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Abstract While many studies have looked at innovation and adoption of technologies
separately, the two processes are linked. Advances (and expected advances) in a single tech-
nology should affect both its adoption rate and the adoption of alternative technologies.
This paper combines plant-level data on US coal-fired electric power plants with patent data
pertaining to NOX pollution control techniques to study this link. As in other studies of
environmental technologies, the effect of other explanatory variables is dominated by the
effect of environmental regulations, demonstrating that the mere presence of environmental
technologies is not enough to encourage its usage. Nonetheless, I do find that technological
advances are important for the adoption of existing combustion modification technologies.
However, these advances are less important for the adoption of newer post-combustion con-
trol techniques, which are adopted only when needed to comply with the strictest emission
limits.
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In recent years, economists have paid increasing attention to the links between environmental
policy and technological change. More stringent environmental regulation can be expected
to both increase levels of innovation directed at environmentally friendly technology and
encourage increased adoption of such technologies. While many studies have looked at envi-
ronmental innovation or diffusion separately, these processes are clearly linked—adoption
of a new technology cannot take place until innovation has taken place. This paper explores
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320 D. Popp

linkages between available technologies and adoption of one of two air pollution control
technologies by coal-fired electric power plants, considering both the availability of control
technologies, as well as expectations about future technological progress.

The diffusion of a new technology is a gradual, dynamic process. New technologies are
not adopted en masse. Rather, adoption usually begins with a few early adopters, followed
by a more rapid period of adoption, with the rate of adoption leveling off once most potential
users have adopted the technology. This process generates the well-known S-shaped diffusion
curve.1 Early attempts to explain this process focused on the spread of information (epidemic
models, such as Griliches 1957) and differences among firms (probit models, such as David
1969).

Recent models combine these explanations while adding potential strategic decisions of
firms.2 Karshenas and Stoneman (1993) discuss three potential dynamic interactions. The
rank effect derives from probit models—potential adopters are ranked by their gross benefits,
and those with the greatest benefits go first. Stock and order effects relate to the cumulative
number of adopters. Both deal with strategic interactions—those who adopt faster face less
competition and receive first mover advantages. As a result, early adopters gain greater net
benefits than later adopters. For example, both Karshenas and Stoneman (1993) and Kerr and
Newell (2003) find that the percentage of firms already adopting the technology negatively
affects the probability of adoption, which they attribute to these first-mover advantages.

These explanations, however, ignore a potential benefit of waiting. Those that adopt later
receive the benefit of technological advances and may adopt technologies superior to those
chosen by early adopters (see, for example, Rosenberg 1976). While previous models implic-
itly consider such advantages (such as through falling costs, which are often modeled as
quality-adjusted), few empirical studies of diffusion consider the potential benefits of
improved technology.3 One exception is Weiss (1994), who uses survey data to show that
expectations of more rapid technological change to come delay adoption. In contrast, this
paper uses publicly available patent data to measure technological progress. By including a
direct measure of technological progress, the methodology used potentially allows the study
of technological progress and diffusion across a wide range of technologies.

This paper uses patent data to examine the role that technological advances play in the
adoption of technologies designed to reduce nitrogen dioxide (NOX) emissions at coal-fired
electric power plants in the United States. This adoption decision is of interest for several rea-
sons. Most importantly, unlike most other pollutants, US NOX regulations have historically
lagged behind those of other nations, particularly Japan and Germany. As a result, the path
of innovations in each country differed (Popp 2006). To meet the more stringent regulations
in Japan and Germany, post-combustion emissions treatment techniques were developed. In
contrast, innovations in the US focused on modifications to the combustion process. Such
modifications are cheaper, but do not reduce emissions as well as post-combustion treatment.
Thus, combustion modifications are more useful when NOX regulations are less stringent.
After the 1990 Clean Air act strengthened NOX emission rules, US firms began to develop
their own innovations for post-combustion treatment, as well as develop improved methods
for combustion modification. As such, potential adopters of either technology were faced

1 See, for example, Karshenas and Stoneman (1995).
2 Examples include Hannan and McDowell (1984), Rose and Joskow (1990), Karshenas and Stoneman (1993),
and Kerr and Newell (2003).
3 Examples of theoretical models including technological expectations include Balcer and Lippman (1984),
Ireland and Stoneman (1986), Tsur et al. (1990), and Lissoni (2000).
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with an existing technology base that was changing due to increased US innovation after the
1990 Clean Air Act (Popp 2006).

Compared to other technologies, another advantage of studying the adoption of technol-
ogy by coal-fired electric power plants is that we can study the links between technological
advances and adoption in isolation, without concern for the more strategic stock and order
effects often considered in the literature. Many plants operate in regulated markets, and most
serve dedicated areas with little competition. Furthermore, the choice to adopt environmental
technology is driven by regulatory pressures (Gray and Shadbegian 1998; Kerr and Newell
2003; Snyder et al. 2003). The benefit that firms receive from adopting an environmental tech-
nology is increased compliance with regulation. For these reasons, strategic considerations,
such as first-mover advantages, are less important here than for other technologies.

The lessons from this research should be of interest to a wide range of economists. For
environmental economists, the links between environmental policy and technological change
have become important research areas.4 However, the bulk of these research efforts have
focused on innovation, rather than on the diffusion of technology. For economists study-
ing technological diffusion more generally, the paper offers new empirical methodologies
designed to explicitly model the benefits of delaying adoption in return for the opportunity to
adopt a better technology in the future. While the results in this paper suggest that regulatory
influences are more important determinants of pollution control equipment adoption, it is
hoped that the methodology presented will be of interest to economists studying adoption of
other technologies as well.

1 NOX Regulations and Technology

NOX emissions are produced from the combustion of fossil fuels by three separate mecha-
nisms. Fuel NOX forms when nitrogen contained in the fuel combines with oxygen during
the combustion process, and is the dominant source of NOX emissions from coal-fired power
plants. Thermal NOX forms from the combination of nitrogen in combustion air with oxygen
in the flame. Prompt NOX is formed at the flame front through the reaction of hydrocarbon
radicals (Wu 2002). NOX emissions can be reduced either by making modifications to the
combustion process or by using post-combustion control techniques. This section reviews
major legislative efforts to combat NOX emissions from power plants, as well as the tech-
nologies used to do so.

1.1 Regulations5

In the US, NOX is one of six criteria pollutants regulated by the Clean Air Acts (CAA).
However, NOX emissions were primarily seen as a local issue until the 1990 Clean Air Act.
NOX emissions results in two major environmental problems—the formation of ground-level
ozone and acid rain. As such, US NOX regulations have focused on areas where these two
problems are primary concerns—California (ozone) and the eastern United States (acid rain).
US NOX regulation typically takes the form of emissions per unit of input, rather than emis-
sions per output or total environmental performance. For NOX, the 1970 CAA established
a limit of 0.7 lb/mmBtu of NOX for power plants. The 1977 CAA tightened the standard

4 Jaffe et al. (2003) provide a review.
5 Except where noted, information in this section comes from a series of publications on emission standards
published by the International Energy Agency Clean Coal Centre: Vernon (1988), Soud (1991), McConville
(1997), and Sloss (2003).
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slightly, lowering the limit to 0.5–0.6 lb/mmBtu.6 In addition, removal of at least 65% of
NOX emissions was required.

It was not until the 1990s that NOX regulations were strengthened, and even then the
focus was on regions of primary concern. The 1990 CAA established the Ozone Transport
Commission (OTC), made up of members from 11 northeastern states and the District of
Columbia. The OTC was charged with designing a plan to reduce NOX emissions in the
northeastern US The resulting plan, announced in September 1994, called for reductions
in affected eastern states to 0.2 lb/mmBtu beginning in May 1999, and reductions to 0.15
lb/mmBtu by May of 2003, and allowed trading of NOX emission permits across plants in
the region.7 In addition, the 1998 NOX SIP Call expanded additional NOX reductions to 22
eastern states.8 These reductions were to begin in 2003, and would be achieved using permit
trading, as part of the NOX Budget Trading Program (NBTP; USEPA 2004).9 At the national
level, the 1990 CAA tightened emission standards to as low as 0.4–0.46 lb/mmBtu by 2000.10

Unlike previous legislation, these reductions applied to both new and existing plants.

1.2 Technologies to Reduce NOX Emissions

NOX emissions can be controlled via modifications to the combustion process or by treat-
ment of flue gas after combustion. The primary post-combustion techniques are selective
catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). In both processes,
an ammonia-based reagent is injected into the flue gas stream. A chemical reaction between
the NOX gases and the reagent produce nitrogen and water. SCR uses a catalyst to produce
this reaction, allowing it to work at lower temperatures than SNCR technology. SCR has a
higher capital cost than SNCR, but can reduce emissions by as much as 80–90%, compared
to just 30–40% reduction from SNCR technologies (Wu 2002; Afonso et al. 2000). As such,
SCR is the technology of choice for plants facing strict NOX emissions restrictions.

In contrast to post-combustion techniques, combustion modification techniques, which
change the combustion process to reduce the amount of NOX formed by combustion, are
less costly. Typically, such modifications work by adjusting the mix of air and fuel used in
combustion, which reduces the peak flame temperature and results in lower NOX formation.
Commonly used techniques include low-NOX burners and overfire air, in which combustion
air is separated into primary and secondary flows. These techniques reduce emissions by
30–40% from uncontrolled levels (Wu 2002; Afonso et al. 2000). Other techniques used
include flue gas recirculation, in which some of the flue gas is recirculated and mixed with
combustion air, and fuel staging techniques such as reburning, which use a secondary fuel
directed at a section of the furnace to burn remaining waste gases. In addition, different

6 Different limits applied depending on the type of coal burnt. The higher 0.6 limit applied to bituminous
coal, which is most commonly used at US coal-fired electric plants.
7 Affected states are Maine, New Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island, New York,
New Jersey, Pennsylvania, Maryland, Delaware, and the District of Columbia.
8 In addition to the 11 OTC states, additional SIP states are Alabama, Illinois, Indiana, Kentucky, Michigan,
North Carolina, Ohio, South Carolina, Tennessee, Virginia, and West Virginia.
9 Rather than operate two separate markets, the OTC trading market became part of the NBTP in 2003. Due to
court challenges, enforcement of emission reductions was postponed until 2004 for SIP Call states. However,
plants clearly made investments in anticipation of the 2003 market, as many of the coal-fired power plants
studied in this paper installed abatement technologies in 2003, and none installed new technologies in 2004.
10 This regulation was phased in, with slightly higher standards between 1996 and 1999. Also, note that
the requirements vary by plant. The standards presented apply to tangentially fired boilers and dry bottom
wall-fired boilers respectively. These are the most common boiler types in the US Other boilers are allowed
more NOX emissions.
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combustion techniques can be combined to achieve greater reductions, making it possible
to comply with stringent regulations without using post-combustion techniques (Wu 2002;
Afonso et al. 2000).

2 Estimating the Determinants of Adoption

To consider the effect of knowledge on the adoption decision, we consider a coal-fired electric
plant, i , facing NOx emission regulations. In each period t , the plant must decide whether or
not to install one of two pollution abatement equipments: combustion modification (CM) or
post-combustion emission treatment (PT). Its gross profits in any given year τ , denoted giτ ,
are a function of the level of regulation at time τ, Ri(τ ), a vector of fixed firm characteristics
Ci, and a vector of time-varying firm characteristics Xi(τ ). In addition, the effectiveness of
any pollution abatement equipment installed depends on the quality of the technology at the
time in which it was installed (period t). I use K j (t) to represent the quality of technology at
time t for technology j , where j = CM or PT. The present value of installing technology j
at time t is then:

Gi, j (t) =
∞∫

t

gi, j
{
Ci, Xi(τ), Ri(τ), K j (t)

}
e−r(τ−t)dτ (1)

Following Karshenas and Stoneman (1993), define the net present value of adoption as
Zi, j (t), where

Zi, j (t) = Gi, j (t) − Pj (t) (2)

Here, Pj (t) represents the price of technology j at time t .11

For simplicity, consider first the decision to adopt a technology for which there is no
substitute. Adoption is profitable12 if:

Zi, j (t) = Gi, j (t) − Pj (t) ≥ 0 (3)

At the same time, adoption must meet the arbitrage condition. This states that not only is
adoption profitable today, but that it is not more profitable to postpone adoption until some
future date. Formally, this is expressed as:

yi, j (t) = ∂ Zi, j (t)e−r t

∂t
≤ 0 (4)

To derive an expression for the arbitrage condition, y, first define p(t) as the expected change
in price over time, r(t) the expected change in regulations over time, and k(t) as the expected

11 Note that Pj (t) may include adjustment costs as well as direct costs of capital, as investment is often
found to be a lumpy process (e.g. Cooper et al. 1999; Nilsen and Schiantarelli 2003). For instance, one might
expect plants to be more likely to install pollution abatement equipment when a unit is shut down for other
maintenance, typically performed at a plant’s half-life of about 20 years. To test for this, variations of the
model in this paper were run including a dummy variable for plants that are 19–21 years old. This variable
proved to be insignificant, suggesting that adjustment costs are less important than the need to comply with
changing regulations. I thank an anonymous referee for this suggestion.
12 Note that the model need not imply that a plant operate in an unregulated environment where only profit
maximization matters. While many plants operate in regulated environments, all that matters here is that the
plant adopts a technology if it perceives it will be better off with the technology than without. In practice,
different regulatory environments can be included as part of the variable R.
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change in the knowledge stock over time.13 Taking derivatives yields

yi, j (t) = r P(t) − p(t) − g(t) +
∞∫

t

g(τ ) · {k(t) + r(t)}e−r(τ − t)dτ (5)

From Eqs. (3) and (5), we observe that adoption is a function of firm characteristics, current
and expected regulations and knowledge, and current and expected prices for the technology
in question. At any given time, some firms will find adoption profitable, while others will not.
Over time, we expect that adoption will become more desirable, even if other firm character-
istics remain the same, as technological advances improve the profitability of the technology.
Thus, firms for which adoption is most desirable will adopt first, while additional firms adopt
as the benefits of adoption rise. In the adoption literature, this is known as the rank effect
(Karshenas and Stoneman 1993). In these models, firm heterogeneity leads to a distribution
of expected return from adopting the new technology. From this, I define the hazard function,
hi, j (t), which captures the conditional probability that firm i will adopt technology j in time
t , given that it has not previously adopted the technology, as

hi, j (t) = f
{
Ci, Xi(t), Ri(t), ri(t), K j (t), k j (t), Pj (t), p j (t)

}
(6)

This approach, while similar to other models in the adoption literature, differs in that I
explicitly model the possibility of technological improvements. As in other models, only
firms above a threshold great enough to justify the costs of adoption will choose to adopt
the technology at any given time. Over time, the technology gets cheaper, and its quality
improves, so that more firms cross the adoption threshold. However, this decrease is typi-
cally modeled exogenously.14 In the empirical work that follows, I use instrumental variables
to control for the endogenous links between innovation and regulation.15

Now, consider a plant that can choose between either of the two technology options.
In addition to the profitability and no arbitrage conditions (Eqs. 3, 5), it must also be
the case that it is more profitable to adopt technology j than the competing technology,
l. For example, using data on the adoption of multiple machine tool technologies, Stone-
man and Kwon (1994) and Stoneman and Toivanen (1997) find significant cross-technology
effects – changes in the price of one technology affect adoption rates for both technologies. In
addition, since a plant may decide against investment in technology j if it anticipates major
advances in the competing technology, the arbitrage condition should include expectations

13 For simplicity, we assume that expectations for future firm characteristics are the same as current charac-
teristics. That is, firms do not anticipate future changes in operations or revenues.
14 Ireland and Stoneman (1986) provide a theoretical example of such a model. They consider both supply
and demand of a new technology, and consider how adoption changes when expectations over future prices
occur. However, costs fall exogenously over time, and improvements in the quality of technology are only
considered implicitly, by assuming prices to be quality-adjusted. Similarly, Tsur et al. (1990) use the possibility
of learning by using to model the evolution of technology. Modeling technological progress via learning by
using leads to opposite conclusions about timing. If experience is necessary to improve the technology, firms
may find it beneficial to adopt technologies that result in short-term losses in hopes of long-term benefits.
Here, firms may decide to postpone adopting beneficial technologies if future benefits, due to technological
progress, will be even greater.
15 As noted earlier, models of adoption often explore stock effects and order effects, in addition to rank effects.
Both are related to the cumulative number of adopters in an industry. Both address strategic advantages early
adopters receive. Given that most electric plants face little competition, and many operate as natural monopo-
lies in a regulated market, such strategic effects are likely to be unimportant in this study. However, for other
applications, the model can be generalized to include stock and order effects by including variables relating
to the number of adopters, as in Karshenas and Stoneman (1993).
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for both technologies. From Eq. (6), note that only prices and knowledge are technology-spe-
cific. Thus, to know whether technology j is more profitable than technology l, we must also
consider knowledge and prices for technology l. When faced with competing technologies
the adoption decision is:

hi, j (t) = f
{
Ci, Xi(t), Ri(t), ri(t),K j (t), k j (t), Pj (t), p j (t), Kl(t), kl(t), Pl(t), pl(t)

}
(7)

2.1 An Econometric Model

Recent work on diffusion use duration models to combine features of both epidemic models
(e.g. Griliches 1957), in which the spread of information limits diffusion,16 and probit mod-
els (e.g. David 1969), in which heterogeneity among firms determines diffusion rates. These
newer models (e.g. Hannan and McDowell 1984; Rose and Joskow 1990; Karshenas and
Stoneman 1993; Kerr and Newell 2003; Snyder et al. 2003) begin with the hazard function,
which can be written as:

h(t, Xt, β) = f (t, Xt, β)

1 − F(t, Xt, β)
. (8)

Here, f is the continuous probability function of a random variable (such as the time to adop-
tion), F is the cumulative probability function of this variable, Xt is a vector of explanatory
variables, β is the vector of parameters to be estimated, and t represents time. Thus, like the
probit model, adoption depends on individual firm characteristics captured by Xt. By sepa-
rating the hazard function into two parts, Karshenas and Stoneman (1993) combine features
of the epidemic model with the hazard model by including a baseline hazard function, h0(t),
that does not vary by firm. Combining the baseline hazard function with a hazard model that
varies by firm characteristics yields a hazard function to be estimated of the form:

h(t, Xt, β) = h0(t)exp(Xt
′β). (9)

To estimate Eq. (9), the baseline hazard h0 must be specified. Various specifications have been
used in the adoption literature. Among the most common are the exponential, Weibull, and
Gompertz distributions. The exponential distribution assumes the baseline hazard is constant
over time, whereas the others assume that the baseline hazard is a function of time. Thus, the
exponential distribution assumes that unmeasured learning effects are insignificant. In the
results that follow, the exponential distribution is used.17

16 Using this framework, Griliches (1957) noted that the rate of diffusion is at least partially determined by
economic factors, such as the expected rate of return for adoption. Other work using the epidemic model, such
as Mansfield (1968), Davies (1979), and Oster (1982), typically focus on firm characteristics, such as firm
size, to explain variations in the rate of diffusion.
17 I also estimated models using the Weibull distribution. However, the models do not converge when including
the knowledge stocks in the Weibull distribution, suggesting that collinearity between the stocks, which grow
over time, and the baseline hazard is a problem when the baseline hazard is a function of time. Most impor-
tantly, the results for variables other than knowledge are unchanged when using the Weibull distribution while
excluding the knowledge variables. The key assumption of using the exponential model is that the remaining
explanatory variables capture any time-varying incentives to adopt. This is an empirical question, which
can be tested by including other measures of experience, such as experience-based learning. Given that the
technologies discussed have been well-known for some time, the assumption that unmeasured learning effects
are small seems reasonable. In similar work, Kerr and Newell (2003) find learning effects to be insignificant
for the adoption of isomerization technologies by oil refineries during the US phasedown of leaded gasoline.
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Once the baseline hazard is specified, estimation of Eq. (9) is completed using duration
data techniques.18 Of particular importance is that, since not every observation ends in a
decision to adopt, the data are censored. That is, we either observe that a plant adopts the
technology, and thus leaves the data, or survives through the data period without adopting. We
do not know, however, whether the plant will choose to adopt at some future point. Thus, the
likelihood function used considers both adopters (denoted by α) and non adopters (denoted
by 1 − α) as follows:

L(β) = f (t; X, β)α(1 − F(t; X, β))1 − α (10)

A plant contributes to the likelihood function in each year prior to adoption via 1 −α, and
during the year of adoption through α. After a plant adopts, it is dropped from the data.

Equation (7) suggests the variables to include in Xt. However, some modifications are
necessary due to data constraints. Most importantly, the data set used does not contain infor-
mation on the cost of technology, so that Pj is not observed directly. Instead, as I discuss in
Sect. 3, the costs of NOX control technologies are plant specific. Thus, plant characteristics
help to control for variations in cost. Moreover, I assume that cost changes over time result
from changes in technology, so that the effects of cost changes over time are picked up by
the knowledge variables. Second, since expectations of future knowledge are not observed, I
use the current growth rate in knowledge as a proxy.19 Third, I include two dummy variables,
HASCMi (t − 1) and HASPTi (t − 1), equal to one if the boiler uses combustion modifi-
cation or post-combustion technology in the previous year. These dummies control for the
fact that adoption of post-combustion treatment is less likely for a boiler that already has
combustion modification (and vice versa).20

Finally, since the exponential distribution of the hazard assumes no unmeasured learning
effects, it is important to control for any other learning that may take place. One important
source of learning is within-firm experience. Utilities that have experience with a specific
device at other plants may be more likely to install it elsewhere. To control for this, I define
utility experience, UtilExpi, j (t), as the total number of boilers owned by a utility using each
technology in the previous year. I also include a measure of industry experience with each
technology in the previous year, IndExp j (t). This captures two potential time-varying effects.
The first is the possibility that increased industry experience lowers the cost of abatement
equipment through learning by doing, which would increase the likelihood of adoption over
time. The second is that the benefits of increased emissions reduction may fall if other firms
are also doing so, particularly when trading of permits is possible. Such competitive effects
would decrease the likelihood of adoption. Lagged values of experience are used to avoid
endogeneity problems. Modifying Eq. (7) to make use of these variables, the two hazard
functions to be estimated are:

18 For an introduction to duration data see Cox and Oakes (1985), Kiefer (1988), and Lancaster (1990).
19 While other work including expectations, such as Karshenas and Stoneman (1993) use the change between
current and future variables to proxy for expectations, doing so here is not possible without removing the last
year of data from the regressions. Since much of the adoption of NOX combustion treatment technologies
occurs at the end of the sample, this is undesirable.
20 Although combustion modification techniques do not achieve reductions necessary to meet the most strin-
gent regulations in isolation, a boiler with existing combustion modification techniques may choose to add a
second combustion modification technique. In combination, these technologies achieve emission reductions
comparable to post-combustion treatment techniques (Wu 2001).
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hi,CM(t) = f

{
Ci, Xi(t), Ri(t), ri(t), KCM(t), kCM(t), KPT(t), kPT(t),

UtilExpi,CM(t − 1), IndExpCM(t − 1), HASPTi i (t − 1)

}
(11)

hi,PT(t) = f

{
Ci, Xi(t), Ri(t), ri(t), KPT(t), kPT(t), KCM(t), kCM(t),

UtilExpi,PT(t − 1), IndExpPT(t − 1), H ASC Mii (t − 1)

}
(12)

Variables used to measure firm characteristics, regulations, and knowledge are discussed in
Sect. 3. Table 1 presents descriptive data for these variables.

3 Data

3.1 Constructing the Knowledge Stocks

A main contribution of this paper is to add knowledge stocks to the traditional empirical
models of technology adoption. To construct these stocks, I use counts of patents granted
in the US. Economists have found that patents, sorted by their date of application, provide
a good indicator of R&D activity (see, for example, Griliches 1990). Unlike R&D data,
patent counts are available in highly disaggregated form. This makes it possible to distin-
guish between advances in combustion modification and post-combustion techniques. In
addition, historical records of patent data are available for longer periods than R&D data,
making it possible to construct a complete history of the development of these technologies.
Popp (2005) discusses the advantages and disadvantages of using patent data when studying
environmental technologies.21

When patents are granted, they are given technology classifications and subclassifications
by various patent offices. These classifications can be used to identify patents pertaining
to each of the technologies described in Sect. 1. Relevant patents were identified using the
European Classification System (ECLA).22 Using esp@cenet, the EPO’s on-line database,
I obtained a list of all patent numbers in relevant technology classes granted in the US
since 1920. I construct separate list of patents for combustion modificationtechnologies and

21 Among the disadvantages, note that not all successful innovations are patented, as inventors may choose
to forgo patent protection to avoid disclosing proprietary information. Levin et al. (1987) report significant
differences in the propensity to patent across industries. Fortunately, this is less problematic when studying
the development of a single technology than when using patents to study inventive activity across technolo-
gies, as the only assumption needed is that the propensity to patent within the industry has remained similar,
so that changes in overall level of knowledge in the field are correlated with changes in patenting activity.
Moreover, note that the quality of individual patents vary greatly. Indeed, many individual patents never result
in a profitable product. Thus, the effects of knowledge in this paper are best interpreted as the average effect
of all accumulated knowledge, rather than the effect of any specific invention.
22 The ECLA is based upon the well-known International Patent Classification system (IPC), but provides
additional detail necessary to distinguish between the types of pollution controlled by various technologies.
For example, IPC classification B01D 53/86 includes catalytic processes for pollution control. ECLA class
B01D 53/86F2 specifies catalytic processes for reduction of NOX, and B01D 53/86B4 specifies catalytic
processes for reduction of SO2. Moreover, as new classifications are added, the European Patent Office (EPO)
updates the ECLA of older patents in its database. This is important, as classifications distinguishing pollution
control techniques for specific pollutants were not added until recently.
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Table 1 Descriptive data

Variable N Mean SD Min Median Max

Dependent variables

Has comb. mod. 13,196 0.472 0.499 0 0 1

Has post comb. treatment 13,196 0.023 0.148 0 0 1

Knowledge stocks*

Combustion modification 14 149.027 38.690 84.486 157.616 197.818

Post comb. treatment 14 357.321 42.978 262.425 374.888 398.439

Growth CM stock 14 0.070 0.035 0.023 0.076 0.109

Growth PCT stock 14 0.037 0.037 −0.017 0.024 0.103

Regulations

OTC expect 13,196 0.045 0.208 0 0 1

OTC phase I 13,196 0.042 0.201 0 0 1

OTC phase II 13,196 0.008 0.091 0 0 1

SIP phase I 13,196 0.182 0.386 0 0 1

SIP phase II 13,196 0.000 0.000 0 0 0

Has lb/mmBTU reg 13,196 0.517 0.500 0 1 1

lb/mmBTU level** 6,827 0.655 0.392 0.045 0.5 6.600

Has lb/h reg 13,196 0.007 0.083 0 0 1

lb/h level** 92 1,886.54 1,507.62 235 1,360 5,920

Has ppm reg 13,196 0.005 0.074 0 0 1

ppm at stack level** 72 0.472 0.088 0.32 0.480 0.76

Boiler characteristics

Company experience: CM 13,196 6.247 8.880 0 3 57

Company experience: PCT 13,196 0.123 0.561 0 0 5

Industry experience: CM 13,196 399.449 190.144 97 403 701

Industry experience: PCT 13,196 13.854 18.477 0 9 60

% Sulfur content of coal 13,196 1.219 0.907 0 0.930 13.353

Capacity (MW) 13,196 312.18 266.54 8 200 1,426

Tangential firing dummy 13,196 0.425 0.494 0 0 1

Reveunes (millions) 13,196 2,562.12 3,086.31 13.03 1643.22 40,137.52

Municipal plant 13,196 0.156 0.363 0 0 1

Compustat plant 13,196 0.052 0.223 0 0 1

Age of plant 13,196 32.199 12.213 0 34 69

* Descriptive statistics from knowledge stocks faced by any firm in a given year (1990-2003)
** Statistics for positive values only

post-combustion treatment technologies.23 “Appendix 2” lists the technology classifications
used and their definitions.24 I merged these patent numbers with additional data from Del-
phion’s on-line database and the US Patent and Trademark Office (USPTO) website to obtain

23 The database can be found at http://ep.espacenet.com
24 Keyword searches of recent patents were used to identify relevant classes. When identifying classes, two
types of errors are possible. One is omitting potentially relevant classes, so that not all patents are included
in the dataset. The second is including classes that include not only relevant technologies, but also other,
unrelated
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Fig. 1 NOX pollution control patents by year. The figure shows all patents granted in the US for each of the
two NOX pollution control technologies. Patents are sorted by their year of application, and only successfully
granted patent applications are included. The data for recent years are scaled to account for applications not
yet processed, as described in footnote 26

descriptive data on these patents, such as the country of origin and their application date.
Because US inventors will respond to the same US regulations that determine adoption,
patents from US inventors are likely endogenous. Thus, I separately identify patents from
domestic and foreign inventors. In Sect. 4, I use foreign patents as an instrument for predicting
domestic patenting activity. All patents assigned to US inventors are considered domestic,
and all others are considered foreign patents.25 Figure 1 shows US and foreign patent applica-
tions for each technology. As noted in Popp (2006), foreign inventors respond to regulations
in their home country, rather than to US regulatory changes, suggesting that foreign patents
can be treated as exogenous. Most notably, foreign post-combustion treatment patents peak
in the mid-1970s, after passage of NOX regulations in Japan, and again in the mid 1980s,
after passage of even more stringent NOX regulations in Germany. There is little response of
foreign patents to US policy changes in the 1990s.

As is traditional in research using patent data, I sort patents by their application year.
Using the application year avoids differences in the length of time it takes to process a patent
application, which varies both over time and across inventors from different countries. More-
over, the application year tends to corresponds with the date actual inventive activity (see, for
example, Griliches 1990). Because patents were only published in the US upon grant until
2001, no public record exists of unsuccessful US patent applications. Thus, the data only

Footnote 24 continued
technologies. For our purposes, only the second is problematic, as any relevant patents in classes not included
should follow the same trends as those included. However, including non-relevant patents is problematic,
as trends in these patents may be subject to different forces. As such, care was taken to not include classes
covering unrelated technologies, such as NOX reduction for internal combustion engines.
25 In most cases, these inventors come from manufacturers of pollution abatement equipment. Popp (2006)
provides greater detail on the source of patents in this sector.
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include patent applications that were subsequently granted. Since many recent applications
have yet to be granted, data for later years are scaled to avoid truncation problems.26

Using these patent data, I create separate stocks of knowledge for combustion modifica-
tion and post-combustion technologies. I use a rate of decay, represented by β1, to capture
the obsolescence of older patent and a rate of diffusion, β2, to capture delays in the flow of
knowledge, such as the time necessary for a patented idea to be converted into a commercially
available technology. Defining s as the number of years before the current year, the stock of
knowledge at time t for technology j is written as:

K j,t =
∞∑

s = 0

e−β1(s)
(

1 − e−β2(s + 1)
)

P ATj,t − s . (13)

The rate of diffusion is multiplied by s + 1 so that diffusion is not constrained to be zero in the
current period. The base results presented below use a decay rate of 0.1, and a rate of diffusion
of 0.25 for each stock calculation.27 In previous work, I have used similar knowledge stocks
to estimate the effect of energy-saving technology on industrial energy consumption (Popp
2001) and to estimate the effect of sulfur dioxide scrubber technology on coal-fired electric
plants (Popp 2003).

Descriptive data for the knowledge stocks, presented at the top of Table 1, shows how
the value of the stocks faced by any firm varies throughout the sample period (1990–2003).
While mean values of the stocks of post-combustion patents are higher than for combustion
modification, levels across technologies are not directly comparable, as the number of patents
depends on the number of relevant patent classifications for each technology. Rather, varia-
tion in the stocks across time, as shown in Fig. 2, is important. Growth rates of each stock,
defined as (Kt − Kt − 1)/Kt − 1, control for expectations of future knowledge stocks. Average
growth rates are higher for combustion modification, which grows consistently throughout
the sample period. In contrast, growth of the post combustion stock levels off midway through
the 1990s.

3.2 Power Plant Data

Data on individual power plants comes from the Energy Information Administration (EIA),
the Federal Energy Regulatory Commission (FERC), and Compustat. I use the results of an
EIA survey of power plants, EIA Form 767, to get information on plant characteristics. This
survey includes data on fuel usage, electricity production, NOX emissions standards, and
pollution control equipment. The survey asks which techniques, if any, have been adopted
to reduce NOX emissions, and lists 11 possible technologies that may be used. Of these,
nine qualify as combustion modification, and two are post-combustion techniques (SCR and

26 I do this by first calculating the average grant lag for patents in the data set. Separate scales are created
for foreign and domestic patents. From this, I estimate the percentage of pending patents for each year, and
augment the data by this percentage. Fortunately, I have patent data through 2006. The analysis in this paper
uses data through 2003. Over 90% of patents in these technologies are granted within 3 years, and over 95%
within 4 years. Thus, the scaling only has a small effect in the last years of the sample. Moreover, as we will see
below, these patents receive little weight in the knowledge stocks, as their diffusion process is just beginning.
As such, the scaling has no effect on the main results of this paper. This has been verified using sensitivity
analysis to different scaling techniques, as well as running the model without 2003 data. In all cases, the results
are virtually unchanged.
27 These rates are consistent with others used in the R&D literature. For example, discussing the literature on
an appropriate lag structure for R&D capital, Griliches (1995) notes that previous studies suggest a structure
peaking between 3 and 5 years. The rates of decay and diffusion used in this paper provide a lag peaking after
4 years. “Appendix 1” presents sensitivity analysis with respect to the rates of decay and diffusion.
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Fig. 2 Knowledge stocks over time. The figure shows how each knowledge stock varies over time. Note
that both domestic stocks increase soon after passage of the 1990 Clean Air Act, but that growth of the post
combustion stock soon levels off

SNCR). In addition to plant characteristics, several studies of diffusion suggest that financial
characteristics of the firm matter. As such, I augment the data from EIA Form 767 with finan-
cial data on individual plants. FERC Form 1 provides this data for plants owned by regulated
electric utilities. EIA Form 412 provides financial data for municipal, federally owned, and
unregulated entities. Finally, because of shifts in ownership due to deregulation, data from
Compustat are used to obtain financial data of the parent companies for plants owned by
private corporations, such as Entergy or Duke Energy Corporation. The final unit of analysis
is individual boilers within a plant. Each plant contains multiple boilers. These boilers are
often of different vintages and may face different regulations, so that adoption of pollution
abatement equipment is not uniform across boilers at a specific plant. The resulting data set
includes observations for 996 coal-fired power plant boilers from 1990 to 2003.28

3.2.1 Technology Choice

Two dummy variables indicate whether a boiler has either combustion modification or post-
combustion treatment technologies to reduce NOX emissions. As shown in Table 1, com-
bustion modification is more prevelant, being present in nearly one-half of the boiler-year
observations. Figure 3 shows the percentage of boilers with each technology by year. The
first panel shows overall trends, and the remaining panels separate the data by states that
are part of the OTC and NOX SIP call. Note that the percentage of boilers with combus-
tion modification technologies grows steadily over the period analyzed, from 16% in 1990
to 67% in 2003. In comparison, no post-combustion treatment technologies were adopted

28 Note that some boilers are not on-line for the entire period, so that the total number of possible observations
is 13,196.
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Fig. 3 Percentage of boilers
adopting NOX pollution control
technologies. The figures show
the percentage of boilers who
have adopted each NOX control
technology by the year on the
x-axis
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until 1992. Most adoption occurs in recent years, as a result of recent increases in regulatory
stringency. This does not simply represent a switch from one technology to the other, as
adoptions of combustion modification technologies also increase at this time. In fact, about
half of the post-combustion installations occur at boilers also using combustion modification
(Popp 2006). Overall, just 12% of boilers use post-combustion treatment. Usage of post-com-
bustion technologies is greatest in OTC states, where 33% of boilers use the technology by
2003. However, there is some adoption of post-combustion technologies in other states, with
13% of boilers using post-combustion techniques in SIP states, and 2.5% of boilers in states
that are neither OTC or SIP states.29 Note also that most boilers adopting post-combustion
techniques in SIP states did so in 2003, the planned first year of expanded NOX reductions
under the NOX SIP call.

3.2.2 Regulations

Of the other explanatory variables, perhaps most important are those variables measuring
regulatory levels. Previous studies of diffusion of environmental technologies show that reg-
ulatory stringency matters (Gray and Shadbegian 1998; Kerr and Newell 2003; Snyder et al.
2003). Since NOX emissions technologies provide no benefit to the plant other than reducing
emissions, they are of little use unless a boiler is required to reduce NOX emissions. Moreover,
since post-combustion techniques reduce a greater percentage of emissions, but cost more
than combustion modification techniques, the technology chosen should vary depending on
regulatory stringency.

Boilers may face regulations at federal, state, and local levels. Form 767 includes the level
of the most stringent of these regulations.30 Because standards from various jurisdictions
vary in the units by which they are defined, I include dummy variables for the presence
of three types of regulations, as well as the allowable level of emissions regulated.31 Most
common are regulations specifying a maximum level of NOX emissions per million Btus of
fuel burned (lb/mmBTU). Nearly half of all boiler-year observations in the sample face such
a limit. Other regulation types include pounds per hour of service (lb/h) and parts per million
of NOX at the stack (ppm at stack). Because each regulation type has different levels, each
regulation type enters the regression separately.

In addition, I create a dummy variable for boilers affected by either the OTC regulations or
the 1998 NOX SIP call. Here, I distinguish between expectation and enactment of each reg-
ulation. In the case of the OTC, the initial memorandum of understanding between member
states was signed in 1994. Because boilers in affected states installing new NOX abatement
equipment after 1994 would know that more stringent regulations would soon be enforced,
we would expect these plants to be more likely to consider advanced equipment such as SCR.
Thus, OTC_Expect equals 1 for boilers in OTC states between 1994 and 1998. In these states,

29 While most plants do install one of these techniques to comply with regulations, EPA rules allow utilities
additional options to comply with federal standards. First, a plant may average the emission rates of two or more
boilers. In the data, this most often appears as older vintage boilers being less likely to use any NOX reduction
techniques. Second, plants can apply for less stringent emission standards if the plant can demonstrate that it
wouldn’t meet the emissions limit using standard NOX reduction techniques (EIA 1997).
30 This is important, as it provides variation in the regulations faced by similar boilers in different jurisdictions
at a given point in time.
31 Note that, for each regulation, higher values indicate a weaker regulation, as higher values indicate more
pollution allowed. Thus, simply including the level of regulation in the regression is insufficient, as a 0 for
plants facing no regulation would be interpreted as more stringent than any existing regulation level. Dummy
variables control for the effect of having one of these regulations, and the levels control for the effect of more
stringent regulatory levels conditional on facing that regulation type.
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the first NOX reductions were required in 1999, with greater reductions required in phase
II, beginning in 2003. OTC_Phase_I and OTC_Phase_II cover these two periods. Similarly,
SIP_Phase_I and SIP_Phase_II cover boilers in SIP states between 1999–2002 and in 2003,
respectively.32 In addition, recall that OTC boilers face more stringent regulations during the
summer months, beginning in 1999.33,34

3.2.3 Boiler Characteristics

Boiler characteristics considered include details about the boiler and the plant owner’s
finances. Whereas many studies of diffusion include the price of a technology as an explan-
atory variable, here costs vary by boiler. Boiler characteristics help to determine the cost of
NOX reduction strategies. For example, coals with higher sulfur content reduce the service
life of catalysts used in SCR units, making SCR more costly for boilers that use high-sulfur
coal. As a result, most SCR units worldwide have been used at boilers burning coal with
less than 2% sulfur content (Wu 2002). Costs also increase with boiler size. To control for
the type of boiler used, I include a dummy variable for boilers that use tangential firing.35 I
also include dummy variables for the boiler’s vintage. Vintage is defined based on the year
in which the boiler began service. The vintage dummies control both for the age of the boiler
and for any differences in the construction of boilers from a given era that might affect retrofit
costs.36

Much empirical work on diffusion suggests that firm size is an important influence. Larger
firms have better access to credit and are more likely to be able to afford larger, riskier invest-
ments. As a measure of the plant owner’s finances, I use annual operating revenues of the
plant’s parent utility. To capture differences across ownership type, I include a dummy var-
iable indicating whether the plant is owned by a regulated utility (plants with financial data
from FERC Form 1), is municipal or government-owned (plants with financial data from
EIA Form 412), or is owned by an unregulated, privately owned corporation (plants with
financial data from Compustat).

4 Estimation

Using the data described above, I proceed with estimation of two hazard functions described
by Eqs. (11) and (12). As in Kerr and Newell (2003), I normalize all continuous variables
so that a one unit change in the normalized variable is equivalent to a 10% change from

32 For both the OTC and SIP variables, the Phase I and Phase II dummies are additive. That is, in 2003, both
OTC_Phase_I and OTC_Phase_II equal 1 for affected boilers. Thus, the coefficient on the Phase II dummies
can be interpreted as the additional effect of moving to the second phase of the policy.
33 The OTC standards only apply between May 1 and September 30. As such, they are not included as the
standards reported in the EIA Form 767 database. However, as these (typically) more stringent standards will
be relevant for the adoption decision of boilers, I replace the standard reported in the Form 767 database with
the OTC standard if the OTC standard is more stringent.
34 While it was part of the OTC commission, Maryland did not join the agreement to reduce emissions until
2000. As such, OTC_Phase_I equals 0 for Maryland in 1999.
35 Most US boilers use either tangential-fired or wall-fired boilers. Retrofit costs are higher for tangential-fired
boilers (Wu 2002).
36 The vintage dummy variables are generally defined in 5 year intervals, with exceptions for the youngest
and oldest plants, as shown in Tables 2 and 4.
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Table 2 Regression results: adoption of combustion modification technology

Variable Base Growth Both techs Growth and
both

Comb. mod. knowledge 0.6448***
(0.1220)

0.6522***
(0.1231)

0.6494**
(0.2004)

−0.2443
(0.2594)

Growth CM knowledge −0.0218
(0.0340)

−0.1598**
(0.0531)

NOX post knowledge −0.0058
(0.2042)

−0.0451
(0.2923)

Growth NOX post knowledge −0.1307***
(0.0355)

Company experience (t − 1) 0.0295***
(0.0065)

0.0296***
(0.0066)

0.0295***
(0.0065)

0.0296***
(0.0068)

Industry experience (t − 1) −0.0095***
(0.0018)

−0.0101***
(0.0020)

−0.0095***
(0.0020)

−0.0075***
(0.0019)

Has postNOX (t − 1) −1.4764**
(0.5208)

−1.4697**
(0.5212)

−1.4768**
(0.5209)

−1.4486**
(0.5277)

OTC expect 1.0453***
(0.1416)

1.0607***
(0.1447)

1.0462***
(0.1454)

1.0054***
(0.1430)

OTC phase I 1.2145***
(0.2606)

1.1683***
(0.2667)

1.2143***
(0.2601)

1.1671***
(0.2846)

OTC phase II −13.4186***
(0.3039)

−12.2237***
(0.3297)

−13.4416***
(0.3026)

−12.7286***
(0.3537)

SIP phase I 0.6254***
(0.1546)

0.5741***
(0.1652)

0.6249***
(0.1516)

0.5704**
(0.1833)

SIP phase II 0.0502
(0.3606)

0.1277
(0.3837)

0.0488
(0.3616)

−0.3690
(0.4124)

lb/mmBTU Level −0.0200***
(0.0049)

−0.0197***
(0.0049)

−0.0200***
(0.0048)

−0.0204***
(0.0050)

Has lb/mmBTU reg 1.6830***
(0.1785)

1.6705***
(0.1790)

1.6826***
(0.1742)

1.7058***
(0.1896)

% Sulfur content of coal 0.0050
(0.0061)

0.0050
(0.0062)

0.0050
(0.0062)

0.0052
(0.0064)

Capacity (MW) 0.0197*
(0.0082)

0.0196*
(0.0083)

0.0197*
(0.0082)

0.0200*
(0.0086)

Tangential firing dummy −0.0706
(0.1144)

−0.0707
(0.1152)

−0.0706
(0.1146)

−0.1012
(0.1247)

Revenue (millions) 0.0019
(0.0038)

0.0018
(0.0038)

0.0019
(0.0038)

0.0021
(0.0040)

Municipal plant 0.1274
(0.2037)

0.1315
(0.2058)

0.1277
(0.2049)

0.1456
(0.2226)

Compustat plant −0.0578
(0.2389)

−0.0564
(0.2388)

−0.0582
(0.2393)

−0.0654
(0.2472)

Vintage ≤ 1960 −0.4176***
(0.1137)

−0.4166***
(0.1138)

−0.4177***
(0.1137)

−0.4128***
(0.1157)

Vintage 1971–1976 0.1784
(0.1476)

0.1792
(0.1478)

0.1785
(0.1478)

0.1727
(0.1500)

Vintage 1977–1980 0.8297**
(0.3002)

0.8309**
(0.3002)

0.8297**
(0.3001)

0.8486**
(0.3046)
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Table 2 Continued

Variable Base Growth Both techs Growth and
both

Vintage 1981–1985 1.5736*
(0.6165)

1.5776*
(0.6268)

1.5743*
(0.6303)

1.6271*
(0.7269)

vintage 1986–1990 0.9780
(0.5001)

0.9521
(0.5040)

0.9755
(0.5043)

0.8888
(0.5578)

Vintage 1991–1995 −0.9272***
(0.1964)

−0.8998***
(0.1983)

−0.9263***
(0.1938)

−0.8087***
(0.2079)

Vintcat 1996+ −0.8979***
(0.2464)

−0.9066***
(0.2519)

−0.8973***
(0.2476)

−1.0507***
(0.2318)

Log likelihood −1897.153 −1896.927 −1897.152 −1889.533

Joint significance of knowledge vars: χ2 27.65 28.11 27.66 42.89

p > χ2 <0.0001 <0.0001 <0.0001 <0.0001

Notes: Standard errors appear below estimates. Some regulatory variables and constant suppressed to save
space. Vintage 1961–1970 excluded. N = 7, 469
* p < 0.05; ** p < 0.01; *** p < 0.001

Table 3 Net effect of technology

Base (%) Growth (%) Both techs (%) Growth and both (%)

Combustion modification
Average 47.2 50.5 47.3 40.1
Average 1991–1998 61.1 64.9 61.3 46.2
Average 1999–2003 24.8 27.4 25.0 30.3

Post combustion
Average 1993–2003 27.6 9.5 49.2 91.9
Average 1993–1998 44.5 8.9 95.4 154.5
Average 1999–2003 7.2 10.3 −6.2 16.7

The table shows the average change in the hazard ratio resulting from changes in the technology variables over
time. The values are the average of the additional contribution from new technology each year. The additional
contribution is calculated as [exp(β × X(t)]/exp[β × X(t − 1))] − 1, where X(t) is a vector of the various
technology variables (both levels and growth rates) in each year

its mean value, so as to aid interpretation of the effects on the hazard function.37 Because
the regressions include repeated observations on individual boilers, it is unlikely that the
error terms are independently and identically distributed. As such, robust standard errors are
calculated using the Huber/White correction, as is standard when estimating hazard models.

Before proceeding, two econometric issues need to be addressed. Most importantly, note
that the knowledge stocks are likely endogenous, as domestic patents are influenced by the
stringency of US NOX regulations.38 To control for this, I use a two-stage procedure. For
domestic patents applied for between 1990 and 2003, I regress patent applications on federal
NOX emission standards, dummy variables for various regulatory periods, lagged values of

37 The normalization first divides each continuous variable by its mean, multiplies by ten, and then takes devi-
ations from the mean by subtracting ten. As in Kerr and Newell (2003), this results in normalized variables
that have a mean of zero. Note that because both experience variables are count variables (with many zeros
for post combustion technology), they are not normalized in this fashion.
38 Popp (2006) shows that the same is not true for foreign patents for NOX control technologies.
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Table 4 Regression results: adoption of post-combustion treatment technology

Variable Base Growth Both techs Growth and
both

NOX post knowledge 1.1269
(0.6370)

3.3623**
(1.2202)

6.0544
(4.2574)

5.9625
(3.6178)

Growth NOX post knowledge 0.3294*
(0.1432)

0.7066*
(0.3132)

Comb. mod. knowledge −1.9263
(1.4837)

1.4661
(2.3655)

Growth CM knowledge 0.6099
(0.3510)

Company experience (t − 1) −0.1954
(0.1139)

−0.1929
(0.1141)

−0.1959
(0.1139)

−0.1916
(0.1137)

Industry experience (t − 1) −0.0073
(0.0093)

0.0156
(0.0107)

0.0037
(0.0089)

0.0309*
(0.0144)

Has combustion modification (t − 1) 0.1500
(0.2544)

0.1544
(0.2590)

0.1469
(0.2525)

0.1494
(0.2594)

OTC expect 2.1972***
(0.5369)

2.6535***
(0.6524)

2.0140***
(0.5249)

2.2171***
(0.5182)

OTC phase I 3.2997***
(0.5579)

3.0566***
(0.5761)

3.4780***
(0.6678)

3.4512***
(0.7078)

OTC phase II 1.7030**
(0.5457)

3.6723**
(1.1480)

3.3331*
(1.5857)

4.6487*
(1.8509)

SIP phase I 1.6201***
(0.3813)

1.3107***
(0.3764)

1.7616***
(0.5074)

1.6980**
(0.5300)

SIP phase II 2.0984***
(0.4244)

4.0887***
(1.0990)

3.7424*
(1.5680)

5.0805**
(1.8300)

lb/mmBTU level 0.0118
(0.0104)

0.0122
(0.0102)

0.0110
(0.0103)

0.0114
(0.0100)

Has lb/mmBTU reg 0.2222
(0.4160)

0.2083
(0.4087)

0.2667
(0.4155)

0.2425
(0.4082)

% Sulfur content of coal −0.0047
(0.0139)

−0.0049
(0.0140)

−0.0057
(0.0139)

−0.0066
(0.0140)

Capacity (MW) 0.0492***
(0.0143)

0.0493***
(0.0143)

0.0489***
(0.0142)

0.0493***
(0.0141)

Tangential firing dummy −1.1237***
(0.2507)

−1.1039***
(0.2471)

−1.1163***
(0.2510)

−1.0952***
(0.2480)

Revenue (millions) 0.0136*
(0.0066)

0.0122
(0.0065)

0.0125
(0.0067)

0.0107
(0.0066)

Municipal plant −0.3707
(0.3705)

−0.3544
(0.3695)

−0.3751
(0.3729)

−0.3424
(0.3700)

Compustat plant −0.9746*
(0.4425)

−1.0228*
(0.4476)

−1.0167*
(0.4459)

−0.9973*
(0.4494)

Vintage ≤ 1960 0.2364
(0.3160)

0.2323
(0.3151)

0.2200
(0.3166)

0.2162
(0.3151)

Vintage 1971–1976 0.3524
(0.2989)

0.3466
(0.3005)

0.3491
(0.3004)

0.3436
(0.3010)

Vintage 1977–1980 0.2155
(0.3876)

0.1944
(0.3933)

0.1975
(0.3940)

0.1972
(0.3970)
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Table 4 Continued

Variable Base Growth Both techs Growth and
both

Vintage 1981–1985 −0.1842
(0.5495)

−0.2026
(0.5468)

−0.1963
(0.5529)

−0.2018
(0.5513)

vintage 1986–1990 −0.3245
(0.7914)

−0.3454
(0.7929)

−0.3389
(0.7941)

−0.3511
(0.7984)

Vintage 1991–1995 0.2449
(0.7034)

0.2335
(0.6889)

0.2368
(0.6880)

0.2361
(0.6686)

Vintcat 1996+ 1.8156**
(0.6812)

1.5845*
(0.6898)

1.7297**
(0.6614)

1.6849*
(0.7237)

Log likelihood −121.716 −117.258 −119.005 −112.850

Joint significance of knowledge vars: χ2 9.12 18.03 14.57 26.85

p > χ2 0.0025 < 0.0001 0.0007 < 0.0001

Notes: Standard errors appear below estimates. Some regulatory variables & constant suppressed to save space.
Vintage 1961–1970 excluded. N = 12, 995
* p < 0.05; ** p < 0.01; *** p < 0.001

a knowledge stock using only foreign patents, and a time trend.39 I then use the predicted
values in place of domestic patent counts from 1990–2003 when constructing the stocks.

Second, note that some boilers adopted combustion modification techniques before the
first year of data availability. In fact, the first boiler to install combustion modification tech-
niques in the US did so in 1974. Thus, the likelihood function must control for boilers
that adopt early (that is, that do not survive until 1990; Cox and Oakes 1985). This adds an
additional term to the likelihood function used to estimate the hazard function for combustion
modification:

L(β) = f (t; X, β)α(1 − F(t; X, β))1 −α F(0; X, β)γ (14)

Here, α equals 1 for boilers that adopt in year t , conditional on not adopting before. γ equals 1
for boilers that adopted combustion modification technologies before 1990, and 0 otherwise.
Boilers that did not adopt before 1990 contribute to the likelihood function in each year prior
to adoption via 1 - α, and during the year of adoption through α. Boilers that did adopt prior
to 1990 contribute through γ . After a boiler adopts, it is dropped from the data.40

4.1 Adoption of Combustion Modification Techniques

Table 2 presents regression results for combustion modification technology. The tables pres-
ent estimated coefficients from the maximum likelihood regression. To interpret these coef-
ficients, note that the effect of the hazard ratio for each coefficient is calculated as exp(β).
Table 2 begins with a naïve model, which assumes myopic adoption decisions and ignores
the availability of competing technology. This model, presented in column 1, ignores knowl-
edge stocks for post-combustion technology and growth in either technology’s knowledge

39 The regulatory dummy variables are Post_CAA (1990–1992), OTC_Expect (1994–1998), OTC (1999–
2002), and SIP_II (2003). The R2 of the patent regression is 0.84 for post-combustion patents and 0.65 for
combustion modification patents.
40 The term F(0; X, β)γ is not needed for post-combustion technology, as the first adoption occurs in 1993.
Thus, the likelihood function described in Eq. (10) is used for post-combustion technology.
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stocks. In the naïve model, the stock of combustion modification knowledge has a significant
positive effect. A 10% increase in this knowledge stock increases the likelihood of adoption
by 91%.41 In column 2, I consider expectations by adding the growth of combustion modi-
fication technology knowledge. Expectations of future technology advances, proxied by the
growth rates of knowledge, negatively influence adoption, although the effect is insignificant.
The coefficient on the level of the knowledge stock remains virtually unchanged. This is also
the case in column 3, which adds the level of competing post combustion technology to the
naïve model. The sign on the competing technology is negative, as expected, but is insignif-
icant. Finally, column 4 includes expectations of both technologies. In this complete model,
the effect of expectations is significantly negative for both technologies. Plant-owners are
more likely to wait to adopt when the technology is advancing rapidly. However, the effect
of the levels of knowledge is now insignificant.

To help put these results in perspective, it is useful to consider the combined effect of
increases in knowledge during this time frame. Table 3 shows such calculations. The table
presents the average increase in the adoption probability resulting from new knowledge in
each year for both combustion modification and post combustion technologies.42 For com-
bustion modification technologies, note that the average net impact of knowledge ranges from
a 40.1 to 50.5% increase in the likelihood of adoption. The effect of knowledge is greater at
the beginning of the decade, when patenting counts for this technology were highest.

Turing to other variables, the results are as expected. Moreover, the results for other vari-
ables are consistent across specifications. By far the most important predictor of adoption is
regulatory stringency. Being subject to OTC regulations increases the likelihood of adoption
by a factor of three. Expectations of future regulations also matter, as both the OTC_Expect
and SIP_PhaseI variables have significant positive effects. However, once the NOX budget
trading program begins (SIP_PhaseII), boilers in SIP states are not more likely to install com-
bustion modification. As the next section shows, the NOX Budget Trading Program made
these plants more likely to choose post-combustion techniques. Similarly, the presence of
lb/mmBTU regulation increases adoption by a factor of five.43 Note also the negative sign
for regulatory levels—adoption is more likely when fewer emissions are allowed. However,
this effect is small. A 10% more stringent than average regulation (e.g. 10% fewer emissions
allowed) never increases the likelihood of adoption by more than 2%. That the simple pres-
ence of regulation is more important than the level occurs because combustion modification
is of less use when regulations are very stringent. Thus, tighter regulations need not induce
additional adoption.

Turning to boiler characteristics, boilers that already have post-combustion treatment
are nearly 80% less likely to adopt combustion modification. This is not surprising, as
post-combustion treatment is both more effective and more expensive. Plants are unlikely to
invest in such technology if it is insufficient to meet regulatory hurdles. Company experience
is important. For each additional existing boiler with a combustion modification unit operated
by the utility, the likelihood of adoption at a different boiler increases by 3%. In contrast,
industry experience is less important. Each additional boiler using combustion modification
reduces the probability of adoption next year, but by just 1%. As for other characteristics,
only boiler size and the vintage dummies are significant. Larger boilers are more likely to

41 Recall that knowledge is normalized so that a one-unit change in the variable represents a 10% increase in
knowledge. As a result, the 91% increase is simply calculated as exp(β).
42 The calculation is the average of (exp(X(t)′β)/exp(X(t − 1)′β)) − 1, where X is a vector of the relevant
technology variables in each model (including the growth rates), and β is the vector of coefficients.
43 Results for other types of regulations are similar. Because these affect fewer boilers, they are omitted from
the table to conserve space.
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adopt combustion modification techniques, although the magnitude of this increase is no
higher than 2% for a 10% increase in size. In addition, the probability of adoption rises in
newer vintage years until passage of the 1990 Clean Air Act. Since then, new boilers have
been less likely to install combustion modification techniques. As shown in the next section,
these very new boilers make less use of combustion modification because they instead install
post combustion techniques, which are state of the art at the time these newest boilers are
built. Of particular importance is that all financial and ownership variables are insignificant.
As I discuss with the results for post-combustion techniques, it is unlikely that this result
occurs because many utilities operate in regulated markets, but rather because it is regulatory
pressure that provides the initial impetus for adoption. Once faced with regulation, plants do
not have the option to delay installation until conditions are more favorably financially.

4.2 Adoption of Post-combustion Treatment

Table 4 presents estimation results estimation for post-combustion treatment technologies.
Estimates are generally as expected, although the results are not as statistically significant as
the combustion modification results, as the lower adoption rates of post-combustion technol-
ogy result in less variation in the data. As before, the level of the knowledge stock increases
adoption. However, this is only significant in the equation including technology growth
(column 2). Unlike before, expectations of technological advances increase adoption. In
the model including competing technologies, signs are as expected, but both coefficients
are insignificant. Finally, in the completely specified model in column 4, which considers
both technological alternatives and expectations, most knowledge variables are insignificant.
Note however, that in both columns 3 and 4, although the individual knowledge variables are
insignificant, I cannot reject the null hypothesis that the knowledge coefficients are jointly
significant. Moreover, there is greater variation in the magnitude of the effects of knowledge,
including implausibly high values on the level of knowledge coefficients in columns 3 and 4.
Both results are evidence of multicollinearlity. Given that fewer plants ever choose to adopt
post-combustion technology, identifying the effect of multiple knowledge stocks appears to
be asking too much of the data.

Referring back to Table 3, the net effect of technology on post-combustion adoption tends
to be smaller than for combustion modification. However, because of the imprecise coefficient
estimates, there is more variation in the overall effect. Focusing on the OTC era (1999–2003),
we see that technological advances have half the influence on adoption of post-combustion,
compared to combustion modification, techniques. It may be that advances in combustion
modification techniques are more important because they were needed to keep the technology
viable as more stringent regulations take effect. However, additional years of data would be
needed to conclude this with confidence.

By far the most important influence on adoption of post-combustion techniques are envi-
ronmental regulations. Stricter regulations make plant operators more willing to pay the
greater fixed cost of post-combustion techniques. In OTC states, simply knowing that future
regulations would be in place makes adoption of post-combustion techniques seven to four-
teen times more likely. Recall that federal standards for boilers were tightened in 1995.
While those standards alone were not enough to justify post-combustion technology, plants
that know they will soon need to comply with even stricter regulations are more likely to
install advanced abatement equipment. The likelihood of adoption increases further once the
OTC plan takes effect in 1999, and further still when regulations are strengthened in 2003.
Similarly, in the SIP states, adoption increases upon announcement of the program, and
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further still on the planned start of the NOX Budget Trading Program in 2003. As a result of
the strong effect of these variables, the effect of other regulations is insignificant.44

Still, even in OTC states, 2/3 of all boilers use combustion modification. Thus, it is use-
ful to consider what other factors influence adoption of post-combustion techniques. First,
whether a boiler has or does not have existing combustion modification technologies has no
effect on the adoption of post-combustion control. Indeed, post-combustion techniques can
be paired with combustion modification techniques to increase effectiveness, which may be
necessary to meet strict emissions standards. Moreover, the costs of SCR systems are lower
when combined with combustion modification, as less catalyst is needed if the remaining
NOX concentrations to be removed are lower (Wu 2002). Thus, boilers that had previously
installed combustion modification (perhaps to comply with earlier, less stringent regulations)
may still choose to add a post-combustion device as regulations become stronger. This result
suggests an important lesson for new technologies: to avoid lock-in when developing a new,
otherwise superior technology, it may be helpful to work with existing technologies, rather
than simply serving as a substitute.

As in the case of combustion modification, larger boilers are more likely to adopt post-
combustion techniques. Unlike combustion modification, neither company nor industry expe-
rience is significant. Most post-combustion adoptions take place within a few years at the
end of the sample, leaving little time for learning. Additional years of adoption data will be
needed to see if the no-learning effect holds over time. Regarding vintage, the boilers most
likely to adopt post combustion technique are those brought on line since 1996. New boilers
facing strict NOX regulations could install post-combustion equipment during initial con-
struction, rather than face a more expensive retrofit. Unlike combustion modification, boilers
that use tangential firing are less likely to adopt post-combustion treatment, as they have
higher retrofit costs. Because of the large installation costs of post-combustion treatment,
the financial strength of plant owners is somewhat important. A 10% increase in revenue
increases the hazard rate by about 1.2%, although only significant at the 10% level in col-
umns 2–4. In comparison, recall that adoption of combustion modification techniques was
not sensitive to revenue. Financial strength gives firms the option to invest in better tech-
nology, but all regulated firms must invest in some technology. This is similar to results in
Rose and Joskow (1990), who find that firm size is more important for the adoption of more
advanced supercritical boilers than more conventional units. Finally, ownership does matter,
as non-regulated utilities (the Compustat plants) are less likely to adopt post-combustion
techniques. This is consistent with the concern that such companies will be less able to pass
the costs of advanced techniques on to consumers.

4.3 Differences Across Regulatory Regimes

Because the regionally imposed regulatory regimes play such a large role, Tables 5 and 6
compare results for the base regression model for boilers in each of the three regulatory-state
types (OTC, SIP, or other states).45 In both cases, the major differences are between other
states and those facing either OTC or SIP regulations. For combustion modification, both

44 Once again, results for other types of regulations are omitted to save space, as these affect few plants. The
one exception to insignificant results is a strong negative effect on “has lb/hour reg,” which is driven by the
few boilers (just 17, representing 157 observations) that have such regulations. Only one boiler adopts post
combustion technology while facing such regulations, and it is also affected by the NOX SIP call when it does.
45 Two modifications are necessary to estimate the model on these smaller subsamples. First, while vintage
dummies are still included in these regressions, fewer groupings, each including more years, are used, as no
boilers appear in some regulatory regimes for some of the vintage groups used in the full sample. Second, the
model for other states does not converge unless industry experience is dropped from the regression. There are
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Table 5 Adoption of combustion modification by regulation type

Variable All OTC states SIP states Other states

Comb. mod. knowledge 0.6448***
(0.1220)

1.0013***
(0.2743)

0.8131***
(0.1313)

−0.1253
(0.0772)

Company experience (t − 1) 0.0295***
(0.0065)

−0.2358***
(0.0709)

0.0294***
(0.0074)

0.1073**
(0.0406)

Industry experience (t − 1) −0.0095***
(0.0018)

−0.0637***
(0.0150)

−0.0186***
(0.0035)

Has postNOX (t − 1) −1.4764**
(0.5208)

−1.6638**
(0.6049)

−12.8583***
(0.3180)

−1.1520
(0.6150)

OTC expect 1.0453***
(0.1416)

1.4599***
(0.3818)

OTC phase I 1.2145***
(0.2606)

1.1719
(0.5993)

OTC phase II −13.4186***
(0.3039)

−13.8443***
(0.3555)

SIP phase I 0.6254***
(0.1546)

0.5976**
(0.2097)

SIP phase II 0.0502
(0.3606)

0.1448
(0.3808)

lb/mmBTU level −0.0200***
(0.0049)

−0.0325**
(0.0114)

−0.0169**
(0.0059)

0.0133
(0.0280)

Has lb/mmBTU reg 1.6830***
(0.1785)

2.3846***
(0.3813)

1.5814***
(0.2275)

1.0014
(0.6389)

% Sulfur content of coal 0.0050
(0.0061)

−0.0134
(0.0335)

0.0104
(0.0074)

−0.0123
(0.0118)

Capacity (MW) 0.0197*
(0.0082)

0.0145
(0.0141)

0.0139
(0.0083)

0.0538**
(0.0186)

Tangential firing dummy −0.0706
(0.1144)

0.0555
(0.2096)

−0.1977
(0.1218)

−0.2883
(0.3817)

Revenues (millions) 0.0019
(0.0038)

0.0199*
(0.0101)

0.0043
(0.0046)

−0.0264*
(0.0124)

Municipal plant 0.1274
(0.2037)

−0.0237
(0.2182)

−0.0780
(0.3899)

Compustat plant −0.0578
(0.2389)

−0.6924*
(0.3292)

0.2028
(0.3174)

1.4295
(0.8295)

Number of obs. 7469 878 4189 2402

Log likelihood −1897.153 −236.886 −1082.593 −541.532

Notes: Standard errors appear below estimates. Some regulatory variables, vintage dummies and constant
suppressed to save space
* p < 0.05; ** p < 0.01; *** p < 0.001

the presence and level of a lb/mmBTU regulation increases the likelihood of adoption in
OTC and SIP states, but not in other states. Capacity is only significant for other states.46

Footnote 45 continued
only 4 years in which plants in other states adopt post-combustion technology, making it difficult to separately
identify the effect of multiple variables that vary only across time. To test robustness of the results, I also ran
models for SIP and OTC states that excluded industry experience. Removing this variable biases estimates of
the knowledge stock downward. No other parameter estimates change when removing industry experience.
46 While knowledge is insignificant for other states, this may be a result of having to drop industry experience
from the regression, as removing that variable from the OTC or SIP state regressions biases the coefficient on
knowledge downward.
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Table 6 Adoption of post-combustion treatment by regulation type

Variable All OTC states SIP states Other states

NOX post knowledge 1.1269
(0.6370)

1.6964
(0.8755)

6.1085
(3.8762)

3.9712*
(1.5861)

Company experience (t − 1) −0.1954
(0.1139)

−0.0693
(0.1735)

−0.2129
(0.1582)

−18.5470***
(1.1526)

Industry experience (t − 1) −0.0073
(0.0093)

−0.0206
(0.0525)

−0.0483
(0.0262)

Has combustion modification (t − 1) 0.1500
(0.2544)

−1.0140*
(0.4608)

0.6803
(0.3878)

4.2985***
(0.8857)

OTC expect 2.1972***
(0.5369)

−2.2204
(1.6273)

OTC phase I 3.2997***
(0.5579)

−0.3378
(1.8998)

OTC phase II 1.7030**
(0.5457)

1.8285*
(0.8489)

SIP phase I 1.6201***
(0.3813)

0.0098
(1.0727)

SIP phase II 2.0984***
(0.4244)

3.3417***
(0.9391)

lb/mmBTU level 0.0118
(0.0104)

0.0244
(0.0205)

0.0136
(0.0128)

−0.7026***
(0.1123)

Has lb/mmBTU reg 0.2222
(0.4160)

0.7754
(1.0623)

0.0910
(0.5037)

22.6523***
(1.6919)

% Sulfur content of coal −0.0047
(0.0139)

−0.0310
(0.0525)

0.0176
(0.0161)

0.0071
(0.0770)

Capacity (MW) 0.0492***
(0.0143)

0.0290
(0.0179)

0.0430**
(0.0135)

0.1974*
(0.0996)

Tangential firing dummy −1.1237***
(0.2507)

−0.6593*
(0.3205)

−1.5761***
(0.4124)

−1.6308
(0.8382)

Revenues (millions) 0.0136*
(0.0066)

−0.0027
(0.0119)

0.0229**
(0.0083)

0.1924***
(0.0495)

Municipal plant −0.3707
(0.3705)

−0.3821
(0.5194)

1.0528
(1.2163)

Compustat plant −0.9746*
(0.4425)

−1.2773**
(0.4643)

−0.8447
(0.6488)

−30.5212***
(1.5088)

Number of obs. 12995 1534 6729 4732

Log likelihood −121.716 −30.917 −37.511 −4.800

Notes: Standard errors appear below estimates. Some regulatory variables, vintage dummies and constant
suppressed to save space
* p < 0.05; ** p < 0.01; *** p < 0.001

More interesting changes are found for post-combustion treatment. Here, while knowledge is
insignificant for OTC or SIP states, it has a strong positive effect in other states.47 Moreover,
this difference is not merely an artifact of dropping industry experience from the other state
regression, as removing that variable from the OTC or SIP state regressions biases the esti-
mate of knowledge downward. Also of note is that the effect of lb/mmBTU regulations is only

47 However, these changes should be treated as exploratory, rather than the final word, as only 8 plants in
other states choose post-combustion technology. Additional adoptions would be needed to obtain more robust
results.
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significant in other states. Thus, regulatory pressure is still needed to encourage adoption of
post-combustion treatment. In combination, these two results suggest that improvements to
a technology developed primarily to comply with stringent regulations elsewhere can lead
to diffusion of the technology even to areas with weaker environmental regulation, assum-
ing some regulatory incentives are in place.48 Interestingly, in other states, post-combustion
treatment is much more likely to be installed when a boiler already has combustion modi-
fication techniques in place. Recall that installing these technologies in tandem lowers the
operating costs of post-combustion treatment. Boilers not facing the very stringent OTC or
SIP regulations appear particularly sensitive to these costs. Finally, note that the effects of
revenues and private ownership are much stronger in other states. In these states where reg-
ulatory forces play less of a role encouraging adoption of post-combustion treatment, strong
finances and an ability to pass costs on to consumers are necessary for boilers to willingly
adopt post-combustion treatment technologies.

5 Conclusions

This paper examines the adoption of two separate NOX pollution control technologies by
boilers at coal-fired power plants: combustion modification and post-combustion treatment
of emissions. Of the two technologies considered, combustion modification is cheaper and
more well-established in the US. However, it is not as effective as reducing emissions as
post-combustion treatment. Because US NOX regulations only recently caught up with the
requirements in Japan and Europe, combustion modification has been the technique of choice
in the US. Over time, as new regulations lowered allowable NOX emissions, particularly in
the northeast, boilers began to adopt post combustion techniques. As in previous work on the
adoption of environmental technologies, I find that regulations are the driving force behind
this adoption decision.

This paper extends the existing literature on adoption by considering competing tech-
nologies and by considering the role of available knowledge in the adoption decision. For
combustion modification technologies, most of the predictions of the theoretical model hold.
Advances in available knowledge increase the likelihood of adoption. Adoption is slower
when these advances occur more quickly, suggesting firms benefit from postponing adop-
tion and waiting for improved technologies. However, this effect is only significant in the
model with competing technologies. For post combustion technologies, the results are less
satisfying, as the limited number of adoptions, which mostly occur in recent years, makes
identifying the effect of knowledge on adoption difficult. Further research using the adoption
model in the paper with other data sets, particularly those where environmental regulation is
not the driving force, is needed to corroborate these results.

While the results linking adoption and technological progress should be of interest to a
wide range of economists, the paper also offers additional lessons specific to the field of
environmental economics. In particular, while much attention has been recently paid to links
between environmental policy and technological change, this study shows that even when
a more advanced technology is available, it will not diffuse without regulatory incentives
to do so. For those concerned with environmental problems in developing countries, this

48 While the results also suggest that expectations of regulation (e.g. OTC_Expect and SIP_Phase I) are no
longer important, this change in results is harder to interpret, as the base case for comparison of the dummy
variables has changed. In the overall regression, the base case is all plants prior to 1994, and plants facing no
regulation after 1994. In contrast, here the comparison is only among plants in the same region.
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suggests that diffusion of environmental technology is not independent from the problem
of diffusion of environmental regulations themselves.49 Focusing on adoption of the more
advanced post-combustion techniques, note that the ability to work with existing technologies
appears important, as does the financial strength of adopting firms. Regulators will want to
keep such issues in mind when designing policy to encourage adoption of new environmental
technologies.
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Appendix 1: Knowledge Stock Sensitivity Analysis

In this appendix, I examine the sensitivity of the regression results to changes in the rates of
decay and diffusion used to calculate the knowledge stock. I focus on interpretation of the
knowledge variables, as there are no significant changes to the parameters of other variables
when the rates of decay and diffusion are changed. In addition to the base rates of decay = 0.1
and diffusion = 0.25, I consider three alternative sets of decay and diffusion rates. To aid
in interpreting these rates, I also note the number of years it takes for a patent to have its
maximum effect on the stock under each set of assumptions. For comparison, patents have
their maximum effect after 4 years using the base rates.

• decay = 0.25, diffuse = 0.5 (peak = 1 year)
• decay = 0.05, diffuse = 0.5 (peak = 4 years)
• decay = 0.05, diffuse = 0.1 (peak = 10 years)

Tables 7 and 8 present the estimates for the knowledge stock coefficients for each of the model
specifications. Note that there are few changes in sign or significance of individual parame-
ters. One notable change is that in the base model for post combustion technology (Table 8),
the level of the knowledge stock has a significant effect when using a lower decay rate. The
two models with slower decay also have higher log-likelihood values. However, slower decay
and/or diffusion of the post-combustion techniques occurs because the US adopted stringent
NOX regulations more slowly than other countries. The base case decay and diffusion are
chosen to be consistent with other studies in the literature of knowledge flows. As regulatory
differences appear to be the main influence on adoption, there is no theoretical reason to a
priori impose slower rates of decay and diffusion on the spread of knowledge itself. Thus,
one question is whether the true decay rates can be separately identified from things such as
policy changes that influence adoption.

49 One caveat is that, for reducing carbon emissions for climate change, emission reduction strategies cur-
rently focus on reducing combustion of fossil fuels, rather than cleaning emissions from a smokestack. As
such, private incentives for diffusion of energy efficiency technologies exist via savings in energy costs, and
may partially diffuse without regulatory impetus.
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Table 7 Parameter sensitivity: adoption of combustion modification technology

Variable Base Growth Both techs Growth and
both

Decay = 0.1, diffuse = 0.25

Comb. mod. knowledge 0.6448***
(0.1220)

0.6522***
(0.1231)

0.6494**
(0.2004)

−0.2443
(0.2594)

Growth CM knowledge −0.0218
(0.0340)

−0.1598**
(0.0531)

NOX post knowledge −0.0058
(0.2042)

−0.0451
(0.2923)

Growth NOX post knowledge −0.1307***
(0.0355)

log likelihood −1897.153 −1896.927 −1897.152 −1889.533

Decay = 0.25, diffuse = 0.5 (peak = 1)

Comb. mod. knowledge 0.1607**
(0.0588)

0.2044**
(0.0633)

0.1842*
(0.0719)

0.0399
(0.0998)

Growth CM knowledge 0.0205
(0.0107)

−0.0017
(0.0145)

NOX post knowledge −0.0744
(0.1385)

−0.1320
(0.1544)

Growth NOX post knowledge −0.0027**
(0.0010)

Log likelihood −1906.882 −1905.254 −1906.661 −1902.557

Decay = 0.05, diffuse = 0.5 (peak = 4)

Comb. mod. knowledge 0.8252***
(0.1355)

0.8312***
(0.1361)

0.7603**
(0.2325)

0.3419
(0.3190)

Growth CM knowledge 0.0128
(0.0359)

−0.0656
(0.0581)

NOX post knowledge 0.0864
(0.2510)

−0.0684
(0.3222)

Growth NOX post knowledge −0.0729
(0.0439)

Log likelihood −1893.749 −1893.687 −1893.671 −1892.418

Decay = 0.05, diffuse = 0.10 (peak = 10)

Comb. mod. knowledge 1.0629***
(0.1813)

1.2201***
(0.1675)

0.6265*
(0.2518)

−0.5307
(0.5865)

Growth CM knowledge 0.1454**
(0.0541)

−0.3350
(0.1831)

NOX post knowledge 0.6455**
(0.2338)

0.8772
(0.5211)

Growth NOX post knowledge −0.3830*
(0.1793)

Log likelihood −1890.263 −1886.181 −1885.865 −1880.291

Notes: Standard errors appear below estimates
* p < 0.05; ** p < 0.01; *** p < 0.001
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Table 8 Parameter sensitivity: adoption of post combustion treatment technology

Variable Base Growth Both techs Growth and
both

Decay = 0.1, diffuse = 0.25

NOX post knowledge 1.1269
(0.6370)

3.3623**
(1.2202)

6.0544
(4.2574)

5.9625
(3.6178)

Growth NOX post knowledge 0.3294*
(0.1432)

0.7066*
(0.3132)

Comb. mod. knowledge −1.9263
(1.4837)

1.4661
(2.3655)

Growth CM knowledge 0.6099
(0.3510)

Log likelihood −121.716 −117.258 −119.005 −112.850

Decay = 0.25, diffuse = 0.5 (peak = 1)

NOX post knowledge 0.9637
(0.7646)

0.9684
(0.7893)

0.9881
(0.7444)

0.8528
(0.9109)

Growth NOX post knowledge −0.0012
(0.0024)

0.0052
(0.0102)

Comb. mod. knowledge 0.0193
(0.0913)

0.6649
(0.6487)

Growth CM knowledge 0.0937
(0.0519)

Log likelihood −124.931 −124.864 −124.925 −122.990

Decay = 0.05, diffuse = 0.5 (peak = 4)

NOX post knowledge 1.1551*
(0.5242)

2.2213**
(0.6860)

9.2125**
(2.9809)

5.9181
(3.4126)

Growth NOX post knowledge 0.3146*
(0.1337)

0.6075*
(0.2829)

Comb. mod. knowledge −4.2280**
(1.5099)

0.3018
(2.8292)

Growth CM knowledge 0.8467**
(0.3221)

Log likelihood −119.169 −115.801 −109.255 −101.659

Decay = 0.05, diffuse = 0.10 (peak = 10)

NOX post knowledge 0.7678*
(0.3269)

3.6932***
(0.9246)

−1.7792
(1.1817)

−0.1404
(3.9731)

Growth NOX post knowledge 1.4859***
(0.4046)

3.6106***
(0.9271)

Comb. mod. knowledge 1.6894
(0.9087)

8.5695*
(4.2487)

Growth CM knowledge 3.3801**
(1.2073)

Log likelihood −119.132 −110.106 −118.146 −102.283

Notes: Standard errors appear below estimates
* p < 0.05; ** p < 0.01; *** p < 0.001
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Table 9 Joint significance of knowledge variables: sensitivity analysis

Base Growth Both techs Growth and both

Combustion mod.

Decay = 0.1, diffuse = 0.25

LR χ2 27.65 28.11 27.66 42.89

p > χ2 <0.0001 <0.0001 <0.0001 <0.0001

Decay = 0.25, diffuse = 0.5

LR χ2 8.20 11.45 8.64 16.85

p > χ2 0.0042 0.0033 0.0133 0.0022

Decay = 0.05, diffuse = 0.5

LR χ2 34.46 34.59 34.62 37.13

p > χ2 <0.0001 <0.0001 <0.0001 <0.0001

Decay = 0.05, diffuse = 0.10

LR χ2 41.43 49.60 50.23 61.38

p > χ2 <0.0001 <0.0001 <0.0001 <0.0001

Post combustion

Decay = 0.1, diffuse = 0.25

LR χ2 9.12 18.03 14.57 26.85

p > χ2 0.0025 <0.0001 0.0007 <0.0001

Decay = 0.25, diffuse = 0.5

LR χ2 2.69 2.82 2.70 6.57

p > χ2 0.1012 0.2442 0.2597 0.1606

Decay = 0.05, diffuse = 0.5

LR χ2 14.21 20.95 34.04 49.23

p > χ2 0.0002 <0.0001 <0.0001 <0.0001

Decay = 0.05, diffuse = 0.10

LR χ2 14.28 32.33 16.25 47.98

p > χ2 0.0002 <0.0001 0.0003 <0.0001

Table 10 Net effect of technology: sensitivity analysis

Base (%) Growth (%) Both techs (%) Growth and both (%)

Combustion mod.
Decay = 0.1, diffuse = 0.25

Average 47.2 50.5 47.3 40.1

Average 1991–1998 61.1 64.9 61.3 46.2

Average 1999–2003 24.8 27.4 25.0 30.3

Decay = 0.25, diffuse = 0.5

Average 7.3 6.2 8.8 14.6

Average 1991–1998 12.5 9.3 13.6 15.3

Average 1999–2003 −0.8 1.3 0.9 13.6

Decay = 0.05, diffuse = 0.5

Average 67.1 66.3 65.3 47.2
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Table 10 continued

Base (%) Growth (%) Both techs (%) Growth and both (%)

Combustion mod.
Average 1991–1998 82.1 81.1 80.5 57.6

Average 1999–2003 43.0 42.6 41.1 30.5

Decay = 0.05, diffuse = 0.10

Average 109.4 121.0 111.6 86.2

Average 1991–1998 113.4 132.1 123.4 96.6

Average 1999–2003 103.1 103.1 92.7 69.6

Post combustion

Decay = 0.1, diffuse = 0.25

Average 1993–2003 27.6 9.5 49.2 91.9

Average 1993–1998 44.5 8.9 95.4 154.5

Average 1999–2003 7.2 10.3 −6.2 16.7

Decay = 0.25, diffuse = 0.5

Average 1993–2003 −14.3 −10.9 −14.0 −4.1

Average 1993–98 −14.2 −9.2 −13.3 −0.9

Average 1999–2003 −14.4 −13.0 −14.8 −7.9

Decay = 0.05, diffuse = 0.5

Average 1993–2003 39.5 21.0 45.6 154.9

Average 1993–1998 52.7 14.1 43.6 180.2

Average 1998–2003 23.6 29.4 47.9 124.4

Decay = 0.05, diffuse = 0.10

Average 1993–2003 42.5 31.1 51.4 403.0

Average 1993–1998 50.5 2.6 42.9 645.6

Average 1999–2003 32.8 65.3 61.6 111.8

Table 9 presents the tests for joint significance of the knowledge variables. For combustion
modification, these results are also unchanged across the various assumptions of decay and
diffusion. For the post combustion technologies, the knowledge stocks become insignificant
when assuming rapid decay and diffusion.

To better interpret the differences, Table 10 reproduces the net technology effects shown
in Table 3 of the main text for each of the decay and diffusion assumptions. Comparing the
magnitude of the net effects is important, as the magnitude of the coefficients vary in part
because the magnitude of the stocks themselves varies as the rates of decay and diffusion
are changed. Here, we see a few cases where the effect of knowledge varies. Most notable,
technology has less of an effect in the model with rapid decay and diffusion. Knowledge has
more of an effect in the models with a slow decay rate.

Appendix 2: Patent Classifications Used for Each Control Technology

European Classifications for Pollution Control Patents

See Table 11.
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Table 11 Nitrogen dioxide pollution control

Combustion modification

F23C 6/04B MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
ENGINES OR PUMPS/COMBUSTION APPARATUS; COMBUSTION
PROCESSES/COMBUSTION APPARATUS USING FLUENT FUEL/combustion
apparatus characterised by the combination of two or more combustion chambers/in
series connection/[N: with staged combustion in a single enclosure]

F23C 6/04B1 MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS;
BLASTING ENGINES OR PUMPS/COMBUSTION APPARATUS;
COMBUSTION PROCESSES/COMBUSTION APPARATUS USING
FLUENT FUEL/combustion apparatus characterised by the combination of two
or more combustion chambers/in series connection/[N: with staged combustion
in a single enclosure]/[N: with fuel supply in stages]

F23C 9 MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS;
BLASTING ENGINES OR PUMPS/COMBUSTION APPARATUS;
COMBUSTION PROCESSES/COMBUSTION APPARATUS USING
FLUENT FUEL/combustion apparatus with arrangements for recycling or
recirculating combustion products or flue gases

Post-combustion

B01D 53/56 PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/removing components of defined
structure/nitrogen compounds/nitrogen oxides

B01D 53/56D PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/removing components of defined
structure/nitrogen compounds/nitrogen oxides/[N: by treating the gases with
solids]

B01D 53/60 PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/removing components of defined
structure/simultaneously removing sulfur oxides and nitrogen oxides

B01D 53/86F2 PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/general processes for purification of waste
gases; apparatus or devices specially adapted therefore/catalytic processes/
[N: removing nitrogen compounds]/[N: nitrogen oxides]/

B01D 53/86F2C PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/general processes for purification of waste
gases; apparatus or devices specially adapted therefore/catalytic processes/
[N: removing nitrogen compounds]/[N: Nitrogen oxides]/[N: processes
characterised by a specific catalyst]
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Table 11 continued

B01D 53/86F2D PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/general processes for purification of waste
gases; apparatus or devices specially adapted therefore/catalytic processes/
[N: removing nitrogen compounds]/[N: nitrogen oxides [N: processes
characterised by a specific device]

B01D 53/86G PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN
GENERAL/SEPARATION/separation of gases or vapours; recovering vapours
of volatile solvents from gases; chemical or biological purification of waste
gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols/chemical or
biological purification of waste gases/General processes for purification of waste
gases; apparatus or devices specially adapted therefore/catalytic processes/
[N: simultaneously removing sulfur oxides and nitrogen oxides]

B01J 29/06D2E PERFORMING OPERATIONS; TRANSPORTING/PHYSICAL OR
CHEMICAL PROCESSES OR APPARATUS IN GENERAL/CHEMICAL OR
PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR
RELEVANT APPARATUS/catalysts comprising molecular sieves/having
base-exchange properties, e.g. crystalline zeolites/crystalline aluminosilicate
zeolites; Isomorphous compounds thereof/[N: containing metallic elements
added to the zeolite]/[N: containing iron group metals, noble metals or
copper]/[N: iron group metals or copper]
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