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Abstract
Massive open online courses (MOOCs) hold the promise of democratizing the learning
process. However, providing effective feedback has proven hard to offer at scale since
most methods require a teacher or tutor. Leveraging big data in MOOCs offers a
mechanism to develop predictive models that can inform computer-based pedagogical
tutors. We review research on grade prediction and examine the predictive power of a
model based on user video-watching behavior. In a MOOC organized around weekly
assignments, we find that frequency of video viewing per week is a better predictor
than individual viewing features such as plays, pauses, seeking, and rate changes. This
finding is useful for MOOCs that use assignments for course evaluations in addition or
to the exclusion of in-video quizzes for formative assessment. Engaging, well-crafted
assignments in MOOCs have the potential of boosting student retention and course
completion by fostering a deeper understanding through application and practice.

Keywords MOOCs . Prediction Analysis . ExplanationAnalysis .Machine Learning .

Educational DataMining . Course Performance . Course Grades

1 Introduction

Massive Open Online Courses (MOOCs), such as Coursera, Udacity, and edX, are “online
courses designed for large numbers of participants, that can be accessed by anyone
anywhere as long as they have an internet connection, are open to every one without entry
qualifications, and offer a full/complete course experience online for free” (Jansen &
Schuwer, 2015, p. 4). In recent years, MOOCs have become an important research topic
and have received increasing attention in both popular writing and academic scholarship
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(Ebben & Murphy, 2014; Kovanović, Joksimović, Gašević, Siemens & Hatala, 2015;
Toven-Lindsey, Rhoads & Lozano, 2015). Indeed, MOOCs have gained increasing prom-
inence and have been heralded as promising learning initiatives with great potential for
improving learning and learning opportunities (Bozkurt, Akgün-Özbek & Zawacki-Richter,
2017; Brahimi & Sarirete, 2015). A recent review noted that learner retention, motivation,
experience, satisfaction, and assessment were the most common foci of MOOC research
(Zhu, Sari, & Lee, 2018). Relatedly, an important question regarding MOOCs is how
effectively do MOOCs support learning (Formanek, Wenger, Buxner, Impey, & Sonam,
2017). Although a long line of analytical and qualitative research on MOOCs has been
conducted which offer valuable insights, more research is needed to provide deeper insights
into how learner behaviors on MOOCs are related to learner outcomes.

A growing body of research has examined the use of learner-system interaction data.
Digital learning environments can now track and log fine-grained data about learners’
interactions with the learning environment (Dutt, Ismail, & Herawan, 2017). Moreover,
new computational methods are available to mine and analyze this data to potentially
develop models of learner behavior and gain insights into learning behavior (Slater,
Joksimović, Kovanovic, Baker, & Gasevic, 2016). The introduction of massive open online
courses (MOOCs) has afforded an unprecedented opportunity to explore how learning
behaviors influence learning outcomes using big data (DeBoer, Ho, Stump, & Breslow,
2014). The availability of fine-grained big data (e.g., learner behaviors) collected inMOOCs
can be leveraged to develop learner models for predicting various learner outcomes (e.g.,
academic performance). It is this research aspect that we focus on in the current paper.

We recognize the importance of learner behaviors in learning environments as key
features for predictive modeling. Indeed, research on grade prediction has taken on new
life as predictive modeling can be leveraged to deliver pedagogical agents that support
personalized learning experiences in online learning (Li, Xie, & Wang, 2016; Mothukuri
et al., 2017; Romero & Ventura, 2010; Yang, Brinton, Joe-Wong, & Chiang, 2017).
However, to be useful, MOOC research must move beyond single course descriptions to
comparisons across contexts, and from post hoc analyses to greater use of experimental
designs to study learning in MOOCs not simply studying engagement (Reich, 2015). In the
following section, we review the literature related to grade prediction in MOOCs.

2 Literature review

Several studies have investigated the use of learner behavior data from MOOCs for grade
prediction (Ashenafi, Riccardi, & Ronchetti, 2015; Brinton & Chiang, 2015; Hong, Wei, &
Yang, 2017; Li, Xie, & Wang, 2016; Meier et al., 2015; Xie, Zheng, Zhang, & Qu, 2017;
Yang et al., 2017). However, little is known about how study behaviors in MOOC learning
environments influence student course performance (Li, Xie, & Wang, 2016) even though
study behaviors appear to directly influence learning outcomes (Azevedo&Hadwin, 2005).

Heterogeneity of learning behaviors has prompted researchers to consider other data
sources that may be better correlated with learning performance. Researchers in China
built a model leveraging demographics, forum activity, and learning behavior that
outperformed other grade prediction models so far (Qiu et al., 2016). However,
response sparsity per individual and the need of personalized models have led others
to consider more plentiful data streams. Indeed, researchers (Yang et al., 2017) have
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proposed a model based on video-watching clickstreams that outperformed an average
of past performance as predictor of performance of multiple-choice evaluations.

Li, Xie, and Wang (2016) built a predictive model based on expert feature engineering,
selecting 15 features based on social cognitive and behavioral theories of learning, to predict
quiz grades. These theoretically informed features align with other proposed models that
include both demographic characteristics, video-watching behaviors, and previous academic
performance. They found high prediction accuracy across mean prediction, regression, and
neural networks, with small gains over mean prediction for regression, and neural networks
only. Unfortunately, the authors did not report statistics on the average contribution of each
variable, though from previous academic performance research, it is well-established that
prior performance is the single strongest predictor of future performance (Bazelais, Lemay,
& Doleck, 2018) as is likely the case here too.

Whereas logistic regression has been favored for dropout prediction inMOOCs as this is
essentially a classification problem, both linear regression and neural network models have
been used for grade prediction (Yang et al., 2017; Li, Xie, & Wang, 2016). Brinton &
Chiang (2015) conducted exploratory modeling of video watching behavior using artificial
neural networks to predict student performance on course assignments. They demonstrated
that video viewing behaviors can accurately predict student performance from the first data
points and hence provide an early detection system to target student difficulties. When
researchers have compared regression and neural networks, they have found similarly high
predictive accuracy with either approach (Li, Xie, &Wang, 2016). However, one advantage
of linear models is the ability to evaluate the relative contribution of each factor such as the
amount of variance explained in structural equation models. The ability to disentangle the
influence of different factors (or features) allows to understand the underlying dynamics and
better formulate a response that is aligned with the learner’s needs.

A k nearest neighbors algorithm was used to find the optimum grade prediction
moment using weighted predictors of evaluation categories (Meier et al., 2015). Their
mathematical derivation permitted the analysis of interactions between and within
factors and identified exams and quizzes as most accurate predictors of final grade.
Indeed, their recommendation that students be tested early and often finds its propo-
nents in testing (Agarwal, Karpicke, Kang, Roediger, & McDermott, 2008; Bangert-
Drowns, Kulik, & Kulik, 1991; Roediger & Karpicke, 2006a, 2006b).

Sinha et al. (2014) demonstrated an interesting attempt at assessing the type of
behavior exhibited by video-watching clickstreams, conceived as sequences of video-
viewing related actions that collectively describe behaviors employing limited-capacity
information processing theory. The authors used a natural language processing tech-
nique to identify the most common 4-grams and coded them as different behaviors such
as fast/slow watching, skipping, checking reference, clarifying concept, etc. Such
activities were then weighted to compute an information processing index such that
particular clickstreams were assessed as being high or low instances of information
processing. They argued that an information processing index could be used to estimate
the degree of difficulty experienced by the students with respect to the course material,
such that a positive score indicates higher information processing and a negative
indicates less information processing. The authors’ study goes some way to character-
izing video viewing patterns from clickstreams and helps to develop intuitions regard-
ing how learning behaviors are correlated with course performance, however, it remains
to examine how such features are related to assignment and course completion.
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Objective Unlike the emphasis of previous work examining MOOC learning outcomes,
our goal in this study is to examine how learner video-viewing behaviors influence
grade prediction in MOOCs. Specifically, the aim of the present study was to ascertain
the links between students’ video viewing behaviors and course grades. As such, we
address the following research question: Can students’ video-viewing behaviors predict
course grades?

3 Methods

Context and sample The data for this study was derived from a MOOC [Big Data and
Education on the EdX platform] focusing on educational data mining and learning
analytics offered by the University of Pennsylvia, and developed and taught by Dr.
Ryan S. Baker. The course had a total of 10, 432 registered users.

Sample and procedure Video logs from the two courses were mined using Python
Jupyter scripts (https://github.com/davidjlemay/EdX-Video-Feature-Extraction). The
dataset included 6241 instances. In Table 1, we present the ten video-viewing features
used in this study. We used the nine features from Brinton and Chiang’s (2015) study:
number of Rewinds, Fastforwards, Pauses and Plays, in addition to fractional and total
amounts played, paused, playback rate. In addition, a tenth feature was included to the
feature set: number of videos viewed per week. To provide more information about the
data we also present the ten first rows in the dataset (Table 2): the first ten columns are the
video-viewing features and the last column is the outcome variable (i.e., course grade).

4 Analysis and results

While predictive modeling is the core aim of the current research, our analytical
approach also follows calls for complementing predictive analytics with explanation
analytics (Shmueli, 2010).

Table 1 Video-Viewing Features

Label Name

F1 Videos Watched per Week

F2 Avg Frac Spent watching

F3 Avg Frac Completed

F4 Avg Frac Played

F5 Total Number of Pauses

F6 Avg Fraction Paused

F7 Avg Playback Rate

F8 Standard Deviation PBR

F9 Total Number of Rewinds

F10 Total number of Fastforwards

Education and Information Technologies (2020) 25:1333–13421336
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Prediction analysis The objective of the analysis was to evaluate how accurately the ten
features could predict course grade. We analyzed the data using the WEKAworkbench
(Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009). The results of the ten-
fold cross-validation evaluation for the different commonly used classifiers (Logistic,
SMO, NaiveBayes, J48, JRIP, IBK, RandomForest, and WekaDeepLearning4J) are
provided in Table 3. We should note that performance was observed to be above chance
(Kappa>0 and AUC > 0.5) (Hulse et al., 2018; Jiang et al., 2018). As seen in Table 3,
the predictive accuracies reach as high as 70.1941%. We find that frequency of video
viewing per week is a better predictor than individual viewing features such as plays,
pauses, seeking, and rate changes.

Explanation analysis The objective was to assess the degree to which the ten features
help explain the variance in the dependent variable (course grade). A partial least
squares structural equation modeling (PLS-SEM; Henseler, Hubona, & Ray, 2016)
approach was employed and we used the WarpPLS software (Kock, 2018a, 2018b) for
analyzing the data. Table 4 illustrates the significance of the links between each feature
(F1 to F10) and the dependent variable (course grade). The coefficient of determination,
R2 value, of the dependent variable was 0.086; that is, the antecedent variables (ten
features) explain 8.6% of the variance in the dependent variable (course grade). The
findings suggest that while the features used may lead to a highly predictive model
(Accuracy = 70.1941%), the same feature set may not necessarily lead to a highly
explanatory model (R2 = 8.6%). This suggests the need for further inquiry into salient
features that can lead to models that are both highly predictive and explanatory.

5 Discussion

Research in grade prediction has recently begun to examine the influence of video-
viewing behavior on academic performance, specifically on multiple-choice quizzes
associated with video lectures in a MOOC. However, this research has for the most part
focused on predictive accuracy as metric to evaluate the robustness of the models. This
approach proves problematic because of the high heterogeneity in the samples. Due to
the inherent limitations of correlational analysis that is not grounded in explanatory

Table 3 Cross-validation Results

Classifier Correctly Classified % (Accuracy) Kappa AUC

Logistic 69.5679% 0.2341 0.620

SMO 64.7464% 0.0361 0.514

NaiveBayes 64.7464% 0.1964 0.603

J48 69.5053% 0.2402 0.586

JRip 70.1941% 0.2609 0.598

IBK 59.6118% 0.1091 0.552

RandomForest 66.3118% 0.1905 0.612

WekaDeeplearning4J 69.6306% 0.2366 0.623
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modeling, predictive models may not transfer across instructional situations. Boosting
accuracy with many parameters runs the risk of overfitting the data. Indeed, the features
employed here demonstrate a respectable amount of predictive accuracy, though
weaker than models employing demographic data. As one of the few studies to perform
an explanatory analysis, we find that engineering features contributes an additional
layer of complexity as it increases the chance of introducing bias into the models. As in
this case, number of videos viewed explains more variance alone than all the other
expert engineered features. Our analytical approach of complementing predictive
modeling with explanatory analysis has broader implications that should be of interest
to researchers interested in analytical advancements.

Whereas video-viewing behavior is proving an important data source for predictive
modeling in MOOCs, it is important to expand the search space to avoid the phenomenon
of searching in the well-trodden paths of intuition only. From a pedagogical tutor perspec-
tive, this meanswe ought to search for signals that are pedagogically meaningful, that is, that
can support self-regulated learning and metacognition (Azevedo and Hadwin, 2005). In
other words, our putative pedagogical agent would support learning by inciting students to
make connections with prior knowledge and help the student to identify misconceptions in
their knowledge. Such pedagogical actions would translate inMOOC user behavior such as
searching across multiple videos as students are encouraged to review earlier lectures to
build and refine their knowledge structures. In such cases, the salient objective for a
pedagogical agent would be increasing number of videos viewed in a particular period as
evidence of student self-regulated learning behavior.

Certainly, focusing of video-viewing behaviors within a video—as opposed to
across all videos in a MOOC—appears to be related to effective study behaviors and
may indeed improve quiz performance (Brinton & Chiang, 2015). However, that may
not be sufficient to boost retention and course completion rates by itself. Self-regulated
learning theory suggests that to increase MOOC completion, the salient learning
signals—which may ultimately prove to best explain MOOC performance—may be
sought in measures that demonstrate self-regulation and metacognition in the user, such
as multiple video-viewing best explaining assignment completion (Lemay & Doleck,

Table 4 Structural Model

Path coefficient (β) P Value

F1- >DV 0.235 P < 0.001

F2- >DV 0.016 P = 0.264

F3- >DV −0.122 P < 0.001

F4- >DV 0.181 P < 0.001

F5- >DV −0.000 P = 0.493

F6- >DV 0.018 P = 0.238

F7- >DV −0.009 P = 0.353

F8- >DV −0.023 P = 0.183

F9- >DV −0.037 P = 0.070

F10- > DV −0.027 P = 0.139

Education and Information Technologies (2020) 25:1333–1342 1339



under review). Indeed, self-regulation and metacognition have been shown to be strong
predictors of academic performance.

MOOC learning environments offer an excellent context to study video watching
behavior given the ubiquity of video-centered MOOC platforms like EdX and
Coursera. Explaining how learning behaviors in MOOCs are related to course perfor-
mance can help educationalists develop adaptive scaffolds for supporting the learner’s
self-regulation and metacognition. By comparing patterns of video-viewing activity
and associated grades, we can develop responsive pedagogical agents informed by self-
regulated and metacognitive learning theory to provide predictive contextual support
and hopefully improve MOOC completion rates.

Limitations The present study has some limitations that also provide avenues for future
work. This study is constrained by its analysis of a single MOOC. It only examined
video-viewing features and ignored other data and potential sources of variability
including demographic characteristics and prior knowledge. These findings may be
extended by comparing other courses and by using more robust experimental designs to
determine how user study behaviors are related to academic performance in MOOCs.

Conclusions and future directions This study deepens our understanding of the links
between learner behaviors on MOOCs and performance. There is a clear need for
further insights into ascertaining the salient features that contributeto both a highly
predictive and explanatory model. Only by comparing predictive and explanatory
analyses can we begin to understand how user behaviors are related to MOOC
outcomes. Such causal analysis would help to explain how instructional decisions
influence student learning behaviors and help design MOOCs that support student
self-regulated learning to boost retention and course completion.

Acknowledgments We wish to thank Dr. Ryan Baker and his Learning Analytics Lab for this collaboration
and providing the performance data from his Big Data and Education MOOC from the University of
Pennsylvania. The first author also acknowledges the support of the Centre for Medical Education for his
postdoctoral fellowship.

References

Agarwal, P., Karpicke, J., Kang, S., Roediger, H., & McDermott, K. (2008). Examining the testing effect with
open- and closed-book tests. Applied Cognitive Psychology, 22(7), 861–876. https://doi.org/10.1002
/acp.1391.

Ashenafi, M. M., Riccardi, G., & Ronchetti, M. (2015). Predicting students’ final exam scores from their
course activities. In 2015 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.
org/10.1109/FIE.2015.7344081.

Azevedo, R., & Hadwin, A. F. (2005). Scaffolding Self-regulated Learning and Metacognition – Implications
for the Design of Computer-based Scaffolds. Instructional Science, 33(5–6), 367–379. https://doi.
org/10.1007/s11251-005-1272-9.

Bazelais, P., Lemay, D. J., & Doleck, T. (2018). Examining the Link Between Prior Achievement in Secondary
Education and Performance in College: Using Data from Pre-University Physics Courses. Journal of
Formative Design in Learning, 2(2), 114–120. https://doi.org/10.1007/s41686-018-0020-x.

Bangert-Drowns, R., Kulik, J., & Kulik, C. (1991). Effects of Frequent Classroom Testing. The Journal of
Educational Research, 85(2), 89–99. https://doi.org/10.1080/00220671.1991.10702818.

Education and Information Technologies (2020) 25:1333–13421340

https://doi.org/10.1002/acp.1391
https://doi.org/10.1002/acp.1391
https://doi.org/10.1109/FIE.2015.7344081
https://doi.org/10.1109/FIE.2015.7344081
https://doi.org/10.1007/s11251-005-1272-9
https://doi.org/10.1007/s11251-005-1272-9
https://doi.org/10.1007/s41686-018-0020-x
https://doi.org/10.1080/00220671.1991.10702818


Bozkurt, A., Akgün-Özbek, E., & Zawacki-Richter, O. (2017). Trends and Patterns in Massive Open Online
Courses: Review and Content Analysis of Research on MOOCs (2008-2015). The International Review
Of Research In Open And Distributed Learning, 18(5). https://doi.org/10.19173/irrodl.v18i5.3080.

Brahimi, T., & Sarirete, A. (2015). Learning outside the classroom through MOOCs. Computers in Human
Behavior, 51, 604–609. https://doi.org/10.1016/j.chb.2015.03.013.

Brinton, C. G., & Chiang, M. (2015). MOOC Performance Prediction via Clickstream Data and Social
Learning Networks. IEEE Conference on Computer Communications (INFOCOM), 2299–2307.

DeBoer, J., Ho, A. D., Stump, G. S., & Breslow, L. (2014). Changing “Course”. Educational Researcher,
43(2), 74–84. https://doi.org/10.3102/0013189X14523038.

Dutt, A., Ismail, M., & Herawan, T. (2017). A Systematic Review on Educational Data Mining. IEEE Access,
5, 15991–16005. https://doi.org/10.1109/access.2017.2654247.

Ebben, M., & Murphy, J. (2014). Unpacking MOOC scholarly discourse: a review of nascent MOOC
scholarship. Learning, Media and Technology, 39(3), 328–345.

Formanek, M., Wenger, M., Buxner, S., Impey, C., & Sonam, T. (2017). Insights about large-scale online peer
assessment from an analysis of an astronomyMOOC. Computers & Education, 113, 243–262. https://doi.
org/10.1016/j.compedu.2017.05.019.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The WEKA data mining
software. ACM SIGKDD Explorations Newsletter, 11(1), 10. https://doi.org/10.1145/1656274.1656278.

Henseler, J., Hubona, G., & Ray, P. (2016). Using PLS path modeling in new technology research: updated
guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/imds-09-2015-
0382.

Hong, B., Wei, Z., & Yang, Y. (2017). Online education performance prediction via time-related features. In
2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 95–
100). IEEE. https://doi.org/10.1109/ICIS.2017.7959976

Hulse, T., Harrison, A., Ostrow, K. S., Botelho, A. F., & Heffernan, N. T. (2018). Starters and Finishers:
Predicting Next Assignment Completion from Student Behavior During Math Problem Solving. In K. E.
Boyer & M. Yudelson (Eds.), Proceedings of the 11th International Conference on Educational Data
Mining (pp. 525–528). Buffalo, NY: International Educational Data Mining Society.

Jansen, D., & Schuwer, R. (2015). Institutional MOOC strategies in Europe (pp. 1–34). EADTU. Retrieved
from https://www.surfspace.nl/media/bijlagen/artikel-1763-22974efd1d43f52aa98e0ba04f14c9f3.pdf

Jiang, Y., Bosch, N., Baker, R., Paquette, L., Ocumpaugh, J., Andres, J.M.A.L., Moore, A.L., Biswas, G.
(2018) Expert Feature-Engineering vs. Deep Neural Networks: Which is Better for Sensor-Free Affect
Detection? In C. P. Rosé, R. Martínez-Maldonado, U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-
Pomsta, B. McLaren, & B. du Boulay (Eds.), Proceedings of the 19th International Conference on
Artificial Intelligence in Education (pp. 198–211). London, UK: Springer International Publishing.
https://doi.org/10.1007/978-3-319-93843-1_15.

Kock, N. (2018a). WarpPLS. Retrieved from http://www.scriptwarp.com/warppls/
Kock, N. (2018b). WarpPLS 6.0 user manual. ScripWarp Systems. Retrieved from http://cits.tamiu.

edu/WarpPLS/UserManual_v_6_0.pdf
Kovanović, V., Joksimović, S., Gašević, D., Siemens, G., & Hatala, M. (2015). What public media reveals

about MOOCs: A systematic analysis of news reports. British Journal of Educational Technology, 46(3),
510–527. https://doi.org/10.1111/bjet.12277.

Li, X., Xie, L., & Wang, H. (2016). Grade Prediction in MOOCs. In 2016 IEEE Intl Conference on
Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and
Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications
for Business Engineering (DCABES) (pp. 386–392). IEEE. https://doi.org/10.1109/CSE-EUC-
DCABES.2016.213

Meier, Y., Xu, J., Atan, O., & Schaar, M. van der. (2015). Personalized Grade Prediction: A Data Mining
Approach. In 2015 IEEE International Conference on Data Mining (pp. 907–912). IEEE. https://doi.
org/10.1109/ICDM.2015.54.

Mothukuri, U. K., Reddy, B. V., Reddy, P. N., Gutti, S., Mandula, K., Parupalli, R., … Magesh, E. (2017).
Improvisation of learning experience using learning analytics in eLearning. In 2017 5th National
Conference on E-Learning & E-Learning Technologies (ELELTECH) (pp. 1–6). IEEE. https://doi.
org/10.1109/ELELTECH.2017.8074995.

Qiu, J., Tang, J., Liu, T. X., Gong, J., Zhang, C., Zhang, Q., & Xue, Y. (2016). Modeling and Predicting
Learning Behavior in MOOCs. In Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining - WSDM ‘16, 93–102. https://doi.org/10.1145/2835776.2835842.

Reich, J. (2015). Rebooting MOOC Research. Science, 347(6217), 34–35. https://doi.org/10.1126
/science.1261627.

Education and Information Technologies (2020) 25:1333–1342 1341

https://doi.org/10.19173/irrodl.v18i5.3080
https://doi.org/10.1016/j.chb.2015.03.013
https://doi.org/10.3102/0013189X14523038
https://doi.org/10.1109/access.2017.2654247
https://doi.org/10.1016/j.compedu.2017.05.019
https://doi.org/10.1016/j.compedu.2017.05.019
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1108/imds-09-2015-0382
https://doi.org/10.1108/imds-09-2015-0382
https://doi.org/10.1109/ICIS.2017.7959976
https://www.surfspace.nl/media/bijlagen/artikel-1763-22974efd1d43f52aa98e0ba04f14c9f3.pdf
https://doi.org/10.1007/978-3-319-93843-1_15
http://www.scriptwarp.com/warppls/
http://cits.tamiu.edu/WarpPLS/UserManual_v_6_0.pdf
http://cits.tamiu.edu/WarpPLS/UserManual_v_6_0.pdf
https://doi.org/10.1111/bjet.12277
https://doi.org/10.1109/CSE-EUC-DCABES.2016.213
https://doi.org/10.1109/CSE-EUC-DCABES.2016.213
https://doi.org/10.1109/ICDM.2015.54
https://doi.org/10.1109/ICDM.2015.54
https://doi.org/10.1109/ELELTECH.2017.8074995
https://doi.org/10.1109/ELELTECH.2017.8074995
https://doi.org/10.1145/2835776.2835842
https://doi.org/10.1126/science.1261627
https://doi.org/10.1126/science.1261627


Roediger, H., & Karpicke, J. (2006a). Test-Enhanced Learning: Taking Memory Tests Improves Long-Term
Retention. Psychological Science, 17(3), 249–255. https://doi.org/10.1111/j.1467-9280.2006.01693.x.

Roediger, H., & Karpicke, J. (2006b). The Power of Testing Memory: Basic Research and Implications for
Educational Practice. Perspectives on Psychological Science, 1(3), 181–210. https://doi.org/10.1111
/j.1745-6916.2006.00012.x.

Romero, C., & Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618.
https://doi.org/10.1109/TSMCC.2010.2053532.

Shmueli, G. (2010). To Explain or to Predict? Statistical Science, 25(3), 289–310. https://doi.org/10.1214/10-
STS330.

Sinha, T., Jermann, P., Li, N., & Dillenbourg, P. (2014). Your click decides your fate: Inferring Information
Processing and Attrition Behavior from MOOC Video Clickstream Interactions. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3–14, October
25–29, 2014, Doha, Qatar. Retrieved from http://arxiv.org/abs/1407.7131

Slater, S., Joksimović, S., Kovanovic, V., Baker, R., & Gasevic, D. (2016). Tools for Educational Data Mining.
Journal of Educational and Behavioral Statistics, 42(1), 85–106. https://doi.org/10.3102
/1076998616666808.

Toven-Lindsey, B., Rhoads, R., & Lozano, J. (2015). Virtually unlimited classrooms: Pedagogical practices in
massive open online courses. The Internet and Higher Education, 24, 1–12. https://doi.org/10.1016/j.
iheduc.2014.07.001.

Xie, T., Zheng, Q., Zhang, W., & Qu, H. (2017). Modeling and Predicting the Active Video-Viewing Time in a
Large-Scale E-Learning System. IEEE Access, 5, 11490–11504. https://doi.org/10.1109
/ACCESS.2017.2717858.

Yang, T.-Y., Brinton, C. G., Joe-Wong, C., & Chiang, M. (2017). Behavior-Based Grade Prediction for
MOOCs via Time Series Neural Networks. IEEE Journal of Selected Topics in Signal Processing,
4553(c), 1–1. https://doi.org/10.1109/JSTSP.2017.2700227.

Zhu, M., Sari, A., & Lee, M. (2018). A systematic review of research methods and topics of the empirical
MOOC literature (2014–2016). The Internet and Higher Education, 37, 31–39. https://doi.org/10.1016/j.
iheduc.2018.01.002.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Education and Information Technologies (2020) 25:1333–13421342

https://doi.org/10.1111/j.1467-9280.2006.01693.x
https://doi.org/10.1111/j.1745-6916.2006.00012.x
https://doi.org/10.1111/j.1745-6916.2006.00012.x
https://doi.org/10.1109/TSMCC.2010.2053532
https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
http://arxiv.org/abs/1407.7131
https://doi.org/10.3102/1076998616666808
https://doi.org/10.3102/1076998616666808
https://doi.org/10.1016/j.iheduc.2014.07.001
https://doi.org/10.1016/j.iheduc.2014.07.001
https://doi.org/10.1109/ACCESS.2017.2717858
https://doi.org/10.1109/ACCESS.2017.2717858
https://doi.org/10.1109/JSTSP.2017.2700227
https://doi.org/10.1016/j.iheduc.2018.01.002
https://doi.org/10.1016/j.iheduc.2018.01.002

	Grade prediction of weekly assignments in MOOCS: mining video-viewing behavior
	Abstract
	Introduction
	Literature review
	Methods
	Analysis and results
	Discussion
	References


