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Abstract

Analysis of learning behavior of MOOC enthusiasts has become a posed
challenge in the Learning Analytics field, which is especially related to video
lecture data, since most learners watch the same online lecture videos. It helps
to conduct a comprehensive analysis of such behaviors and explore various
learning patterns for learners and predict their performance by MOOC courses
video. This paper exploits a temporal sequential classification problem by
analyzing video clickstream data and predict learner performance, which is a
vital decision-making problem, by addressing their issues and improving the
educational process. This paper employs a deep neural network (LSTM) on a
set of implicit features extracted from video clickstreams data to predict
learners’ weekly performance and enable instructors to set measures for timely
intervention. Results show that accuracy rate of the proposed model is 82%—
93% throughout course weeks. The proposed LSTM model outperforms base-
line ANNs, Super Vector Machine (SVM) and Logistic Regression by an
accuracy of 93% in real used courses’ datasets.
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1 Introduction

Recently, technological advances have had a significant impact on the pedagogical
process to develop e-learning methods. One of the outstanding innovations which
aroused interest in online education is Massive Open Online Courses (MOOC)(Brinton
etal. 2015). MOOC is a platform that provides various courses over the Internet, which
allows learning to a very large number of learners from anywhere and anytime such as
Coursera, Edx, and Udacity, which present courses essentially based on video lessons,
forums, and quizzes (Yu et al. 2019). Video tutorials are a primary part of MOOC
course design and an incredibly important aspect of it. They serve as the principal axis
to draw students to the course. Learning platforms store web log data that includes
basic learner information and their experiences with course material (e.g., clickstream
videos, forum posts, and quizzes). Clickstream events (e.g. play, search, pause, etc.) are
recorded for video along with the time they occurred at which are then processed. Many
students spend much of their time watching video lectures. Therefore, many questions
regarding the engagement of learners with video gradually emerged such as “Do
learners view the whole video lecture? What portions of the video do learners repeat
to view, and why?; What video section are more engaging or difficult?; Is there any
relationship between learners’ viewing and learning performance?; How can learners’
performance be evaluated through their video-clickstreams?.(Giannakos et al. 2015).

Educational video analytics concentrate on gathering, analyzing, and describing data
related to learners’ interaction with videos. This can offer an opportunity for researchers
and educators to understand how learners’ interaction with video content in the learning
field and their behavior analysis. A variety of studies on learners’ participation and
investigating behavior patterns in learner interaction with video have focused on the big
data obtained from the relationship of learners with the different ways of the course.
(Kizilcec et al. 2013; Wang and Baker 2015). Some other studies have investigated the
clickstream interactions within videos. According to Halawa et al. (2014) and Sinha
et al. (2014a, 2014b), leaving videos (i.e., the video exists without being watched)
results in significant likely dropout from MOOC courses. Video interaction and
engagement terms interchangeably have been utilized in related studies to refer to
activities associated with clickstreams, views, and in-video quizzes, etc. Other related
studies about video learning analytics have investigated learners’ performance through
video engagement behavior using explicit features such as views and annotations (De
Barba et al. 2016; Hsin and Cigas 2013; Risko et al. 2012). For recent research, Guo
et al. (2014) and (Zhang et al. 2006) pointed out that learners are more viable to engage
when the contexts of video: 1) are short; 2) video building form (slides, code, khan
academy style, etc.); and 3) setup interactive activities like in-video quizzes. Despite
these academic efforts, yet, there are dearth research investigating several complex
aspects of click-stream interactions emerging from students’ actions within different
MOOC videos (Guo et al. 2014; Sinha et al. 2014a, 2014b. Also, in-video, dropout is
one of the outstanding challenging problems regardless of video design considerations.
Furthermore, MOOC learers are expected to reduce their video engagement as they
proceed during the course (Halawa et al. 2014). These challenges present important
opportunities for learning analytics to study video clickstream data (e.g., when playing
videos, pause, forward-back seek, re-playing the video, re-changing speed) and the
influence on video contents under (i.e., verbal and visual features).
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Regardless of the different data analytic methods, Deep Artificial Neural Networks
(ANNSs) are employed in the prediction of different measures (Coelho and Silveira
2017). Deep Learning architecture consists of multifarious layers of neural networks
interlinked through neurons. The Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) are various kinds of ANNs and associated with the sequential
data. Several studies are based upon considering MOOCs’ data being time series on the
prediction of dropouts. They exploit the power of deep learning models in the learning
analytics field to predict at-risk students. Coelho and Silveira 2017 studied a literature
review related to the studies learning analytics with deep learning techniques. They
tracked some important areas including learners’ performance (Baker and Inventado
2014; Corrigan and Smeaton 2017; Palmer 2013) and their learning evaluation. Hence,
deep learning methods exceeded the conventional machine learning and other baseline
methods.

Deep learning utilizes methods that comprise developing a model encompassing
many layers to learn from raw data. Every layer converts the representation to a more
abstract pattern for the following layer (Lecun et al. 2015). Corrigan and Smeaton
(2017) predicted students’ performance in online learning. They proposed Recurrent
Neural Networks (RNN) variation Long Short-Term Memory (LSTM) to analyze
students’ interaction in the online learning environment and predict their performance.
LSTM outperformed Random Forests by 13.3% of the variance of the model corre-
sponding to 8.1%.

In addition, Limited studies discussed implicit events in video learning. For instance,
researchers like Giannakos, Guo, Kim, Li, and their collaborators explored the corre-
lation among video interaction patterns and the difficulty of perceived video and
affirmed that patterns such as repeating/skips, repeating/re-watching and pause repeti-
tion mean the difficulty of the video(Giannakos et al. 2015; Guo et al. 2014; Kim et al.
2014; Li et al. 2015a, 2015b).

The present study analyzes clickstream behaviors of learners during video viewing
as implicit features. Instead of using explicit features that express the learners’ engage-
ment behaviors (views and annotations), we employ extracted implicit features from
behaviors of learners with click-video to create their video viewing profile. To be
precise, our focus is on predicting learners’ performance by video-clickstream. The
following question states clearly what our focus is which is” How is learners’ perfor-
mance correlated to their behaviors in MOOC course videos?”

To answer that question, deep learning models (Hochreiter and Schmidhuber 1997;
Sak et al. n.d.; Tang et al. 2016) are employed to process the dataset as a time series
sequence by exploiting extracted implicit features as features of the model, which
inherently serve in the compilation of interactional learners’ clickstream for each video
in a weekly format to predict learners’ performance for timely intervention by the
instructors. Moreover, developing such an approach in the form of extended learning
and content analytics would have implications not only for theories about how infor-
mation is processed by humans, but also systems striving to enhance learning outcomes
for students and mitigate the learning burden.

The main contributions of this study are summarized in the following points:

» Extracting implicit features generated by video-clickstream data through learners’
interaction from main events (play, pause, and seek).
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* Ascertaining the effectiveness of a Long short-term Memory (LSTM) using the
extracted features for course videos to predicting weekly learners’ performance.

» Extending the effectiveness of the LSTM model in predicting learners’ performance
compared to baseline Artificial neural networks (ANNS), a support vector machine
(SVM) and Logistic Regression models.

The contribution is derived from the above research objectives in order to enable
MOOC:s’ instructors and learning experts to have insight visibility on learners’ behav-
iors in video-clickstream. Thus, they can make rational and timely interventions
according to weekly predictions.

The organization of the paper is as follows: Existing related works to study MOOCs’
clickstream and predict learners’ performance in MOOC courses are described in
Section 2. Section 3 presents our proposed model processes. In section 4, dataset is
described. The experiment setup is shown in Section 5. Section 6 presents the exper-
imental results. Section 7 provides the discussion of result implications. In the last
section, conclusions are made.

2 Related work

Videos play a prominent role as the most instructive element in MOOC courses. In the
beginnings of MOOC growth, related researches primarily focused on the quality of
MOOC videos such as the length of the video and presentation (Guo et al. 2014; D.
Zhang et al. 2006). Recently, researches on online learning analytics centered on
creating a predictive model to predict dropout rates and students’ performance by
examining their participation in MOOC course video events (De Barba et al. 2016;
Hsin and Cigas 2013). The recent research on video learning analytics has included
three general ways: Firstly, visual content analysis studied visible pattern recognition,
video indexing, and transcript analysis (Risko et al. 2012; Smoliar and Zhang 1994).
Secondly, the analytics of explicit users’ data or explicit video analytics provide
inferences on video usage degree and popularity. This may affect videos learning
outcomes. Examples of these explicit user data include clicking buttons, views, and
votes (De Barba et al. 2016; Hsin and Cigas 2013). On the other hand, such superficial
analytics lack in-depth video interaction analysis to discover learners behavior when
they are interested, confused or misunderstood. Thirdly, in the same manner, the
analytics of implicit users’ data or implicit video analytics can be used in depth-
video interaction to identify what kind of difficulties may encounter learners through
video watching and to what degree they indicate the perceived video difficulty.
Examples of these implicit users’ data include interaction records in-depth videos
(Chorianopoulos 2013; Mubarak et al. 2020; Shaw and Davis 2005; Yew et al.
2011). It can be used as a good indicator to predict the dropout of learners and their
performance. Early studies on implicit video analytics focused certain reactions such
play, pause, and seek events. Li et al. (2015a, 2015b) studied the relationships between
video interaction patterns and some related aspects such as the perceived video
difficulty, video re-watching behaviors, and learners’ performance. They classified
the in-video interactions into many classes such as infrequent/more skips, pause
frequency, frequent pauses, and infrequent/large amount of re-watching as implicit
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video learning analytics. They used statistical inferences in their study without consid-
ering the variations in video content or the nature of the course. Giannakos et al. (2015)
improved an open-access video education analytics system to gather clickstream events
of video interactions. They studied the relationship between video navigation (e.g.,
play, pause, skip, and stop) and the level of perception /thinking for a particular video
segment. The authors concluded that the peaks of video interactions (e.g., repeated
views) corresponded to answers of assessments. Kim et al. (2014) investigated large-
scale analysis of in-video dropout and peaks of learners’ activity in video watching, by
using data from four courses received in edX platform. According to the measure of the
authors, the peaks in sessions of play events and rewatching indicated states of interest
or difficulty. They focused on the reasons why peaks happened, and they found that
61% of peaks occurred as a result of visual transitions in the video such as starting from
the beginning of new material, returning to missed content, following a tutorial step,
replaying a brief segment, and repeating a non-visual explanation. Sinha et al. (2014a,
2014b) constructed a quantitative Information Processing Index (IPI) h based on
cognitively plausible behaviors by video clickstreams of learners. That could serve
instructors’ interventions for learners in real-time. They classified learners’ clicks of
video watching state sequence (e.g., play, pause, seek forward and seek backward) into
higher-level behaviors such as long-time watching (e.g., playing and pausing) and re-
watching (e.g., actions of seeking backward). Based on IPI, they also investigated
whether the learner would continue till the end of the video and course and found that
the learners’ dropout in the MOOC course was 37% less likely if they had one standard
deviation higher IPI than average. Brinton et al. (2015) presented two frameworks for
studying the relationship between learners’ video-watching behavior and performance
in MOOC courses. The first framework was on groups of created events and the visited
positions. According to research, they extracted the sequences to distinguish recurring
motifs in learners’ behavior and found that some of these features were significantly
correlated with Correct on First Attempt (CFA) and non-CFA quiz submissions. Thus,
a model was presented based on learner clickstreams of experience gained, and showed
multi-aspects of prediction quality on individual videos and improved CFA outcome,
which emphasizes the ability to associate behavior to performance. Li et al. (2015a,
2015b) screened out research on how video interactions reflected the perceived diffi-
culty of the video for the learner. The authors extracted simple features of video
interaction that determined higher-level of video difficulty. (Li et al. 2015a,
2015b)The Mixed Model analysis to show the variations in personal video difficulty
for a learner from video to video was used. The authors found that some of the features
such as frequent and long pauses, speed decreases, infrequent seeks were with high
amount of skipping and re-watching which suggested higher-level of video difficulty.
Atapattu and Falkner (2018) investigated the relationship between learner video inter-
actions and discourse features patterns of video transcripts. They focused on lan-
guage and discourse features of MOOC video content. According to them,
discourse features (e.g., lexical diversity, causal connectives, and narrativity)
promoted video discourse processing while long sentences, video length, and
high speaking rate provided difficulties with video discourse processing. They
found meaningful correlations between discourse features and video interac-
tions. This correlation was shown by events (i.e., joined events except for
stop/load and specific events like seek and pause).
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In Yu et al. (2019), the authors used a 4-g approach to study the feature sequence of
viewing learning behavior without caring about learners’ cognitive participation on the
clickstream data of MOOCs videos. They used machine learning methods to predict
students’ outcome by the click-stream data of MOOCs videos such as K-Nearest
Neighbor Classification (KNN), which was commonly used to classify data. K repre-
sents a constant, and KNN takes the K points of the nearest distance to define to which
class the object belongs. Support Vector Machines (SVM), as a supervised learning
model which is often employed for classification, pattern recognition, and regression
analysis (Xu and Yang 2016), and Artificial Neural Network (ANN) (Fauvel and Yu
2016), which included many neuron nodes, can be distributed into multilayers such as
an input layer, hidden layers and an output layer. In addition to numerous data analysis
methods, Deep Artificial Neural Networks (ANNs) are primarily used for the estima-
tion of specific measures and attributes (Coelho and Silveira 2017). Deep learning,
which consists of multiple types of neural networks and containing many computa-
tional layers, enables the paradigm to learn from current instances, overcoming tradi-
tional hand-functional computing practices (Q. Zhang et al. 2018). Substantial evidence
of Deep Learning methods in the area of learning analytics can scarcely be seen in
literature to forecast the performance of the students. Recently, LeCun & Silveira
(2017) undertook a systematic literature review to analyze the research co-related with
deep learning techniques. They mapped some important fields, including (Baker and
Inventado 2014; Palmer 2013) student performance with learning assessment and
handwriting recognition(Gross et al. 2015), where deep learning strategies
overshadowed traditional machine learning and other benchmark approaches. The
Long Short-Term Memory (LSTM) is one Deep learning method which is a hierarchal
representational learning method, which consists of several non-linear layers that
contribute to learning the representations from the input data. It is also a new technique
in the testing context of learning analytics, by interpreting the data created as a time
series problem by calculating learners’ log data. Yet a limited number of studies applied
these approaches for early prediction of dropout (Fei and Yeung 2015; Waheed et al.
2019).

Previous researches focused on learners’ interaction with course videos and inno-
vated the techniques and methods to predict learners’ performance accurately. They
emphasized that weak learners’ performance was often attributed to factors related to
their educational background and social information for learners plus extracted features
selected from video-clickstream data. However, MOOC platforms still face challenges
of high dropout rates and difficulty of early prediction for learners’ performance.
Moreover, there is no specific method to represent the best solution to predict students’
behavior or their performance in MOOCs courses and identify students yet at risk.
Therefore,, this study aimed to fill in the gap in this research area to enhance the
efficiency of MOOC education.

3 Methodology
Making a learner continue in an online learning environment is a significant challenge
for research community with only numerous studies concentrating on different direc-

tions of learner retention and attrition as explained in the previous section. Recently,
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researchers have laid focuses specifically on predicting at the end of the term or after a
particular course through their legacy data, in contrast to predicting learners’ perfor-
mance through on-going courses. However, a research gap remains as final studies
contribute to the early prediction of the performance of learners, which could ultimately
help institutes to formulate early intervention strategies. This study aims to analyze the
impact of learners’ online participation on their performance and implementation
techniques for early prediction of learners dropout.

The study presented in this paper is divided into three major phases as shown in
Fig.1. The following subsections illustrate data processing procedure to ensure data
integrity from missing values and nested data due to anomalies in some columns or
rows in the first section. Features extraction of video-clickstream resulting from
learners’ interaction is explained in the second section along with including the
transformation of the raw data into a sequential time-series format for early perfor-
mance prediction. In the third section, we present an overview of the deep learning
method (LSTM) discussion with the significance of the model for time-series data
prediction.

3.1 Data cleaning

The dataset used is quite large and contains missing multiple values and interfering data
within a tuple. To guarantee the accuracy of the model’s results, it is necessary to
consider these exceptions before analyzing and classification the data. Hence, data
cleaning steps are required to ensure data integrity and validity when analyzing. The
first way is to remove the records without a valid screen name or video code;
anonymized name pre-defined are mapped for the learner as a unique id. The next step
is to remove columns that add noise to the data (e.g., course name and resource name)
and empty columns. The following step is extracting meaningful features from video’s
clickstreams.

e Play, Pause,Seek ,Load
® Fraction spent, Fraction completed
Indicators |[=<<>>e Fraction paused ,Number of

(fe atures) rewinds

Raw data Logs

Preprocessing Data

Data Extraction
Data cleaning

)
® Training and
Testing dataset

Fail

Notificaions to course teachers
Mossages to student with difficuties
Actvites recommendations

(your msights)

Lo e

Fig. 1 Proposed Architecture of Methodology
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3.2 Feature extraction

In this section, we discuss extracting implicit features from an error-free video-
watching clickstream data resulting from the cleaning process, which were logged
during leamers’ interaction with video player by following the main events: play,
pause, rate-change, seek forward or backward and stop. Each time any of these events
is fired, these events are logged with identification of the learners’ IDs and video IDs,
event type, event current time related to video time, and UNIX timestamp for the event.
In addition to these events recorded as explicit features, we extracted implicit features
through analyzing event current time which is relative to video time or timestamp for
eventas follows:

Feature Description
1 Fraction completed The percentage of the video which the learner watched, not counting
(fracComp) repeated segment intervals. The completed fraction is a tentative measure
of how closely learners are aligned with a video. So, values have to be
like [0,1].

- __ Ycurrent time watched
ﬁ acComp " real time of video

2 Fraction spent (fracSpent): The amount of (real) time the learner spent watching the video (i.e. when
playing or pausing), compared to the video’s actual duration. FracSpent
often reflects the amount of time that it took for the learner to grasp the
given content. It can take more than 1 value. And is thus a reflection of
the consistency and complexity of the delivery of the material. The high
value fracSpent may mean that the 1.

3 Fraction played (fracPL) The cumulative amount of play time that the learner was watching, divided
by a video’s real duration. Playback periods of under 5 s have been
deleted. The fracPL measures repetitive fragments that are watched as
opposed to fracComp, which can thus take value greater than 1.

4 Number of played The number of times that video was played by the learner. This function
(NumPL): may indicate the learer’s expended efforts to internalize the material
further. An abnormally high-value NumPL can therefore suggest that the
video quality is unclear, or that the quality is incredibly difficult.

5 Number of pauses The amount of times the learner has tapped on the pause case in the video.
(NumPa): Similar to NumPL, a high value of this attribute suggests the extra effort
has been made by the learner to grasp the video material or to perform an

off-task conduct.

6  Fraction paused (fracPa):  real-time fraction the learner spent pausing on the video, divided on its total
playback time. It is possible for fracPa to get up value >1. This feature
could take larger values, so that it indicates that the learner exhibited
extra effort to understand the material. As can be seen in Fig. 2, the
dashed lines represent the actual time spent by the learner after clicking
on pause event on the video.

7  Fraction Forward The sum of the video the learner had to skip forward while the video was
(Fracfrwd) running or pausing; divided on its duration, with repetition. It needs
values from 0 to 1
8  Fraction Backward The sum of time the learner had to skip back when the time was playing or
(FracBkwd) pausing, divided by its duration, with repetition. It takes values from 0 to

1 This feature can take values greater than 1 and may mean that the
learner has expended extra time internalizing the video passages. It also
indicates that the subject is more interested in or confided in these
passages
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Feature Description

9  Number of seek Backward The sum of points in the video the learner was skipping backward. A higher
(NumSBW) value of this feature indicates the video is interesting or difficult in
content.

10 Number of fast forwards The number of times in the video the learner has hopped forward. In this
(NumFFW) event a high value indicates that the learner is aware that the content of
this video clip is not important.

11 Average Change Rate Time-average change of playback Rate selected in the play state by the
(AvChR) learner. The Stanford MOOC player allows the default speed rates of
between 0.50x and 2.0x. Analysis of average change rate may show that
learners viewed the video content quickly or slowly.

12 Number of load (numLD) The learner has loaded the video the number of times. A value in this feature
indicates the learner can watch the video without having to associate it
with the content of the course.

13 Number of The sum of times a learner viewed a video in its entirety. This feature must
complete(numCompt) have a value less than or equal to the number of video playbacks. It also
indicates a learner is interested in viewing the whole video.

We primarily focused on implicit features about video-clickstream behavior that
were extracted from the raw dataset. After extracting the video-clickstream information,
learners’ records were maintained in a week-wise fashion. Data of each week were
appended with the video-clickstream behavior of the previous week. The transformed
function to form a vector of extracted features for each video was used as time-series
and fed to the machine learning algorithm.

3.3 Predictive Model (LSTM)

Deep learning architecture includes numerous nonlinear hidden layers between input
and output layers interlinked through neurons. These layers are self-adaptive in infer-
ring underlying functional associations from the input data (G. Zhang et al. 1998). They
help the system to learn complex functions and features for better predictions (Graupe
2016), Contrary to the statistical and model-based methods.

Long Short-Term Memory networks, which are usually called “LSTMs”,are a
particular kind of Deep Artificial Neural Networks which are capable of learning
long-term dependencies in time series data(Chakraborty et al. 2017). LSTM consists
of a recursive loop that helps the model to consider the prior inputs along with the
current one. But the repeating module has a different structure. Instead of having a
single neural network layer, there are three gates namely input, output and forget gate.
A fourth unit which is the memory cell is also pointed to as Constant Error Carousel.
The parameters in LSTM are learned by backpropagation through Time (BPTT)
(Hochreiter and Schmidhuber 1997; Sak et al. 2014).

o
Playl Pause Play2

Fig. 2 illustration of fraction paused state.
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The key to LSTMs is the memory cell, which controls the data to be written in the
cell by running straight the entire chain, with some minor linear interactions from three
gates. At some time interval ¢, the input gate i, manages the data to be written in the cell,
forget gate f; determines the data to be ignored. A memory cell C, controls the data to be
written in the cell and output gate O, controls the cell data to be drawn as output
(Hochreiter and Schmidhuber 1997; Olah 2015). Mathematically, the gates are formu-
lated as:

fi=0(Wplher,x] +by) (1)
it = U(W,».[ht_l,x,] + b,) (2)
0 = (Wo.[hi1,x] + by) (3)

At time interval ¢, the current cell state C, is updated by multiplying the forget gate
output with the previous cell state C;_; and adding the previous hidden state defined by
the input gate according to the equation formula 4.

C[ = ft'Ct—l + it.tanh(Wc.[ht—l,xt] + bc) (4)

The current cell state passes through a hyperbolic tangent nonlinearity limited by the
output gate to produce the current hidden state as:

h; = o;.tanh(C,) (5)

Where f;; i, and o, represent the outputs of the forget, input and output gates respec-
tively, o represents the activation function, Wy W;, W,, W,, by b;, b,, b, represent
weights and biases. One advantage of the powerful representation of LSTM is its ability
to deal with information in the previous cells and a prediction based on each of the
current and previous input (Okubo et al. 2017). Figure 3. illustrates visualization and
in-depth understanding of the dependency of sequential data in the unrolling of LSTM
cells. X represents the input data from the first layer, ¢ timestamp and hidden values to
hidden layers denoted by 4, and C represents the memory cell. The LSTM model is
deployed to analyze leamers’ performance based upon their interaction with video
clickstream data. The clickstream data of the videos are stacked one on the other in each
week to predict learners’ performance in a particular week or course. Thus, the weekly
data-stack of learners is fed to the model layers to process the data for each learner.
The input data of our model is a sequence of fixed length input vectors x,. The
features for X, are features related to how the learners are engaged with video
clickstream features (mentioned in extracted features section), and the final two features
are related to the weekly quiz, which is taken as the probability of true values. The first
‘attempt’ indicates whether the quiz was attempted, and the other one is the weekly
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/ Output

c — c(t-1) =y c(t) o c(t+1)_L
!

T T h(t+1)
K X(t-1) X(t) X(t+1) /
Fig. 3 Data in Unrolled LSTM Cells
quizzes where each quiz i covered the material in videos (1, ....,m) to define a

performance measure at “time” ¢. Fig. 4. demonstrates the overall structure of a MOOC
with videos and a weekly quiz. The course is presented as a sequence of videos across
sequential weeks with an in-week quiz. Thus, in our task of prediction, we take a week
as a time step (f) and the output labels are tagged based on the input features of that
week. According to this assumption, we obtain an input sequence (x,xy, ..., X;) from
learners’ weekly learning interaction with videos in the course, and the corresponding
output sequence labels(yy, y», ..., ¥y, X; refer to the input feature vector of week , and
y; indicates the corresponding output label.

The model is designed in such a way that it adapts a variable window length
automatically, which helps it to fit the RNN layer dimensions with input data. The
architecture of the model is a recurrent layer with 128 hidden units, and fanh activation is
used in each network that we train and one dense layer with a sigmoid activation as an
output layer to predict learners’ performance. Dropout layer in the last hidden layer 4,
was used when computing the readout y, to prevent overfitting during training. Since the
model performs a process of binary classification (passing, failing), we use binary cross-
entropy function with L2 regularization to render cost function. The L2 performs
smoothed oscillations in the training loss. Besides, the Adam optimization algorithm
(Kingma and Ba 2014) to adjust parameter updates during training was introduced in our
model. To prevent the validation loss from failure during training, we used a variable
learning rate that was automatically reduced during training. The value of dropout is 0.3.

£ =31 (viog(s) + (1tog(15) ) + 5 £ | (©

4 Data description

The dataset used for this research was selected from two different MOOC courses
designed and launched by the University of Stanford. Each of these two courses teaches

I play | pause| | skip | play |

Weekj

Quizj | Video (n,1) I_____ |Vldeo(n.m)

Video (1,1) | _____ Video (1, m) | Quizl | Video (1,1) | sievs l Videom) | Quizj | ... Quizn

Fig. 4 general sequence of course videos and quizzes in a MOOC.
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Computer Science topics, and each course has been taught multiple times. The first
course is “Mining Massive datasets (SELF PACED and Fall 2016), and the second one
is “Automata Theory” (SELF PACED and Fall 2016). The data was collected by the
Center for Advanced Research Through Online Learning (CAROL)(Stanford 2017) at
the University of Stanford. Data have been anonymized for the privacy protection of
students’ personal information. Dataset details shared by CAROL such as protocols to
access data and table schemas are available online (University, S 2017). Table schema
for each course includes three tables whichare eventsExtract, videolnteraction, and
activityGrade. They contain learners’ interaction logs and assessment grades. In this
study, video interaction and activity grade tables are considered. In the video interaction
table, each log entry contains temporal details about learners’ interaction with video
events such as clickstream events (load, play, pause, speed change, and so on.), learner/
video identification information and the course. In activity grade table, the details for
homework assessment grades are recorded along with its timestamp and answer
selected. Table 1 shows a summary of the basic information on the data of the two
courses after preprocessing.

Tables 2 and 3 describes the content of datasets such as videos, students and
clickstream events for each week of the course. Each week is in turn comprised of a
set of videos and quizzes. ‘MMDS’ was a longer course, with 15 Modules on 7 weeks,
whereas ‘Automata Theory’ had only 6. “MMDS’ had shorter videos in length with a
total of 94 videos and the average (avg.) length was 10 min for most of the videos.
Therefore, ‘Automata Theory’ had longer videos with a total of 26, and the average
length for most of the videos was longer than 20 min. For the two courses, each week
included one or two quizzes which were associated with videos of the week. Testing
students’ understanding was made by linking video concepts in the selected week and
the material throughout the course. Each quiz consisted of multiple-choice questions, in
radio-response format, with 4-5 possible answer choices and 5 tries for homework.
Besides, there were summative assessments in the form of final exam to test learners’
comprehension of the material throughout the course. The exam was taken in a three-
hour period, and each question was submitted only once.

Learners interact with video player by clicking key events: play, pause, rate-change,
seek forward or backward and stop. Each time one of these events is fired, it is stored in
system logs. Table 4 shows details of the number and means for each click-event on
videos for the four courses.

Table 1 Basic Information on four datasets

Name of course Time Modules  Videos  Students  Clickstream  Quizzes
frame Lectures

MMDS SELF PACED 7 weeks 15 94 5346 1,317,344 15 + final

“Mining of Massive Datasets”

MMDS+Fall2016 7 weeks 15 94 2135 503,697 15 + final

“Mining of Massive Datasets”

Automata SELF PACED 6 weeks 6 22 3022 297,748 6 + final

“Automata Theory”

Automata+Fall2016 6 weeks 6 22 2497 377,958 6 + final
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Table 2 Basic information on MMDS course weeks

Name of course MMDS SELF PACED MMDS+Fall2016
weeks
videos student Processed Events videos student Processed Events
1 11 4578 258,899 11 1993 148,583
2 12 1446 170,913 12 547 110,319
3 17 747 695,839 17 374 112,016
4 17 881 87,532 17 314 47,024
5 9 579 34,536 9 238 26,763
6 15 565 52,192 15 231 25,347
7 13 313 17,433 13 172 33,645

5 Experiments setup

To show our model’s feasibility and efficiency, we performed a case study on
two MOOC courses. As stated in Section 3, we first conducted preprocessing
of data which included extracting features from video clickstream data. In the
second phase, the data set resulting from the extraction process of features was
transformed into suitable input data for the model, and padded vectors were
constructed with a consistent shape, which was then masked before being fed to
the model layers. Each course dataset was split into 60/30/10 training, testing
and validation respectively. Several experiments were implemented with the
number of epochs, the number of recurrent layers, the number of hidden units,
and the learning rate parameter. During training, we tried to tune many
hyperparameters on the model before finally settling on model architecture,
with 128 hidden units and two layers which was a better balance of speed
and accuracy than 64 or 256 hidden units. Besides, the evaluation metric was
accurate during training. The parameters associated with Adam optimizer
remained constant throughout the training period. We used the Scikit-Learn
(Pedregosa et al. 2011), Keras(Clow 2013), and TensorFlow libraries developed
with the Python programming language.

Table 3 Basic information on Automata Theory course weeks

Name of course Automata Theory SELF PACED Automata Theory +Fall2016
weeks
videos student Processed Events videos student Processed Events
1 5 2784 155,439 5 2260 162,138
2 5 716 54,608 5 943 94,021
3 3 498 29,707 3 325 29,152
4 5 368 21,589 5 407 39,279
5 4 362 26,780 4 300 29,646
6 4 199 9625 4 335 23,722
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Table 4 Information on video click events

Event name MMDS SELF PACED MMDS+Fall2016 Automata SELFPACED Automata +Fall2016

counts means counts means  counts means counts means
Play 234,346 0.178 259,535 0.515 108,975 0.366 173,012 0.458
Pause 194,159 0.147 95,950 0.19 92,835 0.312 94,740  0.251
Seek 139,807 0.106 65,386  0.13 61,302 0.206 59,324 0.157
Rate-Change 6628 0.005 3874 0.008 3997 0.013 3786  0.01
Load 69,626 0.053 37,570  0.075 23,900 0.08 22,073 0.058
Stop 672,778 0.511 41,382 0.082 6739 0.023 25,023 0.066

6 Experiments results

In this section, we explore the effectiveness and results of our proposal to study
learners’ video-watching behavior and illustrate likely relationships between students’
behavior and their performance.

6.1 Experimental setup

To evaluate the effectiveness of the proposed model, the model was trained for each
course on weekly basis. During the training process at each week ith, its previous
weeks were appended in a homogenous single vector and fed to model layers. We
applied padded on input data to obtain a vector of equal length, which was then
masked before feeding it to the model layers. The padded values to an input vector
were discarded by the masking layer, which only kept clickstream data as the
sequence. The batch size was 50, and the larger batch of instances for each training
step did not perform better. Due to the nature of the study problem which was to
evaluate the proposed model for early prediction of the learner’s performance, the
problem was converted to a binary classification task ‘pass’ and ‘fail’ class. As it
was also implemented on each complete course. We focused on learners who
watched at least 20% of the videos of the week to ensure that we had sufficient
data to train and test an effective model. The results in Figs. (5 and 6) presented the
efficacy of the proposed model by the accuracy and loss values during training and
validation of the model achieved at 50th epoch, concerning weeks for both datasets.
These parameters were referred to during training to investigate the model perfor-
mance. Loss value determined how well the LSTM model performance was after
each iteration of optimization (One expects the decrease of loss after each, or
several iterations).

We observed convergence of accuracy of the model during training which con-
firmed that a good balancing between validation and training model was achieved. It
can be seen in (a, b) in Figs. (5 and 6) that the accuracy gradually progresses from the
first weeks till the final weeks in both courses. This is due to the lack of sufficient and
decisive data in the initial weeks. It can be concluded that dropouts’ behavior can be
defined more clearly during the final weeks when the dropout instances were less active
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Fig. 5 Accuracy and loss Curves for training and validation for MMDS course

in the last weeks. On the other hand, the input pattern of the previous instance in week 1
isn’t available.

We also see in Figs. 5 and 6, parts (c, d) describe the depletion of the model in loss
values. Ideally, the loss values should be degraded showing the disparity between the
ground truth and the class label that the model predicted. We notice, in Figs. (5 and 6),
the progress for accurate prediction of input instances cross weeks, for the model
achieves predictions up to 80% in the first week, with accumulated video clickstream
of each student from previous weeks, and the accuracy scales are up to 93% in the final
week. It can be inferred that the state of learner behavior is more defined in the final
weeks indicating the efficiency of the model in learning the distinct pattern till the last

weeks.
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Fig. 6 Accuracy and loss Curves for training and validation for Automata course
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AUC metric is considered to evaluate model performance on testing data throughout
different weeks as shown in Fig. 7, which exhibits curves of the AUC metric. The
(ROC) curve is a graphical plot employ to illustrate binary classifier diagnostic
capabilities. A ROC curve plots the true positive rate (TPR) versus the false positive
rate (FPR). In the current study which focuses on learners’ performance (dropout
prediction), TPR represents the proportion of learners’ actual dropout that the classifier
predicts as likely in dropout state, mathematically:(TP/ (TP + FN)). The FPR is the
proportion of learners’ actual non-drop and the classifier’s prediction as dropouts (FP/
(TN + FP)) (Hanley and McNeil 1982). As revealed in Fig. 7, the ROC curve of the
model is relatively more in a final week than in the first weeks and has a maximum area
under the curve (AUC) of 0.85 at both courses. On the contrary, in the first-week, the
model gained a minimum AUC of 0.73 in “MMDS” course and 0.75 at “Automata”
course. One potential explanation of this is that in these weeks, learners interacted in
video clickstreams more than final weeks as well referred to in Table 3 in the dataset
section. The AUC gradually progresses through the consecutive weeks. This confirms
why employing LSTM handling more extended memory has an important role in
massive data.

In order to interpret the benefit of the LSTM model, we focused on learner
performance prediction, since the target label was binary (1: pass, 0: fail, i.e., the
number of 0 s exceeds the number of 1 s) called class imbalance. Therefore, other
metrics to evaluate the goodness of the LSTM model predictions with the baseline
models were employed to address imbalanced data problems as we will explain in the
next section.

6.2 Evaluation of the model with the baseline

For the sake of evaluating the effectiveness of the LSTM model in identifying learners’
performance and early dropout, the Deep ANN, SVM and LR models, as baseline
models, was employed with the default hyperparameters. These models were selected
because of their frequent selection by research community as baseline models
(Marbouti et al. 2016). Table 5 provides an overview of metrics statistics values
obtained from the baseline models and LSTM model for both courses where the results
confirmed supremacy and effectiveness of the LSTM in the prediction of learners’
performance. Overall, accuracy of the LSTM model is 93.3% in both courses in final
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Fig. 7 AUC ROC curve for both courses
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Table 5 Comparison of LSTM with Baseline Models

Model MMDS Automata

week Accuracy Precision Recall F 1- Accuracy Precision Recall F 1 -

Score Score
Long Short-Term 1 086 0.90 086 088 082 096 080 0.87
Memory LSTM) 5 g8 0.92 090 091 0.84 096 085 09
3089 091 092 091 0.89 096 09 093
4 089 0.93 090 091 0.90 095 092 093
s 088 0.94 0.89 091 0.91 095 091 093
6 090 0.94 0.89 091 0.93 095 095 095
7093 0.93 091 092 - - - -
Artificial Neural 1 076 0.76 085 08 0.8 0.8 08 08
Networks (ANN) 2078 0.78 082 08 0.84 085 085 085
3078 0.78 077 077 084 084 085 084
4 078 0.78 079 078 084 084 085 084
5079 0.79 079 079 085 085 086 085
6 081 0.81 079 0.8 0.85 085 086 085
7 085 0.85 077 081 - - - -
Super vector machine 1 0.75 0.87 0.77 0.82 0.77 0.81 0.83  0.82
(SVM) 2079 0.87 0.76 0.8l 0.83 084 085 0.4
308 0.89 081 085  0.83 084 08 082
4 08 0.89 076 082 084 085 09 087
508 0.89 081 085 084 084 083 083
6 083 0.92 072 081 0.85 085 082 083
7085 0.95 076  0.84 - - - -
Logistic Regression 1 0.75 0.75 0.77  0.76 0.8 0.8 081 0.8
(LR) 2 077 0.77 076 076  0.84 085  0.84 084
3077 0.77 081 079 084 085 084 084
4 077 0.77 076 076 085 085 085 085
5078 0.78 081 079 085 086 084 085
6 08 0.80 072 076 085 086 085 085
7 084 0.84 076  0.80 - - - -

week, while the accuracy of the baseline model does not exceed 86% in both courses.
For each learner, the video-clickstream data values were aggregated until the current
week as the baseline model input.

To avoid imbalanced data problems, several metrics were selected based on data of
the confusion matrix (Table 6) such as precision = (TP/(TP + FP), recall = (TP/(TP +
FN) and F1 —score = (2 = precision * recall)/(precision + recall)(Perry et al. 1955).
These metrics give an interesting overview of how well a model is doing for a two-
class classification problem. By reviewing the values of the metrics in the table, there
was relative convergence for the precision and recall rate of models in the last weeks.
The F-score value reflects the overall effectiveness of the prediction models. Overall,
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the predictive proposed model (LSTM) has the ability to predict learners’ performance
across the course weeks better. It can be one of the underlying explanations that LSTM
has its memory cell that can follow the weekly behavior of each learner. On the
contrary, the baseline models cannot follow learners’ performance based on time.
Baseline models’ input vector comprises summation of feature values video-
clickstream for each learner in a weekly manner. Therefore, they learn the behavior
collectively except the first-week behavior. So, the traditional techniques may incor-
rectly predict that a learner is not active in the initial weeks or dropping out of a course
during the course duration. Overall, the proposed model outperforms better than the
baseline model.

7 Discussion

This study contributes in predicting learners’ performance through a deep LSTM model
by their interaction with course videos and the impact on their performance. Since
learners spend much of their time watching video lessons, this research focuses on
examining click-event that occur within MOOC videos through learners’ interaction,
including playing, pausing, skipping, and stopping. This was achieved by extracting
important implicit features resulting from clicking events which contributed signifi-
cantly to studying the success of learners. Navigating videos of the course before
finishing the course is an indicator of commitment, but a question may be raised here
which is “How much is the video used by learners? ““. Furthermore, instructors can need
to know the aspects that are the most engaging and most broadly watched.

We assume that the videos that were most often viewed were the shortest and most
associated with quizzes. Specifically, some learners had click-events indicating they
had different goals for either looking for or receiving any information. Therefore, in this
research, we focused on (LSTM) model to model the behavior of learners in video-
clickstreams and to increase the predictability of learners’ performance. The model
based on sequential data (till i#h week) was applied in order for the extracted features to
have positively influenced prediction of learners’ performance. Thus, adopting the
features of extraction method to perform the model is efficient. We obtained the best
accuracy of the proposed model compared to baseline models, not only in terms of
accurate prediction in learners’ performance but also in its capacity to identify learners
at the risk of dropping out in the early weeks.

Predicting the performance of learners is a must within the context of the MOOC:s in
order to avoid learners’ dropout of courses. Teachers should understand the reasons for
dropping the course and draw appropriate measures to maintain as many learners as
possible. The prediction in this study was done by adopting the extracted feature from

Table 6 Confusion Matrix

Predict Value

Actual Value True At-risk (TP) False Non-At-risk (FN)
False At-risk (FP) True Non-At-risk (TN)
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video-clickstream data of each learner in week ith and making a weekly prediction. At
this point, instructors can early intervene and make the appropriate decision.

Overall, this makes our methodology more distinct from the literature, not just in
terms of predictive accuracy, but also in extracting video-clickstream data implicit
features. This methodology can be incorporated into the MOOC platforms that instruc-
tors can use as a tool to predict the performance of their learners and allow timely
intervention by instructors. In addition, the findings of the analysis can be used for
useful instructional guidance. Predicting the performance of learners would allow
teachers and decision-makers to follow a realistic approach for timely interventions
with learners and direct them efficiently by offering relevant guidance and advice. Such
prediction model will help MOOC’s educators to identify likely learners to early
dropout providing them with supplementary support in an educational task, and then
assisting educational organizations by encouraging them to continue their learning
career.

8 Conclusion

This paper presents a contribution to early predict learners at-risk of low performance,
determining learners likely to reduce their interaction with course videos by a predictive
model construct depended on LSTM to track and manage learners’ performance. The
present study was applied on two courses taken from Stanford University MOOC (For
more details, please see the Dataset section), which contained learners’ interaction with
videos’ clickstream data and their quiz scores. We showed that video-clickstream
events could be employed as learning features to predict learners’ performance. In
implementing a predictive model, we trained the model as a week sequence classifica-
tion in order to capture the unique features of each learners’ learning patterns. The deep
learning model (LSTM) proved to be effective in the weekly prediction of learners’
performance and outperformed better accuracy than a baseline. Performance evaluation
model showed an accuracy of 86% in the first weeks to 93% in the final week at the
“MMDS SELF PACED” course and 82% in the first week till 93% in the final week at
the “Automata Theory” course to predict learners’ performance.

Early prediction of the performance of learners will help teachers and educational
experts analyze and understand the learning behavior of learners through the different
social interactive activities of the learners. It will also support educational stakeholders
to develop approaches to promote and deliver learner therapy, achieving optimal
outcomes by engagement in a certain time to attract learners.

Overall, in MOOC platforms, the clickstream behavior of each learner is gathered
continuously. Therefore, the task of learners’ performance prediction is observed as
sequence classification. The current approach employs only learners’ interaction pat-
terns with videos to confirm their performance. For future perspectives of this field, the
activity patterns of learners at risk of failure can be established, and marginally passing
learners can be identified, whereas variations in the actions of distinguished learners
and those at risk of failure of their courses can be identified. In the near future, we
intend to develop a platform for an instructional policy environment, fusing organized
and unstructured heterogeneous behavior in addition to decision-making in predicting
student’s outcomes based on this Learning Analytics layer.
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