
Investigation of pre-service computer science
Teachers’ CS-unplugged design practices

Polat Sendurur1

Received: 7 January 2019 /Accepted: 3 July 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Computer Science Unplugged (CS-Unplugged) has been evolving in computer science
education. It is a promising approach especially for introductory programming skills
and computer science concepts. The skills of the computer science instructors/teachers,
who convert the approach into practice, can be crucial during the preparation of CS-
Unplugged activities. In this study, CS-Unplugged activity creation skills of pre-service
computer teachers were examined. The participants prepared CS-Unplugged activities
for selected topics considering the target learners they selected. The prepared activities
were subjected to content analysis. According to the results, it was found that partic-
ipants were significantly incompetent to design CS-Unplugged activities. They failed to
define necessary rationales and resulting context for the activities clearly. Although the
activities generally do not include story or game structures, participants expressed that
those types of structures could improve their activities in terms of student motivation
and retention. On the other hand, different kinds of physical objects were integrated
into the activities with necessary links to programming concepts and those activities
were found easy to implement. Activity duration was found the most significant force
in front of designing activity and grade level and age are the only variables that
participants consider to define the context.

Keywords CS-unplugged . Design patterns . Pre-service teachers . Computer science
education

1 Introduction

Computers and related technologies have been evolving dramatically, and their places
in educational systems have been expanding day by day. It is inevitable that such a
rapid improvement comes with new approaches of computer science education (CSE).

https://doi.org/10.1007/s10639-019-09964-6

* Polat Sendurur
polat.sendurur@omu.edu.tr

1 Ondokuz Mayis University, Samsun, Turkey

Education and Information Technologies (2019) 24:3823–3840

/Published online: 8 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-019-09964-6&domain=pdf
http://orcid.org/0000-0003-2225-2359
mailto:polat.sendurur@omu.edu.tr

Computer science unplugged (CS-Unplugged) is one of these approaches that have
become popular for the last few years. The approach enables the educators to teach
introductory computer science knowledge and skills without physical computers or any
other digital information processors. Therefore, the educators using CS-Unplugged do
not need electricity, computer, the Internet, or similar technological tools, and they can
adapt their instruction for almost any environment. Moreover, the inclusion of game
and entertainment elements can serve as the source of effective motivation for students.

The organization of CS-Unplugged was found by Tim Bell, Ian Witten, and Michael
Fellows. They define these activities as simply using objects and materials that are easy
to access to teach computer sciences. The main aim is not to develop a method to
educate computer experts or scientists, but to transfer the basics of computer science to
students and to make them aware of this discipline. In other words, CS-Unplugged
approach provides the area of primary education with a wider spectrum of CSE
activities. As a matter of fact, the CS-unplugged activities have been appearing more
often in the curricula of different countries. Physical conditions, programing back-
ground of students, or unique structures of different curricula limits the number of
already designed CS-Unplugged activities that teachers can reach. That’ s why it is
important to equip teachers with the competencies of designing and developing their
own CS-Unplugged activities.

In (removed for blind review), all teacher-training programs were revised and
updated in 2018 by (removed for blind review) Council of Higher Education.
The redesigned program includes a new course named as “Approaches in
Teaching Programming”, which aims to equip teacher candidates with different
skill-sets, and thus they can become competent in teaching programing to
students of different grade levels. Some of the skills to be developed through-
out this course consist of teaching block-based programing tools, utilization of
games for programing education, and evaluation of students’ programming
abilities. On the other hand, there is not any sign of CS-Unplugged activities
in the mentioned course. Additionally, neither did the former program had any
course or course topic devoted for CS-Unplugged activities.

Teachers, who graduated either before or after the redesigned program of teacher
training, are all supposed to teach the “information technologies and software” course
in primary and secondary schools. Nevertheless, the curriculum of this course expected
these teachers to use CS-Unplugged activities, however, the teachers had no formal
training with regard to CS-Unplugged approach. They have to design, develop, and
implement these types of activities, which means an inconsistency between the theory
and practice. In other words, there is a need for questioning the abilities of graduates,
teacher candidates, pre-service computer science teachers, and the training programs in
terms of design and development of CS-Unplugged activities. In the light of all these
considerations, this study aims to investigate CS-Unplugged activities that are designed
by pre-service teachers in terms of a group of criteria. In addition, based on the
findings, this study aims to propose suggestions for further renovation of computer
science teacher training programs leading to train more competent teachers. The
research questions are;

1. How are the design patterns of CS-Unplugged activities created by pre-service
computer science teachers?

Education and Information Technologies (2019) 24:3823–38403824

2. What are the distinctive features of CS-Unplugged activities created by pre-service
computer science teachers?

2 Literature review

As educational paradigms evolve with technological developments, the allocation of
personal resources for tools and training of technology enhances, too. In this respect,
the importance of formal courses, especially the ones about computer science, have
been gaining importance day by day. Today, computer science is not a field that is only
owned by computer scientists any more. Instead, it has become one of the major issues
of laypeople.

Computer science brings about certain higher-order thinking skills as well as
contributing to the improvement of them. For example, computational thinking is
one of these skills. Wing (2006) defined the term solving problems, designing the
system, and giving meaning of human behavior using computer science and basic
terminology. On the other hand, it might be wrong if one considers the computational
thinking as one single skill. ISTE (2011) includes the skills of analysis, algorithmic
thinking, generalizing, etc. within computational thinking category. Moreover, the
elements such as exploring, and model building are also respected as cognitive
competencies (ISTE 2016).

In the similar vein, model construction skills consist of a group of sub-skills.
According to Jonassen (2006), model construction or modeling incorporates certain
cognitive skills such as hypothesis testing and reasoning. In short, it can be inferred that
the improvement of various cognitive skills is supported by both computer science and
the way to be followed to teach.

In recent years, it can be clearly observed that CSE have become very popular. The
number of coding and robotics workshops, schools equipped with STEM laboratories,
free online programming courses, and many others show that computer science strikes
attention of learners and teachers at any level. Today, one can even see introductory
materials for coding in the toyshops, and thus the starting period of CSE may intended
to start in pre-school. In some countries, CSE has already become a part of regular
curriculum (Heintz et al. 2016). However, the integration of both current pedagogical
knowledge and the field of practice regarding instructional methods into CSE still
remains as a challenge in comparison to other subject areas. In fact, Cassel et al. 2007)
define this situation as a crisis in CSE because there are both a decline in students’
interest toward computing and a “lack of public understanding about computing and
increasing complexity of introductory courses” (p.330) Moreover, fear, negative
perceptions, and doubts about computing science can be listed as among other
reasons of that crisis. For example, Bergin and Reilly (2005) found significant rela-
tionship between comfort level of students and their understanding of programming
concepts. Askar and Davenport (2009) studied engineering students programing self-
efficacy beliefs from different perspectives and concluded that there are a number of
variables affecting students’ self perceptions of whether they can be successful in
programing or not.

In the literature, there are certain approaches that are utilized for CSE. Gamification
(Swacha and Baszuro 2013) and storytelling (Kelleher et al. 2007) are some examples

Education and Information Technologies (2019) 24:3823–3840 3825

of those approaches. In addition, blended learning, which is built upon both face-to-
face and online environments, is another preferred approach for CSE (Deperlioğlu and
Köse 2010). Moreover, there is a more recent trend having a computer free approach,
called CS-Unplugged. It aims to introduce basic computer science concepts to learners
without using a computer or any digital elements in the field. Since pedagogical
approaches in CSE can be named as an evolving field, CS-Unplugged may be one of
the promising approaches in terms of contribution to CSE.

In programming education, the comprehension of conceptual structures, the con-
struction of basic concepts, and the creation of model solutions for real life problems
with the utilization of programming tools are all in demand of crucial cognitive skills.
In other words, the inclusion of tools or elements of real life may play an important role
for programming education. For example, Liu and Wu (2018) found that the integration
of daily language and dialogues into CS-Unplugged activities resulted in less syntax
errors besides better solutions of programming problems. Moreover, this might help
both to improve programming skills and to save time allocated for learning. In their
study, Alamer et al. (2015) observed that students, who experienced CS-Unplugged
activities, transferred what they learned into projects or activities more easily in
comparison to those experienced traditional activities. In another study, Giordano and
Maiorana (2014) compared different programming education approaches but reported
significant contribution of CS-Unplugged activities in terms of learning basic concepts.
Moreover, this contribution is not limited to learning, but it also affects both perceptions
and motivations towards computer science in a positive manner (Demšar and Demšar
2015; Thompson and Bell 2015). For instance, a three-year longitudinal study, which
investigated effect of unplugged activities on 6th and 7th graders intrinsic motivation,
showed that students have high intrinsic motivation in unplugged activities (Jiang and
Wong 2018).

CS-Unplugged activities, which have been frequently used in recent years, have now
become a teaching method or approach in CSE. Bell et al. (2008) emphasized that the
inclusion of unplugged computer science teaching programs actually means the for-
mation of a special teaching method for CSE.. There are a number of efforts embracing
the idea of using CS-Unplugged as a teaching method. For example, Coffman-Wolph
et al. (2018) prepared and used unplugged activities, which covers topics such as
variables, loops, and sorting algorithms, and those were inspired by CS-Unplugged
organization. In another study, 9–12 years old pupils participated in unplugged activ-
ities in order to improve mathematical problem solving and reasoning skills (Wohl et al.
2015). The concepts including input, output, and Boolean were introduced by un-
plugged activities they created. The current literature includes many other recent studies
which either introduce or use unplugged activities as an instructional and special
teaching method for CSE of students from the pre-school to tertiary level (Burke
et al. 2016; Jiang and Wong 2018; Brackmann et al. 2017).

In short, there is a growing body of literature about the use of CS-Unplugged
activities as a teaching method in CSE. In fact, teachers’ perceptions about use of
CS-Unplugged are quite positive. Sentance and Csizmadia (2017) reported that
teachers think CS-Unplugged is one of the strategies working well to teach computing.
At that point, there is a need for the pedagogically and technically appealing activities
prepared by professionals. Therefore, it is important for instructors, who deliver CS-
Unplugged activities, to prepare activities that meet the intended instructional goals

Education and Information Technologies (2019) 24:3823–38403826

within the boundaries of target learners’ competencies. In such context, it can be
inferred that teachers should possess the competencies for preparing and practicing
those activities (Hazzan et al. 2014), because during CSE, instructional materials can
become the main barrier (Mouza et al. 2016). That’ s why training teachers, who are
capable of preparing appropriate instructional materials of CSE, might be a key issue in
teacher training. Current teacher training programs are also at high importance for the
development and improvement of these skills.

3 Method

The single case study was used as a research design to understand dimensions of CS-
Unplugged activity design practices of pre-service computer science teachers. Partici-
pants developed CS-Unplugged activities on the topics included in the official curric-
ulum of Information Technologies and Programming course. According to Creswell
(2014), the case study is a research approach used to explore a case or multiple case in
depth. The study was designed as a single case study. In this case, pre-service computer
science teachers were assigned to create CS-unplugged activities for the objectives they
selected from the curriculum of information technologies and software course. They
worked in pairs and prepared the activities. They submitted final version of their
products through the course LMS. In order to have insights of their evaluations and
perceptions on their CS-Unplugged activities, volunteer participants were interviewed
after the analysis of activities. Unstructured interview sessions were conducted with
participants and discussed about their activities in terms of the pattern introduced by
Nishida et al. (2009). Results of interviews were used to triangulate the data collected
through CS-Unplugged activities.

3.1 Participants

Convenient and purposeful sampling techniques were used together to form the group
of participants of the study. These sampling techniques are appropriate sampling
techniques for qualitative researches (Johnson and Christensen 2004). Since the pur-
pose of the study is built around the CS-Unplugged activity creation skills of pre-
service teachers, participants were selected among third year (junior) pre-service
teachers. They completed major programming courses. One of the courses covers
visual programing tool Scratch. Another one covers Java programing language. They
also participated in the course named as Web Based Programming. There are other
computer science courses that participants took before the study. The students also
participated in different pedagogical and teaching methodology courses. In both com-
puter science and pedagogy courses, students developed different programing projects
and prepared teaching activities. They conducted micro-teaching lessons. They pre-
pared lesson plans and different kinds of instructional materials for teaching computer
science. For all of these reasons, they can be assumed as relatively experienced about
programming concepts and special teaching methods, techniques and strategies. 64
third-year pre-service computer science teachers attending teaching methods course
participated in the study. Convenient sampling was used for interviews, too. After
completing the CS-Unplugged activities, pre-service teachers were asked to attend

Education and Information Technologies (2019) 24:3823–3840 3827

interviews about their CS-Unplugged design process. 14 participants accepted the
request.

3.2 The role of the researcher

The researcher was also the instructor of the course that participants attending. He
introduced the definition of CS-Unplugged and provided sample activities. He did not
provide any guidance about the design process of a CS-Unplugged activity. Participants
were expected to use their instructional design knowledge and skills that they already
had. The researcher, as the instructor of the course, provided necessary guidance to
determine the topics for activities. The researcher also provided feedback and answered
student questions in order to prevent misconceptions and misunderstandings. Through-
out the design and development of CS-Unplugged activities.

3.3 Data collection and analysis

Participants were informed about CS-Unplugged activities in the beginning of the
course. The instructor also presented different sample activities as well as explaining
and discussing about them during classes. Then, students were separated into pairs in
order to optimize workload and to let them benefit from each other’ s experiences,
because they have different levels of programming knowledge and skills despite
completing the same courses. On the other hand, they were not given any templates
or checklists to help them during the creation process. The purpose for not delivering
such scaffolds was to eliminate the possibility of affected (or manipulated) results and
directed or biased data collection. Participants were asked to submit their activities at
the end of fortnight period. All activities were submitted online via course LMS.

Themes and categories, which are necessary for content analysis, were developed by
the pattern introduced by Nishida et al. (2009). Table 1 presents the themes about the
pattern of CS-Unplugged activities with the categories inferred from activities and
Table 2 presents distinctive features. During data analysis process, each activity was
examined according to its distinctive features and patterns.

In order to increase the reliability of data analysis process, two researchers from the
field of educational technology analyzed a randomly selected activity via the themes
and categories provided in Tables 1 and 2. An inter-coder reliability between these two
researchers were calculated by using Cohen’s Kappa formula and it was found κ = .77.
Any value between .61 and .80 indicates a substantial agreement between the coders.
Therefore, it was assumed that there is not significant threat to reliability in the data
analysis process.

In order to triangulate the data, unstructured interviews were conducted with 14
participants about their activities. Each activity was examined together with the partic-
ipant who created it and the researcher. Following that examination, conversation
sessions were held around existence of the pattern introduced by Nishida et al.
(2009) in the activity. Sessions were recorded with the consent of the participants
and transcriptions were shared with them, too. The data were subjected to content
analysis and the results were used to triangulate the initial findings obtained from
analysis of activities. Same themes and categories used for both analysis of activities
and interviews.

Education and Information Technologies (2019) 24:3823–38403828

4 Results

4.1 Patterns of CS-unplugged activities

Table 3 provides information about the context in which participants’ CS-Unplugged
activities take part. One activity does not include any clues of context. While two
activities only point the necessary age limits to complete activity, 18 of them only

Table 1 CS-Unplugged design pattern

Themes Categories

Context Age

Grade level

Age and grade level

No information

Forces Time

Number of students

Background knowledge of students

Classroom environment

Solution/ Proposals Data types

Algorithm

Variables

Arrays

Flow charts

Loops

Conditionals

Basic code processing

Coding logic

Constants

Differentiating constants and variables

Problem solving

No proposed solution

Resulting context Understand logic behind algorithm

Explain the concept of algorithm

Explain the flow chart components

Differentiate data types

Understand the structure of arrays

Give examples for if-else conditions

Detect errors

Differentiate constants from variables

Understand the transformation between variables

No defined resulting context

Rationale Students’ motivation to learn how to code can be increased

Students’ misconceptions can be easily detected

Education and Information Technologies (2019) 24:3823–3840 3829

provide with grade levels. The information of both age limits and grade levels are
available together in 18 activities. The activities do not involve any other kind of
contextual information.

In order to triangulate the data collected throughout the activities, interviews were
conducted with volunteer students. All of the interviewees did not indicate any other
contextual information. On the other hand, there were not any contextual information in

Table 2 Distinctive features

Themes Categories

Game or challenging environment No game/activity

Games including algorithm creation/execution

Competition based activities

Labyrinth/maze-based games

Use of physical objects Work sheets

Cardboards

Watches/chronometers

Boxes

Play cards

Magnets

Figures

Color pens

Rulers

Student directedness Yes

No

Easiness in implementation Easy implementation

Excessive workload for preparation

Necessity for too much background knowledge

Classroom management issues

Time issues

Growing body of ideas No growing body of ideas

Adaptation to different learning environments and level of students

Connection to other programing concepts

Sense of story No sense of story

Daily routines

Finding the way

Table 3 Context of CS-
Unplugged activities

Contextual element f

Age only 2

Grade level only 18

Age and grade level 18

No information 1

Education and Information Technologies (2019) 24:3823–38403830

one of the activities and the interviewee who prepared this activity indicated that age
and grade levels of students should be the fundamental contextual information.

The forces effective on the success of CS-Unplugged activities were summarized in
Table 4. Four different forces were mentioned in the activities. The first one is the time
limit. Almost all of the activities consider the time as a force that has influence on the
success (N = 38). The number of students required to complete the activity is another
force but only indicated by three different activities. Background knowledge of students
(N = 3) was also demonstrated among the forces. For example, the knowledge about
basic algorithm is expected as background knowledge to teach conditionals through
activity-24. The last perceived force was the classroom environment (N = 1).

Similar to the findings provided in Table 4, the participants emphasized the fact that
classroom environment was not an effective factor in the success of the activities (N =
8). While these participants were underestimating the potential effects of classroom
environment on the flow of activities, only one participant expressed the importance of
that factor and he was the owner of the activity, which was categorized as assuming
classroom environment as an effective force. He expressed his thoughts as;

Students need to move constantly in the classroom during the activities. If there is
not enough space to move, the chaos is inevitable. Control of students and
activity can be easily got lost. So the more students in the classroom, the more
space needed. Otherwise, class management could be too difficult to get intended
results.

Even if the activates do not clearly define the problems claimed to be solved, some
solutions were proposed as guides. The construction of the algorithm concept and the
detection of misconceptions about algorithms (N = 12) are the most frequent proposal
mentioned in the activities. Conditional related proposals (n = 10) were also found another
frequently mentioned proposal by the participants. Other proposals were listed in Table 5.

During the interviews, participants were asked to give details about why they
provided those solutions. Four of the interviewees proposed solutions to algorithm
related problems through activities. Without any exception, all of them expressed that it
was easy to imagine an algorithm activity without using computers. Interviewee-1
explained this situation as;

I prefer to create an activity for algorithm. It is easy, I think. I can give many
examples from daily life. We have many routines and they are linear. We do these
in a step-by-step manner, like preparing an omelet or brushing our teeth.

Table 4 Forces effective on CS-Unplugged activities

Forces f

Time 38

Number of students 3

Background knowledge of students 3

Classroom environment 1

Education and Information Technologies (2019) 24:3823–3840 3831

In addition to easiness of preparing CS-Unplugged activities for algorithm, two
participants also emphasized that algorithm is a fundamental concept and it could be
troublesome to correct algorithm related problems in the advancement of coding
education process. The interviewees who prepared activities for variables (N = 2) and
conditionals (N = 3) made similar explanations. With the following words, Interviewee-
3, who prepared an activity about conditionals, explained why an activity in this topic is
easy to prepare and fundamental to advancement in coding education;

I found this topic easy. In addition the concepts of “if-else” should not be taught
directly in programming environment. It is necessary to make them concrete. I see
that students have troubles to adapt these concepts to real life. I’ve experienced
this and I also observe it in the schools we visited in the course of School
Experience”. They cannot see the conditionals in real life during coding.

The majority of CS-Unplugged activities do not clearly define the resulting context of
their proposed solutions (N = 28). On the other hand, 11 activities explain 9 different
resulting contexts (see Table 6). The weakness in defining resulting context of the
activities was also observed in the interviews. They were asked about the lack of
information related with resulting context of their activities but majority of them did not
express any thoughts. Only one participant (Interviewee-6) pointed out that he chose
the topic of his activity from the official curriculum of information technologies and
software course and the resulting context is already presented by the curriculum.

It was observed that the participants demonstrated similar patterns in defining the
rationales for CS-Unplugged activities during the definition of the resulting context of
activities. Only two groups made the rationales explicit for their activities (see Table 7).
According to them, the 8th activity can be used especially to determine students’
misconceptions about the algorithm, while the 26th activity was designed to make
students understand the coding process to develop an interest in this issue.

Unlike the analyzed activities, interviews with participants demonstrated that stu-
dents have some rationales for their activities. Some of them (N = 3) strongly enhanced
that CS-Unplugged activities can reduce students’ perception of complexity in terms of
coding. Interviewee-7 said that game nature in the activities might help to break

Table 5 Proposals of CS-
Unplugged activities for pro-
gramming problems

Proposal f

Data types and variables 4

Algorithm 12

Arrays 2

Flow charts 4

Loops 2

Conditionals 10

Basic code processing 1

Coding logic 3

Constants 1

Problem solving 2

No proposed solution 1

Education and Information Technologies (2019) 24:3823–38403832

students’ initial fear or biases against coding. Six different participants also repeated the
second rationale presented by Table 7.

4.2 The features of CS-unplugged activities

According to Nishida et al. (2009), a CS-Unplugged activity should possess certain
features, and being computer free is one of the important ones. Although the partici-
pants prepared their activities on computer, their practice required no computers at all.
In other words, all participants designed all activities in computer free format, which is
parallel to statement made by Nishida et al. (2009).

The design of activities should also be constructed upon the principles of games or
include challenging environment. Table 8 summarizes the information about the game
structures of the designed activities. The majority of them (N = 20) did not propose any
game or challenging environment. However, labyrinth/maze structure constituted basis
for 10 of the activities. There were rules and assigned tasks (missions) to be conducted
within those mazes. 7 activities, on the other hand, consist of scenarios referring to
either algorithm construction or algorithm tracking. Only 4 activities had competitive
structure among students or against time.

Half of the activities prepared by the interviewees do not propose any game or
competition based environments (N = 7). Interestingly, six interviewees think that their
CS-Unplugged activities could offer a game based environments even though they did
not provide any rule or definition for the game structure. For example, Interviewee-11
stated she did not think to include game elements in her activity and continues with the
following words;

Table 6 Resulting context

Context f

Understand logic behind algorithm 2

Explain the concept of algorithm 2

Explain the flow chart components 1

Differentiate data types 1

Understand the structure of arrays 1

Give examples for if-else conditions 2

Detect errors 1

Differentiate constants from variables 2

Understand the transformation between variables 1

No defined resulting context 28

Table 7 Explanation of rationale for the CS-Unplugged activities

Rationale f

Students’ motivation to learn how to code can be increased 1

Students’ misconceptions can be easily detected 1

Education and Information Technologies (2019) 24:3823–3840 3833

The group I targeted is composed of younger students. I thought they might have
difficulty to connect game elements with programming concepts that I intended to
teach. But it was in my mind to turn the activity into a small game.

Another important characteristic of CS-Unplugged activities is the existence of physical
objects, which are either easy-to-access or easy-to-prepare. In this study, this dimension
was obviously achieved within the activities. Watches, chronometers, magnets, little
game figures, cardboards, crayons with different colors, and ruler can be listed as the
ones easily accessed (see Table 9). The activities prepared by participants include the
utilization of worksheets, game cards, and boxes as accessible objects. In addition, all
activities about material preparation were supported by explanations besides visuals.

Participants were supposed to explain why they used the objects listed in Table 9.
Except for one participant, they stated that being inexpensive and easy to access was their
first criteria to choose the physical object for the activity. Additionally, nine participants
emphasized that the materials should be easy to prepare, too. The importance of reusabil-
ity of the materials and prepared objects was expressed by Interviewee-3. One participant
(Interviewee-1) stated “preparing attractive materials was the first thing that I consider”.

Having students explore their self-potential in different subjects/fields is another
characteristic of well-designed CS-Unplugged activities. In other words, the activities
should allow self-management/self-control of students either fully or partially. The role
of students in the activities was summarized in Table 10. More than half of the activities
show no patterns of student-directedness. Instead, the students were supposed to be in
charge of instructions and directions, whereas, the teacher is the one who directs the
activities. However, in 15 activities the students located at the center of activities. For

Table 8 Game or challenging environment

Game/activity f

No game/activity 20

Games including algorithm creation/execution 7

Competition based activities 4

Labyrinth/maze-based games 10

Table 9 Use of physical objects
Objects f

Work sheets/papers 19

Cardboards 25

Watches/chronometers 2

Boxes 1

Play cards 11

Magnets/Stickers 3

Figures 10

Color pens 14

Rulers 2

Education and Information Technologies (2019) 24:3823–38403834

example, in activity 3, the exploration of variable types was assigned as a student task.
In activity 22, they were expected to develop decision structures based on daily
conditions. Interviews demonstrated that some of the students might have misconcep-
tions about student-directedness. Seven of the students participated in the interview
sessions prepared activities not including the patterns of student-directedness. On the
other hand, some of them (N = 4) thought that their activities are student-directed.

Easy implementation of activities is another key characteristic. In this study, a
considerable amount of prepared activities meets this dimension (N = 30) (see
Table 11). It was observed that the provided details of implementation processes can
enable the teachers to practice within expected time and facilities. However, 7 activities
failed to ensure this characteristic. In one activity, the preparation time was too long,
and the workload was too much. In another activity, the issue about classroom
management was neglected. It was also found that the match between expected and
practiced time to complete the activity was not realistic. Apart from these issues, the
expected prerequisite knowledge of students was not appropriate at all, because in 4
activities, the activity settings demanded students with higher cognitive abilities than
the real target learners usually have.

Interviews also showed that students found their activities easy to implement. None of
the interviewees found his/her activity difficult for a computer science teacher to under-
stand, to prepare the materials of and to apply the activities in the classroom. On the other
hand, interviewee-2 and interviewee-13 pointed out another issue, which is the transfer of
learning as a result of CS-Unplugged activity into real coding environment. The teacher
might face with difficulty to establish the connection between programing concepts in
these two different environments. Interviewee-13 remarked the following except;

In order to create a successful activity, we need a plan. We should define how
students would use what learned in the computer free activities in real coding
environments. I think without that plan, the success of the activity becomes
controversial

Table 10 Student directedness
Rationale f

Yes 21

No 15

Table 11 Easiness in implementation

Easiness in implementation f

Easy implementation 30

Excessive workload for preparation 1

Necessity for too much background knowledge 4

Classroom management issues 1

Time issues 1

Education and Information Technologies (2019) 24:3823–3840 3835

The statement of ideas in activities should lead to the emergence of new ideas both for
students and teachers. The activities were all examined for the patterns of promising
ideas that highlight for further improvements. The results indicate that 24 activities do
not have any patterns of growing body of ideas. Nevertheless, a few activities (N = 11)
were found as open for improvements of students from various levels and character-
istics. Three activities, on the other hand, have potential to enable students to discover
new concepts as well as to let teachers link upcoming topics. Table 12 summarizes the
findings about the growing body of ideas. The majority of the activities did not include
any sign of growing body of ideas, whereas interviews pointed out slightly different
situation. More than half of the interviewees (N = 9) expressed that their activities can
be adapted to various learning environments as well as to different level of students.

The integration of stories into CS-Unplugged activities may be a good strategy for
increasing both learners’ motivation and the level of engagement. The activities did not
fulfill this expectation (see Table 13). The processes were shaped around the stories
only in three activities, one of which constructed upon daily routines. The other two
activities referred to escaping from a situation or a place. The activities of the
interviewees do not consist of any story-based structure. On the other hand, they agreed
that designing their activities around a story would yield better results. Most of the
interviewees (N = 10) expressed that the inclusion of stories into activities could make
them more attractive besides enhancing retention.

5 Conclusion and discussion

This study examined the design processes of CS-Unplugged activities of pre-service
teachers. The findings simply revealed that pre-service computer science teachers had
limited competencies to prepare their own CS-Unplugged activities. In the literature,
general structures of CS-Unplugged activities demonstrate constructivist features from the
pedagogical perspective. Since pedagogical courses in computer science teacher training
programs mostly include constructivist contents, it may be assumed that participants were
skilled enough to prepare successful CS-Unplugged activities. Nevertheless, the results
were not in line with this assumption.

Table 12 Growing body of ideas

Idea f

No growing body of ideas 24

Adaptation to different learning environments and level of students 11

Connection to other programing concepts 3

Table 13 Sense of story
Story elements f

No sense of story 34

Daily routines 1

Finding the way 2

Education and Information Technologies (2019) 24:3823–38403836

First of all, having a deeper look at the results, it can be observed that the definitions
made in terms of activities’ contexts are inadequate. The only provided information was
about age or grade level of the students. Other contextual information, which is
necessary for correct implementation of activities, was not included in most of the
activities. Interviews supported this result because the participants failed to define any
contextual issue affecting the flow of activities. The contextual details are not only
important for such activities, but also any other types of instructional activities. That’ s
why, it could be a next step for further investigation whether this situation is similar in
the process of designing different kinds of activities.

It was observed that deficiencies in the inclusion of contextual information are similar
in defining the forces that may affect the flow of activity. Moreover, the environment in
which the activity will be implemented was not explained in detail. It was also found that
the conditions (or problems) that the instructors may face during the implementation of
activities were not sufficiently determined by the participants. As a matter of fact, the
participants focused on situations related with timing of activities. The number of
students, their background-knowledge, and situations that may arise, and classroom
environment were also mentioned partially. However, it is clearly observed that the
points, which have the potential to affect the design process, were overlooked in the
instructional design process. Actually, interviews did not point out details about whether
participants give enough credit to identify the relationship between context and success
of an activity. The lack of real teaching experience might hinder them to understand the
connections, thus observing the effects of context on any teaching activity can remain
blur. On the other hand, the nature of CS-Unplugged activities could be another reason
of the deficiency in defining context of teaching environment.

Although the designed activities include problems in terms of contextual environ-
ment and effective forces, the programming skills they set as the main goal of the
activities spread over a wider range. Almost all of the concepts of introductory
programming education were available through participants’ CS-Unplugged activities.
They also targeted different programming skills, which are not touched by the literature
or public CS-Unplugged activities. Arrays and functions can be among the examples of
this situation. In short, it can be inferred that participants of this study can exhibit an
entrepreneurial attitude in the name of designing their own activities when they need
activities in computer free formats.

It was found that the information about the resulting context also suffers from
necessary details within the designed activities. The number of events offering certain
definitions for resulting context is much greater than the ones not offering them. The
main reason why participants provided limited information about context, forces, and
resulting context might be related with the over-focusing on mechanisms of activities
and thus ignoring some of fundamental details. For example, the majority of the
participants clearly explained what the students should do in a step-by-step manner.
Analysis of different aspects of instruction ranging from learners to context is among
basics of almost all instructional design models. However, participants of this study
generally ignored the analysis process. In other words, learner analysis, content anal-
ysis, need analysis and similar steps are missing nearly in all of the activities. The
information related with the students’ background knowledge, attitudes, and percep-
tions are crucial for CSE. According to Cassel et al. (2007), prejudice and negative
attitudes of students constitute a barrier in front of success in programming education.

Education and Information Technologies (2019) 24:3823–3840 3837

In addition, comfort levels (Bergin and Reilly 2005), self-efficacy beliefs (Askar and
Davenport 2009), learning styles and problem-solving skills (Gomes and Mendes
2007) can be named as other issues, which have influence on the success level. As a
result, computer science teacher training programs might need to enable pre-service
teachers to put more attention on analysis phases of CS-Unplugged activities. Partic-
ipants also have deficiencies in defining the objectives targeting development of
particular programming skills. This makes it harder to evaluate students’ improvements
at the end of any CS-Unplugged activities. Although they have trained enough both to
state objectives and to assess and evaluate learning, they need more practice while
transferring that knowledge and skills into CS-Unplugged activities.

Furthermore, the majority of the activities designed by the students showed patterns
of student directedness. They generally propose to distribute the control of classroom
among teachers and students. They also led active participation of students. Student
participation and students’ direct access to activity management are important signs of
student-centered activities. Pre-service teachers who were interviewed after they pre-
pared CS-Unplugged activities demonstrated the signs of misconceptions in terms of
student directedness. Such kind of activities may have specific challenges. Manage-
ment of the event, balancing the control between the teacher and the student, and
ensuring the active participation are some of the important points in the design phase.
Therefore, there are many points that may cause difficulty in the implementation of the
CS-Unplugged activities. The possibility of making mistakes to create student-directed
environment is another important point because of the misconceptions about student
directedness mentioned before could be decisive on the success.

On the other hand, when the activities were examined, it was determined that this
situation was mostly overcome and there were not many challenging points in activities
in terms of applicability. As a matter of fact, the given detailed steps of activities in the
implementation phase are in parallel with this point. The shortcomings of contextual
and effective forces show that the participants’ focuses were more on the implemen-
tation steps of activities and the other elements were not cared enough. According to
Bell (2014), a CS-Unplugged activity must also provide students with the information
discovered at the end as well as including the details of how to conduct the activity.
Participants’ activities need to be improved in this perspective.

It has been found that a significant number of CS-Unplugged activities do not offer
environments for growing body of ideas. It is important because a CS-Unplugged activity
should not only focus on how computers work. Bell et al. (2008) expressed that they focus
on utilization of computer science concepts to reach solution of any problem. In parallel
with the previous results, it can be inferred that the focus was on the steps necessary for the
implementation of the activity, so that the activities were limited in this sense. However,
the fact that some activities can be organized according to different learning environments
and different student profiles can be mentioned as positive aspects of activities. Although
there are different positive and negative aspects, it can be deduced that activities were poor
in terms of making connections with real life and gaining skills for modeling everyday
problems. There were no story elements in most of the activities and participants did not
mention any intention to establish story structure. Story elements are important especially
for motivation. There are several studies indicating the positive contribution of CS-
Unplugged activities to the motivation of students (Jiang and Wong 2017, 2018; Mano
et al. 2010). Therefore, the activities designed by participants may suffer from gaining

Education and Information Technologies (2019) 24:3823–38403838

students’ attention or keeping them motivated. In addition, several activities provided
limited amount of evidence for connection to real life situations. For that reason, the level
of competence of pre-service computer science teachers should be questioned in this
sense. This is because the main objective of computer science courses at this level is to
make meaningful contributions to students’ cognitive skills rather than training them as
software developers.

In the light of all the findings, it can be concluded that the pre-service teachers
participated in this study experienced some difficulties while developing CS-Unplugged
activities. Among all reasons about this situation, especially the content of teacher
training programs appears on the stage. It is important to note that the design and
implementation of CS-Unplugged activities must be a part of teaching method courses
of computer science teacher training programs. Such a change could lead positive
improvements in two fundamental ways. First of all, pre-service teachers can graduate
with a new competence that is parallel to twenty-first century skills. The ability of each
teacher to design their own CS-Unplugged activities or to organize the pre-designed
activities according to their needs could positively affect the success in the long term.
The other positive result would be the pedagogical improvement of the activities in a
broader range. Since computer scientists have conducted considerable amount of the
existing literature, it seems that pedagogical and instructional design issues within CSE
may remain intact, which may lead vulnerabilities in the practical dimension. In
addition, the model presented by Nishida et al. (2009), which is at the center of this
study, needs a revision in terms of instructional design principles. In the future, computer
scientists and computer science educators would develop a new integrative framework
that has a focus for each pedagogical and technical sides of CS-Unplugged activities.

References

Alamer, R. A., Al-Doweesh, W. A., Al-Khalifa, H. S., & Al-Razgan, M. S. (2015). Programming unplugged:
Bridging CS-unplugged activities gap for learning key programming concepts. In e-Learning (econf),
2015 Fifth International Conference on (pp. 97-103). IEEE.

Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java programming
among engineering students. Turkish Online Journal of Educational Technology, 8(1), 26–32.

Bell, T. (2014). Ubiquity symposium: The science in computer science: Unplugging computer science to find
the science. Ubiquity, 2014(March), 3.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2008). Computer science without computers: New
outreach methods from old tricks. In Proceedings of the 21st annual conference of the National
Advisory Committee on computing qualifications.

Bergin, S., & Reilly, R. (2005). Programming: factors that influence success. In ACM SIGCSE Bulletin (Vol.
37, No. 1, pp. 411–415). ACM.

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017).
Development of computational thinking skills through unplugged activities in primary school. In
Proceedings of the 12th workshop on primary and secondary computing education (pp. 65–72). ACM.

Burke, Q., O'Byrne, W. I., & Kafai, Y. B. (2016). Computational participation: Understanding coding as an
extension of literacy instruction. Journal of Adolescent & Adult Literacy, 59(4), 371–375.

Cassel, L., McGettrick, A., Guzdial, M., & Roberts, E. (2007). The current crisis in computing: What are the
real issues? In J. Dougherty & S. Rodger (Eds.), 38th SIGCSE technical symposium on computer science
education (pp. 329–330). New York: ACM Press.

Coffman-Wolph, S., Gray, K., & Pool, M. (2018). Work-in-Progress: Research plan for introducing problem
solving skills through activities to an introductory computer science course.

Education and Information Technologies (2019) 24:3823–3840 3839

Creswell, J. W. (2014). Research design: Qualitative, quantitative and mixed methods approaches (4th ed.).
Thousand Oaks: Sage.

Demšar, I., & Demšar, J. (2015). CS-unplugged: Experiences and extensions. In International conference on
informatics in schools: Situation, evolution, and perspectives (pp. 106–117). Cham: Springer.

Deperlioğlu, Ö., & Köse, U. (2010). Web 2.0 teknolojilerinin eğitim üzerindeki etkileri ve örnek bir öğrenme
yaşantısı. Akademik Bilişim, 10–12.

Giordano, D., & Maiorana, F. (2014). Use of cutting edge educational tools for an initial programming course.
In Global engineering education conference (EDUCON), 2014 IEEE (pp. 556–563). IEEE.

Gomes, A., & Mendes, A. J. (2007). Learning to program-difficulties and solutions. In International
conference on engineering education–ICEE (Vol. 2007).

Hazzan, O., Lapidot, T., & Ragonis, N. (2014). Teaching methods in computer science education. In Guide to
teaching computer science (pp. 105–135). London: Springer.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of models for introducing computational thinking,
computer science and computing in K-12 education. In Frontiers in education conference (FIE), 2016
IEEE (pp. 1–9). IEEE.

ISTE (2011). Operational definition for computational thinking. Retrieved October 15, 2018 from:
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf.

ISTE (2016). ISTE standards for students. Retrieved October 15, 2018from http://www.iste.
o r g / doc s / S t a nd a r d s -Re s ou r c e s / i s t e - s t a nda r d s _ s t ud en t s - 2 016_on e - sh e e t _ f i n a l .
pdf?sfvrsn=0.23432948779836327.

Jiang, S., & Wong, G. K. (2017). Assessing primary school students' intrinsic motivation of computational
thinking. In Teaching, Assessment, and Learning for Engineering (TALE), 2017 IEEE 6th international
conference on (pp. 469–474). IEEE.

Jiang, S., & Wong, G. K. (2018). Are children more motivated with plugged or unplugged approach to
computational thinking? In Proceedings of the 49th ACM technical symposium on computer science
education (pp. 1094–1094). ACM.

Johnson, R. B., & Christensen, L. B. (2004). Educational research: Quantitative, qualitative, and mixed
approaches. Boston: Allyn and Bacon.

Jonassen, D. H. (2006). Modeling with technology: Mindtools for conceptual change. Upper Saddle River:
Pearson Merrill Prentice Hall.

Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to
learn computer programming. In Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 1455–1464). ACM.

Liu, X., & Wu, D. (2018). From natural language to programming language. In Innovative methods, user-
friendly tools, coding, and design approaches in people-oriented programming (pp. 110–130). IGI
Global.

Mano, C., Allan, V., & Cooley, D. (2010). Effective in-class activities for middle school outreach programs. In
Frontiers in Education Conference (FIE), 2010, IEEE.

Mouza, C., Pollock, L., Pusecker, K., Guidry, K., Yeh, C. Y., Atlas, J., & Harvey, T. (2016). Implementation
and outcomes of a three-pronged approach to professional development for CS principles. In Proceedings
of the 47th ACM technical symposium on computing science education (pp. 66–71). ACM.

Nishida, T., Kanemune, S., Namiki, M., Idosaka, Y., Bell, T., & Kuno, Y. (2009). A CS unplugged design
pattern. In G. Lewandowski & S. Wolfman (Eds.), Proceedings of the 40th SIGCSE technical symposium
on Computer Science Education. Chattanooga: ACM, New York.

Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a
teacher’s perspective. Education and Information Technologies, 22(2), 469–495.

Swacha, J., & Baszuro, P. (2013). Gamification-based e-learning platform for computer programming
education. In X world conference on computers in education (pp. 122–130).

Thompson, D., & Bell, T. (2015). Virtually unplugged: Rich data capture to evaluate CS pedagogy in 3D
virtual worlds. In 2015 International Conference on Learning and Teaching in Computing and
Engineering (LaTiCE) (pp. 156–163). IEEE.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wohl, B., Porter, B., & Clinch, S. (2015). Teaching computer science to 5-7 year-olds: An initial study with

scratch, Cubelets and unplugged computing. In Proceedings of the workshop in primary and secondary
computing education (pp. 55–60). ACM.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Education and Information Technologies (2019) 24:3823–38403840

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327
http://www.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327
http://www.iste.org/docs/Standards-Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327

	Investigation of pre-service computer science Teachers’ CS-unplugged design practices
	Abstract
	Introduction
	Literature review
	Method
	Participants
	The role of the researcher
	Data collection and analysis

	Results
	Patterns of CS-unplugged activities
	The features of CS-unplugged activities

	Conclusion and discussion
	References

