
Vol.:(0123456789)

https://doi.org/10.1007/s10639-022-11173-7

1 3

Significant and hierarchy of variables affecting online 
knowledge‑sharing using an integrated logit‑ISM analysis

Jihe Chen1,2  · Ying Zhou1 · Litian Lv3

Received: 7 February 2022 / Accepted: 9 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
This study aims to explore the significant variables affecting online knowledge-shar-
ing and the hierarchical structure, from the perspective of online learners. To com-
prehensively discuss the relationship between these variables, binary logit regression 
and interpretative structural model (ISM) was used. Based on literature analysis, the 
data of 29 candidates were obtained, and 670 valid data was acquired through an 
electronic questionnaire. A total of 13 significant variables were also obtained using 
the Logit model of SPSS 22, with an 8-layer ISM program established by MAT-
LAB 2017A software. The results showed that six of the 13 variables had positive 
effects on online knowledge-sharing behavior, with the remaining seven having a 
negative impact. The ISM model also proved that trust and delete/block, reward, and 
the remaining elements were shallow, deep, and intermediate variables, respectively. 
Combining the Logit and ISM advantages, these results strengthened the reports on 
online knowledge-sharing behavior, subsequently obtaining five suggestions for its 
development. This study is expected to help teachers and online course developers 
design better digital programs, as well as ensure the accurate decision-making of 
students in knowledge sharing activities.
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1 Introduction

Online learning has become an important method of obtaining educational 
resources, exchanging academic ideas, and knowledge sharing, through the 
development of virtual, 5  g, and other emerging technologies (Sun, 2021; Xu 
et  al., 2019). In this condition, the pattern of learning was higher than the 
traditional type, as teachers and students do not need to study synchronously 
(Liu Ting, 2019). Digital platforms such as MOOC, Stanford online, and Khan 
Academy, are also active with large users, causing a variety of multitasking 
activities (Zhang et al., 2015). This shows that learners often acquire the knowl-
edge they need anytime and anywhere through these online platforms, which 
promotes global information exchange and cross-regional cooperative learning 
during the Covid-19 pandemic, this technical learning process was observed to 
have gradually replaced traditional teaching (Akour et al., 2021). When the fre-
quency of online learning increases, the synergy between media is more obvi-
ous, as people are willing to digitally socialize, consume, and seek jobs (Dong 
et al., 2018). Social networking sites such as Facebook, Twitter and Weibo, are 
also commonly used to communicate, exchange and share knowledge, opinions, 
and ideas, as well as encourage continuous member interactions (Cinelli et al., 
2020; Fazel et  al., 2021; Hussain et  al., 2021; Li et  al., 2020). In the digital 
information exchange mechanism, online knowledge sharing has become an 
important communication channel. By asking and answering questions (Q&A), 
people began to seek help and share their learning methods with other users 
(Osatuyi et al., 2022). Based on the communication function of social networks, 
the facilitation of people became possible and necessary in conducting numer-
ous activities, such as dialogue and knowledge sharing, helping individuals 
and organizations to establish more learning connections, as well as enhancing 
knowledge transmission and updates. This indicates that more content sharing 
leads to greater reward acquisition (Anand & Walsh, 2016). The sharing process 
also helps to seek or provide assistance from/for others, due to being a behavior 
worth promoting in the present evolving information society (Feng et al., 2021). 
Irrespective of these conditions, some risks are still worthy of consideration 
in online media, such as information leakage, low knowledge-sharing quality, 
and the avoidance of expanding competitive relationships, which promotes the 
reluctance of people to evaluate or share their situations.

Since some studies explored the factors affecting this online process, most of 
them were found to emphasize the impact of social media on users’ behavior or 
developed structural equation models around these variables, such as knowledge 
sharing and self-efficacy, social presence, academic performance, and technology 
perception (Ahmed et al., 2019; Zuo et al., 2021). A lack of comprehensive and 
hierarchical assessments was still not studied irrespective of these reviews. This 
was in line with the inadequate perceptions on the logical relationship and hierar-
chical structure between various variables. Therefore, this study aims to explore 
the variables affecting online knowledge sharing, based on the perspective of 
digital learners. The significance of this report is to determine and distinguish 
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the salient factors influencing these processes according to their variability levels, 
i.e., either deep (fundamental) or shallow (direct). This result is expected to help 
teachers and online course developers design better online programs, as well as 
ensure the accurate decision-making of students in knowledge sharing activities.

2  Literature reviews

2.1  Online knowledge sharing

This is an act of exchanging information among users (Bock et  al., 2005), where 
knowledge sharing plays an important role in skill diffusion, proficiency update, and 
teamwork ability improvements (Alsharo et al., 2017). It also helps to accelerate sys-
tematic learning innovation and collaborative education enhancement (Sita Nirmala 
Kumaraswamy & Chitale, 2012). Using social media, this behavioral process helps 
to improve users’ co-creation significance, including customer learning, social inte-
grative, and hedonic values (Chen et  al., 2017). This indicates that online knowl-
edge sharing is very helpful for both individuals and teams. Virtual communities 
and learning platforms also provide users with more opportunities for this behavio-
ral process, where people effectively interact and develop relationships. This shared 
knowledge is likely observed as a general or professional proficiency, personal expe-
rience, and other information. Besides, it also exists as Q&A in the online platform 
(Deng et  al., 2018). According to Hwang, online knowledge sharing was defined 
as voluntary individual actions in asking and answering questions within a virtual 
community platform, to exchange proficiency (Hwang et al., 2015). In this condi-
tion, the sharing behavior of college students occurred in the learning and commu-
nication of online courses, as well as the use of social media, where they actively 
ask their classmates and teachers their questions or answer other people (Arif et al., 
2022; Charband & Jafari Navimipour, 2018). Therefore, this study defines online 
knowledge sharing as the distribution of perceptions, answering to others, or obtain-
ing learning-based information on digital courses’ software and social media, such 
as MOOC, Wechat, etc.

2.2  Online knowledge sharing and online education

The COVID-19 pandemic has been reportedly to have a huge impact on the global 
educational sector, where online learning became the main form of the system 
under the broad emergency response policy (Cotoman et al., 2022). Compared to 
the traditional system, this learning process is more attractive regarding the pro-
vision of multiple digital media technologies, including social networking plat-
forms (Patterson, 2017). This led to the satisfaction of students with the digital 
knowledge-sharing effect (MUZAMMIL et al., 2020). According to Lin and HF, 
the Fuzzy-AHP method was used to analyze the relative weights of 16 attrib-
utes affecting knowledge sharing, where a preliminary model was objectively 
and quantitatively obtained (Lin et  al., 2009). Casimir also stated that shared 
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knowledge was affected by the relationship between emotional trust and commit-
ment, as well as sharing the cost. The results showed that stronger group rela-
tionship trust led to the greater will of people to participate in knowledge shar-
ing (Casimir et  al., 2012). Furthermore, online learning provides opportunities 
for cross-cultural exchange and international collaborative education (Hajhashemi 
et al., 2017). In the virtual network environment, the speed of cross-border knowl-
edge dissemination has been greatly improved, with sharing trust and engagement 
providing a special emotional exchange for course learning and higher connec-
tion. Irrespective of these conditions, the lack of constant internet connection and 
adequate teaching resources promoted the negative reactions to students’ online 
learning performance and the reluctance to participate in online knowledge shar-
ing (Agormedah et al., 2020; Ates Cobanoglu & Cobanoglu, 2021). The adapta-
tion pattern of the course content to the needs and preferences of learners is also 
an issue that needs to be considered in the development of this sharing process 
(Gyamfi & Sukseemuang, 2018).

2.3  Online knowledge sharing and technical security

One of the potential threats to the present online knowledge sharing is the leakage 
of personal information due to technical problems or cyber violence, which destroys 
the digital learning and communication environment (Pidgeon et al., 2013). Based 
on the specific and unique personalities from different cultural backgrounds, peo-
ple’s willingness to share information should be encouraged and adopted, due to 
being an act of kindness on many social occasions, shopping guides, policy reviews, 
etc. (Markus & Kitayama, 1991). Anonymous virtual learning communities also 
need to protect private information, for the sharers to be noticed by others accord-
ing to their shared knowledge. This should not be performed because of their name 
or private information, such as country and religion. In this condition, students are 
likely to hide their identities when they are uncomfortable during knowledge dis-
semination (Chang, 2021).

2.4  Online knowledge sharing and value attraction

Based on Diah, factors such as transparency and content quality had an impact on 
an organization’s value co-creation (Priharsari & Abedin, 2021). This showed that 
knowledge sharing created new value and strengthened social relation connections 
when an adequate response was obtained in the virtual community. In this condi-
tion, a value judgment was invisibly formed, i.e., people were more inclined to agree 
with a specific perception. The literature also stated that valuable knowledge sharing 
enhanced people’s trust in a virtual community (Chai & Kim, 2010). Assuming that 
the knowledge shared by an individual is recognized by the majority of people, the 
sharer is likely to attract the attention of others, with the content being observed as a 
valuable contribution. In addition, social connections and reputation were found to 
significantly affect a person’s social behavior (Wasko & Faraj, 2005). This proved 
that people often share information and knowledge through shared URLs or private 
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IDs when an opportunity to expand their influence is observed. In this case, social 
media such as Facebook, Twitter, YouTube, etc., were often active with many pri-
vate IDs or individual organizations, which used these platforms to share influential 
videos or links, towards the acquisition of more followers (Brombin et al., 2021).

2.5  Online knowledge sharing and cooperative learning

Extensive social media network provides technical solutions and opportunities 
for people to establish cooperative learning. In this condition, users are found 
to also establish online sharing knowledge links and disseminate useful learn-
ing tools such as registering Facebook groups (Nguyen et al., 2013), WhatsApp 
(Martínez-Comeche & Ruthven, 2021), and Road-mapping (Krull et  al., 2022). 
This is often accompanied by the invitation of classmates, friends and colleagues 
to participate in the construction of knowledge. While expanding cooperation and 
exchanges, they also share their ideas and improve the development of specific 
knowledge through collective strength. According to a qualitative analysis study, 
students expressed a preference for capitalizing on the opportunities provided by 
knowledge sharing technology (Ozdamli & Cavus, 2021). The results confirmed 
that all members collectively influenced the development process of the project 
through interaction and cooperation, to improve the overall structure and nature 
of the work. In this case, everyone contributed to the project, achieved clustered 
partnerships, and actualized close emotional exchanges between members, ensur-
ing the valuable status of the work.

Based on these assessments, online knowledge sharing became more important in 
various aspects, such as digital education, learning benefits, personal value enhance-
ment, network security, and cooperative relationship establishment. Irrespective of 
these conditions, many issues still need to be considered, such as the role of indi-
vidual factors, sharing motivation, technology application and privacy security 
variables. It also has important guiding significance and practical value through the 
determination of the hierarchical structure, to intuitively display the logical relation-
ship and importance degree among variables.

3  Theoretical background and variables’ selection

3.1  Social exchange theory

This explains that social behavior is the process of exchanging information 
(Gouldner, 1960), with knowledge sharing being the distribution of information, 
skills or expertise between different public groups (Charband & Jafari Navimi-
pour, 2016). In this condition, people’s engagement motivations in communica-
tion are closely related to maximizing benefits and minimizing costs. People also 
weigh the potential benefits and risks of online knowledge sharing and quit when 
the uncertainties outweigh the rewards (Surma, 2016). Meanwhile, they partici-
pate in virtual communities to exchange information when the benefits exceed 
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the perceived risks. Social exchange theory also explains the behavior of online 
knowledge sharing, where repetition of the mastered information is observed 
during network dissemination (Hall et  al., 2010). This behavior is accompa-
nied by the different influential degrees of external incentive variables, social-
psychological forces, and discussion atmosphere on knowledge sharing willing-
ness. When members intensively interact and trust each other, they tend to share 
reliable knowledge. In this case, the members with perceived fairness, experi-
ence, and similar language, are likely to provide more high-quality knowledge 
(Chang & Chuang, 2011). Furthermore, the individual’s learning ability, as well 
as social trust and interaction significantly affected knowledge sharing behavior, 
with shared concepts and collectivism having moderating effects on the public 
factors (social trust and interaction) (Nguyen, et  al., 2022a, 2022b). This con-
firms that the sharing behavior is an effective carrier of trust and interaction in 
social exchange, due to playing an important role in promoting public informa-
tion communication.

3.2  Technology acceptance model

This model believes that people’s behavior in selecting a specific product is deter-
mined by behavioral Intention (BI) (Davis et al., 1989), with BI being developed by 
attitude and perceived usefulness (BI = A + U) (P. Surendran, 2012). Based on these 
assessments, the use of technology and perceptual techniques play an increasingly 
important role in people’s online education, shopping, and communication. Accord-
ing to Al-fraihat, a PLS-SEM model was established to verify the impact of fusion 
technology education on e-learning satisfaction (Al-Fraihat et al., 2020). In the pro-
jects related to technical variables, the three predictive factors affecting teamwork and 
business training sharing behavior includes enjoyment, belonging, and attitude (da 
Silva et al., 2022). Informal associations and task dependencies also contribute to the 
establishment of knowledge sharing relationships (Liu et al., 2022). Moreover, virtual 
identity and knowledge creation self-efficacies have significant predictive effects on 
sharing behavior (Kim et al., 2020). This is in line with knowledge acquisition and 
sharing, where significant positive effects are observed on perceived usefulness and 
ease of use (Al-Emran & Teo, 2020), which supports the following hypothesis,

"There is a significant influence relationship between online knowledge shar-
ing and technology use".

To reduce the risk of privacy disclosure in this online process, students’ products 
should be considered in knowledge sharing activities. This indicates that students 
are eligible to hide their identities when uncomfortable with public dissemination 
(Chang, 2021).

3.3  Theoretical summary

In the acquisition or distribution of information, the knowledge sharing capabil-
ities of online communities have become more extensive (Hwang et al., 2015). 
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This shows that knowledge exchange and technology use have a dynamic effect 
on individuals’ willingness to participate in the online process. The integration 
of these elements also categorized knowledge sharing in two different forms, 
i.e., scattered and aggregated (Zagalsky et  al., 2018). According to Tausczik, 
several influential factors of the sharing behavior were summarized, such as 
Technology, Motivation and Individual differences, as well as Group dynam-
ics, which all involved information exchange and technological use (Tausczik 
& Huang, 2020). This proved that online knowledge sharing obtained attention 
from both social exchange theory and technology acceptance model (TAM). The 
influential variables also contained information exchange theory and are closely 
related to the support of TAM. Meanwhile, social exchange theory showed that 
reciprocal exchange relations are realized through trust and orderly interaction 
(Molm et  al., 2000). The provision of more high-quality social media sharing 
also helped to generate more revenue from other members (Szymczak et  al., 
2016), with the utilization of technology improving students’ willingness to use 
electronic platforms through TAM (Natasia et  al., 2022). In addition, the per-
ceived ease of use and usefulness, as well as social presence influenced peo-
ple’s intention to create and share knowledge (Allam et  al., 2020), leading to 
the following hypothesis (Wu et al., 2016),

"The use of the system help students acquire and share knowledge".

Based on this analysis, the relationship between social exchange theory, online 
knowledge sharing, and the technology acceptance model is summarized in 
Fig. 1.

In Fig. 1, online knowledge sharing was observed as a combination of social 
exchange and technology use. This showed that sharing is a small social exchange 
process where technology plays a moderating role and enhances individual dis-
semination behavior (Liu et al., 2011). It was also related to the individual, moti-
vational, environmental and technological factors of sharers (Tausczik & Huang, 
2020; Wang & Noe, 2010). Before the decision to digitally share knowledge, 

Fig. 1  Relationship between SET, OKS and TAM
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people often consider various factors, including the personal participation aim, 
the sharing motivation and environment (Nguyen, 2019), as well as the benefit 
and price measurements. The potential prices include the time, knowledge, cog-
nitive, and technology costs (Yan et al., 2016), with the benefits containing self-
efficacy, reputation, and reciprocity (Nguyen et al., 2022a, 2022b).

3.4  Variable selection

Based on a literature review, the variables such as individual characteristics and 
subjective willingness to share, objective environmental perception, and techno-
logical application, were found to have an impact on the dissemination behav-
ior of online learning. This was carried out by synthesizing the perspectives of 
social exchange and technology acceptance theories. To integrate the variables 
at different levels, the following were selected as the primary indicators influ-
encing online knowledge, namely the individual perspective, participation moti-
vation, as well as environmental and technology perceptions. In addition, a total 
of 29 variables were selected as the secondary indicators, such as gender and 
education (Table 1).

4  Methods and results

4.1  Study methods

In the knowledge sharing activities, the willingness to participate was assumed as 
an obvious binary variable. Based on Table 1, the binary Logit regression was ini-
tially used to screen out the variables with significant influence on the sharing pro-
cess. This was accompanied by the analysis of their hierarchical relationship through 
ISM, to obtain the final structure.

4.1.1  Binary Logit regression

Binary Logit regression is a common statistical probabilistic nonlinear model 
used to study the relationship between dichotomous observations y and some 
influential variables (x1, x2,… , xn) . For example, medical patients are often 
judged by their symptoms (Babiker et al., 2021), identify the variables triggering 
traffic hazards (Samerei et al., 2021), and the teaching pattern of college teachers 
(Saha et al., 2022).

Consider the vector set, x = (x1, x2,… , xn) , containing n independent variables, 
and let the conditional probability, P(y = 1|x ) = p , be the occurrence of an event, 
x , according to the observed quantity. Subsequently, the Logit regression model is 
expressed as follows:
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The established Logit model is then shown as follows:

where, IV, MV, EV, and TV = individual, motivation, environmental, and technical 
variables, respectively (Table 1), i = 1, 2, ..., 660;�, � = 1, 2, ..., 7;� = 1, 2, ..., 9;� = 1, 2, ..., 6.

4.1.2  The ISM Model

The Interpretative Structural Modeling (ISM) method is a widely used systematic 
scientific model (Warfield, 1974). It is derived from SM (Structural Modeling), 
which initially divides the analyzed system into various subsystems (variables or 
elements) through sorting. This is then accompanied by the analysis of the variables 
and their relationships. These are subsequently mapped to a directed graph, which is 
presented in the simplest hierarchical topology by Boolean logic operations (Janes, 
1988). The specific process is shown in Fig. 2 (Sakar et al., 2020).

4.2  Results of Logit regression

After determining the variables, an electronic questionnaire was transmitted to stu-
dents of Guangxi Normal University for filling. In this instrument, KS, X1, X2, X3, 
X4, and X5 need extra information description, with the remaining elements used 
to measure the variables based on the importance of the online knowledge sharing 
intention. Therefore, a 5-point Likert scale was used for the item measurement, with 
1, 2, 3, 4, and 5 representing SA, A, N, D, and SD (strongly agree, agree, normal, 
disagree, and strongly disagree), respectively.

4.2.1  Descriptive statistical analysis

The data were obtained through the website, https:// www. wenju an. com/ list/, and 
the time was observed from October 1 to December 31, 2021. A total of 688 data 
were obtained from different IDs, with the effective rate of the questionnaire being 
90.38% due to the validity of 670 data. In this condition, 80.3% and 19.7% were 
willing and unwilling to participate (Yes = 1 and No = 0). Both male and female 
(Age = 1 and Age = 2) also accounted for 48.4% and 51.6% (Mean = 1.52,), with 
the gender distribution being relatively balanced. Furthermore, the age range was 
[16–30] (Mean = 22.98), as students were observed not to be very old. Freshman, 
Sophomore, Junior, Senior, as well as Graduate and above (= 1, 2, 3, 4, and 5) rep-
resented 19.7, 14, 13.9, 14.5, and 37.9% (Mean = 3.37), respectively, indicating that 
the participants were highly dominated by undergraduates. The statistical represen-
tation of this result is shown in Table 2.

(1)ln

(
p

1 − p

)
= g(x) = w0 + w1x1 +…+ wnxn

(2)KSi = w0 + w1�IV1� + w2�MV2� + w3�EV3� + w4�TV4�
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4.2.2  Logit regression analysis

To analyze some significant variables, more targeted analyses were carried out using 
SPSS 22 for Binary Logit regression, leading to the initial test results (Model 1). In 
this condition, the variables with significant influence (p-value < 0.1) had X4, X5, 
X8, X10, X14, X16, X17, X18, X20, X23, X24, X25, and X27. This was accom-
panied by the removal of the remaining insignificant variables, with the 13 initially 

Fig. 2  Stage 1–8 of ISM
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acquired elements placed into the Binary Logit regression again. Based on the 
results, all the variables passed the significance test, as shown in Table 3.

From Table 3, the significance probability of the 13 screened variables, X4, X5, 
X8, X10, X14, X16, X17, X18, X20, X23, X24, X25 and X27, achieved a good 
level  (R2 = 0.59, Sig = 0.943 > 0.05). This indicated that the fitting effect of Model 
2 was good for subsequent analysis, with Eq. 3 being obtained through the data in 
Table 3.

4.3  ISM results

To facilitate subsequent analysis towards the directed relationship and hier-
archy of each variable, the names of the indicators were re-coded as 
S1 → X4, S2 → X7, ..., S13 → X27 , with their meanings shown in Table 4. The ISM 
model is constructed according to Sakar (Sakar et al., 2020).

4.3.1  Variable selection and description (Stages 1–2)

In Table  1, the corresponding literature explained the selection of each variable, 
with the II level definition being subsequently evaluated as the 13 significant vari-
ables were obtained through Logit analysis.

(3)

KS = 5.725 − 1.059X4 − 0.538X5 + 0.363X8 + 0.336X10 + 0.341X14 + 0.369X1

+0.699X17 − 0.357X18 + 0.568X20 − 0.409X23 − 0.499X24 − 0.479X25 − 0.585X27

Table 2  Statistics date

Variable Mean ± SD Variance Variable Mean ± SD Variance

KS 0.8 ± 0.398 0.158 X15 2.46 ± 1.154 1.331
X1 1.52 ± 0.5 0.25 X16 2.06 ± 0.917 0.841
X2 22.98 ± 4.314 18.612 X17 1.78 ± 0.67 0.449
X3 3.37 ± 1.568 2.457 X18 2.74 ± 0.993 0.986
X4 2.41 ± 0.858 0.736 X19 2.49 ± 1.107 1.225
X5 2.04 ± 0.993 0.987 X20 2.32 ± 0.921 0.849
X6 1.61 ± 0.649 0.421 X21 2.22 ± 0.729 0.531
X7 1.48 ± 0.613 0.376 X22 2.14 ± 0.708 0.501
X8 2.83 ± 0.846 0.715 X23 2.28 ± 0.991 0.982
X9 1.43 ± 0.599 0.359 X24 2.91 ± 1.164 1.355
X10 2.54 ± 0.891 0.793 X25 2.78 ± 0.901 0.811
X11 2.4 ± 1.166 1.358 X26 2.74 ± 1.208 1.459
X12 3.23 ± 1.1 1.211 X27 2.32 ± 0.939 0.882
X13 2.12 ± 0.858 0.736 X28 2.7 ± 0.894 0.799
X14 3.899 ± 0.9865 0.973 X29 2.11 ± 1.031 1.063
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4.3.2  Developing SSIM matrix (Stage 3)

To determine the relationship between the variables, the structural self-interaction 
matrix (SSIM) was developed in Eq. 4 as follows (Mukeshimana et al., 2021):

Table 3  Logit Model regression 
results

Variable Model 1 Model 2

B Sig B Sig

X1 -0.066 0.832
X2 -0.074 0.504
X3 0.157 0.608
X4 -1.068 0.00*** -1.059 0.00***

X5 -0.52 0.009*** -0.538 0.004***

X6 -0.231 0.37
X7 0.485 0.131
X8 0.432 0.015** 0.363 0.033**

X9 0.098 0.764
X10 0.344 0.043** 0.336 0.041**

X11 0.088 0.549
X12 0.104 0.462
X13 -0.219 0.292
X14 0.336 0.065* 0.341 0.050*

X15 0.05 0.778
X16 0.375 0.033** 0.369 0.029**

X17 0.676 0.006*** 0.699 0.001***

X18 -0.302 0.084* -0.357 0.030**

X19 0.171 0.319
X20 0.589 0.007*** 0.568 0.005***

X21 0.023 0.912
X22 0.023 0.913
X23 -0.344 0.059* -0.409 0.015**

X24 -0.529 0.003*** -0.499 0.002***

X25 -0.477 0.009*** -0.479 0.005***

X26 -0.027 0.863
X27 -0.593 0.005*** -0.585 0.002***

X28 -0.097 0.555
X29 -0.127 0.478
Constant 5.912 0.024** 5.725 0.000***

Nagelkerke  R2 0.603 0.59
Sig 0.681 0.943
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V  when Factor i affects Factor j;

A  when Factor j affects Factor i;

X  when i and j affect each other;

O  when i and j are unrelated.

To ensure the objectivity and scientific relationship between the two variables, 
the context association needs to be determined by the comprehensive perceptions of 
multiple experts (Attri et al., 2013). In this condition, five educational field experts 
were consulted, with their evaluations being expressed as a matrix (SSIM), which 
was obtained after the return visit and revision of ambiguous topics (Table 5).

4.3.3  Transforming SSIM into accessible matrix (RM) (Stage 4)

The SSIM matrix was initially transformed into an adjacency expression, with the 
transformation rules observed as follows:

(4)sij =

⎧
⎪⎨⎪⎩

V ∶ i → j

A ∶ j → i

X ∶ i ↔ j

O ∶ i − j

Table 4  The variable names of the new encoding and its meanings

Original New Meaning

X4 S1 Weekly time on online learning
X5 S2 Daily time spent on social media
X8 S3 Social presence, the degree to which personal are salient in online interactions
X10 S4 Learning more knowledge, that students are interested in
X14 S5 Be encouraged or recognized by others
X16 S6 The relevance of knowledge sharing
X17 S7 Quality of knowledge sharing, the knowledge shared is interrelated and valuable for 

discussion
X18 S8 The content of knowledge sharing is trustworthy
X20 S9 Reward mechanism, offer substantial rewards to those who contribute to online knowl-

edge sharing
X23 S10 Atmosphere of knowledge sharing, number of participants in discussions and number of 

knowledge sharing
X24 S11 Access common resources, free knowledge links and public learning resources
X25 S12 Privacy Security, such as sharer’s real name, sex, etc
X27 S13 Delete or block information, implify the process of finding information
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– When (i, j) entry in SSIM is V, then (i, j) = 1 and (j, i) = 0 in the initial RM
– When (i, j) entry in SSIM is A, then (i, j) = 0 and (j, i) = 1 in the initial RM
– When (i, j) entry in SSIM is X, then both (i, j) and (j, i) = 1 in the initial RM
– When (i, j) entry in SSIM is O, then both (i, j) and (j, i) = 0 in the initial RM.

This was accompanied by the calculation of the reachable matrix (Eq. 5), using 
the Boolean operation rules of MATLAB R2017a.

(5)M = (W + I)k+1 = (W + I)k ≠ (W + I)k−1 ≠ ... ≠ (W + I)2 ≠ (W + I)

Table 5  SSIM

Variable S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

S1 O O X A O O O O O O O O
S2 V O O O O O O O O A O
S3 O O O O V O A O O O
S4 O A A O O O V O V
S5 O X O X O O O O
S6 O O O V V O V
S7 V O O O O O
S8 O O O A O
S9 O O O O
S10 O A O
S11 O V
S12 V
S13

Table 6  RM

Variable S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

S1 1 0 0 1 0 0 0 0 0 0 1 0 1
S2 0 1 1 0 0 0 0 1 0 0 0 0 0
S3 0 0 1 0 0 0 0 1 0 0 0 0 0
S4 0 0 0 1 0 0 0 0 0 0 1 0 1
S5 1 0 0 1 1 90 1 1 1 0 1 0 1
S6 0 0 1 1 0 1 0 1 0 1 1 0 1
S7 1 0 0 1 1 0 1 1 1 0 1 0 1
S8 0 0 0 0 0 0 0 1 0 0 0 0 0
S9 1 0 0 1 1 0 1 1 1 0 1 0 1
S10 0 0 1 0 0 0 0 1 0 1 0 0 0
S11 0 0 0 0 0 0 0 0 0 0 1 0 1
S12 0 1 1 0 0 0 0 1 0 1 0 1 1
S13 0 0 0 0 0 0 0 0 0 0 0 0 1
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M,W, I, k indicate adjacency, reachable, and identity matrixes ( 13 × 13 ), as well 
as the number of sum operations. The reachable matrix was then obtained after 3 
operations, as shown in Table 6.

4.3.4  Level division (Stage 5)

To obtain the reachability R(Si) and antecedent A(Si) sets, the reachable matrix 
was decomposed. This was based on the rules of the hierarchical division, which 
stated that when R(Si) ∩ A(Si) = R(Si) , then Si is the element of the highest level 
(L1). This led to the location of the row and column in the reachable matrix, with 
continuous determination observed in the elements of other levels (Table 7).

Based on Table 7, the results were obtained after 8 decompositions, with the 
13 elements being divided into 8 levels, i.e., 4, 3, and 1 layer containing 1, 2, and 
3 variables.

4.3.5  Development of directed graphs and formation of ISM (Stages 6–7‑8)

Using the directed relationship and hierarchical division in Tables  5 and 7, the 
transitive order and ranking level among the 13 variables were determined, with 
the final ISM model being created in Fig. 3.

From Fig. 3, the directional relationship between the variables was observed, 
with the 13 elements subsequently divided into 8 different levels. This showed 
that a greater variable level led to a higher role within the model. Based on these 
results, S9 (Reward mechanism) was the deepest variable with the greatest impact 
on online knowledge sharing. This was accompanied by S5 (Be encouraged or 
recognized by others), S6 (The relevance of knowledge sharing content and cur-
riculum learning), and S7 (Quality of knowledge sharing). Meanwhile, the most 

Table 7  Level partition summary

Variable Reachability set Antecedent set Intersection Set Level

S1 1,4,11,13 1,5,7,9 1 3
S2 2,3,8 2,12 2 4
S3 3,8 2,3,6,10,12 3,10 3
S4 4,11,12 1,4,5,6,7,9 4 6
S5 1,3,4,5,7,8,9,11,13 5,7,9 5,7,9 7
S6 3,4,6,8,10,11,13 6 6 7
S7 1,3,4,5,7,8,9,11,13 5,7,9 5,7,9 7
S8 3,8,10 2,3,5,6,7,8,9,10,12 3,8,10 1
S9 1,3,4,5,7,8,9,10,11,13 5,7,9 5,7,9 8
S10 3,8,10 6,10,12 10 4
S11 11,13 1,4,5,6,7,9,11 11 2
S12 2,3,8,10,12,13 12 12 5
S13 13 1,4,5,6,7,9,11,12,13 13 1
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shallow variables were S13 (Delete or block information) and S8 (The content 
of knowledge sharing is trustworthy), which had the least impact on the sharing 
process.

5  Discussion

5.1  Logit results

Based on the results, Logit regression showed that the daily and weekly time 
spent on social media had negative significant impacts on online knowledge shar-
ing behavior, indicating that longer virtual learning was likely to lead to greater 
tiredness (Darr et  al., 2021). The visual fatigue caused by the frequent use of 
electronic products was also one of the variables hindering students from partici-
pating in online community learning (Kaur et al., 2021). Furthermore, the auton-
omous virtual environment lacked the support of other participants, causing the 
inability to effectively deal with learning tasks, which then reduced knowledge 
sharing behavior (Hsiao et al., 2013). For the remaining individual variables, no 

Fig. 3  ISM
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significant influence was observed on the sharing process. According to the moti-
vation variables, the following indicators passed the significance test with a posi-
tive effect on sharing behavior, namely social presence, being promoted/recog-
nized by others, and more learning knowledge. This proved that the enhancement 
of social presence promoted students’ interaction and collaborative construction, 
specifically in knowledge sharing, discovery, discussion, and application (Wang 
& Liu, 2020). In this condition, people also consider the sufficiency of the bene-
fits before participating in online activities (Szymkowiak et al., 2021). Moreover, 
the encouragement of students’ willingness to share had a good effect on social 
interaction and communication, while interactive enhancement promoted the 
integration or creation of collective wisdom, sharing, and proficiency exchange 
(Wang & Lin, 2021). When students are motivated by respect, praise, etc., they 
are more likely to help others through the dissemination of knowledge (Moghav-
vemi et al., 2017).

Among the environmental variables, three indicators had a positive impact on 
online sharing behavior, namely (1) the relevance of knowledge sharing content 
and curriculum learning, (2) the quality of knowledge sharing, and (3) the reward 
mechanism. In this case, K-12 online curriculum projects indicated that assign-
ments and high-level intellectual activities contributed to learning outcomes (Zheng 
et al., 2020). The improvement of the relevance of knowledge sharing activities and 
course learning was also conducive under the guidance of teachers, to create a good 
academic atmosphere, as well as allow students to carry out targeted dissemination 
and opinion discussion. Furthermore, the quality and reward mechanism of knowl-
edge sharing played a great role in promoting these online activities. By judging the 
quality of the knowledge shared by others, bystanders conveniently selected useful 
information related to their proficiency. An effective reward mechanism was also a 
temptation for all online learners, with the acquisition of a regular benefit through 
sharing behavior being the best of both worlds. However, false information remained 
a challenge in the virtual environment, due to being often retained as speeches hav-
ing adverse effects on other participants. To ensure the promotion of students’ learn-
ing and training, regulation and management also had a positive effect (Gonçalves 
Costa et al., 2021), although the development trend of knowledge sharing became 
unpredictable without proper monitoring and guidance. This led to the unguaranteed 
atmosphere of the sharing process, which often caused a bad psychological effect 
on participants. Regarding the technical variables, three variables were observed to 
have negatively significant effects on knowledge sharing, namely common resource 
accessibility, privacy security, and delete/block information. This proved that learn-
ing behavior easily left traces in the virtual environment, with a large amount of data 
being active on social media. However, personal information was leaked due to the 
uncertainty of technology management (L. Zhang et  al., 2021a, 2021b). In many 
cases, teachers or technology developers also obtained students’ background data for 
analysis, which often led to uncomfortable conditions, as well as reduction of access 
and screening behavior in the online environment.

To compare the occurrence ratio of positive or negative variables to 
online knowledge sharing, their correlation was examined with the repre-
sentation of a forest map (Fig.  4) (Bitew et  al., 2021). Figure  4 shows that the 
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quality of knowledge sharing had a very great contribution (odds ratio = 2.013, 
95%CI = 1.328, 3.051), accompanied by the reward mechanism (odds 
ratio = 1.765, 95%CI = 1.188, 2.62). Therefore, the great development, as well 
as the monitoring and management enhancement of knowledge sharing quality 
is necessary for a virtual environment. To promote others toward participating 
in these activities, a reasonable reward mechanism also needs to be established. 
Despite these conditions, weekly online time (odds ratio = 0.347, 95%CI = 0.243, 
0.495) still significantly weakened online knowledge sharing. This led to the 
suggestion of longer weekly learning, to enhance students’ perception of virtual 
dissemination.

5.2  ISM

Based on the ISM model, 8 hierarchical relationships with different effects were 
observed among the 13 variables on online knowledge sharing. In this condi-
tion, the reward mechanism (S9) was divided into deep variables, due to being 
the most important contributor to this online process. This was in line with the 
Logit analysis, where reasonable rewards played a very important role in online 
knowledge sharing. It also supported several previous studies, where a significant 
positive relationship was observed between virtual reward and explicit sharing 
process. Besides this, appropriate reward or effective incentive mechanisms sub-
sequently promoted students’ participation in online knowledge sharing (Wang 
et al., 2021). The content of this sharing process was trustworthy, with the delete 

Fig. 4  Forest plot
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or block information being divided into superficial variables, due to having the 
lowest impact on virtual dissemination. This was because few electronic prod-
ucts presently provided all the help of active learning, which led to the effect of 
students’ information screening and comment behavior (Parramore, 2019). It was 
based on the low trust relationship on social media, as most of these platforms 
were unable to obtain effective reliance association (Wang et al., 2017).

From the ISM model, multiple variables were observed with strong correlation, 
such as weekly and daily time spent on social media, as well as being promoted/
recognized with trust perception and reward mechanism. This indicated that these 
variables influenced one another, with the effect of one indicator being appropri-
ately strengthened to affect the other. A relationship of multiple variables was also 
observed with overstepping direction, such as the quality of knowledge sharing (L7), 
points to be promoted or recognized (L7), and top trust perception (L1). This proved 
that some complex relationships were still observed in the hierarchy of the sharing 
process. To measure the driving force and dependence power of various variables, 
a subsequent analysis was performed. In this condition, the number of reachability 
and antecedent sets for each variable represented the Driving force and Dependence 
power, respectively (Table 8) (Zhao et al., 2019).

According to Table  8, the dependence power and driving force represented the 
X and Y axes, respectively. The distribution of Autonomous, Dependent, Linkage, 

Table 8  Dependence power and 
driving force

V S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

DF 4 2 5 6 3 1 3 9 3 3 7 1 9
DP 4 3 2 3 8 7 8 1 8 3 2 6 1

Fig. 5  MICMAC analysis
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and Independent variables was also obtained on the graph of four quadrants (Fig. 5). 
In this condition, the position of each point represented the category where the cor-
responding variables belonged. This showed that Autonomous variables had weak 
driving force and dependence, which generally possessed little correlation with the 
system. Dependent variables also had weak driving force and strong dependence, 
generally belonging to the final risk indicators. This indicated that control strategies 
need to be placed forward as intervention variables. Linkage variables also had strong 
driving forces and dependencies, as any related behavioral changes affected all the 
indicators, leading to instability. Meanwhile, Independent variables had a strong driv-
ing force and weak dependence. These confirmed that the variables were Independent 
of others and were the most critical part of the system (Mukeshimana et al., 2021).

Based on Fig.  5, 7 Autonomous variables (S1, S2, S3, S4, S6, S10, and S12) 
had a weak correlation with other variables and low influence on online knowledge 
sharing. In this condition, a total of three Dependent variables (S8, S9, and S11) 
were observed for careful consideration, due to having strong dependence on other 
indicators. Three Independent variables (S5, S7 and S9) were also observed to be 
important to other indicators and should be considered the study focus. Meanwhile, 
the Linkage variables were not observed in this analysis.

6  Conclusion

Online knowledge sharing had great development potential and practical value in 
the "technology + education" environment. In this study, the Logit-ISM model 
was introduced to identify and analyze 13 variables and 8 hierarchies, which sig-
nificantly affected the online sharing process. The forest map and MICMAC analy-
sis were also developed to carry out a comprehensive discussion of the variables, 
accompanied by the effective consideration of different indicators and hierarchies of 
knowledge dissemination activities.

Based on these results, several considerations are conducted for the future of 
online education. Firstly, teachers or specific hosts are required to formulate partici-
pation rewards before the development of online knowledge sharing courses and dis-
cussion environments. This is to enhance and promote the enthusiasm and self-rec-
ognition belief of virtual members towards participation. Secondly, strengthen the 
time and trust management of online learning. Teachers or curriculum developers 
also need to provide a reasonable knowledge sharing topic, to prevent the negative 
effects of visual and mental fatigue in the online process. They also need to attract 
learners to participate in knowledge sharing discussions, as well as enhance their 
sense of social presence and trust perception. Thirdly, a two-way pointing effect 
was observed between the variables, where S9 ⇔ S5 ⇔ S7 (Fig.  3) indicated that 
one variable was improved to influence the effect of the other. This was based on 
the achievement of a two-way circulation and joint promotion. For example, teach-
ers provided appropriate rewards (S9) when expressing encouragement for students 
to participate in online sharing (S5). This showed that with practical rewards, they 
perceived the provided participation benefits (S5), which stimulated enthusiasm and 
improved the quality of knowledge sharing (S7).
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Fourthly, multiple variables’ hierarchical relationships were observed, indicating 
that various directional correlations were observed at different levels. This proved that 
the transformation of one variable was likely to affect the overall structure, confirm-
ing that online knowledge sharing activities need to be analyzed from the entire per-
spective. For example, enhancing the correlation between online knowledge sharing 
and course learning (S6) promoted the use of educational technology (S11 and S13). 
It also improved the atmosphere of distribution and obtained more knowledge (S4 
and S10). Fifthly, online learners judged knowledge sharing participation by measur-
ing the following (1) reward mechanism, (2) encouragement and recognition degree 
of others, (3) the correlation between online sharing and course learning, and (4) 
quality of knowledge dissemination. This was based on the perspective of the deep 
variables affecting the online process (L8 and L7). Based on the innovation of this 
report, four different types of influential variables were summarized by combining 
the theoretical analyses of SET and TAM. This was accompanied by derivation of the 
significant variables and the hierarchical structure, using the Logit-ISM. However, 
synergistic effects or other statistical correlations were observed for all the variables, 
with significant differences subsequently found among the different populations not 
utilized in this report. This recommends that the correlation analysis between vari-
ables should be carried out in subsequent future studies, based on other perspectives.
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