problems.2 Ulph and Maddison (1997) consider a
two-period, two-player pollution emissions game, where the damages could have several
possible values with given probabilities. They compare the cases of no learning and learning,
with irreversible emissions, and obtain that information could decrease the welfare when
the two countries choose their emissions non-cooperatively. Other studies focus on the role
of uncertainty and learning in the formation of an International Environment Agreement
(IEA). Kolstad (2007) considers uncertainty in environmental costs and benefits, as well as
learning about these costs and benefits. He finds that learning tends to increase the size of
the cooperating coalition in an IEA. However, with partial learning, several stable coalitions
emerge and one of them is smaller than it would have been under no-learning. Kolstad and
Ulph (2008) synthesize and extend their earlier analysis of the formation of an IEA under
uncertainty about damages and with different models of learning. As in Dellink and Finus
(2012), they consider a two-stage game model, with three scenarios for learning, namely,
no-learning (the value of the stochastic parameters are not known before making decisions),
partial (the players learn the values of these parameters before having to make their second-
stage decisions) and full learning (basically, no uncertainty is involved).Wewill also consider
three scenarios, which are full information, learning and no-learning, but in a very different
perspectives than the cases considered inKolstad (2007),Kolstad andUlph (2008) andDellink
and Finus (2012). Here, we have a fully dynamic model and at each stage a general Bayesian
learning is taking place. Breton and Sbragia (2011) introduce a model of uncertainty and
learning where the stochastic variable is distributed normally. They assume that the players
are myopic, and then numerically determine the emissions rule and the size of stable IEAs.

In this paper, we focus on an international pollution problem in which neighboring coun-
tries emit a pollutant, e.g., CO2, which accumulates over time and damages the shared envi-
ronment. We assume that this accumulation process is subject to ecological uncertainty, and
allow the players (countries) to learn about the unknown parameter over time. Also, we
suppose that the players face different marginal damage costs and have heterogeneous prior

1 For instance, according to the IPCC’s Fifth Assessment Report, “warming of the climate system is unequiv-
ocal” (see, IPCC 2013, SPM-12).
2 Some contributions dealt with the choice of (tax and quota) policies in a context with uncertainty and
learning; see, e.g., Kolstad (1996), Ulph and Ulph (1997), Kolstad and Ulph (2011) and Masoudi and Zaccour
(2014).
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beliefs, which is consistent with the fact that countries are asymmetric in terms of their vul-
nerability to climate change. Our model has its root in two literature streams, i.e., uncertainty
and learning and dynamic games of pollution emissions. More precisely, our uncertainty and
learning setup is in line with the framework considered in Koulovatianos et al. (2009), Agbo
(2014) and Mirman and Santugini (2014). Koulovatianos et al. (2009) is an optimal-growth
model, that is, no strategic interactions are involved. Agbo (2014) andMirman and Santugini
(2014) extend the Great Fish War dynamic game to a learning environment. Specifically,
Agbo (2014) considers the effect of learning in the context of a strategic exploitation of a
natural resources whereas Mirman and Santugini (2014) study the effect of multiple source
of learning when agents not only extract a resource for consumption, but also invest in tech-
nology to improve the future stock. A common thread in the literature is the presence of
an externality only in the dynamics. In this paper, we add another layer of complexity by
considering a learning environment in a dynamic game in which the players interact not only
in the dynamics but also in the market. In other words, our model accounts not only for the
externality in the dynamics (as in the previous literature) but also for the externality in the
market through the instantaneous payoff function.

Our paper also belongs to the significant literature in dynamic games dealingwith strategic
emissions decisions; see the early contributions in, e.g., Van der Ploeg and de Zeeuw (1992),
Long (1992) and Dockner and Long (1993), and the survey in Jørgensen et al. (2010). Our
main contribution here is twofold. First, we introduce learning and biological uncertainty
in a dynamic international pollution problem. Second, whereas this literature systematically
assumed that each player’s revenues depend only on her emissions (or production) actions,
we extend in this paper the model to a setting where there is a cross effect in emissions
in the revenue functions. This implies that the players face environmental and economic
interdependencies, and are not only linked through the pollution stock and the damage cost.

Taking into account uncertainty and learning in a dynamic model of pollution emissions,
our objective is to answer the following question: does ecological uncertainty alleviate the
emissions problem or exacerbate it? In order to address this research question, we cast it into
two sub-questions:

1. In the presence of uncertainty, how do players’ emissions strategies compare under dif-
ferent information and learning assumptions? In other words, how do different sources
of uncertainty affect these emissions strategies?

2. How do changes in beliefs, e.g., becoming more pessimistic or optimistic, or feeling a
heightened sense of risk, affect emissions strategies?

To deal with these questions, we characterize and compare equilibrium strategies under
two different information structure assumptions. In a benchmark scenario, we assume that
all players are fully informed about the distributions of random variables. This assumption
is adopted in the environmental economics literature analyzing the impact of uncertainty
on decisions (see, e.g., Bramoullé and Treich 2009; de Zeeuw and Zemel 2012; Arrow and
Fisher 1974; Pindyck 2012). The alternative assumption is to assume that players do not
know the exact values of some of the model parameters, but have some beliefs about these
unknown parameters. These beliefs are based on the available information and are updated
when they receive new information. We characterize and contrast non-cooperative feedback
strategies under these two information assumptions. As for the optimal-growth model in
Koulovatianos et al. (2009), we present all our analytical results for any general probability
distribution function in which the information can be summarized by a finite-dimensional
vector of sufficient statistics.
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Our main results can be summarized as follows:

1. Uncertainty due to anticipation of learning results in a decrease in total emissions. A
surprising result, however, is that an individual player might increase her emissions. This
is unexpected as uncertainty would normally lead to precautionary behavior, i.e., lower
emissions.

2. Depending on the beliefs bias; and the slope and curvature of the distribution function,
the impact of structural uncertainty could be either an increase, decrease, or even no
change in the emissions of individual players and also total emissions.

3. Under the learning assumption, if one player changes her beliefs in a way that makes
her feel more optimistic or less at-risk, while others’ beliefs remain unchanged, then: (i)
this player increases her emissions; (ii) all other players decrease theirs; and (iii) total
emissions increase. The reverse result is that pessimistic views or a heightened sense of
risk alleviate the pollution problem.

The rest of the paper is organized as follows. In Sect. 2, we present the model. In Sect. 3,
we characterize the equilibrium strategies under different learning assumptions and compare
them in Sect. 4. In Sect. 5, we assess the impact of changes in players’ beliefs on their
emissions strategies. In Sect. 6, we evaluate the effect of changes in the sense of peril on
emissions, and briefly conclude in Sect. 7.

2 The Model

We consider N countries, indexed by i = 1, . . . , N , each producing quantity qi,t of a
representative good at time t = 1, . . . ,∞. Production generates revenues and, as a by-
product, emissions, e.g., CO2. Denote by ei,t the emissions of country i at time t . As in
Benchekroun and Long (1998), we make the simplifying assumption that the ratio of pro-
duction to emissions is equal to one, that is, one unit of production emits one unit of pollution.
For i = 1, 2, . . . , N , t = 1, . . . ,∞, the revenues of country i at time t are yi,t , which can
be expressed as a quadratic function of emissions, i.e.,

yi,t = ei,t

⎛
⎝αi − ei,t − γ

N∑
j �=i

e j,t

⎞
⎠ (1)

where α and γ are constants and we assume 0 ≤ γ < 2. (As it will be apparent later on,
the upper bound on γ is required to have non negative emissions.) In the literature (see, e.g.,
Dockner and Long 1993; Long 1992 and the survey in Jørgensen et al. 2010), a common
assumption is that the countries are only related through the environmental damage and not
through their revenues, that is, γ = 0. We depart from this assumption and consider that
countries also interact at an economic level through. For instance, such a scenario may be
applicable if countries are engaged in international trade and firms have market power in the
world market.

Emissions accumulate over time and damage the environment. Denote by St the pollution
stock whose evolution is described by the following difference equation:

St+1 = η
(∑

ei,t + dSt
)

, (2)

where 0 < d < 1, such that 1−d is the natural decay rate of pollution andη is a shock variable.
We introduceη to account for ecological uncertainty,which can be due to, among other things,
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lack of information about Mother Nature’s capacity to absorb emissions. To illustrate, the
players could have only partial knowledge about the precise motion of pollution due to, e.g.,
weather conditions (speed and direction of wind, temperature and humidity, etc.), or about
the actual and future rate of pollution absorption by carbon sinks such as oceans and forests.
Finally, players could be uncertain about future improvements in mitigation technologies. In
brief, our specification in (2) is meant to account, in the most parsimonious way, for all these
possible random ecological effects, which were typically ignored in the literature (see, e.g.,
Jørgensen et al. 2010).

The pollution stock imposes an environmental damage cost to all players. We assume that
this cost can be well approximated by the following linear function:

Di (St ) = βi St , (3)

where βi is the (positive) marginal cost of the pollution stock. This assumption, which is not
uncommon in the literature (see, e.g., Hoel and Schneider 1997; Breton and Sbragia 2011), is
motivated bymathematical tractability and by clarity in the exposition of results. Considering
a non-linear damage cost is clearly of interest and is left for future research.

Assuming a welfare maximization behavior over an infinite horizon, the optimization
problem of player i is then stated as follows:

max
{ei,t }∞t=1

E

⎡
⎣

∞∑
t=0

δt

⎛
⎝ei,t

⎛
⎝αi − ei,t − γ

N∑
j �=i

e j,t

⎞
⎠− βi S

⎞
⎠
⎤
⎦ (4)

subject to the pollution dynamics (2), where δ (0 < δ < 1) is the common discount factor
and E is the expectation operator with respect to all stochastic variables in the model.

Having described the model, we now introduce the information available to the players.
That is, we define what the players know about the variable η and how they update their
knowledge. We assume that η is a realization of a random variable η̃, whose conditional
probability distribution is given by the function φ(η|θ∗), where θ∗, θ∗ ∈ 	 ⊂ R

k , is the
vector of sufficient parameters of probability distribution function (p.d.f.) φ. Let the support
of this p.d.f. be given by H, such that η ∈ H ⊆ (0, 1]. The players do not know the future
realizations of the random variable η̃. There are two cases of interest. The first is where
players know the distribution of the random variable. The second is where they do not know,
but learn about it. Specifically, we consider the following scenarios:

1. Full information In this scenario, the assumption is that the players know all the func-
tional forms and parameters involved in the model, and in particular, θ∗. Consequently,
there is no need for learning to take place. This is the simplest and most common infor-
mational structure when dealing with a problem where uncertainty is present. This is
our benchmark scenario, and we shall refer, in this context, to the players as informed
players.

2. Learning Here, the players do not know the exact value of the parameter θ∗. They have
beliefs about this unknown parameter, which are based on available information. More-
over, they learn about it because they observe past and present levels of the pollution
stock, which is informative about θ∗. The agents do not know the distribution of the
ecological uncertainty, but they have some prior beliefs and they will learn about this
distribution as information becomes available. Anticipation of learning is a natural con-
sequence of an optimization problem that takes into account future learning. See, e.g.,
Koulovatianos et al. (2009), and Agbo (2014).
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Compared to the full-information case, the learning case adds two layers of uncertainty.
The first is simply that the objective distribution is replaced by the subjective distribution
(due to structural uncertainty). The second is that a learner anticipates learning, i.e., future
beliefs are random from today’s point of view, which makes future payoffs more random. In
addition to these two cases, we study an intermediate case that separates these two layers of
uncertainty: the case of no-learning. That is, the player does not know the true distribution
of the random shock, has beliefs about it, but does not expect beliefs to evolve over time, i.e.,
there is structural uncertainty but no anticipation of learning.3

Our main motivation for retaining the intermediate case of no-learning lies in its method-
ological interest (in an experimental design sense). Indeed, whereas the learning scenario
embeds both the structural uncertainty and the uncertainty related to the anticipation of
learning with respect to the full information case, the no-learning scenario only accounts for
the structural uncertainty with respect to the full information case. Therefore, by contrasting
the results obtained in the three scenarios, we are able to separate the effects of the two
uncertainties.

To wrap up, we have introduced an infinite-horizon N -player dynamic game with one
control variable for each player (emissions), and a stock pollutionwhose evolution is governed
by a stochastic difference equation. We assume throughout the paper that the players use
feedback strategies, that is, strategies that are functions of the state of the system (pollution
stock and relevant information about the stochastic process); we also assume that the relevant
solution concept is Nash equilibrium.

3 Equilibria

In this section, we characterize the non-cooperative equilibria under the different scenarios.

3.1 Full Information

We recall that in this benchmark case, the assumption is that the players know the distribution
of η̃ and the actual value of θ , that is, θ∗, and therefore, that no learning takes place, that is,
that players do not change their beliefs during the planning horizon. Another way of putting
it is that, despite the ecological randomness embedded in η, there is no structural uncertainty
in this scenario. Denoting by v I

i (S; θ∗) the value function of player i , where the superscript
I stands for informed player, the Hamilton–Jacobi–Bellman (HJB) equation of this player is
given by

v I
i

(
S; θ∗) = max

ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

∫
H

⎛
⎝v I

i

⎛
⎝η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠
⎞
⎠ ; θ∗

⎞
⎠φ(η|θ∗)dη

⎫⎬
⎭ . (5)

Proposition 1 characterizes the feedback-Nash equilibrium strategies.

3 Note that the dynamic maximization of a non-learning player is identical to an adaptive-learning player who
at any point in time ignores future learning possibilities when making a decision and then suddenly realizes
her mistake and updates the decision. Hence, an adaptive learner is synonymously called a bounded-rational
player, or a myopic player. Anticipated utility is another term that is sometimes used for our non-learning
case; see, e.g., Cogley and Sargent (2008). This term is adapted from Kreps (1998).
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Proposition 1 The feedback-Nash equilibrium emissions of informed player i, i ∈ {1, . . . ,
N } are given by

eIi
(
S; θ∗) = 1

2 − γ

(
αi − γ

∑N
i=1 αi

2 + (N − 1) γ
− δμ(θ∗)

1 − δdμ(θ∗)

(
βi − γ

∑N
j=1 β j

2 + (N − 1) γ

))
,

(6)
where

μ(θ∗) =
∫
H

ηφ(η|θ∗)dη. (7)

Proof See “Appendix”. 	

3.2 Learning

The alternative scenario to full information is that the players do not know some parameter
values (here θ∗). We suppose that each player has her own prior beliefs, denoted by ξi (θ),
about the possible values of θ∗. To be as general as possible, we let these prior beliefs to
be heterogeneous. Further, we assume that: (i) the beliefs are common knowledge; (ii) the
players only observe the actual value of η at each period, and each player uses this new
information to update her own beliefs about the value of θ ; and finally (iii) the players are
Bayesian learners, that is, they update their beliefs according to the Bayes’ rule:

ξ̂i (θ |η) = φ(η|θ)ξi (θ)∫
φ

φ(η|x)ξi (x)dx . (8)

In the learning case, the value function vL
i (S; ξi , ξ−i ) of player i must satisfy the following

HJB equation:

vL
i (S; ξi , ξ−i ) = max

ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

∫
H

(
vL
i

(
η

(∑
i

ei + dS

)
; ξ̂i (θ |η), ξ̂−i (θ |η)

)

×
(∫

	

φ (η|θ) ξi (θ)dθ

))
dη

⎫⎬
⎭ , (9)

where the superscript L refers to the learning player and ξ−i = {ξ j }Nj=1, j �=i combine the
beliefs of the other players. Hence, each player anticipates not only changes in the future
stock of pollution but also changes in all beliefs via the continuation value function.

Proposition 2 characterizes the feedback-Nash-equilibrium emissions strategies.

Proposition 2 The feedback-Nash equilibrium emissions of an anticipative-learning player
i, i ∈ {1, . . . , N } is given by

eLi (S; ξi , ξ−i ) = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1)γ

)

− δ

2 − γ

⎛
⎝βi

∫
	

μ(θ)ξi (θ)dθ

1 − δdμ(θ)
− γ

∑N
j=1 β j

∫
	

μ(θ)ξ j (θ)dθ

1−δdμ(θ)

2 + (N − 1) γ

⎞
⎠ , (10)
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where

μ(θ) =
∫
H

ηφ(η|θ)dη. (11)

Proof See “Appendix”. 	

3.3 Intermediate Case: No-learning

As noted, a non-learner player does not know θ∗ and uses prior beliefs to form expectations
about the future outcomes. However, a non-learner player does not anticipate updating her
beliefs. Put differently, a non-learner player uses today’s beliefs to assess her expected future
payoffs. In this case, the value function vA

i (S; ξi , ξ−i ) of player i must satisfy the following
HJB equation:

vNLi (S; ξi , ξ−i ) = max
ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S (12)

+ δ

∫
H

vA
i

⎛
⎝η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠ ; ξi , ξ−i

⎞
⎠
(∫

	

φ(η|θ)ξi (θ)dθ

)
dη

⎫⎬
⎭ ,

(13)

where the superscript NL refers to the non-learner.
The difference between the value functions in (9) and (12) lies in the difference in the

beliefs that player i uses to compute the expected value of future payoffs. Whereas a learner
uses her updated beliefs ξ̂i , a non-learner uses her beliefs of today ξi , i.e., a non-learner
understands that she faces uncertainty but does not anticipate that she will learn in the future.
Proposition 3 presents the emissions equilibrium strategy of a non-learner.

Proposition 3 The feedback-Nash equilibrium emissions of a non-learner player i , i ∈
{1, . . . , N } are given by

eNLi
(
S; ξi , ξ−i

) = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δ

2 − γ

⎛
⎜⎝βi

∫
	 ξi (θ)μ (θ) dθ

1 − δd
∫
	 μ (θ) ξi (θ)dθ

−
γ
∑N

j=1 β j

∫
	 ξ j (θ)μ(θ)dθ

1−δd
∫
	 μ(θ)ξ j (θ)dθ

2 + (N − 1) γ

⎞
⎟⎠ .

(14)

Proof See “Appendix”. 	


4 Comparison

In this section, we compare the emissions strategies under the different scenarios. In Propo-
sition 4, it is shown that the total emissions under no-learning exceeds value under learning.
This result indicates that the additional uncertainty generated by the anticipation of learning
leads to more cautious behavior by the players.
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Proposition 4 Total emissions are lower under learning than under no-learning, i.e.,

N∑
i=1

eLi (S; ξi , ξ−i ) <

N∑
i=1

eNLi (S; ξi , ξ−i ). (15)

Proof See “Proof of Proposition 4” section of Appendix. 	

Remark 1 Here and in the rest of the paper, the ordering of pollution stocks under different
scenarios is the same as ordering of emissions.

If we make the additional assumption that the players are homogenous, we obtain the
results in Proposition 5, where individual emissions are compared.

Proposition 5 If the players have homogenous beliefs and face the same marginal damage
cost, i.e., ξi (θ) = ξ(θ) and βi = β, ∀i = 1, . . . , N, then

eLi (S; ξ) < eNLi (S; ξ). (16)

Proof See “Proof of Proposition 5” section of Appendix. 	

Proposition 4 is in line with the results in the literature, where it is shown that the risk

generated from anticipated learning induces precautionary behavior, which in our context
translates into emissions reductions; see, e.g., Agbo (2014). Further, it has been shown that
uncertainty leads to emissions reduction due to risk considerations (see, e.g., Baker (2005)
and Bramoullé and Treich (2009)). However, the result stated in Proposition 4 is due to
the fact that players are homogeneous. When there is heterogeneity among the players, the
ordering might be reversed, i.e., eLi (S, ξi , ξ−i ) > eNLi (S, ξi , ξ−i ). Indeed, from (10) and (14),
we have the following equivalence:

eLi (S, ξi , ξ−i ) > eNLi (S, ξi , ξ−i )

⇔
(2 + (N − 1)γ ) βi

(∫
	

μ(θ)ξi (θ)dθ
1−δdμ(θ)

−
∫
	 μ(θ)ξi (θ)dθ

1−δd
∫
	 μ(θ)ξi (θ)dθ

)

γ
∑N

j=1 β j

(∫
	

μ(θ)ξ j (θ)dθ

1−δdμ(θ)
−

∫
	 μ(θ)ξ j (θ)dθ

1−δd
∫
	 μ(θ)ξ j (θ)dθ

) < 1, (17)

where the numerator is theweighted self-precautionary effect due to the additional uncertainty
generated by anticipated learning, and the denominator measures the same effect for all other
players. This effect for all other players is referred to as differential informational externality
in Agbo (2014). The inequality in (17) can be rearranged as

γ >
2�

1 − (N − 1)�
, (18)

where

� =
βi

(∫
	

μ(θ)ξi (θ)dθ
1−δdμ(θ)

−
∫
	 μ(θ)ξi (θ)dθ

1−δd
∫
	 μ(θ)ξi (θ)dθ

)

∑N
j=1 β j

(∫
	

μ(θ)ξ j (θ)dθ

1−δdμ(θ)
−

∫
	 μ(θ)ξ j (θ)dθ

1−δd
∫
	 μ(θ)ξ j (θ)dθ

) ,

meaning that for large (small) γ , learning decreases (increases) emissions. In other words,
our results show that the sign of the difference in emissions under learning and no-learning
depends on the value of the market externality as captured by γ . Note that with homogeneous
players condition (18) becomes γ > 2, which falls outside the range of the parameter
γ ∈ [0, 2). However, when there is heterogeneity in βi and/or ξi , then it is possible for the
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right-hand side of (18) to be strictly less than 2, which implies that there exist values of
γ ∈ (0, 2) such that condition (18) holds. For instance, if player i’s marginal cost of the
pollution, βi , is sufficiently lower than the average marginal cost across the players, then
eLi (S, ξi , ξ−i ) > eNLi (S, ξi , ξ−i ). Similarly, if player i’s prior beliefs are sufficiently less
risky than the other players’ beliefs, then eLi (S, ξi , ξ−i ) > eNLi (S, ξi , ξ−i ).

To compare emissions under full information and no-learning cases, we look at whether
beliefs about the mean of the stochastic parameter are unbiased or biased. These comparisons
provide information about the effect of structural uncertainty, i.e., the difference between
knowing the structure (i.e., knowing θ∗) and not knowing the structure (i.e., θ∗ is unknown).
The results, which are summarized in Proposition 6, convey a different message than the
one in Bramoullé and Treich (2009). Indeed, we obtain that depending on the belief bias,
considering structural uncertainty may increase, decrease or even not affect the emissions
strategies.

Proposition 6 1. If the beliefs about the mean of the ecological shock, η̃, are unbiased, i.e.,
μ(θ∗) = ∫

H μ(θ)ξi (θ)dθ , then eIi = eNLi ;
2. If for player i μ(θ∗) >

∫
	

μ(θ)ξi (θ)dθ , and ∀ j �= i μ(θ∗) = ∫
H μ (θ) ξ j (θ)dθ , then

eIi (S, ξi , ξ−i ) > eNLi (S, ξi , ξ−i ) (19)

3. If for player i μ(θ∗) <
∫
	

μ(θ)ξi (θ)dθ , and ∀ j �= i μ(θ∗) = ∫
H μ (θ) ξ j (θ)dθ , then

eIi (S, ξi , ξ−i ) < eNLi (S, ξi , ξ−i ) (20)

Proof It suffices to compare (14) and (6) to obtain the results. 	

Introducing the intermediate case of no-learning allows us not only to distinguish between

the effect of structural uncertainty and of uncertainty due to anticipation on the emissions
strategies, but to also see that these two sources of uncertainty can even have opposite effects
on these strategies.

To illustrate, we have drawn in Fig. 1 the emissions trajectories for two players with
different beliefs, assuming a beta distribution.4 When the structural uncertainty causes a
decrease in emissions with respect to the full information case (solid straight line in the
figures), the uncertainty due to anticipation goes in the samedirection anddecreases emissions
further. However, when the structural uncertainty increases the emissions, the uncertainty
due to anticipation moderates this effect. Put differently, whereas the uncertainty due to
anticipation may mitigate (at least the total) emissions, the effect of structural uncertainty
depends on the model assumptions, and more specifically, on the slope and curvature of the
distribution function. Proposition 7 gives a more precise statement in the special case of
unbiased and homogeneous beliefs, i.e., ξi (θ) = ξ(θ), ∀i = 1, . . . , N .

Proposition 7 Assume that the beliefs are homogeneous and unbiased, i.e., θ∗ =∫
	

θξi (θ)dθ, ∀i = 1, . . . , N, then:

• If μ′′ > 0, then
∑

eIi (S; θ∗) >
∑

eNLi (S, ξi , ξ−i );
• If μ′′ = 0, then

∑
eIi (S; θ∗) = ∑

eNLi (S, ξi , ξ−i );
• If μ′′ < 0, then

∑
eIi (S; θ∗) <

∑
eNLi (S, ξi , ξ−i ).

Proof Since μ(θ∗) = μ(E(θ)), if μ′′ > 0 (μ′′ < 0), i.e., μ is convex (concave), then by
Jensen’s inequality, we have μ(E(θ)) > E(μ(θ))(μ(E(θ)) < E(μ(θ))), which completes
the proof. 	

4 Qualitatively similar results hold when using a normal distribution.
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Fig. 1 Decomposing the effects of structural uncertainty and uncertainty due to anticipation for a Beta
distribution with parameters a and b (B(a, b) where mean = a

a+b ) in a two-player game with heterogeneous
beliefs

Note that the above result holds true for heterogeneous players in terms of the model’s
parameters.

Recall that in the case of full information (i.e., θ∗ is known), uncertainty enters the opti-
mization problem through the mean of the shock, i.e., μ(θ∗). Hence, in the no-learning
case, replacing μ(θ∗) by

∫
	

μ(θ)ξ(θ)dθ in (6) yields (14). It follows that the uncertainty
in the no-learning case is also displayed through the conditional mean μ(θ), which implies
that any change in prior beliefs about θ has an effect on behavior only through the condi-
tional mean. When comparing the case of full information with the no-learning case under
unbiased beliefs about the unknown parameter, it is then the curvature of the conditional
mean that determines the ordering of total emissions under full information and no-learning.
Specifically, if the conditional mean is convex in θ , i.e., μ′′(θ) > 0, then a mean-preserving
increase in risk for unbiased prior beliefs implies a lower anticipated level of pollution (i.e.,
μ(θ∗) >

∫
	

μ(θ)ξ(θ)dθ ), which discourages total emissions. The opposite result occurs
when the conditional mean is concave in θ . Finally, if the conditional mean is linear in θ (i.e.,
μ′′(θ) = 0), then a mean-preserving increase in risk has no effect on total emissions.

In the next two propositions we state somewelfare comparative results. Denote by vxi (S; ·)
the value function (welfare) under learning scenario x ∈ {NL,L, I}, that is,

vxi (S; ·) = κx
i,1S + κx

i,2. (21)

Unfortunately, it is not possible to compare the intercept terms κx
i,2 across scenarios, but we

can compare the slopes of the value functions. Proposition 8 states that the anticipation of
learning increases the negative effect of increasing pollution on welfare.

Proposition 8 Under learning and no-learning, the slopes of the value functions compare
as follows:

κL
i,1 < κNL

i,1 < 0. (22)
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Proof See “Proof of Proposition 8” section of Appendix. 	


The next proposition shows that the beliefs effect (captured by the difference between
the full-information and no-learning cases) may reduce or enhance the negative effect of
increasing pollution on welfare.

Proposition 9 The ordering of κ I
i,1 and κNL

i.1 depends on the beliefs bias as follows:

1. For μ(θ∗) >
∫
	

μ(θ)ξi (θ)dθ ,

κ I
i,1 < κNL

i,1 < 0. (23)

2. For μ(θ∗) <
∫
	

μ(θ)ξi (θ)dθ ,

κNL
i,1 < κ I

i,1 < 0. (24)

5 More Optimistic/Pessimistic Beliefs

The players form and change their beliefs according to the information they receive from
different sources over time, e.g., lobbyists and scientific literature. In this section, we analyze
the impact of changes in the players’ beliefs on their emissions. To do so, we first introduce
the concept of first-order strict stochastic dominance, which is necessary to compare better
and worse situations.

Definition 1 Consider two probability density functions ξ1i and ξ2i . We say that ξ1i first-order
strict-stochastically dominates ξ2i , ξ1i �1 ξ2i , if for any increasing function u : R → R, we
have

∫
u (x) ξ1i (x) dx >

∫
u (x) ξ2i (x)dx .

Next, we clarify what is meant in our context by a change in beliefs. Since beliefs are about
θ and not η, to interpret the meaning of a change in beliefs, we need to know how the mean
of θ , that is, μ(θ) varies with θ . Keeping in mind definition (1), suppose that the beliefs of
player i change from ξ1i to ξ2i , with ξ1i �1 ξ2i and μ′(θ) > 0. Intuitively, this player’s beliefs
have changed in a way that she expects lower values for the unknown parameter θ , and since
μ is increasing, she also expects lower values for the unknown variable η. Therefore, under
ξ2i , this player expects lower levels of pollution accumulation, and consequently, a lower
environmental cost. Put differently, by believing in ξ2i instead of ξ1i , this player becomes
more optimistic about the environment. If μ′(θ) < 0, then the result is the opposite and a
change from ξ1i to ξ2i would be equivalent to saying that player i is now more pessimistic.
Proposition 10 presents the impact of becoming more optimistic on emissions strategies.

Proposition 10 Assume that player i becomes more optimistic while all the other players’
priors remain unchanged, i.e., we have the two N-tuples ξ1 = {

ξ11 , . . . , ξ1i , . . . , ξ1N

}
and

ξ2 = {
ξ11 , , . . . , ξ1i−1, ξ

2
i , ξ1i+1, . . . , ξ

1
N

}
. If ξ1i �1 ξ2i and μ′(θ) > 0, x ∈ {L , NL}, then for

γ ≥ 0 we have

• exi
(
S, ξ2

)
> exi (S, ξ1);

• exj
(
S, ξ2

) ≤ exj (S, ξ1); ∀ j �= i , (equality holds for γ = 0);

• ∑N
z=1 e

x
z

(
S, ξ2

)
>
∑N

z=1 e
x
z (S, ξ1).

Proof See “Proof of Proposition 10” section of Appendix. 	
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The Proposition shows that if player i becomes more optimistic, then she increases her
emissions, while all the other players decrease theirs. This shows that emissions are strategic
substitutes.More importantly, we obtain that the reduction by all other players is not sufficient
to compensate for the increase in player i’s emissions. Optimism clearly has a negative
effect on the environment; this may explain why environmentalists prefer to highlight poor
prospects and play down positive news. To illustrate the results in the Proposition,we consider
the following simple example: assume η has a uniform distribution with unknown support
[0, θ ], and beliefs, ξ(θ), θ ∈ [0, 1], then μ(θ) = θ

2 , so μ′ (θ) > 0. By Proposition 10, if
ξ1i �1 ξ2i , then eLi

(
S, ξ2

)
> eLi (S, ξ1).

The following corollary shows that if all players become more optimistic, then the total
emissions increase.

Corollary 1 If all countries become more optimistic about the environment, i.e., ξ1i �1

ξ2i , ∀i ∈ 1, . . . , N, and μ′(θ) > 0, then ∀x ∈ {L , NL}, we have
N∑
z=1

exz
(
S, ξ2

)
>

N∑
z=1

exz (S, ξ1). (25)

We saw that emissions are strategic substitutes. In other words, while a player’s more
optimistic beliefs lead to an increase in her own emissions, more optimistic outsider beliefs
have the opposite effect on this player. Corollary 1 states that, in total, the effects on oneself
dominate those of outsiders, and if everyone becomes more optimistic, the total emissions
will increase. However, the effect of a change in everyone’s beliefs on individual emissions
is ambiguous and depends on the weight of self-induced versus outsider effects.5 Further, as
our model allows for heterogeneity in beliefs, we can compare the emissions strategies of
players with different beliefs. Indeed, if players i and j are similar in their parameters but
not in their beliefs, such that player i is more optimistic than player j , then

exi (S, ξ) > exj (S, ξ), x ∈ {L , NL} , (26)

that is, player i will emit more than player j under both the learning and no-learning cases.
Now, if players change their beliefs about the functional form of φ (η), then we can charac-
terize more directly the impact of changes in optimism/pessimism. Recalling that a player
becomes more pessimistic when she gives higher values on average to η, Proposition 11
presents the effect of such a change on the players’ emissions.

Proposition 11 If φ1
i (η) �1 φ2

i (η), i.e., player i gives higher mean to μ(θ) under φ1
i (η)

than under φ2
i (η), then

ex2i (S, ξ) > ex1i (S, ξ), x ∈ {L , NL} . (27)

5 For example in case of learning an individual’s self-induced effect is

2 + (N − 2) γ

2 + (N − 1) γ
βi

(∫
	

μ (θ)

1 − δdμ (θ)
ξ1i (θ)dθ −

∫
	

μ (θ)

1 − δdμ (θ)
ξ2i (θ)dθ

)
,

the outsider effect is

γ

2 + (N − 1) γ

∑
j �=i

β j

(∫
	

μ (θ)

1 − δdμ (θ)
ξ1j (θ)dθ −

∫
	

μ (θ)

1 − δdμ (θ)
ξ2j (θ)dθ

)
.
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Proof Since μ(θ) = ∫
H ηφ(η|θ)dθ and η is an increasing function if φ1

i (η) �1 φ2
i (η), so

by definition we have μ1
i (θ) > μ2

i (θ). Given Proposition 2 and Proposition 3, the proof is
complete. 	


In a nutshell, themain takeawayof this section is that increased optimism leads to increased
total emissions.

6 Belief in Increased Peril

To represent optimism/pessimism, we used the first-order stochastic dominance since it deals
with “better” vs. “worse” situations. To compare the relative riskiness (or volatility) of two
distributions, we introduce and use the second-order stochastic dominance.

Definition 2 Given two distributions with the same mean, distribution with p.d.f. φ1(θ)

second-order stochastically dominates the distribution with p.d.f. φ2 (θ), φ1(θ) �2 φ2(θ),
if for every non-decreasing concave function u : R → R, we have

∫
R
u (x) φ1 (x)dx ≥∫

R
u (x) φ2 (x) dx .

By definition, we can say that if φ1(θ) �2 φ2(θ), then φ1 is less volatile or less risky.
The equality of the distributions’ means is crucial in the above definition as it allows us to
distinguish the effects of more optimistic/pessimistic views from the effects related to the
riskiness of the situation. Proposition 12 presents the effects of a change in the belief that the
situation is more risky.

Proposition 12 Suppose μ′(θ) > 0, and consider the two N-tuples ξ1 = {
ξ11 , . . . , ξ1i , . . . ,

ξ1N

}
and ξ2 = {

ξ11 , , . . . , ξ1i−1, ξ
2
i , ξ1i+1, . . . , ξ

1
N

}
. If country i feels more at-risk under ξ2i

than under ξ1i , i.e., ξ
1
i (θ) �2 ξ2i (θ), then for γ ≥ 0 we have

1. eLi
(
S, ξ2

) ≤ eLi (S, ξ1);
2. eLj

(
S, ξ2

) ≥ eLj (S, ξ1), ∀ j �= i , (equality holds for γ = 0);

3.
∑N

z=1 e
L
z

(
S, ξ2

) ≤ ∑N
z=1 e

L
z

(
S, ξ1

)
.

Proof See “Proof of Proposition 12” section of Appendix. 	

According to Proposition 12, given that the unknown variable’s mean is increasing in θ ,

if a learner player perceives a higher-risk situation while all other players’ beliefs remain
unchanged, then she will decrease her emissions, while other players will increase their
own (by strategic substitution). Similar to what we found before (see Proposition 10), their
reactions are not strong enough to overcome the direct effect and the total emissions will
be lower. If everyone feels more at-risk, the net effect on player i’s emissions is ambiguous
since the increase in one’s own riskiness tends to decrease the emissions while the increase
in the opponents’ sense of peril is an incentive to increase emissions.

7 Concluding Remarks

We introduced in a dynamic game of pollution emissions the two important features of
ecological uncertainty and learning, with the objective of answering the question of whether
uncertainty decreases emissions or not. While one might expect uncertainty to alleviate the
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commons problem, we obtained that, depending on the model setup, the effect of uncertainty
can go in both directions. By decomposing the different sources of uncertainty, we were able
to separate the effects of structural uncertainty from those due to learning. We also studied
the impacts of changes in players beliefs, either toward greater optimism/pessimism or a
greater sense of peril. Our results suggest that more pessimistic beliefs about the pollution
stock and a greater sense of peril both decrease the total emissions.

Number of extensions of this work to enhance our understanding of the impact of different
sources of uncertainty on the results would be of interest. First, we could add economic
uncertainty in the form of a random marginal cost of pollution, or in the parameters of the
revenue function, that is, α and β. Note, however, that introducing uncertainty in terms of α

or β does not bring a profound effect of learning on behavior, if we keep the assumption of
linear damage cost. Indeed, for these cases, the policy functions under learning are equivalent
to the policy functions under no-learning. That is, the anticipation of learning is nonexistent.
Hence, learning has different effect depending on which parameters you are learning about.6

Second, we fully acknowledge that some of our results are reminiscent of our assumption of
a linear damage cost and considering a non-linear damage cost is clearly an extension worth
analyzing. Third, we could envision to link the realized values of η to the values of the revenue
parameters α and β. For instance, if η is very high, this may cause a catastrophe leading to
a discrete fall in the value of α. The possibility of catastrophes may affect players’ behavior,
either by enhancing the precautionarymotive or by encouraging countries to emitmore before
the catastrophe hits. Also, different behavioral assumptions, such as loss aversion, may lead
to outcomes other than those derived in this model.7 Finally, a very challenging extension is
to add abatement technology as a state variable and let the emissions levels be a decreasing
function of the available stock of this technology. With this addition, a player can respond to
the uncertainty by either reducing production, reducing pollution emissions per production
unit, or by a mix of the two options.

Appendix

Proof of Proposition 1

Denote by v I
i (S; θ∗) the value function of player i , where the superscript I refers to an

informed player. The Hamilton–Jacobi–Bellman (HJB) equation is given by

v I
i

(
S; θ∗) = max

ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

∫
H

⎛
⎝v I

i

⎛
⎝η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠
⎞
⎠
⎞
⎠φ(η|θ∗)dη

⎫⎬
⎭ . (28)

Considering the linear-state structure of our model, we conjecture that the value function is
linear and specified as follows:

v I
i

(
S; θ∗) = κ I

i,1S + κ I
i,2.

Plugging the conjectured value function in (50), we obtain

6 See Masoudi and Zaccour (2014) for a proof of this statement in the simpler case where uncertainty is only
in β.
7 We wish to thank the Reviewer who suggested this extension. The last lines are in his/her own words.
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κ I
i,1S + κ I

i,2 = max
ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

∫
H

⎡
⎣κ I

i,1η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠+ κ I

i,2

⎤
⎦φ(η|θ∗)dη

⎫⎬
⎭ . (29)

The first-order equilibrium condition is given by8

αi − 2ei − γ
∑
j �=i

e j + δ

∫
H

κ I
i,1ηφ(η|θ∗)dη = 0. (30)

To find the coefficients of the value function, we substitute for eIi in (29) and equate the
coefficients in order of S. This leads to a system of 2N equations (2 equations for each
player) and 2N unknowns (κ I

i,1 and κ I
i,2 ∀i = 1, 2), that is,

κ I
i,1 = −βi + δ(1 − d)

∫
H

ηκ I
i,1φ(η|θ∗)dη, (31)

κ I
i,2 = αi ei − e2i − γ ei

∑
j �=i

e j + δ

∫
H

⎛
⎝ηκ I

i,1

⎛
⎝

N∑
j=1

eIj

⎞
⎠+ κ I

i,2

⎞
⎠(

φ(η|θ∗)
)
dη. (32)

Since μ(θ∗) = ∫
H ηφ(η|θ∗)dη, from (31), we get

κ I
i,1 = −βi

1 − δdμ(θ∗)
, (33)

and from (32)

κ I
i,2 = 1

1 − δ

⎛
⎝αi e

I
i −

(
eIi

)2 − γ ei
∑
j �=i

e j + δμ(θ∗)κ I
i,1

⎛
⎝

N∑
j=1

eIj

⎞
⎠
⎞
⎠ .

To solve for
{
eIi
}N
i=1 rewrite (30) as a function of total emissions,

∑N
j=1 e j , i.e.,

αi − (2 − γ ) ei − γ

N∑
j=1

e j + δ

∫
H

κ I
i,1ηφ(η|θ∗)dη = 0, (34)

and consequently, the best reaction function of player i is

eIi = 1

2 − γ

⎛
⎝αi − γ

N∑
j=1

e j − δ
βiμ(θ∗)

1 − δdμ(θ∗)

⎞
⎠ . (35)

We first solve for
∑N

j=1 e j . Summing 35 over i yields

N∑
i=1

eIi = 1

2 − γ

⎛
⎝

N∑
i=1

αi − γ N
N∑
j=1

e j − δ
μ(θ∗)

∑N
i=1 βi

1 − δdμ(θ∗)

⎞
⎠ . (36)

8 Notice that the second-order condition is satisfied for the model.
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So that total emission is

N∑
i=1

eIi = 1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
μ(θ∗)

1 − δdμ(θ∗)

N∑
i=1

βi

)
. (37)

Plugging (37) into 35 yields

eIi = 1

2 − γ

(
αi − γ

2 + (N − 1) γ

(
N∑
i=1

αi − δ
μ(θ∗)

1 − δdμ(θ∗)

N∑
i=1

βi

)
− δ

βiμ (θ∗)
1 − δdμ(θ∗)

)
.

(38)
By rearranging we have

eIi = 1

2 − γ

(
αi − γ

∑N
i=1 αi

2 + (N − 1) γ
− δμ (θ∗)

1 − δdμ(θ∗)

(
βi − γ

∑N
j=i β j

2 + (N − 1) γ

))
. (39)

Proof of Proposition 2

By virtue of our linear-state model we conjecture that the value function of player i has the
linear form of vL

i = κL
i,1(ξi )S + κL

i,2(ξ1, . . . , ξN ). Replacing this conjectured vL
i in the HJB

equation, we obtain

vL
i (S, ξ1, . . . , ξN ) = max

ei

⎧⎨
⎩ei

⎛
⎝αi − ei − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

∫
H

κL
i,1(ξ̂i )η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠
(∫

	

φ(η|θ)ξi (θ)dθ

)
dη

+ δ

∫
H

(
κL
i,2

(
ξ̂1 (θ |η) , . . . , ξ̂N (θ |η)

))(∫
	

φ(η|θ)ξi (θ)dθ

)
dη

}
.

(40)

From the first-order conditions we have

αi − 2eLi − γ

N∑
j �=i

eLj + δ

∫
H

κL
i,1(ξ̂i (θ |η))η

(∫
	

φ(η|θ)ξi (θ)dθ

)
dη. (41)

Plugging (41) into (40) and equating the coefficients in order of S, we have the following
system of equations:

κL
i,1(ξi ) = −βi + δd

∫
H

κL
i,1(ξ̂i )η

(∫
	

φ(η|θ)ξi (θ)dθ

)
dη (42)

κL
i,2(ξ1, . . . , ξN ) = αi ei − (ei )

2 − γ ei

N∑
j �=i

e j

+ δ

∫
H

(
κL
i,1(ξ̂i )η

∑
i

ei + κL
i,2

(
ξ̂1 (θ |η) , . . . , ξ̂N (θ |η)

))

×
(∫

	

φ(η|θ)ξi (θ)dθ

)
dη. (43)
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We claim that

κL
i,1(ξi ) = −βi

∫
	

ξi (θ)

1 − δdμ(θ)
dθ, (44)

and consequently

κL
i,2(ξ1, . . . , ξN ) =αi ei − (ei )

2 − γ ei

N∑
j �=i

e j

− βiδ
∑
i

ei

(∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ

)

+ δ

∫
H

κL
i,2

(
ξ̂1 (θ |η) , . . . , ξ̂N (θ |η)

)(∫
	

φ(η|θ)ξi (θ)dθ

)
dη.

(45)

To show this, let us update (44) for one period to obtain

κL
i,1

(
ξ̂i (θ |η)

)
= −βi

∫
	

ξ̂i (θ |η)

1 − δdμ(θ)
dθ. (46)

Using (8), we get

κL
i,1(ξ̂i (θ |η)) = −βi

∫
	

1

1 − δdμ(θ)

φ(η|θ)ξi (θ)∫
	

φ(η|x)ξi (x)dx dθ.

Plugging this back into (42) leads to

κL
i,1(ξi ) = −βi

(
1 + δd

∫
H

∫
	

1

1 − δdμ(θ)

φ(η|θ)ξi (θ)∫
	

φ(η|x)ξi (x)dx dθη

×
(∫

	

φ(η|θ)ξi (θ)dθ

)
dη

)
,

= −βi

(
1 + δd

∫
	

μ(θ)

1 − δdμ(θ)
ξi (θ)dθ

)
,

= −βi

(∫
	

[
1 − δdμ(θ)

1 − δdμ(θ)
+ δdμ(θ)

1 − δdμ(θ)

]
ξi (θ)dθ

)
.

This corresponds to our claim. To solve for
{
eIi
}N
i=1rewrite (41) as a function of total emis-

sions,
∑N

j=1 e j , i.e.,

αi − (2 − γ ) eLi − γ

N∑
j=1

eLj − δβi

∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ.

So, for i = 1, . . . , N ,

eLi = 1

2 − γ

⎛
⎝αi − γ

N∑
j=1

eLj − δβi

∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ

⎞
⎠ . (47)

We first solve for
{
eLi
}N
i=1, then for eLi . Summing (47) over i yields

N∑
i=1

eLi = 1

2 − γ

⎛
⎝

N∑
i=1

αi − γ N
N∑
j=1

eLj − δ

N∑
i=1

βi

∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ

⎞
⎠ .
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So, total emissions is given by

N∑
i=1

eLi = 1

2 + (N − 1) γ

(
N∑
i=1

αi − δ

N∑
i=1

βi

∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ

)
. (48)

Plugging (48) into (47) yields

eLi = 1

2 − γ

((
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δ

⎛
⎝βi

∫
	

μ(θ)ξi (θ)

1 − δdμ(θ)
dθ − γ

∑N
j=1 β j

∫
	

μ(θ)ξ j (θ)

1−δdμ(θ)
dθ

2 + (N − 1) γ

⎞
⎠
⎞
⎠ . (49)

Proof of Proposition 3

We follow the same procedure as we did for a learner player. We conjecture that vNLi , which
satisfies (12), has the linear form vNLi = κNL

i,1 (ξi )S + κNL
i,2 (ξ1, . . . , ξN ). Rewriting (12) with

our conjectured value function we have

vNLi (S, ξ1, . . . , ξN ) = max
ei

⎧⎨
⎩ei

⎛
⎝αi − ei,t − γ

N∑
j �=i

e j

⎞
⎠− βi S

+ δ

⎛
⎝
∫
H

κNL
i,1 (ξi )η

⎛
⎝

N∑
j=1

e j + dS

⎞
⎠+ κNL

i,2 (ξ1, . . . , ξN )

⎞
⎠

×
(∫

	

φ(η|θ)ξi (θ)dθ

)
dη

}
. (50)

The first-order condition for i is

αi − 2eNLi − γ

N∑
j �=i

eNLj + δ

∫
H

κNL
i,1 (ξi )η

(∫
	

φ(η|θ)ξ(θ)dθ

)
dη, (51)

and since
∫
H ηφ(η|θ)dη = μ(θ), we obtain

eNLi (S, ξ1, . . . , ξN ) = 1

2

⎛
⎝αi − γ

N∑
j �=i

eNLj + δ

∫
	

(
κNL
i,1 (ξi )

)
μ(θ)ξ(θ)dθ

⎞
⎠ . (52)

Plugging (52) into (50) gives the following system of equations

κNL
i,2 (ξ1, . . . , ξN ) = αi ei − e2i − γ ei

N∑
j �=i

e j + δ

∫
H

⎛
⎝κNL

i,1 (ξi )η

⎛
⎝

N∑
j=1

e j

⎞
⎠

+ κNL
i,2 (ξ1, . . . , ξN )

) (∫
	

φ(η|θ)ξi (θ)dθ

)
dη, (53)

and

κNL
i,1 (ξi ) = −βi + δd

∫
	

κNL
i,1 (ξi )

(∫
H

ηφ(η|θ)dη

)
ξi (θ)dθ, (54)
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or

κNL
i,1 (ξi ) = −βi + δd

∫
	

κNL
i,1 (ξi )μ(θ)ξi (θ)dθ. (55)

We now show that κNL
i,1 (ξi ) = −βi

1−δd
∫
	 μ(θ)ξi (θ)dθ

. Inserting this guessed form into (55), we

get

κNL
i,1 (ξi ) = −βi − βiδd

∫
H

1

1 − δd
∫
	

μ(θ)ξi (θ)dθ
η

(∫
	

φ(η|θ)ξi (θ)dθ

)
dη, (56)

= −βi − βiδd

∫
	

(∫
H ηφ(η|θ)dη

)
ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ
, (57)

= −βi − βiδ

∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ
, (58)

= −βi

(
1 − δd

∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ
+ δd

∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ

)
, (59)

= −βi

1 − δd
∫
	

μ(θ)ξi (θ)dθ
. (60)

To complete the proof, rewrite (51) as a function of total emissions, i.e.,

αi − (2 − γ ) eNLi − γ

N∑
j=1

eNLj − δ
βi
∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ
= 0. (61)

We first solve for
∑N

j=1 e
NL
j , then for eNLi . Summing (61) over i yields

N∑
i=1

αi − (2 − γ )

N∑
i=1

eNLi − γ N
N∑
j=1

eNLj − δ

N∑
i=1

βi
∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ
= 0. (62)

So total emissions is given by

N∑
j=1

eNLj = 1

2 + (N − 1) γ

(
N∑
i=1

αi − δ

N∑
i=1

βi
∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)ξi (θ)dθ

)
. (63)

Plugging this back in (61) yields

eNLi = 1

2 − γ

⎛
⎜⎝αi − γ

∑N
j=1 α j

2 + (N − 1) γ

−δ

⎛
⎜⎝βi

∫
	

μ(θ)ξi (θ)dθ

1 − δd
∫
	

μ(θ)dθ
−

γ
∑N

j=1 β j

∫
	 μ(θ)ξ j (θ)dθ

1−δd
∫
	 μ(θ)dθ

2 + (N − 1) γ

⎞
⎟⎠

⎞
⎟⎠ (64)
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Proof of Proposition 4

We have
N∑
i=1

(
eLi − eNLi

)
= δ

2 + (N − 1) γ

(
N∑
i=1

βi

[
R

(∫
	

ξi (θ)μ(θ)dθ

)

−
∫

	

R(μ(θ))ξi (θ)dθ

])

Since R is an increasing convex function, by Jensen’s inequality we have
∫

	

R(μ(θ))ξi (θ)dθ > R

(∫
	

ξi (θ)μ(θ)dθ

)
,

that is,
∑N

i=1

(
eLi − eAi

)
< 0, or

N∑
i=1

eLi (S, ξ1, . . . , ξN ) <

N∑
i=1

eAi (S, ξ1, . . . , ξN ) .

Proof of Proposition 5

If βi = β and ξi (θ) = ξ(θ), ∀i = 1, . . . , N , then

eLi (S; ξi , ξ−i ) = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δ

2 − γ
β

(
1 − γ N

2 + (N − 1) γ

)∫
	

μ(θ)ξ(θ)dθ

1 − δdμ(θ)
. (65)

eNLi = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δ

2 − γ
β

(
1 − γ N

2 + (N − 1) γ

) ∫
	

μ(θ)ξ(θ)dθ

1 − δd
∫
	

μ(θ)dθ
. (66)

Let R (x) = x (1 − δdx)−1, then

eLi (S, ξ1, . . . , ξN ) = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δβ

2 − γ

2 − γ

2 + (N − 1) γ

∫
	

R(μ(θ))ξ(θ)dθ,

and

eNLi (S, ξ1, . . . , ξN ) = 1

2 − γ

(
αi − γ

∑N
j=1 α j

2 + (N − 1) γ

)

− δβ

2 − γ

2 − γ

2 + (N − 1) γ

(
R

(∫
	

ξ(θ)μ (θ)dθ

))
.

Since 0 < δ, d < 1, and 0 < μ(θ) < 1, then R is an increasing convex function for
acceptable values of our model parameters (R′ > 0, R′′ > 0, ∀x ∈ [0, 1]), then by Jensen’s
inequality we have
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∫
	

R(μ(θ))ξ(θ)dθ > R

(∫
	

ξ(θ)μ(θ)dθ

)
,

Since 1
2+(N−1)γ is positive, then

eLi (S, ξ1, . . . , ξN ) < eNLi (S, ξ1, . . . , ξN ) .

Proof of Proposition 8

Let G (x) = 1
1−δdx , which is an increasing convex function for 0 < x < 1, then we can

rewrite κL
i,1(ξi ) and κNL

i,1 (ξi ) as follows

κL
i,1(ξi ) = −βi

∫
	

ξi (θ)

1 − δdμ(θ)
dθ = −βi

∫
	

G(μ(θ))ξi (θ)dθ,

κNL
i,1 (ξi ) = −βi

1 − δd
∫
	

μ(θ)ξi (θ)dθ
= −βi G

(∫
	

ξi (θ)μ(θ)dθ

)
,

then by Jensen’s inequality we have

∫
	

G(μ(θ))ξi (θ)dθ > G

(∫
	

ξi (θ)μ(θ)dθ

)
,

that yields
κNL
i,1 (ξi ) > κL

i,1(ξi ).

Proof of Proposition 10

Let R (x) = x (1 − δdx)−1 and u (x) = R (μ (x)). Since, μ ∈ [0, 1] , R is increasing, and

∂u

∂x
= μ′R′ ⇒

{
∂u
∂x > 0 if μ′ > 0
∂u
∂x < 0 if μ′ < 0

. (67)

Recall that the individual’s emissions for an non-learner player are given by equation 10, and
the total emissions by

N∑
i=1

eLi = 1

2 + (N − 1) γ

(
N∑
i=1

αi − δ

N∑
i=1

βi

∫
	

ξi (θ)R(μ(θ))dθ

)
. (68)

Using definition 1 and conditions (67), confirm the results for an non-learner player.
For the adaptive-learning case, an individual’s emissions are given by (14), and the total

emissions are as follows:

N∑
i=1

eNLi = 1

2 + (N − 1) γ

(
N∑
i=1

αi − δ

N∑
i=1

βi R

(∫
	

ξi (θ)μ(θ)dθ

))
. (69)

Besides, if ξ1i (θ) �1 ξ2i (θ), then
∫
	

ξ1i (θ)μ(θ)dθ >
∫
	

ξ2i (θ)μ(θ)dθ if μ′ > 0, which
gives the results presented in the Proposition for the adaptive learner.
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Proof of Proposition 12

We assumed μ′ > 0. If μ′′ ≥ 0, then since R is also increasing and convex, R(μ(θ)) would
be an increasing convex function. Given that ξ1i (θ) �2 ξ2i (θ), we will have

−
∫

	

R(μ(θ))ξi (θ
1)dθ ≥ −

∫
	

R(μ(θ))ξi (θ
2)dθ. (70)

Now, assume that μ is a concave function, μ′′ ≤ 0, and player i’s beliefs change from ξ1i (θ)

to ξ2i (θ), with ξ1i (θ) �2 ξ2i (θ), that is, θ1 is less volatile than θ2 meaning that θ1 �2 θ2, then
μ
(
θ1
) �2 μ

(
θ2
)
. Consequently, the inequality (70) is satisfied.
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