
Vol.:(0123456789)

Education and Information Technologies (2023) 28:6845–6867
https://doi.org/10.1007/s10639-022-11465-y

1 3

The effect of scaffolding programming games
and attitudes towards programming on the development
of Computational Thinking

Christina Tikva1 · Efthimios Tambouris1

Received: 18 July 2022 / Accepted: 9 November 2022 / Published online: 23 November 2022
© The Author(s) 2022

Abstract
Teaching and learning Computational Thinking (CT) is at the forefront of educa-
tional interest. In the process of teaching and learning CT, learning strategies and
tools play an important role. Efforts have been made to apply several learning strat-
egies for teaching Computational Thinking. Among them, game-based learning
and scaffolding are widely adopted. However, more research is needed on how the
absence and presence of scaffolding strategies in programming games could affect
students’ cognitive CT learning gains. This study aims to investigate the effect of
scaffolding programming games on the development of middle school students’ CT.
In addition, herein we aim to explore the effect of students’ programming attitudes
in their CT development. To this end, students were introduced to CT under two
distinct experimental conditions: a scaffolding version of a programming game and
a non-scaffolding version of the same game. Results report statistically significant
differences between the pre- and post-intervention CT scores for all students and
statistically significant improvement in learning outcomes in favor of the scaffold-
ing group. In addition, the study hypothesized that attitudes towards programming
would have an impact on students’ CT. Although this hypothesis has not been con-
firmed, the results suggest that students who have a less positive attitude towards
programming could particularly benefit from scaffolding aspects in programming
games.

Keywords Computational Thinking · Scaffolding · Programming Games ·
Programming attitudes

 * Christina Tikva
 ch.tikva@uom.edu.gr

1 University of Macedonia, 156 Egnatia Street, GR-546 36 Thessaloniki, Greece

http://orcid.org/0000-0002-3883-1585
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-022-11465-y&domain=pdf

6846 Education and Information Technologies (2023) 28:6845–6867

1 3

1 Introduction

Teaching and learning Computational Thinking is at the forefront of educational
interest. Wing (2008) argues that Computational Thinking involves formulating
problems and their solutions, so that solutions are represented in a form that can
be effectively carried out by an information processing agent, considering Com-
putational Thinking as an essential skill for everyone. Many other educators and
researchers support that Computational Thinking is a fundamental skill for twenty-
first century students of all ages. Furthermore, particular interest has been given to
the integration of programming into K-12 education as means of developing Com-
putational Thinking (García-Peñalvo & Mendes, 2018; Kong et al., 2020). Accord-
ing to the meta-review by Hsu et al. (2018), Computational Thinking through Pro-
gramming focuses primarily on elementary and middle school students, with many
countries updating their curricula to integrate programming into K-12 education
(Heintz et al., 2016).

In the process of teaching and learning Computational Thinking, learning strate-
gies play an important role. Efforts have been made to investigate several pedagogies
and learning strategies for teaching Computational Thinking. Among them, game-
based learning and scaffolding are widely adopted (Hsu et al., 2018). Game-based
approaches can increase student motivation, address their disengagement, and foster
the acquisition of Computational Thinking (Weintrop et al., 2016). Thus, they are
exploited in several studies (e.g., de Souza et al., 2019; Garneli & Chorianopoulos,
2018, 2019; Israel-Fishelson & Hershkovitz, 2020; Zhao & Shute, 2019). In addition
to game-based learning, scaffolding is proposed (Repenning et al., 2015) to increase
motivation and student participation in Computational Thinking. Studies also (e.g.,
Angeli & Valanides, 2020) reveal that there is a need to scaffold students’ learning
during their engagement with Computational Thinking. According to Denner et al.
(2012), without proper guidance students face significant challenges in developing
Computational Thinking skills. Scaffolding helps students better understand Compu-
tational Thinking concepts, which they would not be able to assimilate if left alone to
experiment in a programming environment (Grover et al., 2015). The aforementioned
efforts highlight the importance of feedback and guidance strategies in Computational
Thinking approaches. However, more research is needed on how the absence ver-
sus presence of scaffolding strategies could affect students’ cognitive Computational
Thinking learning gains.

Technologies and tools are also important. Thus, researchers focus on the devel-
opment of tools specific to support Computational Thinking learning through pro-
gramming. Sengupta et al. (2013) developed the CTSiM (Computational Thinking
in Simulation and Modeling) tool. CTSiM is a visual programming environment that
includes a modeling environment and supports low-threshold, high-ceiling, algo-
rithm visualization, scaffolding and constructivist learning activities. The second
version of CTSiM is developed to provide students with adaptive scaffolding based
on modeling learner’s domain knowledge, cognitive skills and interests (Basu et al.,
2017). Weintrop et al. (2016) developed a constructionist video game aiming to
foster Computational Thinking. RobotBuilder features a block-based programming

6847

1 3

Education and Information Technologies (2023) 28:6845–6867

language to allow students to construct their game strategies. Clark and Sengupta
(2019) developed the SURGE: Gameblox, a Disciplinary-Integrated Game (DIG).
SURGE: Gameblox exploits formal representations (such as scientific graphs) and
agent-based game programming in a collaborative environment targeting on promot-
ing Computational Thinking. Although the aforementioned tools have been devel-
oped to include features that support specific learning strategies, more empirical
research that aims to investigate the relationship between tools, learning strategies
and Computational Thinking development (Tikva & Tambouris, 2021b) is needed.

In addition to learning strategies and tools, research studies are interested in how
various factors influence the acquisition of Computational Thinking. Research (e.g.,
Kong et al., 2018) has focused on exploring students’ attitudes towards program-
ming in the context of Computational Thinking. Particular interest has been paid on
how several Computational Thinking interventions could improve students’ attitudes
towards programming. For example, Cetin (2016) explored the effect of a Scratch-
based intervention on students’ attitudes towards programming. However, studies
that explore the relationship between attitudes towards programming and Computa-
tional Thinking acquisition are scarce (Sun et al., 2022).

Therefore, the present study aims to investigate the effect of scaffolding program-
ming games on middle school students’ Computational Thinking acquisition. An
additional goal is to explore the effect of middle school students’ attitudes towards
programming in their Computational Thinking development.

2 Background

2.1 Computational thinking frameworks

Wing in her highly cited article “Computational Thinking” defines Computational
Thinking as a process that “involves solving problems, designing systems, and
understanding human behaviour, by drawing on the concepts fundamental to com-
puter science” (Wing, 2006). In addition to the aforementioned definition, several
others appear in the literature. Some of them are closely related to programming
and computing concepts, while others perceive Computational Thinking as a neces-
sary competence both in domain specific fields and in general problem-solving skills
(Tang et al., 2020).

One of the most widely adopted models closely related to programming is Bren-
nan’s and Resnick’s framework (Brennan & Resnick, 2012). Based on programming
with Scratch, they propose a framework that includes the following three dimen-
sions: (a) Computational thinking concepts that correspond to programming blocks,
including Sequences, Loops, Parallelism, Events, Conditionals, Operators, Data, (b)
Computational thinking practices or construction processes, including Being incre-
mental and iterative, Testing and debugging, Reusing and remixing, Abstraction and
modularity and (c) Computational Thinking perspectives that reveal a shift in per-
spective when learning Computational Thinking, including Expressing, Connecting,
Questioning.

6848 Education and Information Technologies (2023) 28:6845–6867

1 3

In addition to the great effort to create frameworks that describe what Computa-
tional Thinking entails, researchers have tried to conceptualize the Computational
Thinking teaching and learning process (e.g., Tikva & Tambouris, 2021a, b). Tikva
and Tambouris (2021b) propose the CTPK-12 model that explains the relationships
between different Computational Thinking areas such as factors, tools and learning
strategies. They suggest that students’ Computational Thinking development could
be enhanced by proper learning strategies that are supported by appropriate tools.
This study follows their recommendations for using the CTPK-12 model to design
empirical studies for teaching and learning Computational Thinking and investigate
some of the models’ relationships.

2.2 Scaffolding strategies in Computational Thinking research

Scaffolding strategies including instructional scaffolding, adaptive, peer-, resource-
scaffolding support/guidance, feedback and prompts have been explored in several
studies focusing on the development of Computational Thinking (Tikva & Tam-
bouris, 2021a). Chevalier et al. (2022) investigated the role of different types of
guidance and feedback in the development of Computational Thinking. To this end,
they designed an experimental study to investigate which of these methods fosters
students’ Computational Thinking. They explored four experimental conditions for
the different combinations of with/without guidance and immediate/delayed feed-
back strategies. Their results support that delayed feedback could be an effective
intervention method for Computational Thinking development. Angeli and Vala-
nides (2020) investigated the impact of two scaffolding techniques, designed with
gender differences into consideration. To this end, students were randomly assigned
to two groups, each following a different type of scaffolding. Their findings show
that both sexes benefited from both scaffolding techniques, while each gender ben-
efited more from a different scaffolding technique. Chen et al. (2021) designed a
quasi-experimental study to investigate the effects of scaffolding prompts on stu-
dents’ Computational Thinking. Students were assigned to three groups, each of
which received cognitive prompts, metacognitive prompts and combination of cog-
nitive and metacognitive prompts respectively. Their findings support that metacog-
nitive scaffolding prompts could be an effective strategy to foster student’s Compu-
tational Thinking. In the same line, Atmatzidou et al. (2018) explored the effects
of different types of guidance (minimal vs strong) on students’ metacognitive and
problem-solving skills. The findings of their quasi-experimental study support that
strong guidance could have a positive impact on students’ metacognitive and prob-
lem-solving skills.

2.3 Attitudes towards programming/Computer Science in Computational
Thinking research

Attitudes towards programming and Computer Science (CS) are of interest to Com-
putational Thinking studies. Attitudes towards programming are explored under
two major research questions: a) To what extent do specific interventions impact

6849

1 3

Education and Information Technologies (2023) 28:6845–6867

students’ attitudes towards programming/CS? and b) To what extent students’ atti-
tudes towards programming/CS affect their Computational Thinking? For example,
Zhao and Shute (2019) measure attitudes toward CS based on a survey that includes
questions about how students perceive computers such as “Computers are fun” and
“Computing jobs are boring”. Subsequently they explored if playing a program-
ming video game could have an impact on students’ attitudes, finding no statisti-
cally significant differences in students’ attitudes before and after the intervention.
They point out that the short duration of the intervention may have played a role in
this outcome. In the same line, Cetin (2016) explored the effects of a Scratch-based
instruction on participants’ attitudes towards programming, finding no statistically
significant effect. They suggest that this could be attributed to the limited duration
of treatment, the participants’ already high attitudes and satisfaction with the quality
of teaching.

Other studies focus on how students’ attitudes towards programming could
affect Computational Thinking acquisition. For example, Sun et al. (2022)
define programming attitude based on a framework that includes the elements
of programming self-efficacy, programming utility, social needs, perceptions
of programmers, and programming interest. Their results support that students’
attitudes towards programming could impact their Computational Thinking,
indicating them as an important factor in Computational Thinking develop-
ment. Kong et al. (2018) define programming empowerment as a Computa-
tional Thinking perspective. They explore whether interest in programming and
attitude towards collaboration are related to programming empowerment. Their
results suggest that interest in programming could affect the acquisition of pro-
gramming empowerment.

Despite the interest in attitudes towards programming/CS, there is no unani-
mously accepted definition by researchers. Computational Thinking studies explore
various attitudes, while focusing on developing scales for them (e.g., Cetin & Ozden,
2015). Table 1 presents attitudes that appear repeatedly in the literature. In the con-
text of this study, attitudes towards programming consist of the following three (3)
dimensions: programming self-efficacy, interest in programming and programming
meaningfulness.

3 Materials and methods

3.1 Purpose of the study

This study aims to investigate the effect of scaffolding programming games on the
development of middle school students’ Computational Thinking. To this end, we
designed a scaffolding programming game named “aMazeD” based on a three-
dimension scaffolding framework. The scaffolding game is aligned with Computa-
tional Thinking concepts and practices included in Brenan’s and Resnik’s (2012)
framework. In particular, we explore how the presence of scaffolding features
affects the acquisition of students’ Computational Thinking. In addition, herein we

6850 Education and Information Technologies (2023) 28:6845–6867

1 3

Ta
bl

e
1

 A
tti

tu
de

s t
ow

ar
ds

 p
ro

gr
am

m
in

g/
C

S
fo

un
d

in
 th

e
lit

er
at

ur
e

A
tti

tu
de

Sc
al

e
ite

m
 e

xa
m

pl
e

St
ud

y

C
on

fid
en

ce
/S

el
f-

effi
ca

cy
pr

og
ra

m
m

in
g

se
lf-

effi
ca

cy
I a

m
 g

oo
d

at
 p

ro
gr

am
m

in
g

(K
on

g
et

 a
l.,

 2
01

8)
K

uk
ul

 e
t a

l.,
 2

01
7;

 K
on

g
et

 a
l.,

 2
01

8;
 D

ur
ak

 e
t a

l.,

20
19

C
S

se
lf-

effi
ca

cy
I f

ee
l c

on
fid

en
t a

bo
ut

 m
y

ab
ili

ty
 to

 u
se

 c
om

pu
te

rs

(W
er

ne
r e

t a
l,

20
12

)
W

er
ne

r e
t a

l.,
 2

01
2;

 R
om

án
-G

on
zá

le
z

et
 a

l.,
 2

01
8

co
di

ng
 c

on
fid

en
ce

I a
m

 g
oo

d
at

 c
od

in
g

(M
as

on
 &

 R
ic

h,
 2

02
0)

M
as

on
 &

 R
ic

h,
 2

02
0

pr
og

ra
m

m
in

g
co

nfi
de

nc
e

I a
m

 c
on

fid
en

t t
o

le
ar

n
pr

og
ra

m
m

in
g

(S
un

 e
t a

l.,

20
22

)
Su

n
et

 a
l.,

 2
02

2

In
te

re
st

in
te

re
st

in
 p

ro
gr

am
m

in
g

I t
hi

nk
 th

e
co

nt
en

t o
f p

ro
gr

am
m

in
g

is
 fu

n
(K

on
g

et
 a

l.,
 2

01
8)

K
on

g
et

 a
l.,

 2
01

8;
 S

un
 e

t a
l.,

 2
02

2

co
di

ng
 in

te
re

st
So

lv
in

g
co

di
ng

 p
ro

bl
em

s s
ee

m
s f

un
 (M

as
on

 &

R
ic

h,
 2

02
0)

M
as

on
 &

 R
ic

h,
 2

02
0

M
ea

ni
ng

fu
ln

es
s/

U
til

ity
pr

og
ra

m
m

in
g

m
ea

ni
ng

fu
ln

es
s

Pr
og

ra
m

m
in

g
is

 u
se

fu
l t

o
m

e
(K

on
g

et
 a

l.,
 2

01
8)

K
on

g
et

 a
l.,

 2
01

8

co
di

ng
 u

til
ity

K
no

w
in

g
ho

w
 to

 c
od

e
w

ill
 h

el
p

m
e

to
 c

re
at

e
us

e-
fu

l t
hi

ng
s (

M
as

on
 &

 R
ic

h,
 2

02
0)

M
as

on
 &

 R
ic

h,
 2

02
0

pr
og

ra
m

m
in

g
ut

ili
ty

Le
ar

ni
ng

 p
ro

gr
am

m
in

g
is

 v
er

y
us

ef
ul

 (S
un

 e
t a

l,
20

22
)

Su
n

et
 a

l,
20

22

So
ci

al
 in

flu
en

ce
/n

ee
ds

M
y

pa
re

nt
s t

hi
nk

 c
od

in
g

is
 im

po
rta

nt
 (M

as
on

 &

R
ic

h,
 2

02
0)

M
as

on
 &

 R
ic

h,
 2

02
0;

 S
un

 e
t a

l,
20

22

Pe
rc

ep
tio

n
of

 c
od

er
s/

 p
ro

gr
am

m
er

s
I t

hi
nk

 k
id

s w
ho

 c
an

 c
od

e
sp

en
d

le
ss

 ti
m

e
ou

t-
do

or
s t

ha
n

ot
he

r k
id

s (
Su

n
et

 a
l,

20
22

)
M

as
on

 &
 R

ic
h,

 2
02

0;
 S

un
 e

t a
l,

20
22

6851

1 3

Education and Information Technologies (2023) 28:6845–6867

investigate the effect of students’ attitudes towards programming on their Computa-
tional Thinking improvement.

3.2 Research questions

The following research questions are posed:

 I Does aMazeD have a positive impact on middle school students’ Computa-
tional Thinking development?

 II Does aMazeD with scaffolding features have a greater impact on middle school
students’ Computational Thinking development than the aMazeD version with-
out scaffolding?

 III Do attitudes towards programming have an impact on middle school students’
Computational Thinking?

 IV Do attitudes towards programming have an impact on middle school students’
Computational Thinking improvement?

3.3 Research design

In order to address the study goal, we conducted an experimental study. Ethi-
cal approval from the university ethical committee of the authors’ university was
obtained. In addition, all students’ parents were informed and gave their consent to
participate in the study. Participants were 57 students in seventh, eighth and ninth
grade. From them, 29 students were randomly assigned to the experimental group
where a scaffolding version of the programming game was used as the learning
approach, while the rest 28 students were assigned to the control group where a ver-
sion of the programming game that did not include scaffolding features was used. In
order to prevent potential influence of different teachers on the outcome of the study,
all students were taught by the same teacher using the same technical equipment
regardless of which group they belonged to. The experiment was conducted in three
phases and lasted three weeks. In the first phase, students were asked to complete a
pre-test for measuring their Computational Thinking and a questionnaire measuring
their attitudes towards programming. Both the pre-test and the questionnaire lasted
45 min. Students completed the pre-test and the questionnaire on two different days.
In the second phase of the experiment, students participated in a 45-min interven-
tion where they were introduced to Computational Thinking through the two ver-
sions of the programming game, depending on the group they belonged to. During
the intervention, students encountered Computational Thinking concepts such as
sequence, loops, conditionals and Computational Thinking practices such as testing
and debugging and being incremental and iterative. Log files from the game were
also collected. In the last phase, students completed a post-test for measuring their
Computational Thinking which lasted 45 min.

6852 Education and Information Technologies (2023) 28:6845–6867

1 3

3.4 Intervention instrument

3.4.1 The aMazeD scaffolding programming game

The “aMazeD” scaffolding programming game is based on Blockly Games: Maze and
Turtle (Mousiou, 2021). In addition, the majority of the levels are based on the Com-
putational Thinking Test (CTt) developed by Roman-Gonzalez et al. (2018). The game
consists of 10 levels. Each level belongs to one of the following categories: a) Maze and
b) Turtle. Τhe player in the maze category levels uses programming blocks to guide his/
her character from start to finish through a maze (Fig. 1). In the turtle category levels,
the player uses programming blocks to draw the required shapes in each level.

3.4.2 Computational Thinking concepts and practices covered by the aMazeD game

The player must employ different Computational Thinking concepts and practices accord-
ing to Brennan’s and Resnick’s framework (Brennan & Resnick, 2012) in order to solve
each level. Computational Thinking concepts and Practices covered by the game are pre-
sented in Table 2.

Fig. 1 The aMazeD scaffolding programming game

6853

1 3

Education and Information Technologies (2023) 28:6845–6867

Ta
bl

e
2

 C
T

C
on

ce
pt

s a
nd

 p
ra

ct
ic

es
 p

er
 a

M
az

eD
 le

ve
l

C
on

ce
pt

D
es

cr
ip

tio
n

A
pp

lic
at

io
n

to
 a

M
az

eD
 le

ve
ls

C
om

pu
ta

tio
na

l T
hi

nk
in

g
co

nc
ep

ts
 a

do
pt

ed
 fr

om
 B

re
nn

an
 a

nd
 R

es
ni

ck
 (2

01
2)

 S
eq

ue
nc

es
B

as
ic

 in
str

uc
tio

ns
 a

nd
 d

ire
ct

io
ns

Th
e

pl
ay

er
 n

ee
ds

 to
 d

es
ig

n
a

se
qu

en
ce

 o
f s

te
ps

 in
 o

rd
er

 to
 so

lv
e

th
e

le
ve

l
(L

ev
el

 1
,7

)
 L

oo
ps

Re
pe

at
 a

 se
t o

f i
ns

tru
ct

io
ns

 fo
r a

 sp
ec

ifi
c

nu
m

be
r o

f t
im

es

or
 u

nt
il

a
co

nd
iti

on
 b

ec
om

es
 tr

ue
Th

e
pl

ay
er

 n
ee

ds
 to

 re
pe

at
 a

 se
t o

f i
ns

tru
ct

io
ns

 in
 o

rd
er

 to
 so

lv
e

th
e

le
ve

l
(L

ev
el

 2
–6

, 8
–1

0)
 C

on
di

tio
na

ls
C

on
str

ai
nt

s t
ha

t a
llo

w
 th

e
ex

ec
ut

io
n

of
 d

iff
er

en
t i

ns
tru

ct
io

ns
Th

e
pl

ay
er

 n
ee

ds
 to

 d
es

ig
n

a
so

lu
tio

n
th

at
 in

vo
lv

es
 th

e
se

le
ct

io
n

of
 a

ch

oi
ce

 b
as

ed
 o

n
co

ns
tra

in
ts

 (4
–6

)
C

om
pu

ta
tio

na
l T

hi
nk

in
g

pr
ac

tic
es

 a
do

pt
ed

 fr
om

 B
re

nn
an

 a
nd

 R
es

ni
ck

 (2
01

2)
 T

es
tin

g
an

d
de

bu
gg

in
g

Tr
ia

l a
nd

 e
rr

or
 p

ro
ce

ss
es

 fo
r c

or
re

ct
in

g
m

al
fu

nc
tio

ns
Th

e
pl

ay
er

 n
ee

ds
 to

 m
ak

e
co

rr
ec

tio
ns

 to
 a

 g
iv

en
 se

t o
f i

ns
tru

ct
io

ns

(L
ev

el
 1

–3
, 5

, 7
)

 B
ei

ng
 in

cr
em

en
ta

l a
nd

 it
er

at
iv

e
D

es
ig

n
an

d
im

pl
em

en
t s

ol
ut

io
ns

 u
si

ng
 it

er
at

iv
e

pr
oc

es
se

s
Th

e
pl

ay
er

 u
se

s t
he

 p
la

y
bu

tto
n

in
 o

rd
er

 to
 se

e
th

e
ex

ec
ut

io
n

of
 th

e
ga

m
e

an
d

m
ak

e
ch

an
ge

s t
o

hi
s/

he
r s

ol
ut

io
n

un
til

 th
e

fin
al

 su
bm

is
si

on
 (L

ev
el

1–

10
)

6854 Education and Information Technologies (2023) 28:6845–6867

1 3

3.4.3 aMazeD scaffolding version

The scaffolding version of the aMazeD game is designed and developed to support
scaffolding, based on a three-dimension framework that includes: i) the provision
of a semi-finished or semi-correct solution, ii) instructions and explanations of the
Computational Thinking concepts required for the solution of each level and iii) the
provision of support regarding the logic behind the solution design. The provision
of semi-finished programs aims to facilitate the understanding and use of Computa-
tional Thinking concepts by students through making small changes to the program
instructions (Werner et al., 2012). The player can execute the semi-finished programs
and observe exactly how the character behaves. In this way, he/she has a better and
more complete understanding of how sequence, loops and conditionals work. After
the player clicks the play button for the first time, an explanation of the Computa-
tional Thinking concepts covered in the level is displayed. After the player clicks the
play button a second time, a prompt about the logic behind the solution of the level
is provided to help students build comprehension of how they could employ Com-
putational Thinking concepts to solve the level. In this way, we build scaffolding for
students by first ensuring the comprehension of Computational Thinking concepts by
providing them with semi-finished solutions and explanations regarding the use of
the concepts. Subsequently, we provide support to students to help them understand
how they could use these concepts in order to design effective solutions.

Each level is designed based on the three-dimension framework described above.
In the following paragraph we present how the aforementioned framework is applied
at level two. The level starts with the semi-finished program pre-loaded at the level
workspace (Fig. 2) and the instruction for correcting the given blocks in order to
enable the character to reach the rocket. After the player clicks the play button for
the first time, the following explanation about the “repeat until” block is displayed:
“Repeat” is used to execute one or more blocks more than once. The next time the
player runs the program by clicking the play button, the following prompted is

Fig. 2 Level 2 semi-finished
instructions

6855

1 3

Education and Information Technologies (2023) 28:6845–6867

displayed: “How many steps must the character take before turning left? How many
does he/she take now? ".

In contrast, the non-scaffolding version does not provide students with semi-fin-
ished solutions, prompts or explanations.

3.5 Data collection

In this study, we measured students’ pre-intervention and post-intervention Com-
putational Thinking using the CTtest. The CTtest was developed and validated
by Román-González et al. (2018). It is a direct assessment method that is widely
accepted as a reliable way to measure Computational Thinking. The CTtest consists
of 28 multiple choice items. Questions are presented using the interface of Maze or
Canvas and the answers are presented as visual arrows or blocks.

We also collected the aMazeD log files that include the following information for each
student: a) the success or failure in each level and b) the code submitted for each level.

An instrument for measuring attitudes towards programming was adapted from
Kong et al. (2018). We used the following three constructs of the aforementioned
instrument translated in the students’ native language: programming meaningful-
ness, programming self-efficacy and interest in programming to measure students’
attitudes towards programming. The scale consists of 13 items and students were
asked to indicate their level of agreement with each item on a 5-point Likert scale
(1 = Strongly agree; 5 = Strongly disagree).

4 Results

4.1 Demographics

57 students whose parents gave their consent to participate in the study were randomly
assigned to the control and experimental group. There were 5 students from the control
group and 7 from the experimental group who were absent either during the completion
of the tests or during the intervention. This resulted in a final sample of 45 students, of
whom 23 belong to the control group and the rest 22 to the experimental group. The dis-
tribution of students by grade and gender is shown in Table 3. Among participants, 23
(51%) students were male and 22 (49%) were female. 13 (29%) were in 7th grade, 21
(47%) were in 8th grade and 11 (24%) were in 9th grade.

Table 3 Distribution of participants by grade and gender

Grade Gender

7th 8th 9th Male Female

Version Non-Scaffolding 7 10 6 14 9
Percentage in the non-scaffolding group 30.4% 43.5% 26.1% 60.9% 39.1%
Scaffolding 6 11 5 9 13
Percentage in the scaffolding group 27.3% 50% 22.7% 40.9% 59.1%

6856 Education and Information Technologies (2023) 28:6845–6867

1 3

4.2 CTtest

CTtest (Román-González et al., 2018) was employed to measure CT pre-intervention
and post-intervention scores. For each item we assigned 1 if it was correct and 0 if it was
incorrect. The score for each test ranged from 0 to 28. The scale had an acceptable level
of internal consistency, as determined by a Cronbach’s alpha of 0.763 reported in the
pre-intervention data and an acceptable level of internal consistency as determined by a
Cronbach’s alpha of 0.803 reported in the post-intervention data.

4.3 Analytics

We calculated the overall game score for each student based on aMazeD game logs.
For each level we assigned 1 if it was successfully completed and 0 otherwise. The
overall game score for each student ranged from 0 to 10. The Cronbach’s alpha coef-
ficient was 0.753. We also calculated the following scores based on the inspection of
the submitted code:

a) Conditional-Level and Loop-Level score. We assigned 1 for each successfully
completed level belonging to the “Conditionals” concept (Table 1) and 0 other-
wise. The overall Conditional-Level score for each student ranged from 0 to 3.
Accordingly, we assigned 1 for each successfully completed level belonging to
the “Loops” concept (Table 1) and 0 otherwise. The overall Loop-Level score for
each student ranged from 0 to 8.

b) Conditional-Use and a Loop-Use score. We assigned 1 if the submitted code contained
Conditionals for each correctly completed level belonging to the “Conditionals” con-
cept and 0 otherwise. The overall Conditional-Use score for each student ranged from
0 to 3. Accordingly, we assigned 1 if the submitted code contained Loops for each cor-
rectly completed level belonging to the “Loops” concept and 0 otherwise. The overall
Loop-Use score for each student ranged from 0 to 8.

c) Conditional-Ratio and Loop-Ratio. We calculated the Conditional-Ratio as the
ratio between Conditional-Use score and Conditional-Level Score and the Loop-
Ratio as the ratio between Loop-Use score and Loop-Level score.

4.4 Scale of attitudes towards programming

A scale adapted from Kong et al. (2018), was used to measure student’s atti-
tudes towards programming. The scale consisted of 13 items 5-point Likert scale,
(1 = Strongly agree and 5 = Strongly disagree). The score of each student was cal-
culated as the sum of the 13 items and ranged from 13 to 65. 40 of the participants
were filled in the attitudes towards programming scale. The scale had a high level
of internal consistency, as determined by a Cronbach’s alpha of 0.948 (Table 4).
We classified the participants into three groups based on their percentile value in
the scale score distribution: Low-attitudes towards programming students (n = 13),
Moderate-attitudes towards programming (n = 14) and High-attitudes towards pro-
gramming students (n = 13).

6857

1 3

Education and Information Technologies (2023) 28:6845–6867

4.5 Does aMazeD have a positive impact on middle school students’ CT
development?

The first research question was, “Does aMazeD have a positive impact on middle
school students’ CT development?” Our hypothesis was that aMazeD would have a
positive impact on middle school students’ CT development. A paired-samples t-test
was used to determine whether there was a statistically significant mean difference
between the pre-intervention CT scores and the post-intervention CT scores of the
students. No outliers were detected. The assumption of normality was not violated,
as assessed by Shapiro–Wilk’s test (p = 0.612). We found a significant mean increase
of 3.933, 95% CI [3.097, 4.769], t(44) = 9.481,p < 0.001 between pre-intervention
and post-intervention CT scores, with a large effect size (Cohen’s d = 1.413). Stu-
dents CT post-intervention scores were higher (M = 19.333, SD = 4.772) compared
to their CT pre-intervention scores (M = 15.4, SD = 4.653). This result supports our
hypothesis that aMazeD would have a positive impact on students’ CT development.

4.6 Does aMazeD with scaffolding features have a greater impact
on middle school students’ CT development than the aMazeD version
without scaffolding features?

The second research question was “Does aMazeD with scaffolding features
have a greater impact on middle school students’ CT development than the
aMazeD without scaffolding?”. Our hypothesis was that the scaffolding ver-
sion of aMazed would have a greater impact on students’ CT development. CT
pre-scores and post-scores were measured by the CTtest (Román-González
et al., 2018). An independent t-test showed that the mean of the pre-test CT
scores of the scaffolding group was not significantly higher (M = 15.727,
SD = 4.442) than that of the non-scaffolding group (M = 15.087, SD = 4.926);
t (43) = − 0.457, p = 0.650. Thus, we can conclude that the two groups were
equivalent in terms of students’ CT scores prior to the intervention. An
ANCOVA was run to determine the effect of the scaffolding version of the
game on post-intervention CT scores after controlling for pre-intervention CT
scores. There was a linear relationship between pre-intervention CT scores and
post-intervention CT scores for each group, as assessed by visual inspection of
a scatter plot. There was homogeneity of regression slopes as the interaction
term was not statistically significant, F(1,41) = 0.180, p = 0.673. Standardized

Table 4 Internal consistency of
the scale of Attitudes towards
Programming

Construct Number of
items

Cronbach’s alpha

programming meaningfulness 4 0.921
programming self-efficacy 5 0.912
interest in programming 4 0.900
entire scale 13 0.948

6858 Education and Information Technologies (2023) 28:6845–6867

1 3

residuals for the interventions and for the overall model were normally distrib-
uted, as assessed by Shapiro–Wilk’s test (p > 0.05). There was homoscedasticity
and homogeneity of variances, as assessed by visual inspection of a scatterplot
and Levene’s test of homogeneity of variance (p = 0.911), respectively. There
were no outliers in the data, as assessed by no cases with standardized residuals
greater than ± 3 standard deviations. After adjustment for pre-intervention CT
scores, there was a statistically significant difference in post-intervention CT
scores between the scaffolding and the non-scaffolding group, F(1,42) = 5.657,
p = 0.022.

We further analyze students’ log files. Mann–Whitney U test was run to
determine if there were differences in Conditional-Use scores between the
non-scaffolding and scaffolding group. Distributions of the Conditional-Use
scores for the two groups were not similar, as assessed by visual inspection.
Conditional-Use scores for the scaffolding group (mean rank = 29.30) were
statistically significantly higher than for the non-scaffolding group (mean
rank = 16.98), U = 391.5, z = 3.409, p = 0.001. Respectively, Mann–Whit-
ney U test was run to determine if there were differences in Loop-Use Score
between the non-scaffolding and scaffolding group. Distributions of the Loop-
Use Scores for the two groups were not similar, as assessed by visual inspec-
tion. Loop-Use scores for the scaffolding group (mean rank = 30.27) were
statistically significantly higher than for the non-scaffolding group (mean
rank = 16.04), U = 413, z = 3.695, p < 0.001.

4.7 Do attitudes towards programming have an impact on students’ CT?

The third research question was “Do attitudes towards programming have an impact on
middle school students’ CT? “. Our hypothesis was that positive attitudes towards pro-
gramming would have a greater impact on students’ CT scores. A one-way ANOVA
was conducted to determine if the students’ CT pre-test scores were different for the low/
moderate/high attitudes groups. There were no outliers, as assessed by boxplot; data was
normally distributed for each group, as assessed by Shapiro–Wilk test (p > 0.05); and
there was homogeneity of variances, as assessed by Levene’s test of homogeneity of
variances (p = 0.818). CT pre-test score increased from low (M = 13.769, SD = 4.902) to
moderate (M = 15.429, SD = 4.327) to high (M = 17,154, SD = 4.793) attitudes group, in
that order, but the differences between attitudes groups was not statistically significant,
F(2,37) = 1.706, p = 0.196. This result does not support the hypothesis that student’s atti-
tudes towards programming would have an impact on middle school students’ CT.

4.8 Do attitudes towards programming have an impact on students’ CT
improvement?

The fourth research question was “Do attitudes towards programming have an
impact on students’ CT improvement?”. Our hypothesis was that attitudes towards
programming would have an impact on students’ CT development. A one-way

6859

1 3

Education and Information Technologies (2023) 28:6845–6867

ANOVA was conducted to determine if the changes in students’ CT scores were
different for the low/moderate/high attitudes groups. There were no outliers, as
assessed by boxplot; data was normally distributed for each group, as assessed by
Shapiro–Wilk test (p > 0.05); and there was homogeneity of variances, as assessed
by Levene’s test of homogeneity of variances (p = 0.113). Changes in CT scores
increased from moderate (M = 3.143, SD = 3.348), to high (M = 3.539, SD = 1.808),
to low (M = 4.462, SD = 2.817) attitudes group, but the differences were not statisti-
cally significant, F(2,37) = 0.807, p = 0.454. This result does not support the hypoth-
esis that student’s attitudes towards programming would have an impact on middle
school students’ CT development.

5 Discussion

Our first hypothesis was that aMazeD would have a positive impact on middle
school students’ CT. Data analysis and results seem to support this hypothesis.
Participants significantly improved their CT scores at the CTtest after playing the
aMazeD. This is consistent with prior research showed that playing programming
games could improve students’ Computational Thinking (e.g., Hooshyar et al., 2021;
Zhao & Shute, 2019). However, since this is a one-group pretest–posttest design, it
cannot be excluded that the differences between the pre-test and post-test are due to
threats such as maturation (Fraenkel et al., 2012).

The second hypothesis was that aMazeD with scaffolding features would have
a greater impact on middle school students’ CT than the aMazeD version without
scaffolding features. Both groups experienced an improvement in their post-inter-
vention CT scores, but students who played the scaffolding version of the game had
significantly higher CT post-scores (Table 5). Furthermore, students in the scaffold-
ing group not only did better on the post-test, but they had significantly higher Con-
ditional-Use and Loop-Use scores (Table 6). The code they submitted to the game
was of higher quality and included the use of Conditionals and Loops. It is indica-
tive that students in the scaffolding group who used conditionals in all successful
levels belonging to the “Conditional Concept” concept amount to 18 out of 22 com-
pared to 6 out of 23 students in the non-scaffolding group. Respectively, students in
the scaffolding group who used loops in all successful levels belonging to the “Loop
Concept” amount to 18 out of 22 compared to 4 out of 23 students in the non-scaf-
folding group. These results suggest that scaffolding could be an effective learning
technique for developing students’ CT and help them understand the core concepts

Table 5 Computational Thinking pre-scores and post-scores means by game version

Game Version Means of Pre-interven-
tion Scores

Means of Post-interven-
tion Scores

Means of
CT scores
changes

Scaffolding version 15.727 20.546 4.818
Non-Scaffolding version 15.087 18.174 3.087

6860 Education and Information Technologies (2023) 28:6845–6867

1 3

Ta
bl

e
6

 C
om

pu
ta

tio
na

l T
hi

nk
in

g
C

on
di

tio
na

l-L
ev

el
, L

oo
p-

Le
ve

l,
C

on
di

tio
na

l-U
se

, L
oo

p-
U

se
 sc

or
es

, C
on

di
tio

na
l-R

at
io

 a
nd

 L
oo

p-
R

at
io

 m
ea

ns
 b

y
ga

m
e

ve
rs

io
n

G
am

e
Ve

rs
io

n
M

ea
ns

 o
f C

on
di

tio
na

l-
Le

ve
l S

co
re

s [
0–

3]
M

ea
ns

 o
f L

oo
p-

Le
ve

l
Sc

or
es

 [0
–8

]
M

ea
ns

 o
f C

on
di

tio
na

l-
U

se
 S

co
re

s [
0–

3]
M

ea
ns

 o
f L

oo
p-

U
se

Sc

or
es

 [0
–8

]
M

ea
ns

 o
f C

on
di

-
tio

na
l-R

at
io

M
ea

ns
 o

f
Lo

op
-

R
at

io

Sc
aff

ol
di

ng
 v

er
si

on
2.

86
6.

05
2.

50
5.

36
0.

87
1

0.
87

8
N

on
- S

ca
ffo

ld
in

g
ve

rs
io

n
2.

57
4.

65
1.

13
2.

22
0.

38
4

0.
40

9

6861

1 3

Education and Information Technologies (2023) 28:6845–6867

of CT such as Conditionals and Loops. Prior research also shows results regard-
ing the relationship between scaffolding and CT development. Studies conclude that
scaffolding could have a positive impact on CT development. Specifically, Chen
et al. (2021) findings of their quasi-experimental study revealed that metacognitive
prompts significantly improved students’ CT outcomes. In the same line, Angeli and
Valanides (2020) found that students who participated in their study benefited from
the scaffolding techniques used. Furthermore, Chevalier et al. (2022) found that stu-
dents in their study benefited from guidance and feedback learning methods.

The third hypothesis was that attitudes towards programming would have an
impact on students’ CT scores. No significant differences were found between the
three groups (low/moderate/high) in the results of students’ CT pre-tests. Although
students’ pre-test scores were very similar in general, as shown in Fig. 3, the stu-
dents of the low attitudes group were less successful than students in the moder-
ate and high attitudes group. Previous studies indicate that Computational Think-
ing is related with attitudes towards programming (Sun et al., 2022) and suggest
that interest in programming could be an important factor in the acquisition of CT
(Kong et al., 2018), proposing interest-driven strategies for CT teaching and learn-
ing (Kong, 2016).

The fourth hypothesis was that attitudes towards programming would have an
impact on students’ CT development. Although this hypothesis was not confirmed as

Fig. 3 Means of pre-tests scores by attitudes towards programming group

6862 Education and Information Technologies (2023) 28:6845–6867

1 3

no significant differences were found between the three groups (low/moderate/high) in
students’ CT improvement, the descriptive statistical analysis reveals interesting results.
As shown in Table 7, changes in students’ CT scores for the non-scaffolding ver-
sion increase from low (M = 1.600, SD = 0.872) to moderate (M = 2.556, SD = 1.069),
to high attitudes group (M = 4.000, SD = 5.35) (Fig. 4). This result is consistent with
other studies (Sun et al., 2022) which have shown that students with negative attitudes

Table 7 Computational
Thinking changes in pre-scores
and post-scores means by game
version and attitudes towards
programming group

Game Version Attitudes towards
programming Group

Means of
Change in CT
Scores

Non-scaffolding version High 4.000
Moderate 2.556
Low 1.600

Scaffolding version High 3.000
Moderate 4.200
Low 6.250

Fig. 4 Means of score changes by attitudes towards programming group for the non-scaffolding group

6863

1 3

Education and Information Technologies (2023) 28:6845–6867

towards programming may find it more difficult to develop their Computational Think-
ing than students with positive attitudes towards programming. Results indicate that
students are struggling to develop their Computational Thinking skills when they are
not provided with an appropriate learning strategy. This is in line with previous stud-
ies which suggest that students face great difficulties without proper guidance (Denner
et al., 2012). However, this is not the case for students that experienced the scaffold-
ing version. Changes in students’ CT scores in the scaffolding version increase from to
high (M = 3.000, SD = 0.894) to moderate (M = 4.200, SD = 1.655) to low (M = 6.250,
SD = 0.491) attitudes group (Fig. 5). This result could have important implications in
the design of appropriate learning interventions regarding the choice of the learning
strategies in relation to students’ attitudes towards programming. Results suggest that
students with low and moderate attitudes towards programming tend to benefit more
from the scaffolding strategy than students with higher attitudes towards program-
ming. The provision of scaffolding through semi-finished programs and prompts could
engage students who tend to have low interest in programming and low programming
self-efficacy, by reducing difficulty levels and providing effective supplies for develop-
ing Computational Thinking.

Fig. 5 Means of score changes by attitudes towards programming group for the scaffolding group

6864 Education and Information Technologies (2023) 28:6845–6867

1 3

6 Conclusions

This study explores the effect of scaffolding programming games on the development
of middle school students’ Computational Thinking. In addition, herein we explore the
effect of students’ attitudes towards programming on their Computational Thinking.
Students were introduced to Computational Thinking under two distinct experimental
conditions: a scaffolding version of a programming game and a non-scaffolding version
of the same game. Results report statistically significant learning gains between the pre-
intervention and post-intervention CT scores for all students and statistically significant
improvement in learning outcomes in favour of the scaffolding group. Furthermore, stu-
dents in the scaffolding group not only showed better learning outcomes overall, but also
submitted higher quality code in terms of using conditionals and loops during the game.
The findings support that scaffolding helps students develop Computational Thinking
and deepen their understanding of the related concepts. In addition, the study hypoth-
esized that attitudes towards programming would have an impact on students’ Compu-
tational Thinking and Computational Thinking development. However, this hypothesis
was not confirmed from the results that report a non-statistically significant difference
in both cases. Nevertheless, students’ Computational Thinking in the non-scaffolding
group found to be higher for students with a more positive attitude towards program-
ming. Specifically, students in the high attitudes group had greater learning gains, fol-
lowed by students in the moderate attitudes group and students in the low attitudes group
for the non-scaffolding version of the game. On the other hand, students in the low atti-
tudes group had greater learning gains, followed by students in the moderate attitudes
and students in the high attitudes group for the scaffolding version of the game.

The implication of these findings is important, as they provide support that scaf-
folding in computational thinking games could be an effective strategy for teaching
and learning computational thinking to middle school students fostering a deeper
understanding of Computational Thinking concepts. In addition, when it comes to
students’ attitudes towards programming, students who perceive programming as
less meaningful, less interesting and have lower programming self-efficacy could
particularly benefit from scaffolding aspects in programming games.

However, this study has some limitations including the small sample size and the
short duration of the intervention. A longer duration could provide more insights
on students’ learning gains. In addition, we based our analysis only on tests, ques-
tionnaires and logs. Including interviews and video recording could have provided a
more holistic understanding of students’ CT development. The inclusion of students
from a single school could be also considered as a limitation of the study.

Acknowledgements We would like to thank Marcos Román-González who shared with us the full ver-
sion and the specification table sheet of the Computational Thinking Test (CTt) and Maria Mousiou for
her contribution to the development of the scaffolding game.

Funding Open access funding provided by HEAL-Link Greece.

Data availability The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Code availability Not applicable.

6865

1 3

Education and Information Technologies (2023) 28:6845–6867

Declarations

Conflicts of interest/Competing interests The authors report there are no competing interests to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educa-
tional robotics: An interaction effect between gender and scaffolding strategy. Computers in Human
Behavior, 105.https:// doi. org/ 10. 1016/j. chb. 2019. 03. 018

Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How Does the Degree of Guidance Support Students’
Metacognitive and Problem Solving Skills in Educational Robotics? Journal of Science Education
and Technology, 27(1), 70–85. https:// doi. org/ 10. 1007/ s10956- 017- 9709-x

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in a computa-
tional thinking-based science learning environment. User Modeling and User-Adapted Interaction,
27, 5–53. https:// doi. org/ 10. 1007/ s11257- 017- 9187-0

Brennan, K., & Resnick, M. (2012). New frameworks for thinking. Annual American Educational Research
Association Meeting, Vancouver, BC, Canada, 1–25. http:// web. media. mit. edu/ ~kbren nan/ files/ Brenn an_
Resni ck_ AERA2 012_ CT. pdf. Accessed 15 Oct 2020.

Cetin, I., & Ozden, M. (2015). Development of computer programming attitude scale for university stu-
dents. Computer Applications in Engineering Education, 23, 667–672. https:// doi. org/ 10. 1002/ cae.
21639

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization of Scratch. Jour-
nal of Educational Computing Research, 54(7), 997–1021. https:// doi. org/ 10. 1177/ 07356 33116
642774

Chen, C. H., Liu, T. K. and Huang, K. (2021). ‘Scaffolding vocational high school students’ computa-
tional thinking with cognitive and metacognitive prompts in learning about programmable logic
controllers’, Journal of Research on Technology in Education, 0(0), pp. 1–18.https:// doi. org/ 10.
1080/ 15391 523. 2021. 19838 94

Chevalier, M., et al. (2022). The role of feedback and guidance as intervention methods to foster com-
putational thinking in educational robotics learning activities for primary school. Computers and
Education, 180, 104431. https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0360 13152 20000 21

Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating computational thinking
and science as practice: collaborative agent-based disciplinarily-integrated games. In Interactive
Learning Environments. https:// doi. org/ 10. 1080/ 10494 820. 2019. 16360 71

de Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019). Data Mining Frame-
work to Analyze the Evolution of Computational Thinking Skills in Game Building Workshops.
IEEE Access, 7, 82848–82866. https:// doi. org/ 10. 1109/ access. 2019. 29243 43

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they
be used to measure understanding of computer science concepts? Computers and Education,
58(1), 240–249. https:// doi. org/ 10. 1016/j. compe du. 2011. 08. 006

Durak, H. Y., Yilmaz, F. G. K., & Bartin, R. Y. (2019). Computational thinking, programming self-
efficacy, problem solving and experiences in the programming process conducted with robotic
activities. Contemporary Educational Technology, 10(2), 173–197. https:// doi. org/ 10. 30935/ cet.
554493

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1007/s10956-017-9709-x
https://doi.org/10.1007/s11257-017-9187-0
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.1002/cae.21639
https://doi.org/10.1002/cae.21639
https://doi.org/10.1177/0735633116642774
https://doi.org/10.1177/0735633116642774
https://doi.org/10.1080/15391523.2021.1983894
https://doi.org/10.1080/15391523.2021.1983894
https://www.sciencedirect.com/science/article/pii/S0360131522000021
https://doi.org/10.1080/10494820.2019.1636071
https://doi.org/10.1109/access.2019.2924343
https://doi.org/10.1016/j.compedu.2011.08.006
https://doi.org/10.30935/cet.554493
https://doi.org/10.30935/cet.554493

6866 Education and Information Technologies (2023) 28:6845–6867

1 3

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in educa-
tion (8th ed.). Mc Graw Hill.

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-
university education. Computers in Human Behavior, 80, 407–411. https:// doi. org/ 10. 1016/j. chb.
2017. 12. 005

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in science edu-
cation: Exploring computational thinking through code analysis.Interactive Learning Environ-
ments, 26, 386–401. https:// doi. org/ 10. 1080/ 10494 820. 2017. 13370 36

Garneli, V., & Chorianopoulos, K. (2019). The effects of video game making within science con-
tent on student computational thinking skills and performance. InteractiveTechnology and Smart
Education. https:// doi. org/ 10. 1108/ ITSE- 11- 2018- 0097

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education, 25(2), 199–237. https:// doi. org/
10. 1080/ 08993 408. 2015. 10331 42

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational think-
ing: Suggestions based on a review of the literature. Computers and Education, 126, 296–310.
https:// doi. org/ 10. 1016/j. compe du. 2018. 07. 004

Heintz, F., Mannila, L., & Farnqvist, T. (2016). A review of models for introducing computational
thinking, computer science and computing in K-12 education.Proceedings - frontiers in educa-
tion conference, FIE. https:// doi. org/ 10. 1109/ FIE. 2016. 77574 10

Israel-Fishelson, R., & Hershkovitz, A. (2020). Persistence in a Game-Based Learning Environment:
The Case of Elementary School Students Learning Computational Thinking. Journal of Educa-
tional Computing Research, 58(5), 891–918. https:// doi. org/ 10. 1177/ 07356 33119 887187

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest, collabora-
tion attitude, and programming empowerment in computationalthinking education. Computers
and Education, 127, 178–189. https:// doi. org/ 10. 1016/j. compe du. 2018. 08. 026

Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher development in computational thinking: Design and
learning outcomes of programming concepts, practices and pedagogy. Computers and Educa-
tion, 151. https:// doi. org/ 10. 1016/j. compe du. 2020. 103872

Kukul, V., G€okçearslan, S¸., & Günbatar, M. S. (2017). Computer programming self-efficacy scale
(CPSES) for secondary school students: Development, validation and reliability. Educational
Technology Theory and Practice, 7(1), 158–179. https:// doi. org/ 10. 17943/ ETKU. 72918

Mason, S. L., & Rich, P. J. (2020). Development and analysis of the elementary student coding atti-
tudes survey. Computers & Education, 153, 103898. https:// doi. org/ 10. 1016/j. compe du. 2020.
103898

Mousiou, M. (2021). Developing a Computational Thinking Environment through Learning Pro-
gramming [Master’s thesis, Hellenic Open University]. Hellenic Open University Research
Repository.https:// apoth esis. eap. gr/ handle/ repo/ 54054

Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K. H., Nickerson, H., Miller,
S. B., Brand, C., Horses, I. H. M., Basawapatna, A., & Gluck, F. (2015). Scalable Game Design.
ACM Transactions on Computing Education, 15(2), 1–31. https:// doi. org/ 10. 1145/ 27005 17

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018). Extending the
nomological network of computational thinking with non-cognitive factors. Computers in Human
Behavior, 80, 441–459. https:// doi. org/ 10. 1016/j. chb. 2017. 09. 030

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational think-
ing with K-12 science education using agent-basedcomputation: A theoretical framework. Educa-
tion and Information Technologies, 18, 351–380. https:// doi. org/ 10. 1007/ s10639- 012- 9240-x

Sun, L., Hu, L., & Zhou, D. (2022). Programming attitudes predict computational thinking: Analysis of
differences in gender and programming experience. Computers and Education, 181(27), 104457.
https:// doi. org/ 10. 1016/j. compe du. 2022. 104457

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic
review of empirical studies.Computers & Education, 148. https:// doi. org/ 10. 1016/j. compe du. 2019.
103798

Tikva, C., & Tambouris, E. (2021a). A systematic mapping study on teaching and learning Computational
Thinking through programming in higher education. Thinking Skills and Creativity, 41(December
2020), 100849. https:// doi. org/ 10. 1016/j. tsc. 2021. 100849

https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1080/10494820.2017.1337036
https://doi.org/10.1108/ITSE-11-2018-0097
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1109/FIE.2016.7757410
https://doi.org/10.1177/0735633119887187
https://doi.org/10.1016/j.compedu.2018.08.026
https://doi.org/10.1016/j.compedu.2020.103872
https://doi.org/10.17943/ETKU.72918
https://doi.org/10.1016/j.compedu.2020.103898
https://doi.org/10.1016/j.compedu.2020.103898
https://apothesis.eap.gr/handle/repo/54054
https://doi.org/10.1145/2700517
https://doi.org/10.1016/j.chb.2017.09.030
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1016/j.compedu.2022.104457
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.tsc.2021.100849

6867

1 3

Education and Information Technologies (2023) 28:6845–6867

Tikva, C., & Tambouris, E. (2021b). Mapping computational thinking through programming in K-12
education: A conceptual model based on a systematic literature Review. Computers & Education,
162, 104083. https:// doi. org/ 10. 1016/j. compe du. 2020. 104083

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Meas-
uring computational thinking in middle school. SIGCSE’12 -Proceedings of the 43rd ACM technical
symposium on computer science education. https:// doi. org/ 10. 1145/ 21571 36. 21572 00

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in construction-
ist video games. International Journal of Game-Based Learning, 6, 1–17. https:// doi. org/ 10. 4018/
IJGBL. 20160 10101

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https:// doi. org/
10. 1145/ 11181 78. 11182 15

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions
of the Royal Society a: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
https:// doi. org/ 10. 1098/ rsta. 2008. 0118

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational thinking skills? Comput-
ers and Education, 141(July), 103633. https:// doi. org/ 10. 1016/j. compe du. 2019. 103633

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.4018/IJGBL.2016010101
https://doi.org/10.4018/IJGBL.2016010101
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1016/j.compedu.2019.103633

	The effect of scaffolding programming games and attitudes towards programming on the development of Computational Thinking
	Abstract
	1 Introduction
	2 Background
	2.1 Computational thinking frameworks
	2.2 Scaffolding strategies in Computational Thinking research
	2.3 Attitudes towards programmingComputer Science in Computational Thinking research

	3 Materials and methods
	3.1 Purpose of the study
	3.2 Research questions
	3.3 Research design
	3.4 Intervention instrument
	3.4.1 The aMazeD scaffolding programming game
	3.4.2 Computational Thinking concepts and practices covered by the aMazeD game
	3.4.3 aMazeD scaffolding version

	3.5 Data collection

	4 Results
	4.1 Demographics
	4.2 CTtest
	4.3 Analytics
	4.4 Scale of attitudes towards programming
	4.5 Does aMazeD have a positive impact on middle school students’ CT development?
	4.6 Does aMazeD with scaffolding features have a greater impact on middle school students’ CT development than the aMazeD version without scaffolding features?
	4.7 Do attitudes towards programming have an impact on students’ CT?
	4.8 Do attitudes towards programming have an impact on students’ CT improvement?

	5 Discussion
	6 Conclusions
	Acknowledgements
	References

