Education and Information Technologies (2023) 28:905-971
https://doi.org/10.1007/s10639-022-11152-y

®

Check for
updates

Educational data mining to predict students’ academic
performance: A survey study

Saba Batool - Junaid Rashid?>® - Muhammad Wasif Nisar' - Jungeun Kim3-
Hyuk-Yoon Kwon* - Amir Hussain®

Received: 27 November 2021 / Accepted: 2 June 2022 /Published online: 9 July 2022
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract

Educational data mining is an emerging interdisciplinary research area involving
both education and informatics. It has become an imperative research area due to
many advantages that educational institutions can achieve. Along these lines, various
data mining techniques have been used to improve learning outcomes by exploring
large-scale data that come from educational settings. One of the main problems is
predicting the future achievements of students before taking final exams, so we can
proactively help students achieve better performance and prevent dropouts. There-
fore, many efforts have been made to solve the problem of student performance pre-
diction in the context of educational data mining. In this paper, we provide readers
with a comprehensive understanding of student performance prediction and compare
approximately 260 studies in the last 20 years with respect to i) major factors highly
affecting student performance prediction, ii) kinds of data mining techniques includ-
ing prediction and feature selection algorithms, and iii) frequently used data mining
tools. The findings of the comprehensive analysis show that ANN and Random For-
est are mostly used data mining algorithms, while WEKA is found as a trending tool
for students’ performance prediction. Students’ academic records and demographic
factors are the best attributes to predict performance. The study proves that irrel-
evant features in the dataset reduce the prediction results and increase model pro-
cessing time. Therefore, almost half of the studies used feature selection techniques
before building prediction models. This study attempts to provide useful and valu-
able information to researchers interested in advancing educational data mining. The
study directs future researchers to achieve highly accurate prediction results in dif-
ferent scenarios using different available inputs or techniques. The study also helps
institutions apply data mining techniques to predict and improve student outcomes
by providing additional assistance on time.
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1 Introduction

Data mining has shown its success in e-commerce and business development, and
now its usages in education sector are growing. Data mining detects patterns in
data and be able to mine hidden information in the datasets, which leads to more
effective decision making. Data mining is used to withdraw useful information
from large datasets. Different approaches are used for data analysis, prediction,
and classification to find hidden patterns in a huge meaningless datasets (Adeki-
tan & Salau, 2019). This useful information is mined by the state-of-the-art data
mining algorithms. A data mining algorithm is a set of steps that are followed to
mine useful information and to build classification and prediction models by find-
ing patterns in the datasets. These algorithms are used in the form of techniques
or prediction models. A number of data mining techniques, processes or models to
mine data, are being used e.g., Decision Tree, K-Nearest Neighbors, Random For-
est, Support Vector Machine, Artificial Neural Network, and Naive Bayes. Data
mining techniques are becoming beneficial in educational areas as well. Data min-
ing can be used by policy makers to identify essential factors in improving of the
education quality. It can also help institutions in analyzing students’ achievements,
requirements, issues, and learning habits (Adekitan & Noma-Osaghae, 2019).
Higher education is considered as the basis for advancement of a society.
We indicate that many students’ dropout and withdraw their education or retake
admission in the same courses every year. If a massive number of students leave
their education because of failure, not only students will suffer themselves, but it
will also affect educational systems in a negative way. Therefore, it is necessary
to have a system that can detect students’ who are going to dropout in their final
examinations to minimize failure rates (Chui et al., 2020). No education system
is successful if it is not evaluated continuously. In order to improve institutional
results and to ensure that all students graduate on time, it is necessary to find out
obstacles in the path of students’ success. It is very difficult for teachers dealing
with many students, to mine their data and detect students’ weak areas, but data
mining makes it very easy and interesting task without teachers’ direct involve-
ment. Data mining techniques help in mining large amount of data in educational
sectors to improve teaching and learning processes, called educational data min-
ing. Educational Data Mining (EDM) techniques refer to the methods or algo-
rithms used for mining educational datasets. In EDM, it is essential to extract
the required information from huge educational datasets. This information can
be used by higher educational authorities to improve policies, by institutions to
check and balance teachers’/students’ issues and by students to improve their
results (Burgos et al., 2018). EDM can be defined as using data mining techniques
to immense educational datasets for solving different educational issues. EDM
processes involve gathering data, applying models on that data to describe pat-
terns or to mine useful information concerning educational institutes or students.
EDM can be used to understand students’ learning behaviors and interests to bet-
ter design teaching strategies that will improve their performance and minimize
dropout rates. Educational institutions are storing a huge amount of data every
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year in their databases. This massive data can be transformed into useful informa-
tion to help different stakeholders in decision making processes (Kabakchieva,
2013). Since this information, students can detect their weak areas in different
courses, teachers can improve their teaching strategies, and administrations can
better manage different resources effectively for the benefit of their institution.
Data mining makes all these tasks very easy on the behalf of previous experi-
ences and patterns found in the data (Fernandes et al., 2019).

One of the critical tasks in EDM is students’ future exam performance prediction.
There are several studies published up to the date that used data mining techniques
for predicting the students’ exam performance. The main goal of these studies is to
classify the entire students into two classes, i.e., "pass" or "fail". Students’ perfor-
mance predictions can be conducted by using supervised data mining techniques. In
supervised data mining, a mathematical model is built from dataset that describes
inputs as well as the desired outputs. It is significant to predict results before many
students are dropped out from a specific course. Predicting students’ performance is
necessary for the institutes to find out weak corners of different courses. This predic-
tion is useful to take an early action by improving learning processes of those stu-
dents who have high risk of failure in the course.

Some survey studies are published till date that explore research works performed
in educational data mining. A survey paper attempts to explore the determinants of
students’ dropout, in order to benefit future research by highlighting most signifi-
cant socio-economic features. The study concludes that a mix of individual, eco-
nomic and educational features affects students’ academic outcomes (Aina et al.,
2021). Another study focused on supervised data mining algorithms widely used
for students’ performance prediction (Sen et al., 2020). Two survey studies explored
research work to analyze prediction models and students’ factors that influence pre-
diction results (Batool et al., 2021; Khan & Ghosh, 2021; Namoun & Alshanqiti,
2021; Qian et al., 2022; Upadhyay et al., 2021). In previous survey studies, we found
that, to the best of our knowledge, no survey study tried to explore all factors that
may influence students’ performance prediction results. The main strength of our
survey study is that it summarizes the research work of last two decades with a total
of 269 studies and tries to cover all factors that may improve students’ exam per-
formance prediction results, called students’ attributes. By exploring latest survey
papers, another prominent research gap is identified i.e., to the best of our knowl-
edge, no survey paper explored feature selection.

This survey paper analyzed the research work performed in the last two decades
by comparing state-of-the-art data mining techniques, data mining tools, and input
attributes used for results prediction. The first objective of this paper is to seek for
the best prediction techniques. Different prediction techniques are compared in
terms of prediction accuracy to find out highly accurate prediction method. The sec-
ond objective is to identify students’ attributes that lead to most accurate prediction
results as compared to others. As the third objective, this paper compares and identi-
fies the mostly used data mining tool for prediction process. The presented survey
paper synthesizes the machine learning models and tools applied in education to
predict student performance. The presented study may help educational institutions
to design and deploy a prediction model in their academic sections using available
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tools and students’ attributes. This study may enhance learning management sys-
tems (LMS) in virtual learning institutes to predict and prevent students’ dropout in
online courses. The presented survey enhances the results of previous review studies
in order to cover all factors essential in future research work.

We conducted a systematic literature review to answer the research questions:

1) Which data mining algorithm is mostly used in last two decades?

2) Which students’ attributes are highly correlated to their exam performance?
3) Which data mining tool is mostly used and why?

4) What is the role of feature selection in students’ performance prediction?

This paper answers these questions by comprehensively exploring the latest
work and trends in educational data mining. It also focuses on the main aims of
all research papers, i.e., to predict students’ exam scores or to classify students into
pass/fail categories. This study aims to explore the right time for predicting final
exam results, too. This study also presents the role of feature selection in predict-
ing students’ results. These all factors will direct future research to achieve highly
accurate prediction results in different scenarios and using different available inputs
or tools.

The remainder of the paper is organized as follows. In Section II presents an
overview of survey paper and its contributions. Section III presents a summary of
data mining techniques, section IV describes students’ attributes and their impact
on academic performance, section V gave a comparison of data mining tools used in
students’ performance prediction. While section VI gives results of presented survey
paper and the whole study is concluded in section VII. At last, section VIII and IX
presents’ limitations of the study and future research work respectively.

2 Method

This section presents the proposed research methodology adopted to conduct the
survey. We explore research papers published in the last two decades to answer
the research questions mentioned above. We used Google scholar, IEEE Explore,
Web of Science, Elsevier and DBLP to find research articles of well-known and
impact factor journals, conferences, and thesis published till 2021. This survey
paper focused on traditional classroom learning as well as e-learning platforms. The
phrases used for searching research articles include “students’ performance predic-
tion”, “exam score prediction”, “educational data mining”, “students’ academic
performance”, “students’ final exam prediction”, “CGPA prediction”, “machine
learning in predicting students’ grades”. Using these phrases, a total of 312 research
papers were identified, and we stored them in a database. After reading full articles,
only 269 research articles were included in this survey because they were focused on
the supervised learning techniques. That is, the remaining 43 papers dealt with unsu-
pervised learning techniques. This study focused on classification techniques only,
while regression, clustering, association rules and feature optimization methods are
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Fig. 1 Survey paper taxonomy

used in few studies to improve the classification results. After literature selection,
we presented and summarized the findings of selected articles by comparing and
calculating the results. RapidMiner is used to provide a comprehensive analysis of
research and the final outcomes are presented in graphs.

Figure 1 presents the directions of this research study. The figure shows that there
are mainly two evaluation aims of students’ performance prediction i.e., classification
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and regression. It is presented that research studies evaluate students’ performance
mainly at the time of admission, mid of academic session and right before final exam-
inations. Data mining algorithms used in studies are presented in the figure, named
as association rules, classification, regression, clustering and feature optimization.
The four mostly used tools i.e., WEKA, RapidMiner, Python and MATLAB are men-
tioned in the figure. At last, input features are categorized. The figure presents that
main input features are learning resources, academic performance, demographics,
psychological factors, attendance, admission scores and internet usage.

3 Data Mining Techniques

There are a number of techniques used for data mining, classification and prediction
of the final outcomes. In data mining, classification methods are used for prediction
where a classification model distributes a dataset into several classes. Classification
process can be divided into two steps. First, based on training data a classifier is gen-
erated. Second, this classifier is used to label new data items with unknown classes
(Asif et al., 2017). The aim of building a classifier is to make predictions about
future data with relevant characteristics by distributing data into predefined classes.
In prediction process, different data mining techniques can be adapted to classify
students in multiple classes based on their performance, e.g., “pass” or “fail”. This
section gives a brief overview of different classification techniques used in previous
research papers for students’ performance prediction.

3.1 A.Decision Tree

One of the mostly used data mining technique for EDM is Decision Tree (DT).
Decision Tree is a tree-like graph based on a set of conditions. A set of features are
used as input and class labels are the output of Decision Tree. A root node is placed
on the top which generates a set of different branches. Each branch describes a con-
dition which is further connected with the next node.

Decision Tree continues this process till it reaches the leaf node. These leaf nodes
are labeled as classes or decisions (Tomasevic et al., 2020). Decision Tree follows an
IF-THEN algorithm. Decision Tree model is simplest technique and thus it is very
easy to understand it’s working. Figure 2 describes a simple Decision Tree model
which predicts students’ results on the basis of some conditions. A study analyzes
students’ factors before admission and during current semester to predict their semester
examination results. Decision Tree is used to build prediction model and study shows
87.14% accurate results (Yathongchai, 2003). A research study applied Genetic
algorithm to fine-tune students’ score prediction tree (Kalles & Pierrakeas, 2006).
Another study (Hsu et al., 2003) used Apriori algorithm to obtain significant factors
in predicting students’ performance and then applied genetic algorithm for calculating
fitness function of variables. A study analyzes students’ factors before admission and
during current semester to predict their semester examination results. Decision Tree is
used to build prediction model and study shows 87.14% accurate results (Yathongchai,
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Fig.2 Decision Tree (DT)

2003). A research study applied Genetic algorithm to fine-tune students’ score
prediction tree (Kalles & Pierrakeas, 2006). Another study (Hsu et al., 2003) used
Apriori algorithm to obtain significant factors in predicting students’ performance and
then applied genetic algorithm for calculating fitness function of variables.

The study shows that factor analysis positively impacts classification tree results. Gen-
eralized sequential pattern mining is used (Patil & Mane, 2014) to draw patterns for pre-
dicting students’ academic performance. It is proved that using significant features gener-
ates more accurate prediction results. Another study proved that Fuzzy genetic algorithm
improves the prediction results (Hamsa et al., 2016). Another study used association rule
mining to draw a significant correlation between students’ admission data and their aca-
demic performance (Rojanavasu, 2019). Decision Tree is used to generate prediction
rules (Al-Radaideh et al., 2006; Ogor, 2007) and found that students’ gender, education
funding and CGPA in previous semesters highly influence their final grades. A Decision
Tree based early warning system is developed to predict students that are more prone to
dropout. Students and teachers are then informed by email and asked to pay more atten-
tion in order to improve students’ results (Hu et al., 2014). Decision Tree outperformed
Neural Network (Herzog, 2006), Naive Bayes (Nghe et al., 2007) in estimating students’
degree completion time and their grades in final examination.

Information Gain and Gain Ratio are used explore correlation between
students’ factors and their academic performance. It is found that students’
study time, age and parents’ education highly influence students’ results
(Osmanbegovi¢ et al., 2014). Other studies show that students attendance (Upad-
hyay & Gautam, 2016) and courses (Altujjar et al., 2016) in current semester
are most significant prediction features. An improved Decision Tree is pro-
posed using Information Gain and Entropy. The partition and nodes of Decision
Tree are selected with attributes having higher Information Gain. The proposed
method is repeated until the best results are obtained (i.e., accuracy =97.50%)
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(Sivakumar et al., 2016; Sivakumar & Selvaraj, 2018). Research studies show
that ensemble model gave significant improvements in the prediction accuracy
(Jha et al., 2019; Livieris et al., 2018; Pandey & Taruna, 2016).

Students’ behavior features and social activities have significant impact of
their academic performance, and the research studies recommends using stu-
dents’ cognitive as well as personal, economic and social attributes to predict
their exam performance (Aman et al., 2019; Amrieh et al., 2016; Kiu, 2018;
Zhao et al., 2020a). Therefore, random features may reduce the prediction accu-
racy. Dataset preprocessing and significant feature selection enhance the predic-
tion results (Al-Obeidat et al., 2018; Oyefolahan et al., 2018; Wong & Senthil,
2018). An improved ID3 algorithm is proposed comprised of two steps i.e.,
entropy-based feature selection and prediction model construction. The pro-
posed model proves that eliminating random features enhance model prediction
results (Patil et al., 2018, Santoso, 2020).

Several research studies applied Decision Tree for students’ performance pre-
diction (Adebayo & Chaubey, 2019; Adhatrao et al., 2013; Akinrotimi et al.,
2018; Asif et al., 2017; Banu & Manjupargavi, 2021; Baradwaj & Pal, 2012;
Bresfelean, 2007; Buenafio-Fernandez et al., 2019; Dey 2020; Figueroa-Cafias &
Sancho-Vinuesa, 2020; Hasan, 2019; Hasan et al., 2019; Hew et al., 2020; Kabra
& Bichkar, 2011; Kabakchieva, 2013; Kovacic, 2010; Liang et al., 2016; Mik-
roskil, 2019; Moseley & Mead, 2008; Nandeshwar & Chaudhari, 2009; Patac-
sil, 2020; Puarungroj et al., 2018; Ramaswami & Bhaskaran, 2010; Sawant et al.,
2019; Vivek Raj & Manivannan, 2020; Yadav & Pal, 2012; Zhang & Wu, 2019b).
A number of research studies performed a comparison of Decision Tree, Neu-
ral Network, Naive Bayes (Evwiekpaefe et al., 2014), Random Forest (Mishra &
Kumawat, 2018; Salal et al., 2019), Lazy Learner (IBK) (Ilic et al., 2016; Meghji
et al., 2019; Pandey & Taruna, 2014), KNN (Anuradha & Velmurugan, 2015;
Poudyal et al., 2020), Gradient Boosting (Howard et al., 2018), SVM (Anoopku-
mar & Rahman, 2018; Francis & Babu, 2019), Logistic Regression (Perez et al.,
2018; Salal et al., 2019; Kemper et al., 2020), Multilayer Perceptron (MLP) (Fre-
itas et al., 2020) and Sequential Minimal Optimization (Acharya & Sinha, 2014)
and proved that Decision Tree is most effective prediction model. In last decades,
several Decision Tree algorithms have been used as classification and prediction
models. In (Hamoud, 2016; Hamoud et al., 2018), J48, Random Tree, Hoeffding
and Rep tree are found as best Decision Trees for students’ academic perfor-
mance prediction. Different Decision Tree models are compared namely CART,
CHAID, C4.5 and ID3 and proved that JRip (Walia et al., 2020), CART (Saa,
2016; Wong & Yip, 2020) and C4.5 (Saheed et al., 2018) gave the best prediction
results. Another study shows that JRip prediction model outperformed as com-
pared to other Decision Tree classifiers (Pattanaphanchai et al., 2019). Table 1
presents a summary of research studies implementing Decision Tree for students’
performance prediction.
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3.2 B. Naive Bayes

Naive Bayes (NB) is another classification algorithm based on the Bayesian theo-
rem. It is called Naive as this technique assumes that there is no hidden relationship
between data attributes that can affect prediction results. It calculates the probabil-
ity of belonging to a specific class. The class which obtains highest probability is
considered as the class of that data (Tomasevic et al., 2020). Below equation shows
the Bayesian formula which calculates probability of class A with the association of
class B.

P(B|A)*P(A)

P(A|B) = PB) ()

Naive Bayes algorithm has the potential to predict students’ academic perfor-
mance (Bekele & McPherson, 2011; Bekele & Menzel, 2005). A Bayesian model
is proposed to classify students into different classes based on their academic per-
formance (Ramaswami & Rathinasabapathy, 2012). Naive Bayes is also compared
to KNN for the selection of most accurate prediction model. The study shows
that Naive Bayes achieved more accuracy i.e. 93.6% when both models were con-
structed using demographic features only (Amra & Maghari, 2017). Another study
used Naive Bayes algorithm to forecast students’ grades in their final exam. Dif-
ferent semester activities e.g. students’ assignments, previous grades, attendance
and lab assessments are proved to be very useful features for prediction of final
exam grades (Shaziya et al., 2015). Naive Bayes and SVM prediction model are
built and compared, where Naive Bayes gave better results i.e. 92% (Tripathi et al.,
2019) and 63.5% (Kaur & Bathla, 2018). Distance learning makes it more challeng-
ing for tutors to interact with individual students, identify their weak areas and to
predict students’ academic performance. A study implemented Naive Bayes algo-
rithm to provide a supporting tool for teachers which predict students’ final exam
performance in distance learning environment (Kotsiantis et al., 2002). Students’
demographic variables including parents’ qualification, jobs, living status, income,
students’ eating habits are used to develop Naive Bayes prediction model. The pre-
diction model found that students’ scores in secondary school, living status and
medium of teaching are highly correlated to their grades in college examinations
(Bhardwaj & Pal, 2012).

A comparison of different classification algorithms namely Decision Tree, Ran-
dom Forest, Naive Bayes, MLP, KNN and Logistic Regression is performed, and
results show that Naive Bayes gave best prediction results as compared to other tech-
niques (Koutina & Kermanidis, 2011; Romero et al., 2013; Barbosa Manhaes et al.,
2015; Marbouti et al., 2016; Yaacob et al., 2019; Ahmed et al., 2020a). Naive Bayes,
MLP and J48 algorithms are used for students’ exam performance prediction based
on their previous academic performance. The study shows that Naive Bayes gave
best results i.e. accuracy =76.65% (Osmanbegovic & Suljic, 2012). Naive Bayes
and Decision Tree classification algorithms are compared, and it is found that Naive
Bayes outperform in predicting students’ final semester marks. Students’ demo-
graphic and academic attributes are preprocessed to improve classifier’s accuracy

@ Springer



Education and Information Technologies (2023) 28:905-971 921

(Kaur & Singh, 2016; Khasanah, 2017; Mueen, 2016; Wati et al., 2017). Similarly,
students’ admission test scores (Harvey & Kumar, 2019) and final exam results
(Kumar et al., 2019) are predicted using Naive Bayes and Decision Tree prediction
models. The study shows that Naive Bayes gave higher accuracy of 71% and 85%
respectively. A web based Naive Bayes classifier is developed to store students’ data,
retrieve useful information and to predict their final exam success rate. Such a pre-
diction model is found very useful for institutions to maintain their success graph
and to provide relevant assistance to students and teachers (Devasia et al., 2016).
Most of the research studies focus on students’ family background and previous
academic performance to predict their future exam scores. However, students’ per-
sonality is also a contributing factor which highly affects their educational interests.
This study focused on time management, leadership, self-reflection, social support,
study preference and future to predict how they are going to perform in their future
exams. It is found that non-cognitive features support cognitive features to increase
accuracy of Bayesian prediction model (Sultana et al., 2017). Similarly, another
study focused on neglected features namely family expenditures, income, and fam-
ily assets to explore their impact on students’ academic performance. Using SVM
and Naive Bayes prediction models, the study found that students’ performance is
highly correlated to their family utility bills and expenses on education. A decrease
in other expenditures may increase the opportunities to complete their higher educa-
tion (Daud et al., 2017). A common objective of almost all mentioned studies is to
build an early prediction model so that students can be prevented from dropout. A
weekly approach is used to predict students’ final exam scores after each week of
their admission before the final exams. The results show that adding more events
to the dataset may increase prediction accuracy i.e. 73.5% after week 1 and 77.7%
after week 16 (Akgapinar et al., 2019). Feature optimization is used to remove irrel-
evant features from the dataset. Forward Selection (Saifudin & Desyani, 2020), PCA
(Borges et al., 2018) and Wrapper (Usman et al., 2020) feature selection techniques
used with Naive Bayes model enhanced students’ performance prediction results and
also reduced the time required for model construction. Table 2 presents a summary
of research studies implementing Naive Bayes for students’ performance prediction.

3.3 C. Artificial Neural Network

Artificial Neural Network (ANN) is a well-known classification technique used to
solve data mining problems. The concept of ANN is based on the biological neural
network. ANN model is divided into three layers, input layer is used to take input
data, hidden layer consists of a set of neurons that process data and output layer
gives final classes of the data (Amazona & Hernandez, 2019). Input neurons are
connected to the next neurons in hidden layer, in order to transmit a signal for pro-
cessing. These hidden neurons process signal and forward it to the next connected
neurons, until the signal reaches to output layer. Branches are used to connect neu-
rons with each other. These branches are assigned with some weights to set the
strength of the signal (Tomasevic et al., 2020). Figure 3 describes the working of a
basic ANN model which predicted binary classes, i.e., pass or fail.

@ Springer
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Fig.3 Aurtificial Neural Network (ANN)

Several studies present the utilization of ANN for students’ academic per-
formance prediction (Calvo-Flores et al., 2006; Karamouzis & Vrettos, 2008;
Lykourentzou et al., 2009; Paliwal & Kumar, 2009; Wook et al., 2009; Arsad &
Buniyamin, 2013; Agrawal & Mavani, 2015; Whitehill et al., 2017; Altaf et al.,
2019; Liu, 2019; Mi, 2019; Raga & Raga, 2019; Sukhbaatar et al., 2019; Umar;
2019; Khazaaleh, 2020; Sood & Saini, 2020).

A comparative analysis of different classification algorithms shows that ANN
and Random Forest gave better prediction with more accurate results (Alloghani
et al., 2018).

Ensemble methods are used to strengthen the prediction results. ANN model
predicts results more accurately when supported by ensemble filtering method
(Rahman & Islam, 2017). Another study hybrid wrapper feature selection with
four prediction algorithms i.e., Decision Tree, Naive Bayes, KNN and CNN to
enhance the accuracy of individual model. The study shows that CNN model out-
performed i.e. accuracy=95% (Turabieh, 2019). Multi-layer Perceptron (MLP)
is also used to predict students’ performance (Ahmad & Shahzadi, 2018; Ruby &
David, 2015). MLP classifier consists of multiple layers, where each layer has a
different function to perform. A predictive model (Olalekan et al., 2020) consist-
ing of two layers: ANN and Naive Bayes is proposed and found that MLP gave
better prediction results as compared to single models. Multi-layer ANN model
(Yagci & Cevik, 2019) predicted successful students in different subjects with an
accuracy up to 99%. In several studies (Ramesh, 2013; Kaur et al., 2015, Yahaya
et al., 2020) MLP gave better results (i.e., accuracy =72.38% and 75% respec-
tively) as compared to other classification models. A research study collected
students’ attributes from school’s database. These attributes are pre-processed,
and sparse auto encoder algorithm is applied to forecast influential factors from
random features. Then, the MLP model is trained using influential factors only
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which gave better prediction results as compared to prediction with all random
variables (Guo et al., 2015).

ANN prediction results depend on the number and type of input data on which
model is trained. The study shows that students’ cognitive and non-cognitive
variables have significant importance in their final exam results and its predic-
tion (Lin, 2009). Data pre-processing is a significant step which helps to enhance
machine learning algorithms’ results. In a study, Synthetic Minority Over-Sampling
(SMOTE) is applied on students’ dataset and it proves that pre-processing shows a
significant increase in prediction accuracy i.e. up to 7% (Jishan et al., 2015). E-learn-
ing made it easier for teachers and institutions to record students’ interactions,
clicks, study-time, durations, assignment submission, learning habits etc. On the
other hand, traditional classrooms have limited information related to students cog-
nitive and non-cognitive attributes. A study proposed ANN based prediction model
with limited number of students’ attributes and achieved 62.5% accuracy (Chanle-
kha & Niramitranon, 2018). Feature selection is used to find correlation between
students’ academic features and results. A comparison of ANN prediction model
with highly-correlated features and with random features is performed (Hamoud &
Humadi, 2019). The study proves that several students’ features do not participate
or take less part in predicting students’ results. Another study examined the contri-
bution of input features to the prediction of output classes. It shows that students’
attendance and study duration are the best input variables for ANN based students’
results prediction model (Aydogdu, 2020). PSO is applied before providing input
values to the ANN back-propagation model, which increased the prediction accu-
racy and decreased the number of iterations (Sari & Sunyoto, 2019). A comparative
analysis of different supervised learning algorithms and different students’ attributes
is performed (Tomasevic et al., 2020). The study shows that ANN based on stu-
dents’ assessments’ marks and interaction with learning material is the best predic-
tion model. Different data mining algorithms are compared i.e., Decision Tree, Ran-
dom Forest, Naive Bayes, KNN, SVM, Logistic Regression and Neural Network and
it is found that Neural Network outperformed other algorithms with highest accu-
racy (Cavazos & Garza, 2017; Vijayalakshmi & Venkatachalapathy, 2019; Bravo
et al., 2020; Makombe & Lall, 2020; Mengash, 2020; Waheed et al., 2020). Decision
Tree, ANN and Regression algorithms are compared and found that ANN gave best
results (Mutanu & Machoka, 2019). In computer programming courses, students’
assignments’ completion is found to be a significant factor that highly influence their
semester results (Qu et al., 2019). Deep Learning model gave an accuracy of 82.5%
in predicting students’ success in programming courses (Pereira et al., 2020). Neu-
ral network is implemented to explore association between students’ internet usage
and their academic results. The study found that high achievers spent more time on
internet, however they have low download and upload volume. It is concluded that
students’ spent a lot of time using internet but their usage behavior is quite differ-
ent and can be used to predict their success in exams (Xu et al., 2019). Different
research studies have used different statistical software to perform predictive analy-
sis. A study is proposed to build ANN prediction model using two different plat-
forms i.e., SPSS and MATLAB. The study shows that ANN model prediction results
are higher than results in SPSS (Cevik & Tabaru-Ornek, 2020). Studies also show
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that CNN (Karimi et al., 2020; Zong et al., 2020), Deep Belief Network (Sokkhey
& Okazaki, 2020a, 2020b, 2020c), Deep Learning (Amazona & Hernandez, 2019;
Hussain et al., 2019), LSTM (Su et al., 2018, Li, 2020; Liu et al., 2020) can gave
acceptable prediction results. In a study (Karlik & Karlik, 2020), different neural
networks namely ANN, MLP, DNN and CNN are used to build students’ prediction
models and the comparison shows that Fuzzy CNN model gave an accuracy of 92%.
Another study proved that Regression Neural Network gave better results as com-
pared to MLP (Iyanda, 2018). A hybrid algorithm based on RNN, gated recurrent
unit (GRU) and LSTM is proposed. The experimental results show that model pre-
diction results depend on input parameters, however, the proposed model achieved
better accuracy (i.e. up to 80%) as compared individual models (He et al., 2020).
Table 3 presents a summary of research studies implementing ANN for students’
performance prediction.

3.4 D.SupportVector Machine

Support Vector Machine (SVM) divides the dataset belonging to different classes
by using model approach. It plots data items on a 2 or 3-dimensional space and
draw a hyper plane between two different classes. The items that fall on one side of
hyper plane are considered as belonging to one class. The data item nearest to hyper
plane is called vector. A wider hyper plane represents a better separation of data as it
clearly presents two different classes. SVM is specifically proposed for binary clas-
sification but several algorithms are used under SVM to solve multi class problems
(Sen et al., 2020). Being a weight-based method, SVM is used for classification as
well as feature extraction. Figure 4 presents the binary classification model using
SVM.

Support Vector Machine classification model is used to predict engineering stu-
dents’ final exam score based on their previous exam performance. SVM model
is compared with linear regression and multilayer perception to find best predic-
tion model among these classifiers. The results show that SVM gave best results
i.e. accuracy =90.1% (Huang & Fang, 2013) and 50% (Mativo & Huang, 2014). A
high number of students drops out in programming courses, which highly affects
their final GPA. Information Gain (IG) is used to explore different students’ vari-
ables and to assign weights to highly correlated features. The highly effective attrib-
utes are then used to develop SVM prediction model. The study found that students’
mid-term exams are best predictors for their final exam scores (Costa et al., 2017).
Multi-level SVM based prediction model is developed which classifies students
into five levels, on the basis of their GPA (Asogbon et al., 2016). Similarly, a three-
level SVM classifier predicts 90% accurate results. The proposed models may help
institutes to place students into different sections and to provide them the required
attention (Burman & Som, 2019). A three-step prediction model namely students’
entrance in college, after first semester and after second semester is developed. At
the first step, students’ attributes available at the time of admission are used for
prediction, however, students’ academic results are added afterward. The proposed
study is significant to predict students’ performance as early as possible (Gil et al.,
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Fig.4 Support Vector Machine Pass
(SVM)

o

2020). An ensemble model combines the results of different data mining techniques
to make prediction more accurate. Such a hybrid approach is used (Kamal & Ahuja,
2019) by combining the prediction results of Decision Tree, Naive Bayes and SVM.
The study shows that ensemble model achieved an accuracy of 98.5%. A study (Wu
et al., 2019b) proposed deep Neural Network prediction model based on CNN, Long
Short-Term Memory (LSTM) and SVM models, and proved that hybrid model pre-
dicts more accurately (i.e. F-measure=95.03%) as compared to linear SVM (i.e.
F-measure=92.48%). The prediction results of Deep Belief Network and SVM
models are hybridized to decrease variance, and to enhance prediction results (Vora
& Rajamani, 2019).

A comparative study is proposed to predict computer science graduation students’
Grade Point Average (GPA), based on ANN, SVM and extreme learning machines
as prediction models. The study concluded that students’ GPA in previous semesters
is the best indicator of their success or failure in final year exam, however, SVM
model achieve highest prediction results (accuracy =97.98%), followed by extreme
learning machines (accuracy =94.92%) (Tekin, 2014). Different studies have been
proposed which compared SVM with other prediction models. Decision Tree (Nai-
cker et al., 2020), Random Forest (Lottering et al., 2020), Logistic Regression
(Aluko et al., 2016; Bhutto et al., 2020; Heuer & Breiter, 2018), Naive Bayes (Soni
et al., 2018; Fachrie, 2019), Random Forest, Neural Network (Solis et al., 2018;
Ahmed et al., 2020b), KNN (Wiyono et al., 2020) and MLP (Zohair, 2019) are com-
pared with SVM prediction model. In all the mentioned studies SVM achieved bet-
ter accuracy as compared to other prediction models, applied on different students’
attributes at different education levels.

Educational datasets consist of large databases with number of students’ attrib-
utes and details. Not all the attributes influence their exam performance, therefore,
all students’ attributes cannot be used in prediction model. To select most influenc-
ing features, ensemble feature selection technique has been used. The study shows
that SVM model with selected feature gave better accuracy as compared to predic-
tion with random features (Lu & Yuan, 2018). In (Zaffar et al., 2020) correlation-
based filtering is used to select most significant features for prediction process.
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Features based SVM model achieved a F-measure of 90%. Principal Component
Analysis (PCA) is used to explore correlation between students’ social activities and
their scores in English. The prediction model (i.e. SVM) shows that finding correla-
tion between students’ attributes increases prediction results (Zhao et al., 2020b).
Open University Learning Analytics (OULA) dataset is one of the mostly used data-
sets in educational research. Datasets consist of students’ demographic data, num-
ber of clicks, and assessments marks. This dataset is used to build SVM prediction
model which forecast 93.5% accurate results (Chui et al., 2020). A prediction model
may achieve different results when operated on different input features. Therefore,
students’ factors that influence their academic performance play a major role in pre-
diction. A study examined students’ MOOC dataset and found that students’ perfor-
mance in semester exercises is the best predictor followed by their clicks and inter-
action with learning material (Moreno-Marcos et al., 2020). Another study proved
that using all students’ data sources e.g., survey data, academics, interaction with
learning resources doesn’t provide most accurate results. It is suggested to com-
bine only significant features for students’ academic results prediction. The above
three mentioned studies also proved that SVM is the prediction model for students’
academic results (Yu et al., 2020). Table 4 presents a summary of research studies
implementing SVM for students’ performance prediction.

3.5 E.K-Nearest Neighbors

K-Nearest Neighbor (KNN) is a similarity approach. It stores data based on their
similar attributes. This technique assumes that data items with similar attributes are
most probably placed in the same class, where "K" is number of nearest neighbors
that are selected to predict the class of an unknown object. When a new unknown
data item is to be placed in a class, k nearest neighbors is selected based on short-
est distance between new item and its neighbors. The new item is given the label of
class which has majority of the nearest neighbors (Sen et al., 2020). Figure 5 pre-
sents a KNN prediction model with 3 nearest neighbors.

Five DM algorithms are compared namely Naive Bayes, Decision Tree, KNN,
C4.5 and SVM to generate best prediction model for students’ exam performance
prediction and found that KNN outperform other classification model with a highest
accuracy of 100% (Vital et al., 2021). A study is conducted to compare four dif-
ferent data mining algorithms for students’ academic performance and found that
KNN gave best results as compared to other prediction models (Kulkarni & Ade,
2014). Students’ learning behaviors are used in KNN based prediction model. It is
found that students’ clickstream data is very useful to predict their results (Brinton
& Chiang, 2015). KNN algorithm with fixed and random number of ‘k’ is applied
with ensemble clustering techniques. Students’ demographics, enrollment and per-
formance records are used to prediction of final exam outcome (Iam-On & Boon-
goen, 2017). A fast KNN algorithm is proposed to decrease model’s processing time
without compromising prediction accuracy. The proposed model gave better accu-
racy i.e., 96.6% as compared to traditional KNN model. The proposed model also
decreases processing time up to 90% (Ahmed et al., 2020c). KNN is used to predict
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different courses’ results and gained 73.33% accurate results (Aluko et al., 2016).
Another study proves that feature selection methods improve KNN prediction results
(Ahmed et al., 2020a). Table 5 presents a summary of research studies implement-
ing KNN for students’ performance prediction.

3.6 F.Random Forest

Random Forest (RF) is an ensemble machine learning algorithm, comprised of mul-
tiple Decision Trees. Each Decision Tree is built using different set of training fea-
tures, and at last, the prediction results of all Decision Trees are merged to achieve
a more accurate prediction result. The final class with majority votes is selected as
the predicted class (Bruce, 2019). Figure 6 describes the working of Random Forest
classification model.

A research study focuses on the development of a Random Forest based predic-
tion model for students’ learning outcomes. Students’ interactions with e-learning
management system e.g. students’ visit, resource views, assignments submission and
scores are used to identify key attributes with an aim to achieve highest prediction
accuracy. Random Forest gave 76.9% accurate results (Abubakar & Ahmad, 2017).
A two-step prediction process is performed, at first step classification algorithms are
compared to predict students’ dropout and secondly students’ grades are predicted
using regression analysis. For classification, Random Forest gave highest accuracy
i.e. 82% (Rovira et al., 2017). Another two-step model is proposed for students’ pre-
diction. At first, Random Forest is used to assign weights to each attribute based on
their contribution to final grades prediction. Most correlated attributes are then used
in prediction model and 96.1% is achieved (Miguéis et al., 2018). Fourteen data min-
ing algorithms are compared to find best prediction model based on students’ demo-
graphic and academic attributes. The study found that Random Forest gave highest
accuracy i.e. 93% (Senthil & Lin, 2017). An automatic prediction model was built
using clustering and classification models for predicting students’ promotion in the
next class. Dataset consisting of 151 attributes was collected from different universi-
ties and colleges. Most relevant attributes were selected using k-means clustering
and an ensemble voting based techniques was used to predict students’ outcome in
final examination. Results shows 87.5% accuracy when classify the raw data, how-
ever, 96.78% was achieved after most relevant attributes selection (Thakar & Mehta,
2017). Random Forest is used to find most influencing factors for students’ exam
performance prediction. The proposed study found that students’ previous semes-
ters’” CGPA and interaction with learning resources are best predictors of students’
final results (Sandoval et al., 2018). Another research study combined Relief-F and
Random Forest models for selecting most significant attributes for students’ final
exam scores prediction. The proposed model gave 97.88% prediction accuracy and
shows that students’ attendance, extra-curricular activities, previous grades and par-
ents’ education are highly influencing students’ exam results, therefore can be used
for exam performance prediction (Deepika & Sathyanarayana, 2019). A research
study performed a comparison of four data mining algorithms namely Decision
Tree, PART, Random Forest & Bayesian Network. Gain Ration, Information Gain
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& Relief-F are used to select most significant features. Random Forest with twelve
students’ attributes gave best results i.e. 99% accurate results (Hussain et al., 2018).
Another study used Random Forest to classify students into dropout and non-drop-
out students and found an F1-score of 60% (Polyzou & Karypis, 2018).

Above studies proposed prediction model based on number of attributes, however
some of the e-learning institutes have very limited attributes that can be used for
prediction. Random Forest is used for prediction performed using lectures views,
resources’ access and assessments’ scores. The proposed model gave 84% accuracy
and proved that students’ LMS interactions and grades can be used for performance
prediction (Wakelam et al., 2020). Three data mining algorithms are compared for
modeling students into pass/fail segments. Random Forest outperform with 95.45%
as compared to KNN and Naive Bayes (Lenin & Chandrasekaran, 2019). Similarly,
another study compared six data mining techniques and found that Random Forest
gave highest results i.e. 94.1% (Rifat et al., 2019). To early predict students’ results,
features that are highly correlated with results are extracted and results are predicted
using Random Forest. The studies show that not all attributes contribute in predic-
tion process, however, using irrelevant attribute may negatively affect prediction
results (Masood et al., 2019; Nuankaew & Thongkam, 2020). Different machine
learning algorithms are used for students’ final grades prediction. The study found
that Random Forest gave best results as compared to other algorithms, when applied
with students’ CGPA, attendance and extra-curricular activities (Singhani et al.,
2019). As early students’ results are predicted, the more chances students will have
to prevent their dropout. A Random Forest based phased prediction model is devel-
oped to predict students’ dropout at different stages of their semester. The proposed
study shows that students’ results can be predicted using demographic data at the
start of semester, while in the mid of semester predicted results will become more
accurate by adding students’ learning behaviors (Chen et al., 2020).

To check the influence of different features on students’ dropout prediction,
Random Forest model is used to check correlation of all features with results. The
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Fig.6 Random Forest (RF)

proposed study shows that students’ gender, age and region are negatively corre-
lated with prediction model and their removal increased the accuracy of the model
(Bruce, 2019). Four data mining prediction techniques namely Naive Bayes, Logis-
tic Regression, KNN and Random Forest are compared, and the study found that
Random Forest gave best results. In the proposed study, dataset was divided into
10 weeks in a way that attributes are added to the dataset according to their avail-
ability. A comparative study is conducted to find best prediction model among Sta-
tistical techniques, Deep Belief Learning and Machine Learning algorithms. The
study found that overall Machine Learning techniques gave best results and among
ML techniques, Random Forest outperform with an accuracy of 93.5% (Sokkhey
& Okazaki, 2019). A research study is conducted to predict students’ results with-
out knowing their previous grades. The proposed study shows that students’ grades
have great influence on results’ prediction, however their demographic attributes
can give enough accuracy for preventing students’ dropout (Rajak et al., 2020).
Ensemble based techniques are used for prediction of at-risk students, and found
that Random Forest outperform other techniques (Kaviyarasi & Balasubramanian,
2020). Random Forest was applied on a dataset gathered from Open Universities
of China including students’ demographics, behavioral and academic performance
data was used. Before prediction, regression analysis was performed to find correla-
tion between students’ attributes and final exam grades. Results shows that students’
views, clicks and learning activity duration are best predictor for their future grades
(Narayanasamy & Elgi, 2020). Different data mining algorithms Naive Bayes, ANN
(Adekitan & Salau, 2020), Logistic Regression (Alhassan, 2020), Decision Tree
(Farissi & Dahlan, 2020), SVM (Sokkhey & Okazaki, 2020a, 2020b, 2020c), KNN
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(Rincon-Flores et al., 2020; Sokkhey & Okazaki, 2020a, 2020b, 2020c) are com-
pared with Random Forest, and it is found that Random Forest gave best prediction
results. Table 6 presents a summary of research studies implementing Random For-
est for students’ performance prediction.

4 Students’ attributes used for academic performance prediction

Same data mining techniques gave different prediction results when used in different
research papers as shown in the above tables. This difference in results is observed
because each author used a different set of students’ attributes as input. The major
challenge in developing a prediction classifier is the input data type. Some students’
attributes may have more impact on prediction results as compared to the other
attributes. Some datasets used in literature studies are based on distance learning
while the others are traditional classroom datasets. The use of different students’
attributes makes same algorithm gave a different result in the terms of accuracy.
Some of the commonly used attributes are students’ grades achieved in a previous
exam, attendance of the same course, gender, age, place of residence, family, social
activities, learning behaviors, and interaction with learning resources etc. An anal-
ysis of research studies shows that students marks are the most used as it shows
academic potential of a student. A study on students’ progress pattern shows that
students who outperform in a midterm exam are most likely to show good results in
their final exam too. Similarly, students who gain less marks in the start of a degree,
do not show any progress in their results till the end of degree program. Most of the
students tend to remain in the same category (Asif et al., 2017). Students’ attend-
ance is second mostly used attribute which gave students’ performance prediction.
Students who attend more lectures have more chances to pass their examination
(Hughes & Dobbins, 2015). Students’ demographic attributes highly affects their
academic performance.

In a research study, state-of-the-art regression algorithms are applied to predict
students’ exam performance. A total of 354 graduate and post graduate students’
records are collected from Hellenic Open University database. Along with students’
previous academic performance, demographic records including age, gender,
marital status, jobs and number of children are considered for prediction process.
Statistical measure i.e., Relief F is used to find most influencing features in dataset.
After feature ranking, MSrules gave minimum error rate (Kotsiantis & Pintelas,
2005). A students’ performance model is proposed with tenfold cross validation.
Four Bayesian algorithms namely Naive Bayes, AODEsr, WAODE and HNB are
compared. The study concluded that AODEsr outperformed i.e. 64.6% accurate
results when applied with students’ academic performance and co-curricular
activities (Sundar, 2013). Matrix Factorization algorithm applied in (Sweeney et al.,
2015), gave best results for students’ next term grades prediction i.e. RMS=0.775.
Three classification algorithms are compared to find best prediction model of
final exam grades. The results proved that Rule based model is the best prediction
model and students’ demographics and learning behaviors can be used to generate
prediction results (Ahmad et al., 2015). Another research study applied deep neural

@ Springer
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network to predict students’ final exam grades. MOOC dataset is used for building
prediction model, consisting of students’ interactions with learning materials
and activity logs. Deep learning shows best results when compared to baseline
algorithms (Wang et al., 2017). Five ML algorithms namely generalized linear
model, MLP, Random Forest, gradient boosting tree and ANN are compared to
find best prediction model for students’ exam scores. Dataset consisting of students’
assessments scores was collected from DIT University, Dehradun. A highest
accuracy of 98.26% is achieved by gradient boosting model (Kumar & Garg, 2019).
A hybrid of seven classification algorithms namely SVM, KNN, Decision Tree,
AdaBoost, MLP, Extra Tree and Logistic Regression is used to predict students’
scores using their institutional dataset attributes. The proposed weighted voting
approach shows better results i.e. 81.37%, as compared to individual algorithms
(Zulfiker et al., 2020).

An ensemble algorithm is proposed comprised of WINNOW, INN and Naive
Bayes. The proposed ensemble model receives input features and predict outcome
based on a majority vote. Hellenic Open University dataset consisted of students’
assignments scores are used to classify students into pass and fail. Proposed
ensemble model gave best accuracy i.e. 78.95% as compared to individual
supervised learning models (Kotsiantis et al., 2010). Another ensemble algorithm
is proposed based on three state-of-the-art classifiers namely J48, IBK and AODE.
A majority vote is received by implementing three algorithms in a single model
and it is found that ensemble approach gave 85% accurate results. The study used
a combined dataset of academic and demographic attributes (Pandey & Taruna,
2018). Ensemble approach based on Stacked generalization is used to predict
students’ performance based on demographics, psychological, personality and
institutional attributes (Adejo & Connolly, 2018). The proposed study found that
a hybrid of Decision Tree, ANN and SVM gave better accuracy as compared to
individual results. Features optimization using genetic algorithm is applied with
supervised learning algorithms gave 75.55% accuracy (Pereira et al., 2019). In
(Mi et al., 2018) Genetic Algorithm is used to develop an early warning system for
students. The main significance of proposed model is that it gives a clear description
of prediction process by using if—then rules. Similarly, another research study used
genetic programming for students’ success prediction in online courses. Pearson’s
correlation is used to find attributes that highly contribute to final grade prediction.
It is found that students’ scores are most significant features with a correlation
coefficient r=0.78 (Ulloa-Cazarez et al., 2018). These studies prove that feature
selection algorithms enhance prediction accuracy and reduce model computational
time.

In (Abu Tair & El-Halees, 2012), association rules, classification and clustering
algorithms are applied on students’ demographic and academic datasets, to predict
students’ dropout in college degree. An accuracy of 78.95% is gained by proposed
association and classification rules. The proposed model presents that students’
gender, specialty and scores in secondary school are highly correlated with their
semester results. Another study proposed a Neuro Fuzzy based classification
model. The proposed model with threefold cross validation gained best results
i.e., RMSE=0.256. The study shows that students intelligence, motivation and

@ Springer



946 Education and Information Technologies (2023) 28:905-971

interests in studies can be used to predict their final exam performance (Hidayah
et al., 2013). In (Marquez-Vera et al., 2016), Classification Rule Mining algorithm
is proposed to predict students’ who are more prone to dropout. If-then rules give a
detailed vision of attributes that leads to final prediction. The proposed model shows
that students final grades can be predicted in first 6 weeks of registration. If-then
rules are generated for early prediction of students’ results. To enhance prediction
accuracy, rough set theory is used for data dimensionality reduction which shows
79.23% accuracy (Sudha & Kumaravel, 2017). In (Czibula et al., 2019), Relational
Association Rules is used for predicting students’ grades in final semester. Data was
collected from Babes-Bolyai University consisting of students first three semester
GPA. The proposed model gave best results i.e., F-measure =0.84. Apriori algorithm
is used (Anwar & Rani, 2020) to classify students into dropout and no dropout
classes for their future results. Students’ previous exam scores in Mathematics are
used as predictors of future Mathematics scores. Findings revealed that students
with higher scores in prerequisite classes are more likely to have better performance
in next classes. M5 Rules Algorithm is implemented (Chand et al., 2020) for grades
prediction. Using scores of different subjects, M5rules gained highest accuracy i.e.,
89.2% as compared to Random Forest and Linear Regression.

Different students’ attributes are available at different phases. Two datasets are
used consisted of different attributes, first with demographics and previous class
performance factors that are available at the beginning of session, while second
dataset includes demographics as well as students’ assessments scores, attendance
and subjects. Research concluded that students’ neighborhood, age, assessments
scores and attendance are highly correlated with final exam grades (Fernandes et al.,
2019). Students’ behavioral attributes e.g. orderliness inside the institute is found as
most significant attribute to predict their academic performance (Cao et al., 2018).
In another study, students’ social media activities are examined to find impact of
students’ academic and non-academic social media activities on their final exam
scores. Findings revealed that students’ social media activities can be used for
predicting their final exam performance (Chang et al., 2019). Learning strategies and
motivation are found as most significant attributes for students’ CGPA prediction,
with a correlation of 0.243 and 0.193 respectively (Nabizadeh et al., 2019). Students’
response time is found as a good predictor of students’ scores, as minimum response
time shows students’ knowledge and attention towards the lecture. Additive Factors
Analysis approach predict students’ results with 87.8% accuracy (Chounta &
Carvalho, 2019). In online courses, students’ interactions with learning resources are
found as a significant variable for predicting their academic performance. More than
2000 websites frequently visited by students, are considered for research. Research
results shows that websites containing videos, games and music are negatively
correlated, however, visiting learning based websites are positively correlated with
academic performance (Wu et al., 2019a). Similarly, in another study, students’
interactions are considered to predict their final exam scores. OULAD dataset
provides details of learning resources and sum of clicks performed by students
during their course. Long short-term memory algorithm shows 59% precision in
the 1% week while 93% precision was achieved in the last week of course (Aljohani
et al., 2019). Canonical Correlation Analysis is used to explore relation between
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different learning resources. The proposed study found that students’ performance
in one learning resource can be used to predict their performance in other type of
learning resources (Sahebi & Brusilovsky, 2018). Another research study aimed
to explore potential attributes for students’ performance prediction. Out of 45
students’ attributes, research study found that students’ previous grades, attention
in class, study-room and extra-curricular activities have positive while access to
mobile phone, alcohol consumption and more travel time to school have negative
impacts on students’ academic performance (Kaviyarasi & Balasubramanian,
2018). Logit leaf model is implemented for students’ performance prediction in
online courses. Over 10,554 students’ records were used comprised of their learning
patterns and activities. The study revealed that students’ academic engagement is
the best predictor of students’ academic performance (Coussement et al., 2020).
Students’ final grades are predicted using 2500 students’ data registered in different
courses. Rule Induction classifier gave 96.25% accuracy (Majeed & Junejo, 2016).
Input—Output Hidden Markov Model is proposed to predict students’ performance
using students’ weekly activities in online learning environment. The proposed
model gave 82% accuracy in the second week, while 84% accuracy is gained in
the last week of course (Mubarak et al., 2020). Above studies shows that students’
academic records, demographics and learning behavior are the best predictor.
Several studies proved that using data preprocessing and feature selection techniques
enhances the prediction results.

Different datasets are used in research studies, most of researchers gather data
from schools, colleges and universities’ databases, LMS systems or conducted
surveys to collect students’ responses. Several studies used online available
datasets. Four publicly available datasets are mostly found in the research papers
for students’ performance prediction named as: OULAD, MOOCs, Moodle and
UCI Repository dataset. Open University Learning Analytics Dataset! (OULAD)
contains a data of 22 courses and 32,593 students. Students’ demographic attributes,
sum of clicks and assessments’ results are available with their final exam result.
Massive Open Online Courses? (MOOCs) offer opportunities for distance learning.
Modular Object-Oriented Dynamic Learning Environment® (Moodle) is another
learning management system used for online learning courses. Students’ LMS data
is available and used in lot of studies to predict students’ performance and their
learning behaviors. UCI Machine Learning Repository offers a dataset* for students’
performance prediction. The dataset contains 23 attributes including demographic,
social and academic records. A dataset of 649 students from two secondary schools
is available and used in different studies for final exam grade prediction. Table 7
presents a summary of different students’ attributes for their exam performance
prediction.

! https://analyse.kmi.open.ac.uk/open_dataset

2 https://www.mooc.org/

3 https://moodle.org/

* https://archive.ics.uci.edu/ml/datasets/student+performance
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5 Tools used for data mining

This section presents a comparison of data mining tools used for students’ aca-
demic performance prediction. There are several studies presented above, these
research studies used different data mining tools for the prediction process. A
wide number of tools are available to build prediction models using machine
learning. These tools make it very easy to perform prediction tasks, data analysis,
feature selections, data cleansing and building classification and regression mod-
els etc. This section presents data mining tools that are used in literature for the
prediction of students’ academic achievement i.e., RapidMiner, WEKA, MAT-
LAB, and Python.

5.1 A.RapidMiner

RapidMiner provides a user-friendly interface to build prediction models. Rapid-
Miner is very easy to use as it provides a graphical, code-free environment. Predic-
tion models are built by drag and drop operations. All classification and regression
models are available. To build a model, import data into RapidMiner Studio, set
parameters and drag & drop required model into design screen. Resultant model will
appear in results section. It also supports statistical analysis of results to evaluate the
accuracy of model, visualization is also available to provide graphical representation
of results. RapidMiner also provide step by step tutorials that are helpful for begin-
ners (Osmanbegovic & Suljic, 2012).

5.2 B.WEKA

WEKA stands for Waikato Environment for Knowledge Analysis. WEKA is another
data mining platform for building prediction models. WEKA provides graphical
user interface as well as command line interface to implement data mining algo-
rithms. WEKA allows users to use its provided operators or to implement their own
java codes. It is used to solve all classification, clustering, feature selection, data
processing and regression problems. It is an open source and freely available soft-
ware which increases its number of users (Shahiri & Husain, 2015).

5.3 C. MATLAB

MATLAB stands for "MATrix LABoratory", developed and sold by Mathworks,
Inc. MATLAB is also used for data science problem solving. It allows implementa-
tion of data mining algorithms for classification and prediction problems. It reduces
data preprocessing time, filters noisy data, plot data into graphs to allow users visu-
alize data patterns and build data mining models. It also provides analysis features to
evaluate model results (Tomasevic et al., 2020).
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5.4 D.Python

Python is a programming language used for implementing machine learning algo-
rithms. It is an open-source program, freely available for commercial uses. Different
libraries are available in python to implement codes, e.g., Pandas for data prepara-
tion, Scikit-learn for machine learning, Plotly for data visualization, and Theano for
mathematical expressions (Stancin & Jovié, 2019).

Some research studies used other data mining tools, e.g., SPSS (Moseley &
Mead, 2008), KNIME (Adebayo & Chaubey, 2019; Rifat et al., 2019), R Studio
(Kumar et al., 2019; Sukhbaatar et al., 2019; Lottering et al., 2020; Olalekan et al.,
2020) and R Programming (Akcapinar et al., 2019; Figueroa-Cafias & Sancho-
Vinuesa, 2020; Lenin & Chandrasekaran, 2019; Vijayalakshmi & Venkatachalapa-
thy, 2019). Table 8 presents a summary of four frequent data mining techniques used
for students’ performance prediction.

6 Results and discussion

This section presents an overview of the research findings. Figure 7 clearly describes
that students’ performance prediction is of high interest in the present decade. Edu-
cational data mining is a new research domain but is rapidly growing because of
its impacts and benefits gained by institutions. Figure 7 shows that Decision Tree
is mostly used since last ten years but ANN, SVM and Random Forest are trending
algorithms in the past three years. Below figures clearly present that the work on
students’ exam performance prediction is growing rapidly year by year. However,
different studies used different techniques to improve the prediction results. Figure 8
gives an overview of frequently used data mining techniques for the prediction of
students’ final exam performance in the last years. The mostly used techniques are
Decision Tree and ANN. While least used technique is KNN. Decision Tree is very
simple to use because of its simple hierarchical flow. Therefore, it is mostly used
for students’ classification as compared to other data mining techniques. In Fig. 9,
four data mining tools are reviewed that are used for students’ exam performance
prediction. New tools are rapidly emerging, however, mostly used tools are MAT-
LAB, WEKA, RapidMiner and Python. WEKA is found as most frequently used
tool in the present decade, followed by Python. WEKA is freely available soft-
ware under a public license, but RapidMiner and MATLAB required to purchase a
license. WEKA is easy to use software as it allows java code implementation as well
as graphical user interface.

Above figures show that different algorithms can be used to predict students’
results. All of the studies used different student’ attributes as an input to their pro-
posed prediction models. Mostly used attributes are demographics, attendance, aca-
demic results and students’ clicks/views, students’ personality, psychological factors
and social behavior or activities. Figure 10 shows that students’ academic records
and demographic factors are proved as the best attributes in previous research stud-
ies. This survey paper also presents different feature selection techniques used to
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Data Mining Algorithms (2011-2020)
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Fig. 7 Trending data mining algorithms used for students’ performance prediction

select most influencing features. Figure 11 represents that more than a half of studies
used feature selection methods before building prediction models. Having irrelevant
features in the dataset may reduce the prediction results and increase model pro-
cessing time. Figure 12 presents that feature selection methods are highly trending
in past three years. Several feature selection methods are used in previous research
paper; however, two techniques are widely used i.e., Information Gain and Gain
Ratio.

7 Conclusion

Educational data mining gained a rapid growth as it helps institutions as well as
policy makers in decision making. One of the most important research areas of
educational data mining, is predicting students’ future results based on their pre-
vious performance and demographics. Predicting future exam results before final
examination can help teachers to find students who are at risk of failure, so they
can be provided with extra assistance and time. Action plans can be implemented
to prevent or reduce dropouts. This paper presents a summary of research stud-
ies conducted to predict students’ performance using different data mining tech-
niques. This study investigated recent twenty-years’ work of researchers in order
to compare different data mining techniques used for predictions and to evaluate
students’ attributes. Mostly used technique is Decision Tree, however, all data
mining techniques gave different results because output of prediction models
depends on the input data given to the model i.e., students’ attributes. Mainly
five types of students’ attributes are used in the literature i.e., students’ marks,
attendance, learning behaviors, social activities and demographic data. It is found
that students’ marks or GPA is mostly used input type which gave best prediction
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Fig.9 Data mining tools used for students’ performance prediction

results. The study also focused on data mining tools used for implementing data
mining algorithms. Several data mining tools are available while four data min-
ing tools are frequently used i.e., WEKA, MATLAB, Python, and RapidMiner.
Several datasets are used in these research studies. Four mostly used datasets are
OULAD, MOOCs, Moodle and UCI Repository Dataset.

The study shows that different evaluation methods including correlation, accu-
racy, f-measure, precision and recall are used. It is proved that all studies aim
to classify students into binary i.e., pass/fail or multi classes i.e., grades. A few
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studies predict students’ final marks or CGPA using regression techniques. The
presented study also concluded that students’ performance can be predicted at
different stages e.g., at the time of admission, at the start of semester, and before
final examinations. However, it is proved that prediction in the last two weeks of
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Fig. 12 Yearly trending feature selection techniques

semester can be more accurate as more academic features are available at this
phase. Feature selection methods are trending in the past three years. Several
studies proved that using only relevant features increases the prediction accuracy.
This review will be beneficial for future research in predicting students’ results
and for institutions to pick the best classifier based on their students’ data. This
study will help academic policy makers and administrations to use their students’
data in improving institutions’ results, in available students’ attributes and tools.
The findings of the study will be helpful for future research studies to focus on
highly influencing attributes only.

8 Limitations and future work

This study tried to provide a systematic review of research conducted to predict
students’ academic performance prediction. The number of research studies and
algorithms explored are limited as each method cannot be mentioned in a single
study. However, the survey provides a clear insight to effective and mostly used
data mining algorithms, tools and students’ attributes.

For future work, it is recommended to universities and online educational
institutes using data mining for students’ performance prediction and designing
action plans to prevent students’ dropout and increase courses’ completion rates.
Exploring students’ psychological factors, teaching & learning methods, insti-
tutes’ physical facilities and their impact on students’ academic results is an open
research area in EDM.
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