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Abstract
Assessment plays an important role in learning and Multiple Choice Questions
(MCQs) are quite popular in large-scale evaluations. Technology-enabled learn-
ing necessitates a smart assessment. Therefore, automatic MCQ generation became
increasingly popular in the last two decades. Despite a large amount of research
effort, system generated MCQs are not useful in real educational applications. This
is because of the inability to produce diverse and human-alike distractors. Distrac-
tors are the wrong choices given along with the correct answer (key) to befuddle
the examinee. In several domains, the MCQs deal with names or named entities.
However, existing literature is not adequate in generating quality named entity dis-
tractors. In this paper, we present a method for automatic generation of named entity
distractors. The technique uses a combination of statistical and semantic similari-
ties. To compute the statistical similarity, a set of class-specific attributes are defined
are their values are extracted from the web. Semantic similarity is computed using
a predicate-argument extraction based method. The proposed technique is tested in
cricket domain because of the availability of a large number of web resources and
MCQs for dataset preparation. An evaluation strategy is proposed along with a set of
metrics. A set of human evaluators performed the evaluation and they found that the
average closeness value of the distractors as 2.3. This value indicates that 2.3 out of 3
system-generated distractors are as good as human-generated distractors. Two good
distractors make an MCQ usable in real assessment. So, the proposed technique is
capable of generating high-quality distractors.
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1 Introduction

Multiple choice question (MCQ) is a very popular form of assessment in which
respondents are asked to select the best possible answer out of a set of choices. Due
to many applications, a substantial amount of research effort has been devoted for
automatic MCQ generation (Coniam 1997; Mitkov and Ha 2003; Brown et al. 2005;
Papasalouros et al. 2008; Aldabe and Maritxalar 2010; Agarwal and Mannem 2011;
Bhatia et al. 2013; Majumdar and Saha 2014a; Araki et al. 2016). An MCQ is com-
posed of three core elements: stem, key, and distractors. The stem (also known as
item) is the sentence from which the question is formed, key (also named as tar-
get word) is the correct answer of the question and distractors are the set of wrong
answers or choices.

Distractors are the wrong choices given along with the correct answer to befud-
dle the examinee. The distractors play an important role in cloze question generation,
as the quality of an MCQ largely depends on the quality of the distractors. If the
distractors are not able to sufficiently confuse the examinee, the correct answer can
be chosen easily. As a result, the overall quality and usability of the MCQ degrade.
Mitkov et al. (2009) stated that good quality distractors ensure that the outcome of the
tests provides a more credible and objective picture of the knowledge of the exam-
iners involved. Again, poor distractors would not contribute much to the accuracy of
the assessment as obvious or too easy distractors will pose no challenge to the stu-
dents. Also in absence of good distractors, the MCQs will not be able to distinguish
high performing from low performing students.

Let us consider a question from the sports domain: “Who was the highest run
scorer of the India side in the final match of Cricket World Cup 2011?”. The
answer is ‘Gautam Gambhir’. If the distractors are given as, Ricky Ponting, Adam
Gilchrist and Chris Gayle then the MCQ becomes silly. Because among these
options Gautam Gambhir only is from India and becomes the obvious choice. Those
who have little knowledge on world cricket, they will easily answer the ques-
tion. Again, if the distractors are Sunil Gavaskar, Harbhajan Singh and Zaheer
Khan then also the MCQ fails to meet the quality; because they are Indian but
either not played in 2011 World Cup or are bowlers who are unlikely to become
the highest run scorer. But in this question, if the distractors are taken as, Sachin
Tendulkar, Yuvraj Singh and Mahendra Singh Dhoni, then the MCQ becomes
practical.

A distractor is basically a concept semantically close to the keyword. In many
domains (e.g., sports, entertainment, travel, history, biomedical) named entities are
dominant,where the majority of the MCQs deal with the names. However, the lit-
erature does not contain sufficient works that particularly focus on named entity
distractor generation. General distractor generation techniques include similarity in
parts-of-speech (POS) tag (Brown et al. 2005; Liu et al. 2005), frequency count
(Coniam 1997; Brown et al. 2005), distributional similarity (Karamanis et al. 2006;
Afzal and Mitkov 2014), phonetic similarity (Correia et al. 2010), pattern match-
ing (Hoshino and Nakagawa 2007; Goto et al. 2010) etc. These are not effective in
name distractor generation as two similar names might not possess these similarities.
For example, two similar names ‘Tendulkar’ and ‘Dhoni’ do not guarantee similar
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frequency in large corpora, not phonetically similar or distributional similarity is also
different. WordNet based approach is widely used in generic distractor generation
(Mitkov and Ha 2003; Lin et al. 2007; Goto et al. 2010). However, WordNet is not
applicable here as it does not include the names. Domain ontology-based approaches
(Karamanis et al. 2006; Papasalouros et al. 2008) also fail here as it is not feasible
to capture all possible names of a domain in an ontology (Afzal and Mitkov 2014).
Patra and Saha (2017) presented a study on the use of web information for automatic
generation of named entity distractor. First, they defined a set of attributes for each
name class. Then gathered a list of names and collected their attribute values from
the web. The names having similar attribute values with the keys were chosen as dis-
tractors. This approach is having limitations including, performance depends on the
coverage of the list and time-consuming. We worked on these limitations to develop
a more efficient and robust system.

In this paper, we present a system for generation of named entity distractors. The
system takes the stem and key (which is a named entity) as input and generates three
distractors as output. For distractor generation, two types of similarity computation
are performed: statistical and semantic. In a certain domain, like sports, statistical
data might help to distinguish an entity. The system uses the entity statistics to choose
the distractors. For extraction of entity statistics, a set of attributes is defined and
the attribute values for a particular entity are collected from certain trusted web-
sites. As the second approach, a predicate-argument extraction based approach is
employed. A set of sentences related to the entities are collected from the web, from
which the predicate-argument are extracted. The amount of matching in predicate-
arguments between the key and a candidate distractor is considered as the semantic
similarity. Runtime extraction of statistics from the web and similarity computation
is time-consuming. Therefore, we use class-specific repositories created during the
development phase. Additionally, we propose a hierarchical clustering based repre-
sentation of the entities, that embeds the similarities between the entities in a tree
structure. The system finds the location of the key in the tree and picks the nearby
entities as the distractors.

The proposed technique is applied in sports (cricket) domain. For the evaluation,
we propose an evaluation strategy and three metrics namely, closeness, readabil-
ity, and relevance. Closeness is the primary metric for evaluation; it indicates the
similarity between the key and the generated distractors. We create a test data con-
taining 200 cricket MCQs primarily collected from the web. The system generates
three distractors for each of the MCQs and these are evaluated manually by twenty
evaluators. The system achieves an average closeness value of the distractors as
2.3. This value indicates that 2.3 out of 3 system-generated distractors are as good
as human-generated distractors. The readability and relevance values are also high.
These values demonstrate that the proposed system generates quality named entity
distractors.

2 Previous works on distractor generation

We discuss below the techniques applied in the literature for distractor generation.
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2.1 POS and frequency

Parts-of-speech information has been used as a clue for distractor generation in sev-
eral works. Both the key and distractors should belong to similar POS category.
Additionally, frequency of the words is another hint. Brown et al. (2005) observed
that the distractors are of the same POS and similar frequency to the synonym,
antonym, or whatever word is the correct answer, as opposed to the target word. Sim-
ilarly, Coniam (1997) also performed frequency analysis for choosing distractors.
They also used POS information and certain orthographic information like capi-
talization to choose the distractors. Liu et al. (2005) considered POS information
and word frequency based approach for distractor generation. Agarwal and Mannem
(2011) used a hybrid technique to choose the best from a set of potential distractors.
However, the set of potential distractors was generated based on POS information.

2.2 WordNet and ontology

WordNet is widely used for distractor generation. WordNet is a lexical database
that groups the words into sets of synonyms (called synsets) and records the rela-
tions among these synonym sets or their members. Mitkov and Ha (2003) consulted
WordNet to retrieve concepts semantically close to the correct answer. Hypernyms,
hyponyms, and coordinates of the key was retrieved from the WordNet. If Word-
Net returned too many concepts, those appearing in the corpus or textbook were
given preference. Mitkov et al. (2009) employed multiple strategy for computing
WordNet-based semantic similarity. Lin et al. (2007) also used the WordNet and
synset relationship to find the distractors. Such WordNet based distractor generation
may lead to ambiguity and difficulty to choose the correct distractor. Therefore, they
eliminated all synonyms and similar words belonging to the synset that the key was
obtained from. Goto et al. (2010) also used WordNet for finding the synonyms and
antonym words as distractors.

Domain ontology is another related resource that help to identify domain specific
related terms as distractor. Papasalouros et al. (2008) used an ontology to generate
distractors. They defined various strategies based on these classes and properties or
relationship to find the distractors. They defined strategy to choose distracters as the
related instances or classes having similar properties with the correct answer. UMLS
(Unified Medical Language System) may be viewed as a comprehensive thesaurus
and ontology of biomedical concepts. Karamanis et al. (2006) computed a set of
potential distractors for a key term using the terms with the same semantic type in
UMLS. Majumdar and Saha (2014b) used domain information extracted from the
web for generation of distractors in sports domain.

2.3 Distributional similarity and collocation

The distributional hypothesis says that similar words appear in similar context. This
hypothesis has been used by a group of researchers to extract the distractors. Kara-
manis et al. (2006) used distributional similarity measures that compute similarity
between words in terms of the similarity of contexts of their occurrences in a corpus.
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Mitkov et al. (2009) also used distributional similarity based approach for distractor
generation. For computing distributional similarity, they used Information Radius.
Information Radius measures similarity between two words as the amount of infor-
mation contained in the difference between the two corresponding co-occurrence
vectors. Aldabe et al. (2009) used distributional similarity and information radius
based measures to find distractors. For measuring the information radius, contextual
representation was extracted along with frequencies then they were compared using
the distributional hypothesis. Afzal and Mitkov (2014) also used distributional simi-
larity for generating distractors and NE distractors. They used the GENIA corpus and
GENIA tagger in their task. First they applied linguistic processing; after that they
built a frequency matrix which involves scanning sequential semantic classes (NEs)
along with a notional word (Noun, Verb, Adverb and Adjective) in the corpus and
recording their frequencies in a database. Then the semantic classes were compared
using the distributional hypothesis that similar words appear in similar context. The
distractors to a given correct answer were then automatically generated by measur-
ing its similarity to entire candidate named entities. Finally, they selected the top 4
similar candidate named entities as the distractors.

Lee and Seneff (2007) used a collocation based approach for preposition distractor
generation. Their method returns the preposition that appears frequently with either
A or B, but not both at the same time and those were considered as the distractors.
Similarity between two sentences, one contains the key and other one contains the
distractor, is considered as a feature for distractor generation by Agarwal and Man-
nem (2011). They also used contextual similarity for the task. Contextual similarity
computes the similarity between the key and the potential distractor using the sur-
rounding words. Fattoh (2014) used a sentence similarity based approach for keyword
selection. They applied semantic role labelling and named entity recognition on the
selected sentences; and identified the key. Now they identified three sentences that
are having highest closeness with the question sentence. Then they selected keywords
using similar method from these close sentences. These keywords act as distractors.

2.4 Phonetic distractors

Phonetic similarity based distractor generation is another technique. Correia et al.
(2010) aimed at exploring the most common spelling errors for the Portuguese lan-
guage and generated a table containing common phonetic mistakes. For example,
‘ss’ is frequently confused with ‘ç’ (before a, o and u) and ‘c’ (before e and i). Such
information is used to generate phonetic distractor from the key. Phonetic similarity
based distractor generation was also experimented by Mitkov et al. (2009).

2.5 Patternmatching based

Pattern matching is another technique for distractor generation that attracted several
researchers. Hoshino and Nakagawa (2007) used a pattern matching based approach
for distractor generation. However, their patterns were based on the parse tree and
grammar rules. They manually identified ten grammar targets and corresponding
parse tree based patterns. For example, a target is past perfective and corresponding
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parse tree pattern is (S ... (VP (AUX had) ... ) ... ). Similarly, pattern based verb
distractor generation was also experimented by Aldabe et al. (2009). Their patterns
targeted to match the similarity between the key and the distractor with respect to
the context information. Goto et al. (2010) used pattern based method for distractor
generation. For example, they defined patterns for generating derived words (e.g.,
worker, works, working etc. can be derived from work), shape based alternative (e.g.,
words having similar suffix and prefix) as distractors.

2.6 Semantic analysis

As the distractors are the concepts that are semantically close to the keys, seman-
tic analysis is performed by the researchers for choosing the distractors. Aldabe and
Maritxalar (2010) used Latent Semantic Analysis (LSA) to generate distractors. To
use LSA they first build a WordSpace using large corpora and then performed word
to word semantic similarity computations. To generate distractors, Pino et al. (2008)
computed semantic similarity between two words using the Patwardhan and Peder-
sen’s method. Their method made use of a corpus to find context vector, that was
basically computed by counting the co-occurrences of the word with other words.
Then, the dot product of the context vectors was taken as the semantic similarity. For
selection of candidate distractors, Aldabe et al. (2009) computed semantic similar-
ity between verbs. Kumar et al. (2015) used word2vec based method for distractor
generation. To run word2vec they used Wikipedia text. However, they mentioned
that the quality of those distractors were not as good as human generated distractors.
Araki et al. (2016) used a semantic analysis based approach for distractor generation.
For generation of distractors they built event graph using event triggers and event-
event relationship. A distractor is constructed by selecting the phrase comprised of a
selected node (event trigger) and its surrounding entities.

3 Distractor generation: Our approach

For the generation of the distractors, we define two similarity functions that make
use of two sets of information: (i) statistical and (ii) semantic. Finally, these two
functions are combined. The entities having higher similarity value are chosen as the
set of final distractors. Figure 1 presents a high-level overview of the approach. The
details of the methodology are presented in the following sections.

4 Statistical similarity computation

This section discusses our approach for computing the statistical similarity between
the key and the possible distractors. We perform the study on cricket domain and
use certain domain-specific basic information (e.g., like possible name classes, set
of good attributes of a particular class etc.) to develop the system. However, the
approach is mostly generic and can be applied to other related domains. Here we
would like to mention that the basic idea of this statistical similarity computation is
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Fig. 1 A high-level overview of the distractor generation approach

motivated from the work by Patra and Saha (2017), but our system is more robust
and fast as it is not relying on the name list and uses a hierarchical tree structuring
for storing the similarity values.

4.1 Identifying the category of the key

For automatic generation of distractors, first, we need to identify the category of
the key. Key category provides the search space for finding the possible distractors.
For example, if the key is an umpire, then we obviously need a list of umpires as
possible distractors. In general domain, most widely accepted name categories are
person, location and organization. But this 3-class categorization is not sufficient
to perform the NE distractor generation task. It requires a deeper or fine-grained
categorization. Such fine-grained categorization is task specific as well as domain
specific. We study the existing MCQs from the cricket domain and find various NE
categories. These are, name of person (basic subcategories are: all-rounder, bowler,
batsman, wicketkeeper, captain, umpire, cricket officials like board president, team
owner etc)., organization name (country name, franchise name, cricket boards like
ICC etc.), event name (cup, tournament, trophy, championship etc.), location name
(cricket ground, city, country etc.). Use of a named entity recognition (NER) system
is the primary choice to identify these categories. But unfortunately, we could not
find any openly available NER system for the sports domain too, that is designed
for identifying these classes. Therefore, we use a coarse level NER (Stanford NER
system1) and then apply two more approaches on it. These are discussed below.

1https://nlp.stanford.edu/software/CRF-NER.shtml

https://nlp.stanford.edu/software/CRF-NER.shtml
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Table 1 Gazetteer lists

Name category Source List size

Cricketer name Wikipedia, Yahoo! Cricket, Espncricinfo 3978

Umpire and Referee icc-cricket.com, Wikipedia 590

Other officials, Owners Wikipedia, Country Boards like ecb.co.uk 536

Cricket teams Espncricinfo, Yahoo! Cricket 325

Cricket organization icc-cricket.com, Wikipedia 147

Cricket event cricinfo archive 2324

City and Ground Wikipedia, cricinfo grounds 742

Gazetteer List Based Our first approach is gazetteer list based identification. If the
word occurs in a gazetteer list of a particular class, then it belongs to that category.
But the creation of a gazetteer list that contains all the names of a particular category
is very difficult, as new names are constantly included. In this study with the sports
domain, we compile the gazetteer lists for the key categories with the help of a list
of trusted websites: Wikipedia, EspnCricinfo, Yahoo! Cricket, CricBuzz, Cricwaves.
We use these websites for the creation of the gazetteer lists. For example, to com-
pile the list of batsman we search the Wikipedia, Yahoo! Cricket, Espncricinfo, and
Cricbuzz players lists. From these sources, we compile a batsman gazetteer list con-
taining a total of 3978 names. Similarly, we compile other domain-specific gazetteer
lists. In Table 1 we have summarized the gazetteer lists we create for the cricket
domain.

UsingWikipedia Our second approach is the extraction of category information from
the Wikipedia. In case of named entity keys, it is expected that a Wikipedia page
is available for the key from which the class related information is extracted. We
study various Wikipedia pages and observe that the category related information
is embed ded in the first sentence (or, first two sentences in some cases) and the
Wikipedia infobox content. In the ‘infobox’ content we search for the label ‘role’ as
the main category label. If the infobox is available and it contains the category infor-
mation, then the label is extracted from it. Otherwise, the first two sentences of the
page are processed to extract the required information. For extraction of category
information from the sentences, two different methods are used. The first method
is parse tree based. Parse tree of the sentence is explored to find the is a predicate
having the key as the subject; then the corresponding object is the category label.
For predicate-argument extraction from the sentences, we use the triplet extraction
methodology discussed in Rusu et al. (2007). The second one is simple keyword
matching based. As we already have a list of predefined categories, we search for the
category denoting word or phrase in the sentence. If obtained, then the key belongs to
the corresponding category. In our experiments, we observe that the second method
is very effective.
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4.2 Analysis of the stem

Next, we analyze the stem (i.e., the question text) to extract the information embed-
ded in it. The stem plays a big role in distractor generation. It contains certain clues
that help in refining the search space. Let us consider an example to explain the role
of the stem in distractor generation. The key for the stem “Who scores most fifties
in World T20 2016?” is Virat Kohli. Good distractors for the MCQ are, Tamim Iqbal,
HM Amla, JE Root etc. Also for the stem “Who scores most fifties in T20 interna-
tionals?”, the key is Virat Kohli. Here a good distractor set should include CH Gayle
and BB McCullum. As another example stem, “who is the current captain of Indian
test cricket team?” - the key is again Virat Kohli, but here the distractors set includes
MS Dhoni and Ajinkya Rahane. So, the key alone is not sufficient to generate the
close distractors; the stem is also important.

The stem might contain some information that helps to redefine the search space.
We need to extract this information if any. Depending on availability of special infor-
mation in the stem, the stem is classified into two categories: generic and specific.
If any such information is available then the stem is named as specific, otherwise
generic. Type of information embedded in the stem depends on the characteristics of
the domain. Therefore, the methodology to employ here is also domain-specific.

We study many existingMCQs of the cricket domain and observe that the informa-
tion in the stem that modifies the search space is, specific to something (mainly, match,
tournament, and team) and record related. If such information is there then the stem is
specific, otherwise, the stem is labeled as generic. Availability of phrases denoting spe-
cific match, tournament, series, location, country is searched in the stem. List based
approach is used here as the required lists are available. To find the record or statistics
related phrases, list of class-specific records is collected from espncricinfo.com and
Wikipedia. For example, the record modifiers of the class ‘batsman’ are: most runs,
high scores, highest average, highest strike rate, most fifties, most centuries, most
ducks, most sixes, most sixes in an innings, most fours, most fours in an innings,
highest run in a calendar year, fastest century, maximum distance of over boundary.

4.3 Attribute set

For each of the name categories, a set of attributes is defined. Through these
attributes, we try to define a category. The attribute values corresponding to a partic-
ular entity helps in finding its similarity with other entities. For example, the attribute
set of the category ‘cricketer’ includes date-of-birth, country, team name, role, bat-
ting style, average batting position, carrier span, debut date (test-ODI-T20) (ODI: one
day international, T20: twenty-twenty), last match (test-ODI-T20), total runs (test-
ODI-T20), batting average (test-ODI-T20), number of innings (test-ODI-T20), strike
rate (test-ODI-T20), number of century (test-ODI-T20), number of half-century
(test-ODI-T20), highest score (test-ODI-T20), bowling style, number of balls (test-
ODI-T20), number of wickets taken (test-ODI-T20), runs conceded (test-ODI-T20),
best bowling figure (test-ODI-T20), bowling average (test-ODI-T20), 5-wickets in
innings (test-ODI-T20), catches taken as wicketkeeper (test-ODI-T20), catches taken
as non-wicketkeeper (test-ODI-T20).
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To develop the system, we need to specify these set of attributes. Some amount of
domain expertise or manual effort is required to do the task. However, this task is not
entirely manual. Wikipedia and domain related websites provide clues in choosing
these attributes. Here we discuss the method we adopt in cricket domain. A similar
methodology can be followed in other domains.

The attributes are chosen using the fields used for summarizing the entity (e.g.,
carrier or the personal details in case of cricketer) in Wikipedia and EspnCricinfo
like websites. Majority of the cricket related Wikipedia pages contain an information
templet (or, infobox; located at the right-hand side top of the page) that contains a
set of common attributes defining the class. Also, most of the Wikipedia pages for
a popular named entity contain a table to summarize the entity. The fields of the
table are extracted as members of the attribute set. Similarly, the entity-specific Esp-
nCricinfo and cricbuzz pages contain semi-structured and tabular data from which
these attributes are extracted. We crawl the pages of a few popular keys of a particular
category and extract these attributes in a semi-automatic manner. The duplicates and
synonyms are removed or renamed. Then the most common attributes are considered
as the final attribute set of the class.

4.4 Candidate distractor set

Our next task is to identify the candidate distractors. If the stem contains any spe-
cific information, then it is extracted for refining the list of distractors. For example,
consider the stem: “Who was the captain of India during ICC world cup 2015? ” The
system identifies three specific information from the stem: ‘India’, ‘ICC world cup’
and ‘2015’. This information gets higher weight when the candidate distractors are
chosen. These values are matched with the attribute values of the corresponding key.
If any match is found then, the entities having similar matching are considered as can-
didate distractors. For example, here ‘India’ matches with the ‘team-name’ attribute
value of the key (MS Dhoni) and year ‘2015’ belongs to the ‘carrier-span’ value. So,
we find the entities where team-name = India and carrier-span includes 2015. Those
entities form the candidate distractor set. The set includes the entities ‘Virat Kohli’,
‘A. Rahane’, ‘R. Ashwin’, ‘R. Jadeja’, ‘C. Pujara’ and ‘KL. Rahul’.

If the stem is dealing with statistics or record of the key, then also the search space
is modified accordingly. Example of such stem is: “Who is having the most century
in ODI cricket?” Here a query is formed and searched in corresponding web pages.
One of the entities of the page should be the key. Then we take rest of the elements as
candidate distractors. If the search result returns no value, then it is processed using
the method that handles the generic stems.

When the stem is generic, then the candidate distractors are chosen as those are
having attribute values close to the key. A set of class-specific attributes may be cho-
sen as ‘important’. For example, for the cricketer class, we consider the attributes
country, span (overlapping), batting average (difference less than ten) or bowling
average (difference less than five) as important attributes that help to choose a subset.
Such identification of important attribute is not a mandatory step; if such impor-
tant attributes are not identified for any category then all the attributes are equally
important.
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4.5 Similarity computation

Now, the similarity between the key and a candidate distractor set entity is computed
to decide whether to select it in the final set of distractors. In order to compute the
similarity, we first create class-specific repositories. The repositories contain a list of
entities with their generic attribute values. The base information of these repositories
can be extracted automatically from the Wikipedia. Wikipedia provides ‘list of *’
pages in many domains that contain the list of entities of a particular category with a
list of attribute values in tabular format. A focused crawler can be employed to auto-
matically go through the pages given a list and a set of patterns, that extracts specific
information from the pages. The repositories are stored as a simple file in a matrix-
like format, where each row represents an entity and the columns are the attributes.
The first column refers to the name of the entity. All the attribute values may not be
available for some of the entities; unavailable fields are filled with ‘NULL’ indicator.

To obtain the similarity we use the corresponding vectors (i.e., the row) from the
entity-attribute repository. The dimension of the vectors is represented by the number
of attributes. The attributes fall into two categories: numeric and non-numeric. The
similarity between the non-numeric attributes is considered as binary. The value is 1 if
there is a match and 0 otherwise. Some of these non-numeric attributes take multiple
values. In such cases, if any match is found among the values then the similarity is
taken as one. Then, these values are normalized by a total number of non-numeric
attributes.

To compute the distance between the numeric attributes we employ the following
distance computation metric.

Sim1(P, Q) = 1 − 1

L

∑

i=1..L

(Pi ∼ Qi)

max(Pi, Qi)
(1)

Where P and Q represents two vectors corresponding to the target entities. L is
the total number of numeric attributes and i is the index that iteratively consider
all individual attributes Pi . Finally, the distances of the numeric and non-numeric
attributes are combined.

The distance computation metric returns the distance as close to zero when the
attributes of two entities (one is the key and other one is a candidate distractor) are
similar.

4.6 Hierarchical tree representation of the candidate distractors

To select k best distractors we need to compute the similarity between the key and all
the candidate distractors and choose top k values. This task becomes time-consuming
when a large number of entities occur in the candidate distractor set. To make the
process faster we plan to pre-compute and store the distances. For this purpose, we
adopt a hierarchical clustering based representation of the candidate distractors.

For the hierarchical clustering, we need to convert the words into vectors. We have
already mentioned that we have defined a set of attributes and collected the attribute
values from the web. This set of attribute values of an entity is considered here as the
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vector corresponding to the entity where the size of the vector is the total number of
attributes.

The hierarchical clustering requires to adopt a similarity metric and linkage crite-
ria. The similarity metrics used here is the cosine similarity. The linkage in the tree is
done using the complete linkage (farthest neighbor linking) criteria. With this link-
age, a cluster from a pool of candidate clusters is chosen if the similarity value of the
farthest node is higher than the farthest nodes of other clusters in the pool. The tree is
a binary tree. The weights at each edge are the least similarity value found between
the connecting subtree clusters. Now, the distance between two entities is the clos-
est tree level that connects both of them. This hierarchical distance is normalized
using (3).

d1(x, x′) = highest tree level connecting x and x′ (2)

Sim2(x, x′) = d1(x, x′)√
d1(x, x) � d1(x′, x′)

(3)

Once the tree is generated, we simply find the position of the key in it and pick the
entities occurring near the key.

5 Semantic similarity computation

Next, we compute the semantic similarity between the key and candidate distrac-
tors to choose the most appropriate set. Semantic closeness is computed through
predicate-argument extraction from the sentences. For this, we collect the text from
the corresponding Wikipedia pages and profile description text of EspnCricinfo
and CricBuzz. The number of predicate-argument matches between the key and a
candidate distractor indicates the similarity between the two.

5.1 Predicate-argument extraction

Predicate and the arguments like subject and object of a sentence are required to
analyze to extract the fact embedded in a sentence. Predicate2 helps to get an idea
about the subject, such as what it does or what it is like. A predicate can be viewed
as the relation or function over the arguments. The predicate serves either to assign a
property to a single argument or to relate two or more arguments to each other. Such
properties or relations can be represented through a functional representation of the
form: Predicate (Subject, Object). Such relations are also referred to as ‘triplet’ in the
literature. For example, a triplet generated from the sentence “Virat Kohli currently
captains the India National Team” is: captain (Virat Kohli, India National Team).

For a predicate-argument structure or triplet extraction from the relevant sen-
tences, we primarily use the methodology discussed in Rusu et al. (2007). But to
handle the application specific and domain-specific requirements, a filter is applied

2https://en.wikipedia.org/wiki/Predicate (grammar)

https://en.wikipedia.org/wiki/Predicate_(grammar)
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to the original Rusu’s triplet extraction methodology. The actual algorithm prefers to
pick the head-noun or first noun in the NP subtree as the subject. But in this task,
we are interested to collect information related to the key only. Therefore, only the
triplets having the key as a subject are extracted. Additionally, we are only interested
in the predicates that are common in characterizing the domain but not frequent in
other domains. To find the list of domain specific predicates the tf*idf score is used,
where the non-domain set contains a large number of Wikipedia pages that are not
related to sports.

Wikipedia sentences are often long and one sentence contains multiple objects.
For triplet extraction, first, the ARKref tool3 is applied for pronoun resolution. Then
a parse tree based sentence simplification step is used that converts the complex and
compound sentences into simple sentences. Still, some sentences contain multiple
predicates. Here our objective of triplet extraction is finding similarity by count-
ing the number of matches. Extraction of all the predicates increases the amount
of match. To extract multiple predicates and distinguish between the arguments, the
words with ‘IN’ parts-of-speech label in the preposition phrases (PP) of the sen-
tence are used. The IN word is added with the actual predicate to generate multiple
variations of it. Let us consider an example sentence to make it clearer. The sen-
tence “Player1 scored a century in World Cup 2011 against TeamX”. The predicate is
‘scored’, the subject is ‘Player1’ and the predicate-argument extracted from the sen-
tence are, scored (Player1, century), scored in (Player1, Century, World Cup 2011),
scored against (Player1, Century, TeamX).

5.2 WordNet for predicate resolution

Next step is the predicate resolution. Multiple predicates might be used to present a
particular fact. In the cricket domain also we observe that for presenting a particular
knowledge, a variety of predicates have been used. For example, “X scored a cen-
tury” and “X hit a century” - both are presenting the same fact but the predicates are
different. So, we need to find a relation between these predicates. For finding this
relation we use the WordNet. If two predicates are the synonym to each other as per
the WordNet, then we map them into one.

5.3 Similarity computation

The predicate-argument extraction module extracts all the triplets from the text cor-
responding to an entity. These triplets are considered as a fact-based summarization
of the entity. It is observed that two closely related entities share a large number of
common triplets. Again, two entities from two different categories do not share com-
mon triplet. Therefore, a number of triplets commonly occurred in a pair of entities
represents the similarity between them. For triplet matching, we need to replace both
the entities with a common variable first.

3https://github.com/brendano/arkref

https://github.com/brendano/arkref
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To get the semantic similarity score between two entities (one is the key and
another is a candidate distractor), a number of common triplets are counted and then
the value is normalized. For that (4) is used. In the equation, x and x ′ denote the enti-
ties - x is the key and x′ is a candidate distractor. As the target is to find the most
suitable distractors when the key is known, the size of the triplet set corresponding to
the key is used as the normalization factor.

Sim2(x, x′) = |(tripleti ∈ x) & (tripleti ∈ x′)|i
| tripletj in x |j (4)

Now we have two similarity values, one is computed through statistical informa-
tion collected from the web and another one is computed through semantic analysis
of the relevant text. As a final similarity value, a linear combination of these two is
used. The entities are ranked based on this similarity value. Top three entities of the
ranked list are taken as the final distractors. When we test the system using the ques-
tion “Who was the highest run scorer of the India side in the final match of Cricket
World Cup 2011?”, the generated ranked list contains, Sachin Tendulkar, Mahen-
dra Singh Dhoni, Virat Kohli, Yuvraj Singh and Virendra Shewag. These all are good
distractors.

6 System evaluation and discussion

For evaluation of the system, we create a test set containing 200 cricket related
MCQ-key pairs, collected from the web. An MCQ-key pair is given to the system as
input and the system generates three distractors. Quality of these system generated
distractors are then assessed.

Hard comparison between gold-standard distractors and system generated distrac-
tors cannot be used as the basis of the accuracy of the system. Because in many
domains and applications an MCQ can have a large set of distractors; all of these can-
not be accommodated in the gold standard dataset. So, there is a possibility that the
system generates good distractors but due to unavailability of those in the gold stan-
dard dataset, the calculated accuracy turns out to be poor. Therefore, in the literature,
we find that the evaluation of distractors is commonly done by human experts.

6.1 Evaluation strategy used in the literature

Several metrics have been proposed and used in the literature depending on the
domain, application, and type of the distractors. For example, Mitkov et al. (2009)
used difficulty, discriminating power and usefulness as the metrics for distractor eval-
uation. Difficulty and discriminating power consider the quality of the stem also, but
usefulness is an independent measure that looks at distractors only. They used statis-
tical analysis for finding the usefulness of a distractor. Their characterization is based
on a consideration that a good distractor should attract more students from the lower
group than the upper group. Upper group is the set of students who score well and
lower group contains the poor students. Aldabe and Maritxalar (2010) also followed
a similar strategy for distractor evaluation. They identified the distractors that were
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never chosen by the examinees. To judge the quality of the distractors Pino et al.
(2008) replaced the keyword by the distractor and measured the grammaticality and
collocation criteria of the sentence from the syntactic and semantic point of view.
Agarwal and Mannem (2011) used readability as a metric. They asked the evaluators
to substitute the distractor in the gap and check the readability and semantic mean-
ing of the sentence to classify the distractor as good or bad. For distractor evaluation,
Bhatia et al. (2013) used the closeness value. The distractor set was considered as
good if at least one of the distractors are close to the key. Araki et al. (2016) measured
the distractor quality using a three-point scale. In their scaling, 1 (worst) specifies that
the distractor is confusing because it overlaps the correct answer partially or com-
pletely; value 2 concludes that the distractor can be easily identified as an incorrect
answer, and 3 (best) indicates that the distractor can be viable.

6.2 Proposed evaluation strategy andmetrics

When we go for evaluation of the named entity distractors, we found that most of
the existing metrics are not applicable or suitable. Majority of the existing tech-
niques focus on language learner, vocabulary testing or a particular POS category
based distractors. In case of named entity distractors similarity between two names
plays the key role. Therefore, during assessment also this similarity needs to be eval-
uated. In our evaluation, we consider the closeness as the primary metric. Closeness
is the similarity between the key and the distractors. However, we also consider two
other metrics: readability and relevance. To verify the readability, we follow a similar
approach used in the literature. The keyword is replaced by a distractor and gram-
maticality and collocation criteria of the sentence are measured from the syntactic
and semantic point of view. Relevance refers to the affinity of the distractors with the
stem.

Assessment of closeness is a tricky task. We use two different approaches to mea-
sure the closeness. For the evaluation, we employ two groups of human evaluators:
the correct answers of the MCQs are provided to one group (Group1) and this infor-
mation is kept hidden to the second group (Group2). The test set questions along
with the key and distractors were given to the Group1 evaluators. Their task is to
check whether these system generated distractors can be used in real MCQs. Group2
evaluators get the questions only, not the options. Their task is not only to answer
the questions but also to suggest three distractors for each question. Here we have
three possibilities: the answer of the evaluator is correct (Category1); the answer is
not correct but the correct answer is one among the distractors (Category2), and the
actual answer does not match with his answer or distractors (Category3). Based on
these possibilities we adopt a weighting scheme. If the evaluator can guess the cor-
rect answer, either as answer or as the distractor, the rest of the options he suggests
are injected in a reference distractor set for the question. So, the reference set (set
1) holds all the options suggested by all the Category1 and Category2 evaluators. A
second reference set (set 2) is also compiled that comprises of the options proposed
by the Category3 evaluators. Now a machine generated distractor is searched in the
reference set 1. If found, then it is considered as a perfect distractor and its score is
1; if no, then it is searched in the reference set 2 and score of 0.5 is assigned if it
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occurs there. It is obvious that the score obtained by the distractors largely depends
on the number of evaluators engaged in this assessment. More evaluators lead the
possibility of larger reference sets and a higher chance of occurrence. In our exper-
iments, we employ 10 evaluators and all of them are asked to provide 5 options for
each question. Still, we find that the certain distractors are good but do not occur in
these reference sets. Actually, a larger evaluator set is required to adopt this evalu-
ation strategy. When sufficient evaluators are not available, then to compensate the
score, the Category1 evaluators may be asked to assess those unmatched distractors
with three values: 1, if one distractor is perfect to be used in real MCQ; 0.5 if it is not
perfect but may be used; and 0 if it cannot be used.

6.3 Evaluation results

We employ 5 evaluators to assess the readability and relevance. A total of 200 MCQs
are there in the test data and for each of the MCQs, three distractors have been gen-
erated by the system. These distractors have been picked based on the computed
similarity score. That means, the first distractor is having higher similarity score
with the key than the second or third distractor. These distractors are assessed by the
human evaluators using three-level scoring: 1 (distractor is perfect), 0.5 (may be used
but better distractors are there) and 0 (not acceptable). In our experiments, the dis-
tractors get a high score in readability and relevance. Table 2 presents the readability
and relevance scores of the system. When the individual values are considered, it is
observed that the score of the first distractor is often better than the others. Average
readability is 92.6% and relevance is 90.33%. The score in the 3-point scale is also
computed. The score is 2.88 in readability and 2.71 in relevance. From these values,
we can conclude that the system is highly accurate in generating the distractors.

When we analyze the errors, we observe that the prime source of error is the
failure in named entity recognition. As the generation of distractors is dependent
on the name class, error in named entity recognition causes faulty distractors that
affect the readability and relevance scores. We found that the named entity category

Table 2 Evaluation of Readability and Relevance [D1, D2 and D3 denotes the first, second and third
distractors respectively; 3-point scale: average score between 0–3]

Evaluator Readability Relevance

D1 D2 D3 D1 D2 D3

Evaluator 1 189 188 185 186 182 177

Evaluator 2 187 182 182 181 180 176

Evaluator 3 189 186 185 189 179 179

Evaluator 4 185 180 177 180 174 170

Evaluator 5 192 185 186 188 184 185

Average value 188.4 184.2 183 184.8 179.8 177.4

All Distractors Average (%) 92.6 90.33

Score (3-point scale) 2.88 2.71
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identification module sometimes fails to resolve the conflict between location and
organization, trophy and organization, ground and city, cricketer and cricket officials,
various forms of a particular name etc. It also fails to detect the nicknames of the
players and a few entities. The system is unable to generate relevant distractors in
such cases.

For evaluation of the closeness, we employ 15 evaluators: five as Group1 and rest
as Group2 evaluator. Group1 evaluators put the closeness score of an MCQ as an
integer between 0-3. The score is 3 if the evaluator senses all the distractors as good;
0 if none of those is good; 1 and 2 consequently. Average of the scores given by
individual evaluators is taken as the Group1 score. The score is 2.38 (see in Table 3).

The score of the Group2 evaluators depends on the size of the reference sets. We
compute the average size of the reference set 1 as 5.8. Therefore, if a system gener-
ated distractor is one of these 5.8 manually generated distractors then the score is 1.
In our experiments, we observed that the average score achieved by the distractors
are 1.58 when we use the reference set 1 only. This value is quite promising. Next, we
consider reference set 2 for the distractors that do not occur in set 1. Then the value
increases to 1.94. And finally, when the rest of the distractors (neither occurs in set 1
nor in set 2) are assessed by the category 1 evaluators, the score becomes 2.21.

The average of the Group 1 and Group 2 scores are taken as the final closeness
value of the distractors. The score becomes 2.3. The value indicates, out of the three
systems generated distractors, on average 2.3 of them are close. The value is greater
than 2; it implies that the system is able to generate at least two close distractors. In
reality, if an MCQ contains three close choices (one key and two distractors), then
also it can be considered as a good MCQ. The experimental results demonstrate the
effectiveness of the distractor generation technique.

6.4 Comparison with related techniques

Now we compare the current system with related techniques and systems pre-
sented in the literature. In the related work section (Section 2) we mentioned several
approaches for distractor generation. Majority of those approaches are not applicable
in named entity distractor generation, for example, parts-of-speech similarity, similar

Table 3 Evaluation of Closeness: Group1 contains 5 evaluators and Group2 contains 10 evaluators

Group 1 Score Group 2 Score

Average of 5

evaluators
Reference

set 1 only

+ Reference

set 2

+ Category 1

evaluator

scoring

Number of entities in

corresponding set

600

Number of Matching −
Score (individual) 2.38

1160 823 212

316 388 442

1.58 1.94 2.21

Average Score (3-point

scale)

2.3
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words using WordNet or Ontology, phonetic similarity, pattern matching etc. Some
of the approaches use a specialized setting or environment. For the comparison, we
have implemented a few suitable approaches in the current setting and compared
the proposed approach with those. These approaches are, frequency based (inspired
from Brown et al., 2005), co-occurrence vector (like Mitkov et al., 2009), colloca-
tion similarity (inspired from Lee and Seneff, 2007 and Agarwal and Mannem, 2011)
and system by Patra and Saha (2017). For the implementation, cricket related texts
were collected from Wikipedia and other websites. For comparison, we used only
the relevance and closeness value. We do not consider readability in this comparison;
because, if a named entity is replaced by an appropriate noun, pronoun or a generic
placeholder word, then also the readability of the sentence retains. In Table 4 we have
presented the result of the comparison.

As expected, it is found that the frequency, general domain NER, co-occurrence
or collocation-based approaches are not capable of generating good named entity
distractors. When the frequency is used alone for distractor generation, then it rarely
generates a close distractor. When a general domain NER system is incorporated
then the score increased substantially. Collocation performs best among all these
generic approaches. The proposed system generates better distractors than the system
developed by Patra and Saha (2017). This is primarily because of the incorporation
of the semantic similarity.

When we compare the proposed system with other possible techniques, we
observe that our technique is better in terms of both the closeness and relevance.
Closeness is an important measure for distractor generation. The closeness value
should be high to use the MCQ in a real examination and it should be at least two.
Closeness value two indicates, two (out of the three) distractors are good. Three close
or confusing choices make an MCQ usable in real examination. We found that the
distractors generated by Patra and Saha (2017) get a closeness value of 2.07. How-
ever, our hybrid model performs better. It reduces the run-time too by a large factor,
as the similarity scores are pre-computed and stored in the hierarchical structure. So,
the MCQs generated by the proposed system are usable but other simple techniques
(shown in Table 4) are unable to generate good and usable MCQs.

Next, we perform error analysis by comparing the relevance and readability score
with the closeness score. We observe that there are certain MCQs that get high rele-
vance score but low closeness value. We found that the NE class has been detected
correctly there but still, the distractors are not correct. We analyze a few such MCQs.

Table 4 Comparison with
related systems: for NE
distractor generation in Cricket
domain [ideal score is 3, that
indicates all three distractors
meet the criteria]

System or Approach Relevance Closeness

Frequency based 0.35 0.11

NER with Frequency based 1.62 0.8

Co-occurrence based 1.45 0.92

Collocation based 2.04 1.13

Patra and Saha (2017) 2.45 2.07

The Proposed System 2.71 2.3
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For instance, “Last over of the 1992 Hero cup semi-finals was bowled by – ”. The
key of the MCQ is Sachin Tendulkar and who is basically a batsman. An ideal
distractors set should contain the top bowlers or all-rounder of that time; includ-
ing, J Srinath, Anil Kumble, Kapil Dev, and Manoj Prabhakar. However, the system
generated distractors contain Azharuddin and Ajay Jadeja, who received higher sta-
tistical similarity. Again in the MCQ “Which Indian players registered first hat-trick
in World Cup matches?”, the key is ‘Chetan Sharma’. The reference set created based
on evaluators’ suggestions contains the bowlers who took highest wickets in ODIs
or have good records in World Cup matches (A Kumble, J Srinath, Kapil Dev, and
Z Khan). However, the system generated distractor set does not contain any of those
entities. When the Category 1 evaluators were asked to assess the system generated
distractors, they found two of them (Manoj Prabhakar, Roger Binny) are good. A
similar outcome is attained in this MCQ too: “Who was first test captain of Indian
cricket team?” From these observations, we conclude that a deeper analysis of the
stem can further improve the quality of the distractors.

7 Conclusion

In this paper, we have presented a system for automatic named entity distractor
generation. Named entity distractors are common in various domain and automatic
generation of close NE distractors is a tricky task. To capture the closeness between
the key and the possible distractors, we use web information. The closeness is cap-
tured through statistical and semantic information extracted using the Wikipedia and
other trusted web sources. The proposed technique is applied in the sports domain.
The system takes the question sentence and the correct answer as input and generates
three distractors. The quality of the system generated distractors is evaluated using
a set of human evaluators. During evaluation also we aim to assess the closeness
and applicability of the system generated distractors in real MCQs. For that, we pro-
pose an evaluation strategy. The experimental results show that the system generates
distractors are accurate.

There are a number of directions for future work. We feel that the proposed tech-
nique is generic and can be applied to other related domains like entertainment,
history etc. But it requires experimental verification on those domains. Also, the
accuracy of the named entity recognition module can be improved to make the system
more accurate. The current setup of the system uses certain manual information dur-
ing development; one can explore the possibilities to reduce the manual effort. One
can extend our system by incorporating more sophisticated semantic score where the
question sentence will also be analyzed and proper weight will be assigned to the
relations embedded in the stem.
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