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Abstract Generating ecological production functions, including harvest yield functions,
is a high priority research area. Most yield functions used in economics and ecology rely on
convexity properties of species growth functions, but convexity is shown here to depend on
whether realistic biology is incorporated. Optimizing behavior by individual organisms is
connected with species population dynamics in order to derive growth functions in a general
equilibrium ecosystem model. Non convexities are shown to be an inherent property of the
growth functions owing to familiar biological processes including predator-prey and compet-
itive relations, predator satiation and prey substitution. The growth functions generate yield
functions that are problematic for management, because they exhibit kinked average revenue
curves, discontinuous marginal revenue curves, and knife edge optimum effort levels where
a small increase above the optimum effort can rapidly deplete the stock. These phenomena
can be explained entirely by the underlying biological processes.

Keywords Ecological production function · Non convexity · Ecology/economy
integration · Growth functions · Multi species · Animal behavior · Predator/prey ·
Satiation · Yield functions

1 Introduction

How ecosystem services contribute to human well being is becoming a principal question in
resource economics (Bateman et al. 2011). One of the greatest challenges to finding an answer
is integrating economic valuation functions with ecological production functions (National
Research Council 2005); generating the latter functions has become a high priority research
area (United States Environmental Protection Agency 2009). An important subset of eco-
logical production functions are harvest or yield functions. They are familiar to economists
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because they are central in renewable resource models; for example in fisheries, harvest func-
tions are needed to determine sustainable yields that balance ecological and social goals. In
fact, Roughgarden (1998) states that for managers: “the most important product for fishery
scientists to deliver is a process-based “production function” for a fishery…” (p. S161)

Harvest functions are derived from species growth functions that in ecology typically are
the starting point in dynamic population models. A crucial property of growth and harvest
functions is their convexity, and whether the feasible combinations of inputs (human harvest-
ing effort) and outputs (biomass yields) form a convex set. In most of the economics literature,
harvesting models employ simple growth functions, especially the logistic growth function, in
which the technology is convex. Convexity is convenient because efficient allocation mecha-
nisms are obtainable using a price system; non-convexities are inconvenient because resource
allocation mechanisms in most non-convex environments are poorly understood (Dasgupta
and Mäler 2004). The purpose here is to examine convexity properties of species growth
functions that are explicitly or implicitly used in the ecological and economic literature, and
to show how convexity depends on whether realistic biology is incorporated.

Although most growth and yield functions employed in economics are convex, a notable
exception is the case of critical depensation (Clark 1976; Dasgupta and Mäler 2004). Also
most models apply to a single species in a single patch, although Smith (2004) explores
growth and yield functions for multiple patches and discusses implication of nonconvexities.
Multi-species models based on Lotka (1925) and Volterra (1926) are the cornerstone of spe-
cies relationship theory, and they have been used in economics albeit sparingly (Tschirhart
2009). The underlying growth functions in Lotka-Volterra (LV) models are often convex.
Additionally, the models rely on species-level interactions; hence, they are macro in scale
with little recognition of micro behavior by individual animals. Consequently, the biology
that may give rise to any non convexities is not discernable.

An alternative to single and multi-species LV models is to connect optimizing behavior by
individual organisms with species population dynamics from which growth functions can be
derived. In ecology, most studies employing optimum foraging ignore population dynamics
and most studies of population dynamics ignore optimum foraging (Abrams 1999). But there
are models that connect individual optimization and species dynamics, and they have been
linked to general equilibrium economic models to show how economic and ecological sys-
tems are jointly determined (Eichner and Pethig 2005, 2009; Finnoff and Tschirhart 2008).
Following this connected approach, a general equilibrium ecosystem model (GEEM) is used
below to derive growth functions. Non convexities are shown to be an inherent property of the
growth functions owing to familiar biological processes including predator-prey and compet-
itive relations, predator satiation and prey substitution.1 The growth functions generate yield
functions that are problematic for management, because they exhibit kinked average revenue
curves, discontinuous marginal revenue curves, and knife edge optimum effort levels where
a small increase above the optimum effort can rapidly deplete the stock. These phenomena
can be explained entirely by the underlying biological processes.2

Developing yield functions that admit more detailed biological processes is important,
too, because ecological systems that contain harvested species may cease to function in the
same manner after one or more species’ populations are reduced (Redford and Feinsinger
2001). As demonstrated with GEEM, animal behavior that determines diet selection and

1 Eichner and Pethig (2003) employ individual behavior to derive difference equations for species growth,
and they find that satiation is ‘highly consequential’ for species dynamics.
2 Similarly, Swallow et al. (1990) show how biophysical processes create non convexities in timber harvest
functions.
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underpins growth functions changes with changes in predator and prey densities, which then
modifies the growth functions upon which harvest management is based.3

In the following section familiar properties of single species growth functions are reviewed,
followed by properties of LV models in Sect. 3. Section 4 is a brief discussion about incor-
porating animal behavior into developing growth functions, and a theory of one approach to
incorporation is in Sect. 5. Section 6 is an application of the theory for an Alaskan marine
food web, followed by concluding remarks in Sect. 7.

2 Single Species Growth Functions

To fix ideas and notation, start with the familiar single-species logistic growth and a standard
Shaffer harvest production function:

Ṅ = F(N ) − H(E, N ) = r N (1 − N/K ) − q E N (1)

F(N ) is the growth function, H(E, N ) the harvest function, N is the population density, r
is the birth minus mortality rate and K is the carrying capacity. The last term is harvest as a
function of human effort, E , and species density, where q is a catchability coefficient. Using
the growth function and constant harvests, the production function can be constructed show-
ing harvest as a function of effort (Hartwick and Olewiler 1998). Both population growth
as a function of density and harvest as a function of effort are strictly concave, symmetric
shapes, and the production set is convex.

There are numerous other forms for single species growth (May and Oster 1976). For
example, there is the discrete Beverton and Holt (1957) stock recruitment curve:

N t+1 − N t = N t

[
r

1 + r−1
K N t

− 1

]
(2)

that yields a strictly concave function although not perfectly parabolic as with the logistic,
and a production function similar to the logistic. Another form from Moran (1950), Ricker
(1954) and other authors is:

N t+1 − N t = N t
[
er(1−N t ) − 1

]
(3)

which plots as in Fig. 1. For values of r < 2 both growth and production functions are strictly
concave, whereas for r > 2 the growth function only exhibits non convexity. For the growth
functions in (1–3) d(F(N )/N )/d N < 0, or per capita growth is decreasing which is a feed-
back that controls the population (Clark 1976). As density increases with Beverton-Holt the
decreasing per capita growth never reaches minus one and the population does not go to zero.
This is referred to as compensatory growth. For the growth functions in (1) and (3), however,
per capita growth reaches minus one at high densities, and the population goes to zero. This
stronger feedback is referred to as overcompensatory (Clark 1976).

Single species growth functions for which d(F(N )/N )/d N > 0 over a range of N ∈[
0, N ′] where N ′ < K are said to be depensatory. Over this range the growth function is non-

convex as shown in the top left panel of Fig. 2, and it generates multiple harvest equilibriums.

3 Over time harvested fish stocks undergo changes in individuals’ sizes, ages and fertility (Murphy 1967;
Borisov 1978; Garrod 1988), because harvesting induces artificial selection that impedes natural selection and
causes rapid evolution of commercial stocks (Edeline et al. 2007). Such artificial selection can dramatically
lower yields and calls for an evolutionary approach to management that incorporates more biological behavior
(Law 2000).
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Fig. 1 Growth and production functions for Ṅ = N [er(1−N ) −1] with r = 1.5 in the top panels and r = 3.5
in the bottom panels. The harvest function is qEN with q = 1
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Fig. 2 Growth and production functions for depensation in the top two panels for the growth func-
tion .1(.5N (10N − N 2) + .8N , and critical depensation ((4) in the text) in the bottom two panels with
r = 0.2, Ko = 2, and K = 10. The harvest function is qEN with q = 1

Critical depensation refers to growth functions that exhibit an Allee effect implying there is
some positive minimum population below which the species will become extinct. A common
justification for an Allee effect is difficulty finding mates at small densities, although other
justifications are offered such as the need for a minimum group size to rear offspring or feed.
There are many functional forms for Allee effects (Boukal and Berec 2002), including the
one used in Clark’s classic work (1976):
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Biology as a Source of Non-convexities in Ecological Production Functions 193

Ṅ = r N (N/Ko − 1)(1 − N/K ) (4)

Function (4) is shown in the bottom left panel of Fig. 2; for densities below N = Ko = 2 the
species is doomed to extinction. The growth curve is strictly convex for densities 2 ≤ N ≤ 4.
The dashed curves in both right panels represent unstable equilibrium harvests and corre-
spond to the strictly convex portions of the growth curves in the left panels. The curves in
both systems exhibit hysteresis, and the critical depensation system exhibits irreversibility
(Clark 1976).

3 Growth Functions in Two-Species Lotka-Volterra Models

Single-species models collapse the ecosystem into the single parameter K ; they do not
account for the myriad ways that species interact within ecosystems. Adding a second species
to the modeling admits more biological realism. Relationships between interacting species
are categorized by how the species impact one another. Predator-prey (predator gains, prey
loses) and competition (all species lose) receive the most attention. Ecological models of
these relations usually contain two or three species, rarely are they extended to many species,
and they start with a population-growth function for each species. A simple structure for the
LV predator-prey model is:

Ṅ = r N (1 − N/K ) − bP N

Ṗ = a P N − d P (5)

where N and P are the prey and predator densities, respectively.4 The prey has self-limit-
ing growth dictated by the logistic form and d is a predator mortality rate (in each other’s
absence prey would grow to K and the predator would decline to zero). Terms a and b are
rates of change due to the interactions. The interaction, PN, is called mass action, a notion
borrowed from chemistry that the force between two reactants is proportional to their masses.
In essence, an amount of biomass, bNP, is taken from the prey species of which aNP is cap-
tured by the predator species. The rate at which predators capture prey is bN and is called the
functional response. In (5) the functional response, which is refereed to as a Holling Type I
response, is linear in prey density.

To generate a growth curve from (5), the procedure is to harvest the predator at a constant
effort in the LV equations. As long as effort is not too large, we obtain prey and predator
equilibriums as functions of E . These are steady states, and for constant E the same harvest
can be taken each period without changing the prey and predator densities. But this means
that the harvest is the growth which yields a function of P for a growth curve, and a function
of E for the harvest production curve.

Formally, the procedure is as follows. Define

G̃(N , P) = Ṅ = r N (1 − N/K ) − bP N

F̃(N , P) = Ṗ = a P N − d P (6)

and setting G̃(N , P) = F̃(N , P) = 0 will yield no-harvesting equilibrium values N∗∗ > 0
and P∗∗ > 0 for a predator and prey coexistence state. Now append the functions in (5) by
harvesting the predator using again the Shaffer harvest function and define the new functions:

4 In the original LV equations, the prey growth rate in the predator’s absence was exponential instead of self
limiting as in (5). The original model predicted continuing oscillations and behavior based on initial condi-
tions. Adding self-limiting growth is more realistic and leads to stability and behavior independent of initial
conditions.
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Fig. 3 Growth and harvest curves for LV equations and Holling Type I functional response. Taken from
Ragozin’s and Brown’s system: Ṅ = N (c − d N ) − β P N and Ṗ = P(a − bN ) − αP N with parameters:
a = 36, b = .88 × 10−8; c = .35; d = .35 × 10−8; α = .35 × 10−8; β = .12 × 10−8. For easier reading,
all units on both axes in the left panel have been divided by 1 × 106. The harvest function is qEN with q = 1

G(N , P; E) = r N (1 − N/K ) − bP N

F(N , P; E) = a P N − d P − q E P (7)

Setting G(N , P; E) = F(N , P, E) = 0 will yield the steady state or equilibrium prey and
predator densities as functions of effort:

N∗(E) and P∗(E) (8)

Using (8), harvest or q E P∗(E) can be plotted as a function of effort which is done below
for specific LV equations. Inverting N∗(E) yields

E(N∗) (9)

and using (9) in P∗(E) we get P∗(E(N∗)) which can be inverted to obtain

N∗(P∗) (10)

Substituting (10) into F̃(N , P) from (6) yields growth, F̃(N∗(P), P), that can be plotted as
a function of P which is also done below.

Economists have used the LV predator-prey model with Type I functional response in
which either the predator, prey, or both are harvested (Hannesson 1983; Ragozin and Brown
1985; Wilen and Brown 1986; Ströbele and Wacker 1991; Hartwick and Olewiler 1998;
Brown et al. 2005), or neither is harvested but the predator density is controlled (Tu and
Wilman 1992). For (5), the classic LV predator prey equations with Holling Type I response
yields growth and harvest functions similar to the single-species logistic growth function.
Ragozin and Brown (1985) modify system (5) by giving the predator self-limiting growth; the
growth and harvest production functions are shown in Fig. 3. Both the growth and production
functions exhibit well-behaved, parabolic curves and the technology is convex.

In three leading ecology journals from 1996 to 1999, of the 45 papers published on
predator-prey relations, 27% of them used a Holling Type I linear response (Skalski and
Gilliam 2001). However, the type I response omits important predator activities; in partic-
ular, real responses will depend on how predators expend time to capture and handle prey,
and whether they are satiated. Consumption of prey per predator cannot rise without limit in
proportion to the prey density. To account for this consider:
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Ṅ = r N (1 − N/K ) − b(N )P

Ṗ = cPb(N ) − d P (11)

where b(N ) is the functional response (Berryman 1992). Two popular extensions of the Type
I response are the Holling Type II and Type III:

(II) b(N ) = m N

a + N
and (III) b(N ) = m N 2

a2 + N 2 (12)

where m is a maximum attack rate and a is a half-saturation constant (b(a) = m/2). In papers
from the three leading ecology journals, 69% used a Holling Type II response which exhib-
its decreasing marginal consumption of prey per predator.5 Using Type II, adding predator
harvests, and rewriting (11) gives:

Ṅ = r N

(
1 − N

K

)
− m P N

a + N

Ṗ = cm N

a + N
− d P − E P (13)

Depending on the parameter values, coexistence of the predator and prey populations is
either unattainable or attainable with either a stable steady state or with limit cycles. Inter-
estingly, larger values of the prey carrying capacity, ceteris paribus, lead to the limit cycles,
a phenomena referred to as the paradox of enrichment. Using an example from Gurney and
Nisbet (1998), Fig. 4 shows the growth and harvest functions for two values of prey carrying
capacity in the upper and lower panels, with all other parameters in (13) the same. Gurney
and Nisbet (p. 163) derive the range of prey carrying capacities that produce stability with no
harvesting, E = 0. Adding harvesting simply adds another source of mortality in (13), and
the authors’ range for stability can be written in terms of effort for a fixed carrying capacity:

cm(K − a)

K + a
− d ≤ E ≤ cmK

K + a
− d (14)

For example, in the upper panels in Fig. 4, K = .7 and (14) becomes −.188 ≤ E ≤
.106 so that any positive level of effort less than .106 will yield stability. This is illustrated
in the upper right panel. Alternatively, in the lower panels K = 2 and stability requires
.067 ≤ E ≤ .233. In the bottom left panel the linear effort line represents the smallest
constant harvest, E = .067, that yields stability, while in the bottom right panel the dashed
(solid) curve represents effort values that yield oscillatory (stable) behavior. Thus the system
in the upper panels is stable in the absence of harvesting, whereas the system in the lower
panels is unstable without harvesting, and can only be stabilized if effort levels are at least
.067. In effect, harvesting can offset instability owing to the paradox of enrichment.

Another extension of the LV equations introduces diet selection into the dynamics by
adding a second prey species (e.g., Fryxell and Lundberg 1998). Consider a one predator-
two prey system where the predator consumes quantities of one or both prey species. The
predator’s functional response is given by the fraction term in the last line of (15):

5 In economics, Bulte and Damania (2003) use the Holling Type II functional response in the prey equation;
however, the predator equation exhibits logistic growth without the response. Under open access, they find
that if there are multiple equilibria, heavier predator harvesting can increase the prey density. Bulte (2003)
uses the Holling Type III functional response in an open access poaching model and finds multiple equilibria
and unexpected changes in species densities.
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Fig. 4 Growth and harvest curves for Holling Type II functional response. Parameters are from Gurney and
Nisbet for the system given by (13) sans the effort term. In all figures, r = d = c = .1, a = 1, m = 5, and
in the top panels K = .7 and in the bottom panels K = 2. Harvest is qEN with q = 1

Ṅ1 = r1 N1(1 − N1/K1) − αβ1 N1

1 + α(β1h1 N1 + β2h2 N2)
P

Ṅ2 = r2 N2(1 − N2/K2) − αβ2 N2

1 + α(β1h1 N1 + β2h2 N2)
P (15)

Ṗ = cP
e1αβ1 N1 + e2αβ2 N2

1 + α(β1h1 N1 + β2h2 N2)
− d P − E P

Only the predator is being harvested, both prey growths are self limiting with logistic growth,
c converts the rate of prey consumption to a rate of predator reproduction, and ei , hi , and
βi are the energy content of prey i , the handling time or the time it takes for the predator to
subdue and consume a unit of prey i , and the probability of attack against prey i, i = 1, 2,

respectively. There are multiple steady states including non existence for the predator and
one or both prey, although at least on prey must exist for predator existence. Under some
conditions (i.e. parameter sets that allow coexistence of predator and both prey), the system
in (15) shows for the predator a smooth, strictly concave growth curve and a convex harvest
technology similar to the single-species model in Fig. 1.

4 On Modeling Behavior

A substantial portion of bioeconomic modeling employs the single species growth functions,
and a substantial portion of ecological modeling employs the LV equations. With the excep-
tion of the depensation model, growth and harvest functions derived from the single species
and LV approaches exhibit convexity properties that are convenient for analysis, at least for
some parameter ranges. The issue here is whether the exhibited properties represent enough
real organism behavior to be relied on for creating trustworthy bioeconomic harvest poli-
cies. In this section, some reasons for suspecting that the models are less than behaviorally
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complete are indicated, followed in the next section by an alternative modeling approach that
relies more on individual behavior.

Clearly, extending the single-species models to two and three species LV models admits
more biological detail; what is less clear is the behavior that underlies the details. Ecosys-
tem properties ultimately are determined by individual organism behavior, but LV equations
begin at the species population level which can mask individual behavior. As Eichner and
Pethig (2006) state:

“Choosing populations as basic endogenous variables amounts to disregarding the
transactions of individual organisms, fails to identify the types and scales of those
transactions and does not answer the question as to how the interaction of individual
organisms translates into population changes.” (p. 280)

The LV models that introduce functional responses and diet choices in (13) and (15) define
the response as the predator per-capita consumption of the two prey. In contrast, ecologi-
cal foraging theory, which does not employ LV equations and does not produce dynamic
population adjustments, assumes individuals behave as if they maximize energy, or fitness
(Stephens and Krebs 1986). Individual predator maximization ought to produce the preda-
tor’s demand functions for prey that are the individual’s consumption. In other words, the
demand functions from optimal foraging should be the functional responses. But demand
functions should depend on parameters observable to the predator, in particular, the energy
profitability of searching for and consuming prey items.6 Functional responses in LV equa-
tions contain prey densities which in many cases are not observable to the predator. In fact,
in Holling (1959) original experiments that defined Type I, II and III responses, the predators
were blindfolded students who preyed on sandpaper discs laid out on tables, so the students
were unaware of prey densities. Obviously, functional responses that depend on densities are
very convenient because they can be inserted into the LV equations to produce population
dynamics. But as descriptions of real choice behavior they are at best proxies.

Implicit in (15) and in similar models, is that the predator is an optimal forager, and this
can be accomplished by maximizing the functional response. (See e.g., Gleeson and Wilson
1986.) But there are two problems with this approach. First, it again requires that the pred-
ator can observe the parameters in the response including densities. Second, the response is
defined to be the predator’s consumption of (or demand for) prey, but ideally the form of the
demand function should be determined from the predator’s optimization problem. The LV
equation approach, however, is to assume the form of the response at the outset. In effect,
the functional response is treated as a formula to be maximized instead of being the result of
a maximization process.

5 An Optimization Approach with Dynamics

5.1 An Economic Example

Before exploring a more behaviorally oriented approach to derive growth and yield functions,
consider the following simple, stylized economic model of a perfectly competitive industry.
The point will be to derive a growth function for the number of firms in the industry. Although
growth functions are not examined in economic models, the strictly convex shape of the curve

6 Stephens and Krebs (1986) cover foraging theory in depth. Individual predators optimize fitness by
maximizing net energy intake over times spent in various feeding grounds. Species densities do not enter
the problem; in fact, optimal foraging theory typically does not investigate dynamics.
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derived follows from familiar entry and exit conditions and a commonly used profit function
that is strictly-concave in output.

Assuming all firms are identical and price takers regardless of the number of firms, write
profit as:

π = (p − c)q − q2 − F (16)

where q is quantity, F is a fixed cost, p is the initial price that prevails when there are a
small number of firms in the industry, and c is a deviation from the price that responds to the
number of firms. The idea is that starting with one firm, n = 1, the price is p and the price
does not change as the number of firms grows until some competitive threshold is reached
at which time firm competition causes the price to deviate from p by c. The conditions for
equilibrium in the industry can be written:

∂π/∂q = p − c − 2q ≤ 0, q∂π/∂q = 0, q ≥ 0

nq ≤ D, c(D − nq) = 0, c ≥ 0 (17)

where D is a fixed market demand. The conditions define the number of firms at which
competition will impact price. When q < D/n, c = 0 and the firms are not competing to
supply their share of D so price remains p. But when c > 0, q = D/n and firms compete to
supply their share and more firms will drive down price through increases in c. (The reason
for introducing c and not changing p directly will become apparent below in the ecological
interpretation.)

Following Smith (1969), entry of new firms, or growth, is assumed to depend linearly on
profit. In discrete terms and using t for the time period, the growth is:

G (n) = nt+1 − nt = gntπ (18)

where g is a growth constant. The shape of the growth curve will depend on the signs of

∂G/∂n = g{n∂π/∂n + π} and ∂2G/∂n2 = g{n∂2π/∂n2 + 2∂π/∂n} (19)

where the time superscript is dropped.

Case 1: q > 0, nq < D → c = 0 and q̂ = p/2 where the hat notation indicates the opti-
mum. Because q̂ is independent of n, π is also independent so that ∂G/∂n = gπ and
∂2G/∂n2 = 0. Moreover, substituting q̂ into π yields ∂G/∂n = g[p2/4 − F] > 0.
The last inequality is assumed to hold otherwise profit is never positive and there
can be no growth.

Case 2: q > 0, c > 0 → q̂ = D/n and ĉ = p − 2D/n. Substituting q̂ and ĉ into (19)
yields:
∂G/∂n = g{−D2/n2 − F} < 0 and ∂2G/∂n2 = gD2/n3 > 0.

The result is a growth curve that is positively sloped and linear over small n and negatively
sloped and strictly convex over large n. The top left panel in Fig. 5 displays the shape,
although Fig. 5 is derived below for a species instead of an industry, so for an industry the
density on the horizontal axis would be the number of firms, n. Also, the shape of the strictly
convex portion depends on the signs ∂ ĉ/∂n > 0 and ∂2ĉ/∂n2 < 0; or if c is interpreted as a
measure of competition, then competition is strictly concave in c. These features carry over
in the following ecological model.
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Fig. 5 Growth curves for crabs, flatfish, arrowtooth flounder and Pacific cod that have one, two, three and
five prey species in the model, respectively. Bottom left panel also shows an approximate logistic curve. One
unit of density is I individuals per km2 of surface water where I = 100 for crab, 1,000 for flatfish, 1 for
arrowtooth and 100 for cod

5.2 Predator Optimization

Returning to ecological growth functions, consider one predator and one prey species and
assume all individuals are identical within a species. The prey is indexed by 1 and the predator
by p. The objective functions of representative individuals in each species and a feasibility
condition are:

R1 = (e0 − e10)x10 − f1(x10) − b1 − e1 y1(x10)

Rp = (e1 − ep1)x p1 − f p(x p1) − bp

Npx p1 ≤ N1 y1(x10) (20)

In the prey objective function on the first line, the first term on the right side is the inflow of
energy to an individual in the prey species from its own prey (the prey’s prey is not being
modeled here). The choice variable or demand is x10 which is the biomass consumed by the
prey. The e0 is the energy embodied in the biomass of a unit of the prey’s prey, and e10 is
the energy spent capturing the unit. This latter energy is essentially an energy cost or price;
there is one price in each predator and prey relation.

The second and third terms in the prey objective function represent respiration energy
lost to the atmosphere. Following Gurney and Nisbet (1998) respiration is divided into a
variable component, f1, that depends positively on biomass consumption (∂ f1/∂x10 > 0)

and includes reproduction, maintenance, defending territory, etc., and a fixed component or
basal metabolism, b1. The fourth term is the outflow of energy to the predator species 2.
The e1 is the embodied energy in a unit of prey biomass and y1 is the biomass the prey is
“willing” to supply to the predator in species 2. The biomass supply function depends on the
prey individual’s demand, because the more the individual feeds, the more it is exposed and
the more biomass it is “willing” to supply to predators. This tradeoff between foraging gains
and losses is a result of predation risk (Lima 1998).
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The second line in (20) is an individual predator’s objective function and the terms have
similar interpretations as in the prey objective function. Note the predator’s objective func-
tion is analogous to the firm’s objective function given by (16). The predator chooses an
optimum biomass to consume of the prey species, x p1. The marginal cost of searching for
and capturing a unit of that biomass is ep1. The predator is assumed to be a top predator so
there is no predation term as there is in the prey objective function. The third expression in
(20) is a feasibility condition; the total biomass consumed by all individuals in the predator
species cannot exceed the total biomass all individuals in the prey species are willing to lose
to predation.

Initially, to make this model as similar as possible to two-species LV models, the prey is
assumed to not solve a maximization problem so x10 is fixed. Therefore, also fixed is the
supply of an individual prey to predators, y1(x10). This is comparable to a predator-prey LV
model since the predator consumes the prey, but the prey does not consume its own prey. The
prey is basically passive for now. (Bringing in the prey’s prey, and the prey’s prey’s prey, etc.
is straightforward in the GEEM framework (Tschirhart 2000, 2004).)

The Kuhn-Tucker conditions for a predator maximum are:

∂ Rp/∂x p1 = e1 − ep1 − ∂ f p/∂x p1 ≤ 0

[∂ Rp/∂x p1]x p1 = 0 x p1 ≥ 0 (21)

Npx p1 − N1 y1 ≤ 0

ep1[Npx p1 − N1 y1] = 0 ep1 ≥ 0 (22)

The conditions imply that if the predator consumes a positive quantity, x p1 > 0, then the mar-
ginal energy gained from a unit of prey biomass equals the marginal energy lost to searching
for the unit of prey biomass plus the marginal energy lost to variable respiration. Alterna-
tively, if the derivative is negative at the optimum, the predator consumes zero. The derivative
is negative if e1 ≤ ep1; thus a necessary condition for the predator to consume at all is that
the energy in a unit of prey biomass exceeds the energy search cost.

Condition (22) implies that if the predator’s marginal cost of searching is positive, then
the biomass demanded by the predator equals that supplied by the prey. Alternatively, if the
predators’ demand is less than what the prey is willing to supply, then the energy price to the
predator is zero, or ep1 = 0. The case of demand less than supply is important. Essentially it
is saying that the predators are satiated, because even though the marginal cost of predation
is zero, they are not consuming all that the prey is willing to supply. The idea is rather simple.
Satiation, as will be seen below, occurs when the predator/prey density ratio is relatively
small so there is abundant prey available per predator and the predators satiate themselves.
The cost term then is a way to measure satiation, when it is zero there is satiation in the
prey, when it is positive the predator is not satiated. The larger is ep1 the less the predator
consumes. (Of course, searching is never zero or costless, but we could define a minimum
cost that is some positive value and subtract it from e1 without changing the main points.)

Each time period, for constant densities, conditions (21) and (22) are sufficient to solve
for an x p1 and ep1. A simple comparative statics exercise reveals that:

∂ep1/∂ N1 < 0 and ∂ep1/∂ Np > 0 (23)

Increased prey density decreases the predator’s search cost, and increased predator density
increases the predator’s search cost (owing to more interference competition).

In each time period, the optimum net energy is found by substituting the x p1 and ep1 into
the predator’s net energy function in (20). The predator density growth is assumed to depend
on the optimum net energy earned in the period, similar to the way that industry growth in
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the economic example depended on the firms’ profits. The idea is the optimum net energy
is what determines the foraging success of the individuals, and therefore determines their
reproduction success or fitness. That fitness depends on maximizing net energy is consistent
with natural selection (Pennycuick 1979).

The difference equation for population updating is derived as follows. In steady-state it
must be the case that births equals deaths in each time period, and if sp is the lifespan of the
representative predator, then the total number of births and deaths must be Np/sp . Dividing
the total by Np yields the per capita steady-state birth and death rates:

1/sp (24)

The predator’s maximized net energy in period t is given by

R̂t
p(xt

p1(e
t
p1(N̄ t )), et

p1(N̄ t )) = R̂t
p(·) (25)

which is obtained by substituting the predator’s consumption and energy cost into its net

energy objective function in (20), and where N̄ t =
(

N t
1, N t

p

)
. Consistent with the optimi-

zation problem, marginal search cost in (25) is written as a function of the densities and
consumption as a function of the marginal search cost. The problem has obvious similarities
to a competitive economic market in that the individual predator has no control over the price,
or marginal search cost, and takes it as given; at the same time the price is being determined
by the actions of all predators.

Reproduction requires energy and, by the definitions of the terms in (20), that energy is
contained in the variable respiration f p . Let f ss

p be the steady-state variable respiration, and
let v f ss

p be the proportion of this variable respiration devoted to reproduction. Thus, in steady
state the energy given by v f ss

p yields a per capita birth rate of 1/sp from (24). Next, suppose
the predator species is not in steady state and let variable respiration be f p . Assuming that
the proportion of R̂t

p(·) that is available for reproduction is the same as the proportion of
variable respiration available for reproduction, the energy available out of steady state for

reproduction is v
[

R̂t
p(·) + f p

]
. Finally, assuming that reproduction is linear in available

energy, then it follows that if v f ss
p yields a per capita birth rate 1/sp , then v

[
R̂t

p(·) + f p

]
yields a per capita birth rate of:

(
1/sp

) [
R̂t

p(·) + f p

]/
f ss

p (26)

Growth is obtained by multiplying the current density by the difference between the birth
and death rates, where the latter rate is assumed to be independent of energy available for
reproduction. Therefore, using (26), the density-dependent, growth equation is:

N t+1
p − N t

p = N t
p

[
1

sp

R̂t
p(·) + f p

f ss
p

− 1

sp

]

= N t
p

1

sp

[
R̂t

p(·) + f p

f ss
p

− 1

]
(27)

Expression (27) reduces to the steady state if R̂t
p(·) = R̂tss

p (·) = 0 (in which case f p = f ss
p ),

because the bracketed term is zero. Alternatively, R̂t
p(·) > (<) 0 implies that f p > (<) f ss

p ,
in which case density increases (decreases).
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5.3 Predator Growth Curve

Finally the growth curve can be derived. Since the curve is N t+1
p − N t

p as a function of N t
p ,

the shape of the curve can be ascertained from the derivatives of N t+1
p − N t

p with respect to
N t

p . Let �N = N t+1
p − N t

p and omitting the time superscript for brevity, substitute into (27)

for R̂t
p(·) from (20) and (25) to get:

�Np = Np
1

sp

[
(e1−ep1(N̄ ))x p1(ep1(N̄ ))− f p(x p1(ep1(N̄ )))−bp + f p(x p1(ep1(N̄ )))

f ss
p

−1

]

= Np
1

sp

[
(e1−ep1(N̄ ))x p1(ep1(N̄ ))−bp

f ss
p

−1

]
(28)

The first two derivatives, after dropping the function arguments, are:

∂�Np

∂ Np
= 1

sp

[
(e1 − ep1)x p1 − bp

f ss
p

− 1

]
+ Np

sp f ss
p

∂ep1

∂ Np

[
(e1 − ep1)

∂x p1

∂ep1
− x p1

]
(29)

∂2�Np

∂ N 2
p

= Np

sp f ss
p

[[
(e1 − ep1)

∂x p1

∂ep1
− x p1

]
∂2ep1

∂ N 2
p

−
(

∂ep1

∂ Np

)2 ∂x p1

∂ep1

]

+ 2

sp f ss
p

[
(e1 − ep1)

∂x p1

∂ep1
− x p1

]
∂ep1

∂ Np
(30)

The slope of the predator growth function is given by (29), and the concavity or convexity is
determined by the sign of (30).

Expression (29) has a clear interpretation. The first term on the right side is the per capita
growth or the growth contributed by one individual. The second term is a loss in growth
attributable to all the competing individuals. (The second term is negative by (23), down-
ward sloping predator demand,

∂x p1
∂ep1

< 0, and e1 ≥ ep1 otherwise the prey is not consumed
from (21) and (22).) When an individual joins the population, it adds to the competition
among the predators, which is measured by the increase in the marginal search cost of pre-
dation, ∂ep1/∂ Np . The increased cost implies less consumption for each predator and lower
net energy for reproduction. Less consumption is the predator’s version of a stock externality.
Adding another means more offspring are produced, but at the same time raises the cost of
predation to all predators which results in less offspring produced. Which effect dominates?
Since the second term contains Np , the larger (smaller) the population the more the nega-
tive (positive) effect will dominate, or the greater the likelihood that the growth function is
negatively (positively) sloped. However, without specific functional forms the sign of (29) is
indeterminate.

The sign of (30) is also indeterminate without specific functional forms. The first term on
the right side is positive, but the second term is negative. The positive first term requires:

∂2ep1/∂ N 2
p < 0 (31)

which follows from a comparative static exercise on (21) and (22) for x p1 > 0 and ep1 > 0.
Again, the greater is Np , the more likely the first term dominates yielding a strictly convex
growth curve. Inequality (31) along with ∂ep1/∂ Np > 0 have a sensible interpretation.
Recalling that ep1 is a measure of competition, the implication is that competition increases
with population growth but at a decreasing rate. (This was true for the economic example
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provided above.) For example, when a second predator is added to a lone predator the increase
in competition is greater than when an eleventh predator is added to a group of ten predators.

Although the signs of (29) and (30) are indeterminate generally, for the case of predator
satiation they are determinate if we assume no Allee effect at very small predator densi-
ties.7 Assuming satiation exists at small densities (which simulations using real data bear out
below), then ep1 = 0 and ∂ep1/∂ Np = 0. Substituting these values into (29) and (30) yields:

∂�Np/∂ Np = constant and ∂�2 Np/∂ N 2
p = 0 (32)

Per capita predator growth is constant and growth is linear in density.
To get definitive signs for the non satiation case, we will assume that the form of the

variable respiration is:

f p(x p1) = r x p1 + r x2
p1 (33)

where r is a constant scaling factor. Power functions arise often in ecology, and the first term
in (33) is included for generality; the scaling in both terms is assumed to be the same for ease
in finding numerical solutions. Using (33) in (21) and (22) and assuming that the solution
yields positive values for x p1 and ep1, we obtain:

x p1 = y1
N1

Np
and ep1 = e1 − r − 2ry1

N1

Np
(34)

Substituting these values into (29) and (30) yields

∂�Np/∂ Np < 0 and ∂�2 Np/∂ N 2
p > 0 (35)

implying that the non satiation section of the growth curve is negatively sloped and strictly
convex. The satiation case in (32) applies to lower predator densities while the non satiation
case in (35) applies to higher predator densities. The top left panel of Fig. 5 illustrates an
example of the resulting growth function. The function is linear from the origin to a density
of about 15, and strictly convex from 15 to the carrying capacity.

System (20) can be extended to two prey by adding consumption of a second prey, x p2,
with its associated energy search cost, ep2, expanding the predator’s variable respiration to
a quadratic form, and adding an objective function for the second prey and another market
clearing condition:

R1 = (e0 − e10)x10 − f1(x10) − b1 − e1 y1(x10)

R2 = (e0 − e20)x20 − f2(x20) − b2 − e2 y2(x20)

Rp = (e1 − ep1)x p1 + (e2 − ep2)x p2 − r(x p1 + x p2) − .5r(x2
p1 + x2

p2 + x p1x p2) − bp

Npx p1 ≤ N1 y1(x10), Npx p2 ≤ N2 y2(x20) (36)

7 Christiaans et al. (2007) include Allee effects in a model that also derives growth curves based on individual
optimization, although their individuals are analogous to utility maximizing human consumers as opposed to
profit maximizing firms used here. In some cases they derive a growth curve like that in the bottom right panel
of Fig. 2, but their curve is developed from micro principles instead of assumed as in most bioeconomic work.

123



204 J. Tschirhart

Following the same procedures used to obtain (29), the slope of the predator growth curve
can be derived:

∂�Np/∂ Np = 1

sp

[
{(e1 − ep1)x p1 + (e2 − ep2)x p2} − bp

f ss
p

− 1

]

+ Np

sp f ss
p

[
∂ep1

∂ Np

[
(e1 − ep1)

∂x p1

∂ep1
+ (e2 − ep2)

∂x p2

∂ep1
− x p1

]

+∂ep2

∂ Np

[
(e1 − ep1)

∂x p1

∂ep2
+ (e2 − ep2)

∂x p2

∂ep2
− x p2

]]
(37)

In comparing (37) to its single prey counterpart in (29), there are now cross-price effects
in that changes in the marginal search cost for one prey can impact demand for both prey.
Because ∂x pi/∂epj > 0, i, j = 1, 2, i �= j , the predator treats the prey as substitutes. More-
over, the presence of a substitute prey increases the likelihood that the growth curve will be
positively sloped over greater densities. For example, suppose at very low predator densities
a predator is satiated in both prey, and, owing to increased competition, as the populations
grows satiation turns to non satiation first for prey one and then for prey two. For densities
where the predator is non satiated for prey one but satiated for prey two, the last term in (37)
drops out because ∂ep2/∂ Np = 0. The remaining middle term on the right side is similar to
the negative term in (29) except that in (37) there is the additional cross price effect that is
positive.

6 Empirical Examples

6.1 Predator Consumption and Growth Curves

Shapes of growth functions will depend on the specific predator species and the number
and characteristics of the prey species. By way of example we construct a GEEM for an
eighteen component marine food web off Alaska displayed in Fig. 6. In food webs species
are often aggregated into components (Solow and Beet 1998), and here each component
is either a single species or a composite of multiple species. The model is age structured
only for pollock which accounts for two components: adult and juvenile. Earlier versions
of this Alaskan model with fewer components have been described elsewhere (Finnoff and
Tschirhart 2003a,b, 2008).8 GEEM uses real data on species densities, consumptions and the
physiological parameters described above for ecosystems comprised of plants, invertebrates,
fish and mammals. There are sixteen predators in Fig. 6, nine of which pursue multiple prey.
Prey selection by predators change with relative densities and at some densities certain prey
may be eliminated completely from the diet as in Owen-Smith and Mills (2008).

In deriving growth curves, all predators and prey are active in that no prey species con-
sumption is held constant as was done in the partial equilibrium analysis for (20). A growth
curve for species k is derived by holding its density constant at any level below its carrying
capacity, and then simulating the system to allow all other species to reach a steady state.
Then the system is run for one more period and the density change in species k is recorded
as the growth. The four panels in Fig. 5 show the growth curves for four predators: crab (a

8 Other applications of GEEM include foodwebs for the Neus River estuary (Finnoff and Tschirhart 2010),
an unprecedented California rodent invasion (Kim et al. 2007), and cattle grazing and elk harvesting on US
rangelands (Hussain and Tschirhart 2010).

123



Biology as a Source of Non-convexities in Ecological Production Functions 205

sea urchin

sea otter

killer whale

adult pollockPacific cod

Northern fur seal

sperm whale

herring

zooplankton

phytoplankton kelp

sun

juvenile pollock

detritus

small 
flatfish

 crab

benthos

blue whale

sea lion

cod

crab

detritus

01

02

04

03

05

06 07

08

09

1011 12

13

14

15

16

17

18

99

arrowtooth flounder

Fig. 6 Food web of an Alaskan near-shore and off-shore marine ecosystem

composite of snow and king crabs), flatfish (a composite of yellowfin sole, flathead sole and
Alaska plaice), arrowtooth flounder and Pacific cod.

All curves begin with a linear segment from the origin where the predators are satiated
in all their prey. Then the curves move into piecewise-connected, strictly convex segments.
Each connection point corresponds to a density where the predator transitions from predator
saturation to non saturation in one of its prey. The crab, flatfish, flounder and cod have one,
two, three and five connection points, respectively, corresponding to their number of prey as
shown in the food web in Fig. 6. Kuhn-Tucker conditions can be used to explain the order of
prey over which the predator transitions from being saturated to non saturated as its density
increases. For example, arrowtooth (index 14, see Fig. 6) consume adult and juvenile pollock
and zooplankton, and the non saturation order is adult pollock (N14 = 58), juvenile pollock
(N14 = 146) and zooplankton (N14 = 183). For small arrowtooth densities to the left of
N14 = 58 the following Kuhn-Tucker conditions apply:

N14x1402 < N02d0214(x0201 + x0299)
.5 ⇒ e1402 = 0

N14x1404 < N04d0414(x0402 + x0415)
.5 ⇒ e1404 = 0 (38)

N14x1415 < N15d1514x .5
1502 ⇒ e1415 = 0

e02 − r14 − .5r14(2x1402 + x1404 + x1415) = e1402 = 0

e04 − r14 − .5r14(2x1404 + x1402 + x1415) = e1404 = 0 (39)

e15 − r14 − .5r14(2x1415 + x1402 + x1404) = e1415 = 0

Conditions (38) imply that arrowtooth demands for all three prey, zooplankton (02), adult
pollock (04) and juvenile pollock (15), are less than what these prey species are willing to
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supply at the prevailing levels of predation risks. Accordingly the energy costs to arrowtooth
are all zero. Arrowtooth satiation in zooplankton implies from the first expression in (39)
that the individuals consume zooplankton biomass to the point where the marginal respi-
ration cost of consuming more biomass equals the marginal energy gain, e02. The second
two expressions are similar for adult and juvenile pollock prey. Along the linear segment in
the lower left panel of Fig. 5, the consumptions of both pollock prey (not shown) are equal
and greatly exceed consumption of zooplankton, because pollock energy content exceeds
that of zooplankton. Individual arrowtooth in this range are earning positive net energy and
arrowtooth density is increasing as per (27). With increasing arrowtooth density, the left sides
of (38) are increasing while the right sides change very little, and eventually the left side of
the adult pollock expression is the first to become equal to its right side. At this point, ar-
rowtooth is no longer satiated in adult pollock and e1404, the energy cost of consuming adult
pollock, turns positive along the first strictly convex segment in the lower left panel. Thus,
adult pollock is the first prey item for which the arrowtooth become non satiated, and the
reason is related to the density and consumption of adult pollock. Generally, a prey species
with higher density and consumption, the latter which means higher predation risk, will be
further up in the prey ordering for which the predator becomes non satiated.

The points of connection between segments in the growth curves correspond to substantial
predator substitution. Consider for example the cod consumption patterns in Fig. 7 where the
cod growth curve is reproduced and below it are the individual cod’s consumptions of its five
prey as indicated. For low cod densities below N13 = 0.58 where intraspecific competition is
minimal, the individual cod are satiated in crab, adult and juvenile pollock and flatfish, and do
not prey on benthos at all. Benthos are the least nutritious in terms of energy content, and with
no competition for the other species, the marginal energy gain from consuming benthos is
less than the marginal energy loss to respiration and cod predators. Beginning at N13 = 0.58,
the cod density is sufficiently high to generate intraspecific competition for juvenile pollock
which drives positive the energy cost of consuming juveniles. In the bottom panel then, each
cod substitutes away from the costly juvenile to the ‘free’ adult pollock, crab and flatfish.
Although the decreased kg consumption of juvenile exceeds the increased kg consumption
of adult pollock, crab and flatfish combined. Generally, as densities increase across Fig. 7
after the point at which the predator is no longer satiated in all prey (e.g., N13 = 0.58),
consumption totaled over all prey species is decreasing simply because at least one energy
cost is increasing, and the others are constant at zero.

At N13 = 1.35, the greater cod density generates intraspecific competition for crab and the
cod substitute away from crab, and continue to substitute away from juvenile, to the remaining
free species, adult pollock and flatfish. Moreover, cod begin to feed on benthos. Benthos are
now desirable prey because total cod consumption is smaller; therefore, the marginal energy
loss to respiration and predation has fallen below the marginal energy gain from consuming
benthos. At N13 = 1.90 and N13 = 2.45, intraspecific competition for adult pollock and
flatfish commence, respectively, and again the cod substitute away from these prey. Finally,
at N13 = 3.25 intraspecific competition for benthos commences, and the cod are no longer
satiated in any prey. There is no more substitution and the cod consumptions of all prey
decrease proportionately. Alternatively, from the other direction if cod density is started at
its carrying capacity and forced to decrease, consumptions of all five prey increase because
intraspecific competition is lessening. At N13 = 3.25 the cod become satiated in benthos
first, because benthos offer the least energy nutrition. Consumption of benthos declines as
cod substitute to the other four prey.

To further appreciate the strict convexity of the growth curves, consider again arrowtooth
in Fig. 5. As arrowtooth density increases, abrupt changes occur in the growth rates around
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Fig. 7 Cod growth and cod consumption (kg) of its five prey (crab-red, adult pollock-brown, juvenile pollock-
green, flatfish-black, benthos-blue) as functions of cod density. One unit of cod density is 100 individuals per
km2 of surface water. Consumption is kilograms of prey biomass per unit of cod per year

the connection points where an individual becomes non satiated in one of its prey species.
These changes follow from the convex shapes of the segments that imply when growth is
increasing in density it is at an increasing rate, but when it is decreasing in density, it is at
a decreasing rate. Where the growth function is positively (negatively) sloped, to the left
of a connection point the growth rate is increasing faster (decreasing slower) than to the
right of the point. At a connection point, a prey species that was ‘free’ turns costly when the
predator’s marginal search cost for the species moves from zero to positive, and the predator
substitutes to greater quantities of other prey that theretofore had been less desirable than the
quantities of the free species. This has the effect of slowing down positive rates of growth
and speeding up negative rates of growth around connection points. Also, as shown above,
from (31), convexity can be linked to competition for prey increasing in predator density at
a decreasing rate. Competition for a prey is measured by the cost of capturing the prey, so
the search cost for prey is concave in predator density. Therefore, as competition increases
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with density, each additional competitor places an ever decreasing drag on existing predator’s
success in gathering net energy. When species growth is increasing in density, the net energy
earned by individuals is decreasing but at a decreasing rate so total growth is increasing at
an increasing rate. The opposite effect occurs when species growth is decreasing.

Pollock growth curves can be derived as well although they are omitted here since space
does not permit presenting the method used for age-structuring. Briefly, the curve for adult
pollock exhibits a strong Allee effect like that shown in the bottom panels of Fig. 2. The
interaction between the adult and juvenile populations is complicated, but basically at small
adult densities there are too few hatches and, therefore, too few juveniles to provide recruits
to compensate for adults lost to predation and old age. Positive growth for adults requires
higher adult densities and more hatches, less predation including cannibalism on juveniles,
and greater levels of recruitment.

6.2 Yield Curve Nonconvexities

For illustration, constant effort strategies are employed to harvest arrowtooth flounder using
its growth curve from Fig. 5. Arrowtooth harvest is H14 = αE14 N14 where E is effort and
α = 1. The top panel of Fig. 8 shows the harvest, and assuming price of a unit of arrowtooth
is one, the harvest is also total revenue. In the bottom panel average and marginal revenues
are plotted along with one marginal cost curve.

Yield increases steadily over the range of effort levels from E14 = 0.0 to E14 ≈ 0.169
where the latter corresponds to the peak of the arrowtooth growth curve in Fig. 5 where
N14 ≈ 145. Over this range as arrowtooth density decreases from carrying capacity, arrow-
tooth transition from being non satiated in all prey to non satiated in zooplankton only at
N14 ≈ 183. The transition creates a kink in the yield curve at E14 ≈ 0.115 that in turn creates
a kink in the average revenue curve and a discontinuity in the marginal revenue curve. Below
N14 ≈ 145 arrowtooth become satiated in juvenile pollock as well as zooplankton, and yield
begins to fall rapidly with further effort. For effort levels above E14 ≈ 0.23 the arrowtooth
population crashes; E14 ≈ 0.23 is slightly above the arrowtooth growth rate along the linear
segment of the growth curve where arrowtooth is satiated in all three prey. Because a species
that is satiated in all prey exhibits density independent growth (∂�N/N∂t = constant), there
is no effort level that will produce a harvesting steady state. Essentially, if individuals in the
harvested species are satiated in all their prey, further reductions in the species population will
not give individuals any further competitive advantage in hunting prey. The individuals are
earning their maximum net energy and the species is at its maximum growth rate; sustained
harvest effort levels that exceed this growth rate will drive the population to extinction.

The non convexity of the yield production function has important implications for har-
vesting strategies. Five of them are:

(1) With the logistic or most other single species growth functions, the yield function is
strictly concave and marginal revenue over effort falls to zero at maximum sustained
yield (MSY). Static efficiency requires MR = MC and for MC > 0, the optimum
effort must fall left of MSY effort. The optimum MR can be very small, and optimum
MR → 0 as MC → 0. For the yield curve generated above, optimum MR > 0 and
may be large at MSY. Thus, using a decreasing MR as a signal for approaching MSY
may not be useful.

(2) The discontinuities in the MR curves imply ‘sticky’ optimum efforts. That is, MC may
change significantly, say within the gaps below points b′or c′ in Fig. 8, without chang-
ing the optimum effort. (See Bulte 2003) for kinked harvest curves in an LV Holling
Type III model.)
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Fig. 8 The yield function for the arrowtooth predator in the top panel where yield is in units of 1 individual
arrowtooth per km2 of surface water. The bottom panel shows average revenue and marginal revenue and cost
curves. The bottom panel uses the same horizontal axis as the top panel, and the dot-dash lines in bottom
panel are average and marginal revenues from logistic growth in the bottom left panel of Fig. 5

(3) In Fig. 8, point eoa represents an open access equilibrium and point eo the optimum equi-
librium for the same marginal cost. Rationalizing the fishery to move from the former
to the latter equilibrium by lowering effort will produce efficiency gains as expected;
but unexpectedly, the gains initially are increasing in effort reductions, because of the
positively sloped, negative portion of MR in Fig. 8. Once point c′ is reached, gains
from further effort reductions fall off abruptly. In other words, reducing effort yields
rapidly increasing rents initially, but then the rent gains fall off sharply.

(4) A logistic growth curve for arrowtooth is shown as the dashed curve in the bottom
left panel of Fig. 5. The curve is constructed using the same carrying capacity and
maximum growth rate as found for the GEEM-generated curve. In Fig. 8 the average
and marginal revenues associated with the logistic growth are plotted as the dashed-
dotted curves. Comparing the open access (AR = MC) and optimum (MR = MC)
equilibriums, the logistic optimum calls for greater effort than the GEEM optimum,
and the logistic open access indicates an effort that would crash the population. Basi-
cally, based on Fig. 5, the logistic growth curve shows more robust growth than its
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GEEM counterpart; therefore, it rationalizes greater effort levels. Another important
difference not shown is that a single-species logistic-growth analysis would rely on a
stationery growth curve and an unchanging carrying capacity. But the GEEM growth
curves and carrying capacities will change as human activities change. For example,
we can show that if the zooplankton steady-state density were to decrease by 10%,
perhaps owing to ocean acidification or climate shifts, the arrowtooth growth curve
would shrink slightly with a 7% small carrying capacity.

(5) The growth curve for a predator with numerous prey would be constructed from many
piecewise, non linear segments. (See for example the growth curve for cod with five
prey in the model versus the growth curve for crab with one prey.) Consequently, in
fishery management using the logistic or other familiar growth functions may be good
approximations for species with many prey, but potentially ruinous for species with
few prey.9 For the one-prey crab from Fig. 5, the yield function would be increasing
from the origin and strictly concave up to the MSY effort level, after which it falls off
vertically. Thus, at MSY effort the fishery may be very productive with MR substan-
tially exceeding MC, yet a small increase in effort could collapse the stock. Such rapid
response of stock density to increasing effort was observed in the infamous 1992 col-
lapse of the northern cod off Newfoundland, once the world’s largest stock (Hutchings
1996).

7 Concluding Remarks

Bioeconomic fishery models focus on human behavior and incentive structures, but the sim-
ple descriptions of the biology can lead to incorrect conclusions as demonstrated here. This
is true in the absence of uncertainty; including uncertainly may add to the errors in the simple
ecology models, but adding uncertainty to GEEM would be difficult and beyond the present
reach of this paper. Some ecological models of fisheries include considerably more biologi-
cal detail, although they typically are weak in depicting human behavior (See Whipple et al.
2000) for a review of ecological models.) However, all of these ecological models ignore
optimizing behavior by individual organisms so that explaining the shape of growth func-
tions based on the mechanistic representation of predator-prey and competitive relationships
is problematic. Accordingly, the techniques employed in GEEM may be useful to adapt to
current ecological and bioeconomic models.

This paper shows how non convexities in harvest production functions and the economic
implications can be tied to specific biological behavior by individuals in a food web. The
harvested species all have been predators, although this is not limiting; all species, including
small forage fish such as sardine or herring, are predators of something and would be har-
vested similarly. Predators are assumed to behave as if they are optimizers responding to price
signals, which is consistent with optimum foraging theory in ecology. Satiation and predator
substitution among prey are shown to be central in determining growth rates and yields.
Basically, harvesting reduces stock density and thereby reduces competition, which means
lower-cost predation by individuals in the escapement population. If the stock is depleted
enough, costs are reduced to the point where the escapement individuals become satiated in

9 The number of prey per predator will vary by age, time of year, and abundances. In the model presented here
only some of the major prey are included for each predator, and the consumption/reproduction relations are
adjusted for this fact. Still, the number of prey can vary significantly across predators. For example, among
the flatfish in our foodweb, yellowfin sole have a significantly more varied diet than flathead sole and Alaska
plaice (Lang et al. 1995).

123



Biology as a Source of Non-convexities in Ecological Production Functions 211

some or all their prey. Complete satiation implies predation is relatively easy, the individuals
are earning the maximum possible energy, and the species is growing at its maximum rate.
In this situation, a sustained fishing effort higher than the growth rate crashes the stock. In
practice, the critical effort level would be difficult to predict because it can occur where
marginal harvest revenue is high and well in excess of marginal effort cost.

Satiation and substitution are familiar concepts in economic consumer theory. Several
decades ago a host of experiments examined whether these concepts carried over to non
human subjects, mainly rats and pigeons (Kagel et al. 1995). The experimenters found that
non humans largely behaved as predicable Hicks-Slutsky consumers, weighing the benefits
and costs of alternative choices. A working hypothesis in this paper is that such laboratory
behavior carries over to the field, a hypothesis that is supported by tests of optimal foraging
theory (Stephens and Krebs 1986), and by the individual behavior in GEEM with real eco-
logical data. The results provide insights into how non human behavior affects ecological
production functions, and ultimately the delivery of ecosystem services.
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