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Abstract This article is the second of two articles in this special issue that were
developed following discussions of the Assessment Working Group at EDUsummIT
2013. The article extends the analysis of assessments of collaborative problem solving
(CPS) to examine the significance of the data concerning this complex assessment
problem and then for educational assessment more broadly. The article discusses four
measurement challenges of data science or ‘big data’ in educational assessments that
are enabled by technology: 1. Dealing with change over time via time-based data. 2.
How a digital performance space’s relationships interact with learner actions, commu-
nications and products. 3. How layers of interpretation are formed from translations of
atomistic data into meaningful larger units suitable for making inferences about what
someone knows and can do. 4. How to represent the dynamics of interactions between
and among learners who are being assessed by their interactions with each other as well
as with digital resources and agents in digital performance spaces. Because of the
movement from paper-based tests to online learning, and in order to make progress on
these challenges, the authors call for the restructuring of training of the next generation
of researchers and psychometricians to specialize in data science in technology enabled
assessments.
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1 Introduction

Our previous analysis (Webb et al. 2013) following discussions at EDUsummIT 2011,
identified student and teacher involvement in assessment, including digitally-enhanced
assessment, as critical for 21st century learning. EDUsummit is a biennial meeting of
the original authors, section editors and globally networked colleagues involved in the
International Handbook of Information Technology in Primary and Secondary Educa-
tion (Voogt and Knezek 2008), who assemble to create research updates, position
papers, and calls to action to improve education. Digitally-enhanced assessments were
defined in the 2011 summit as those that integrate: 1) an authentic learning experience
involving digital media with 2) embedded continuous unobtrusive measures of perfor-
mance, learning and knowledge, which 3) creates a highly detailed, high resolution data
record which can be computationally analysed and displayed so that 4) learners and
teachers can immediately utilize the information to improve learning. This unobtrusive
measuring approach is a vision of ‘quiet assessment’ whose volume can be turned up
by learners and teachers whenever they wish in order to check their progress.

This article is the second of two in this special issue that were developed following
further discussions of the Assessment Working Group at EDUsummIT 2013. The paper
aims to extend our analysis of assessments or evaluations of collaborative problem
solving (CPS) as implemented by the OECD PISA started in Webb and Gibson (2015)
to examine the significance of big data for this assessment approach and then for
educational assessment more broadly. In the companion article (ibid.), the authors argue
that in technology enhanced assessment, integration can occur to meet multiple purposes,
because the affordances of technology can redefine the nature of an assessment task, and
provide a high level outline of the processes for engaging in those considerations in the
design of assessments of collaboration, particularly CPS. In this article, some of the major
data challenges concerning the amount, type and velocity of information potentially
available in technology-enhanced assessments are outlined and discussed.

Assessment and learning analytics challenges have dramatically increased since new
digital performance affordances, user interfaces, and the targets of technology-enabled
assessments have become more complex. The increased complexity is due in part to
technology’s capabilities and roles in presenting interactive learning experiences and
collecting rich data (de Freitas 2014; Quellmalz et al. 2012) which is leading to the
infusion of data science methods and techniques into learning and behavioural science
research (Gibson and Knezek 2011; Kozleski et al. 2012). These changes require new
quantitative methods as well as a reconceptualization of mixed methods (Tashakkori
and Teddlie 2003) that include domain experts as well as stakeholders in the construc-
tion of knowledge of such complex systems.

In technology-enhanced assessments, the emergence of Bbig data^ - which are
defined as data that has a large numbers of records, of widely differing data types, that
is rapidly collected for immediate action (IBM 2015; Margetts and Sutcliffe 2013) –
underscores the need to develop assessment literacy (Stiggins 1995) in teachers,
learners and other audiences of assessment. Assessment literacy has become more
important than ever for understanding how technology influences and impacts assess-
ment types and processes and especially for developing confidence in creating and
analysing arguments from evidence, based on a user’s current understanding of vali-
dation (Black, Harrison, Hodgen, Marshall, & Serret, 2010).
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This article first outlines the background to our consideration of technology-
enhanced assessments and the key issues that are crucial for policymakers, practitioners
and learners in the near future. Then it discusses the main challenges associated with
applying data science methods in educational assessment to address a
digital assessment’s psychometric properties; time sensitivity; digital performance and
the problem space for analysis; the hierarchy of tasks, turns and translations between
different levels and the dynamics of interrelationships in assessment systems. The
OECD PISA plan for assessing CPS is used as an example to explain these challenges
in relation to a complex problem space. The article then illustrates with three learning
analytics cases that show how the identified challenges have been addressed in the
development of assessments.

2 Background

When the EDUsummIT Assessment Working Group met again in 2013 some of the
challenges identified in 2011 remained, including uncertainty as to whether and how
the following four perspectives on assessment - feedback information, improvement
decisions, degree of engagement and understanding, and value judgments - can co-exist
to the benefit of learners (Webb et al. 2013). Even with the increased possibilities that
IT provides there is not yet a way to say confidently that the multiple purposes for
which some assessments have been used (Mansell et al. 2009) can or should be
supported through the same assessment systems. This is because the impacts of some
purposes interact with the validation processes of others (Messick 1994). Therefore in
considering assessment design for multiple purposes for example for formative as well
as summative purposes, users need to examine those impact factors carefully in order to
minimise negative impacts on learning and learners.

Discussions in 2013 led to three main recommendations. First, researchers, policy-
makers and practitioners agreed to examine and promote assessment of collaborative
learning in problem solving environments as an important and complex digital perfor-
mance space both for learning and for assessment. For example, significant challenges
remain for developing validation approaches that can take account of the complexity of
learning experiences for collaborative group tasks. Second, the group saw a need to
develop theory for big data in educational research. Third, the group underscored the
primacy of the need to engage teachers in the design of learning analytic tools for
instructional practices and in interpreting and using results.

The working group concluded that developing theory for the application of data
science methods in educational research is important for two primary reasons. First,
assessment of virtual performance presents new challenges for psychometrics (Clarke-
Midura and Dede 2010; Ifenthaler et al. 2012; Quellmalz et al. 2012). Secondly,
working with ‘big data’ needs to be included in educational research preparation and
practice, because new tools are needed for discovery of patterns and drivers in complex
systems (Gibson 2012; Patton 2011). Indicators of progress on this action item would
be first, an increase in articles explaining the use of data science methods in learning
analytics to improve learning and the achievement; second, the expansion beyond
traditional statistics in educational research, to include data mining, machine learning,
and in general, the methods of data science.
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3 Psychometric challenges

Psychometrics is the branch of psychology that deals with the design, administra-
tion, and interpretation of quantitative tests for the measurement of psychological
variables such as intelligence, aptitude, and personality traits (Psychometrics
2014). Until recently, the field dealt almost exclusively with the construction
and validation of measurement instruments such as questionnaires, tests, and
personality assessments. However there is now a need to expand to include highly
interactive digital learning and adaptive test experiences, such as the OECD PISA
assessment of CPS discussed in the companion article (Webb and Gibson 2015).
In brief, PISA is a triennial international survey that aims to evaluate education
systems worldwide by testing the skills and knowledge of 15-year-old students in
order to determine the extent to which they can apply their knowledge to real-life
situations and hence are prepared for full participation in society. The plan for the
OECD assessment of collaborative problem-solving provides an example of an
expert conception of how someone solves a problem, conjoined with how they do
so in a collaborative environment (PISA 2013). To constrain the quite complex
variables that would be involved if the collaboration was among a set of real
people, the OECD assessment utilizes the computer to play roles as collaborators
in a virtual performance assessment (Clarke-Midura et al. 2012). Even with these
constraints, the PISA plan incorporates a complex behaviour space that illustrates
some of the new demands on psychometrics.

A good psychometric test is Binternally consistent, reliable over time, discriminating
and of demonstrated validity in respect of its correlations with other tests, its predictive
power and the performance of various criterion groups. It also has good norms^ (Kline
1998, p.92). The challenge with technology enabled assessments is to preserve these
features while evolving the procedural foundations of psychometrics, which until
recently have been primarily based on population statistics and static snapshots of data.
The new foundation outlined here highlights the need to include time sensitivity, digital
performance space relationships, multiple layers of aggregations at different scales, and
representations of the dynamics of a complex behaviour space (Gibson and Jakl 2013;
Quellmalz et al. 2012).

3.1 Time sensitivity

In the OECD assessment of CPS, time is controlled as a boundary variable of the test as
in traditional tests and the computer is used to prompt the test taker to ‘move on’ when
the evidence rule system detects that the student needs to be rescued from an unpro-
ductive problem-solving path. The decision to redirect is made somewhat more natural
to the situation because the computer is playing the role of one or more collaborators,
so the suggestion to move on comes from a simulated peer. This situation illustrates that
an assessment might well give the student perceived or actual control over time,
compared to an assessment that only displays test item prompts in a timed test.
However, in other cases of virtual performance assessment, time is truly open-ended,
and the use of item resources (e.g., in what order, with or without returning to the
resources multiple times, time spent with each resource, timing of the appropriate use of
a resource, and total time to utilize the appropriate resources to accomplish the task) all
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may be critical to the classification of the learner’s response (Gibson and Jakl 2013;
Stevens and Palacio-Cayetano 2003).

A metaphor that helps illustrate the time sensitive aspects is to think of the problem
of assessing the performance of a Beethoven symphony, a kind of collaborative
problem-solving challenge for the orchestra (interpreting and performing) as well as
the audience (listening and re-interpreting). It is not helpful to think of averaging all the
notes into one event for all four movements (34 min), or for one movement (8 min), or
even for one moment of one movement. It is the richness and complexity of the
separate notes and how they change over time that is the appropriate context for an
assessment of the performance; likewise with learning processes and performances
such as collaborative problem solving and other learning situations.

The OECD assessment solves the time sensitivity problem by parsing time into
critical events and then monitoring the event patterns to detect the level of evidence of
the competencies in the domain model (Table 1). This is a form of time segmentation,
because some events cannot happen until other events have occurred (e.g., establishing
and maintaining team organisation must occur after establishing a shared vision, and
while maintaining that vision and taking appropriate action to solve the problem). A
planned sequence of activities and timed release of testing resources, known in game-
based learning as a ‘branching storyline’ (Aldrich 2005) is a method for controlling the
evolution of a process. Other problem-solving contexts, such as coordination of group
actions needed for group-based scientific inquiry and experimentation, require simul-
taneous actions mixed with sequences of actions. The classification system of the
assessment has to handle patterns of simultaneous and sequential interactions in order
to make valid links to time-sensitive evidence rules within the conceptual assessment
framework (CAF), which is a key component of evidence centred design (Mislevy et al.
1999), an approach that is becoming increasingly prominent in assessment design, and
on which our analysis is based. The CAF has three core components: the student
model, task model and evidence model (Mislevy et al. 1999, 2003a) within and among
which the time sensitive relationships adhere.

3.2 Digital performance space relationships

This section reviews how representations of knowledge and know-how have been
discussed in test theory, in mental representations and model-based assessment in order
to trace a path to the some of the challenges of big data in educational assessment and
to make three points. First, a learning experience entails a designed structure of
knowledge and action (Jonassen 1997) and when that experience is interactive and
digital there are many measurement challenges (Quellmalz et al. 2012). Second, the
emerging varieties of network analysis (e.g., social networks, visualization, artificial
neural networks, decision trees) are critical new analytical tools and methods for
understanding technology-enhanced learning (Choi et al. 2010; Shaffer et al. 2009).
Third, the traces of knowledge and action (i.e., the actions, communications and
products) created by a learner during the course of interacting with a digital learning
application bear a relationship to that person’s mental representations of the problem
(Newell and Simon 1972) and the knowledge and capability they acquired, accessed
and utilized during the interaction (Pirnay-Dummer et al. 2010; Thagard 2010). This set
of ideas, which have components in the real world as well as in the learner’s mind, will
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be referred to as ‘digital performance space relationships’ which are taken to be similar
to ‘items’ and ‘constructs’ in classical test theory.

An interactive digital performance space can support several scenarios, each with
one or more classification challenges for inferring what the test taker knows and can do.
In classical test theory, the construct plays a similar role to the digital performance
space; several test items are used to make multiple measures of the construct. For
example, in the OECD assessment discussed in the companion article, the scenarios
presented to the student are designed to sample the digital performance space construct
of ‘collaborative problem solving.’ Each scenario allows the classification of the test
taker into one or more cells of a matrix created by the intersection of three stages of
‘collaboration’ with four stages of ‘problem-solving’ (Table 1). A review of the
historical idea of a valid construct will be helpful for making the bridge from classical
testing to the digital age.

In the mid-1950s the problem of validating a test was discussed by psychologists in
order to address a concern that a variety of ideas about ‘construct validity’ had arisen in
the preceding years, which opened the door to nonconfirmable test claims (Cronbach
and Meehl 1955). A proposal was therefore put forward to conceptualize the problem
of construct validity using the idea of a nomological network from the philosophy of
science. A nomological network is a collection of overlapping mappings (i.e., statistical
or deterministic rules that relate one thing to another) from (a) observable properties or
quantities to one another; (b) different theoretical ideas to one another, or (c) theoretical
constructs to observables (ibid). A single mapping might include examples of all these
relations, as a construct might be a complex set of factors that interact with one another.

The construct can change and become more elaborated over time, as Cronbach
noted:

When a construct is fairly new, there may be few specifiable associations by
which to pin down the concept. As research proceeds, the construct sends out
roots in many directions, which attach it to more and more facts or other
constructs.

The construct was thought of as an inductive summary and as part of a series of
validity investigations that included concurrent, predictive and content considerations.
The idea of a network of ideas and relationships was a fairly abstract philosophical idea
in the 1950’s but today has a concrete meaning that has become known as network
theory in social science (Borgatti and Halgin 2011) and network analysis in computa-
tional sciences, both of which are applied graph theory from mathematics (Brandes and
Erlebach 2005).

Bridging from the historical roots of construct validity in measurement theory
into the present day of digital media learning experiences, a complex performance
(a complex construct) can be recorded in high detail in terms of the actions,
communications and products created by the learner. A bridge is possible because
the structure and affordances of a digital performance space (e.g., the resources and
affordances for action, communication and creation of artifacts) can be represented
as a network by mapping each digital resource to a node and each action, commu-
nication or product creation relationship to an edge connecting nodes to one
another.
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Digital media learning presents problems as well as prompts for learner performance
(e.g., problem-solving, collaboration) in a space that is characterized by hyperlinked
resources that can be represented as nodes and relations in a network (Clarke-Midura
et al. 2012; Quellmalz et al. 2012; Stevens 2006). As a learner uses such a space to
learn and perform (e.g., interacting with the resources to solve a problem, adding new
information, re-arranging resources into new relationships) a new network can be
created that represents the learner’s response, a time-specific performance path through
the digital performance space (Ifenthaler et al. 2012). The learner’s performance
network is a constructed knowledge structure that needs to be taken into account in
assessment (Gijbels et al. 2005). This section asserts that the digital performance space
and the constructed knowledge structure of the learner hold the same kind of relation-
ship as the nomological network does to a demonstrated construct (Cronbach and
Meehl 1955); the digital performance space holds the learning designer’s view of the
construct (e.g., what it means to act like a scientist in a given situation) and the
constructed knowledge structure (e.g., what the learner did in this instance) holds
evidence of the processes and products of knowing and doing.

The terms of the nomological network inference, which underpins a claim of
construct validity, bear a similarity to the rules of a chain of a reasoned argument,
which can lead to a claim concerning what a learner knows and can do as used in
Evidence-Centered Design (Table 2). In ECD, an argument has constituent claims, data,
warrants and backing and must take account of alternative explanations. In a nomo-
logical network by comparison, there are observations, ideas and relationships and a

Table 2 Evidence Centered Design claims vs Nomological Network construct validation

Evidence-Centered Design Claims Nomological Network Claims

Claims about what someone knows and can do based
on an assessment are supported by a chain of
reasoning or argument leading from data to the
claim, which is supported by warrants (e.g.,
hypotheses or truth statements) and backing
(e.g., historical data).

A claim that a test is a measure of a construct requires
a chain of inference from a network of propositions
of observables, ideas, and their relationships
(the nomological network) to the construct.

A claim can face a counter-argument supported
by alternative hypotheses and rebuttal data.

An individual measure only addresses and utilizes part
of the nomological network.

Claims may be remote from data Claims concerning a construct may be remote
from observation

Evidence is interpretation of data to make a claim Nomologicals may be derived from other parts
of the network or new observations

Establishing validity entails making the warrant
explicit, examining the network of beliefs and
theories on which it relies, and testing its strength
and credibility through various sources of backing.
It requires determining conditions that weaken the
warrant, exploring alternative explanations for
good or poor performance, and feeding them back
into the system to reduce inferential errors Mislevy
et al. (2003b).

Establishing construct validity entails making contact
with observations, and exhibiting explicit, public
steps of inference (Cronbach and Meehl 1955)
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chain of inference must be used in order to establish a claim that a particular test is a
measure of the construct.

The relationships and nodes of a network representation of the traces of learner
interactions can be compared to the digital performance space resources and relation-
ships to enable inferences about what the learner knows and can do (Al-diban and
Ifenthaler 2011; Quellmalz et al. 2009). Network measures such as similarity, centrality,
clusters and pattern matching are used in such inferences, where the patterns of the
network imply functional and structural connectivity (Sporns 2011). Digital perfor-
mance space relationships examined with time sensitive network analysis has increased
the ability of research to characterise and make comment on processes, products,
knowledge and know-how, and their complex entanglements in authentic performance
settings.

3.3 Layers of aggregations and translations

In the OECD assessment of CPS, aggregations of events into tasks takes place in a
hierarchy that begins at the top with a scenario and ends within each task of the scenario
at the level of a ‘turn’ - a game-based learning concept that updates the state of the
scenario based on the learner’s input.

Each problem scenario (unit) contains multiple tasks. A task, e.g., consensus
building, is a particular phase within the scenario, with a beginning and an end. A
task consists of a number of turns (exchanges, chats, actions, etc.) between the
participants in the team. A finite number of options leading onto different paths
are available to the participants after each turn, some of which constitute a step
towards solving the problem. The end of a task forms an appropriate point to start
the next task. Whenever the participants fail to reach this point a ‘rescue’ is
programmed to ensure that the next task can be started (PISA 2013).

With this hierarchy in mind (e.g., scenarios containing tasks that contain turns) the
challenge of aggregating with time sensitivity and translating from one level of analysis
to another can be addressed with moving averages, sliding time windows, and event
recognition. The OECD uses event recognition, in which an action, communication or
product of the test taker triggers a reaction by the test engine to update the scenario,
which might include rescuing the test taker. In a moving average, some window of time
is selected (e.g., every second, or after every three turns) and an average is performed to
form an abstracted data layer that preserves some of the shape of the data movement
over time. In the sliding time window (Choi et al. 2010; Han et al. 2007), a combination
of event recognitions and moving averages, or some configuration of either, might be
performed and then used as an abstracted data layer. In the example case 1 summarized
below, for example, the time stamps of every action were subtracted from each other to
compute duration, which was then applied to each action, to nearby action-pairs and to
action-ngrams (motifs) for further analysis.

Within any slice of time, or when comparing two or a few slices of time, standard
statistical procedures and aggregations apply (e.g., means testing, correlations, regres-
sions), but when high resolution data is involved (e.g., many data points per record per
unit of time) and where there are complex aggregations (e.g., widely varying sources of
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data and different units of measure) then data mining techniques are more applicable.
Of note, regression techniques in data mining are not equivalent to the same methods in
statistics, even though the terms sound and look the same. In data mining regression
represents a search within a complex nonlinear space for patterns and representations of
structure and causal dynamic relationships, rather than the reduction of error of a linear
model (Schmidt and Lipson 2009). Thus, aggregations in the two approaches are also
of different lineage and need to be considered as separate entities with separate
representational functions, meaning and purposes (Bates and Watts 1988).

3.4 Representations of dynamics

Systems dynamics (Bar-Yam 1997; Sterman 1994) involves a mathematical modeling
technique for framing, understanding, and discussing the preceding sections’ issues of
time, digital performance space relationships and aggregation-translation in highly
interactive technology-enhanced assessments. Field experiments with systems dynam-
ics methods have for example, focused on mid-level model-based theory building in an
assessment context (Kopainsky et al. 2010). The process of building a model from
snapshots of a dynamic system is called a ‘nonlinear state space reconstruction’
(Sugihara et al. 2012). In such a state space all the data falls within a finite band or
manifold of behaviour. That is, every state of the system will be in one of the spaces
created by the finite possibilities for each variable at some point in time. Such recon-
structions of the underlying manifold governing the dynamics of a system can map to
and uncover the causal relationships in a complex system (Schmidt and Lipson 2009)
including those that support inferences concerning what a user knows and can do.

Visualizing the current status of a learner’s progress on an assessment is an example
of representing a state of a dynamic system, as is visualizing the progress of the learner
in relation to a domain model driving the assessment’s evidence collection processes.
The Khan Academy (Khan 2011) for example, charts progress in learning mathematics
or science content against a visualization of the content hierarchy. If the learner has
mastered division, a visual tree shows how mastery fits with addition and subtraction
and allows access to the next higher level of math skill. More dynamic and fine-grained
visualizations are also possible, for example, that would trace the process steps of a
solution, or document the details of a constructive process. Visualizations can aide
pattern discovery involving both nonverbal and verbal expressions; for example, from
bodies of text, from online student discussion forums, and from cognitive and mental
model representations (Pirnay-Dummer et al. 2010).

To date the developments in learning analytics that provide visualisations of learning
traces for learners and teachers have been represented by learning analytics dashboards.
Such dashboards have been developed that keep track of time, social interactions for
insights into collaboration, use of documents and tools, and artefacts produced by
students (Verbert et al. 2013). While these dashboards currently fall far short of the
detailed traces of assessment data that are possible to create, even these more limited
opportunities for analysing their learning have been found to support learners’ reflec-
tion and improve self-assessment as well as increasing course satisfaction (Verbert,
et al. 2013).

Examples of the more highly detailed traces are readily found in serious games, as
well as casual games that are designed to be immersive and emotionally engaging
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rather than a simple pastime (Aldrich 2005). In these game-based examples, the high-
resolution feedback is always on, giving the player an up-to-date view of progress,
hints about upcoming challenges, and a view to the longer-term goal (Prensky 2001).
Clearly educators and researchers might want to promote to policymakers the impor-
tance of researching the methods and impacts of presenting visualisations of data to
teachers and learners along with developments in data processing that will better enable
judgements of student performances.

Perhaps the biggest unresolved issue of representation of collaborative learning (and
perhaps any learning progress during a complex process) is how to represent the
moving and evolving quality of change over time. ‘Movies’ of dynamic educational
processes (other than those perhaps in the minds of expert teachers) have not yet been
documented in some cases, and if existing, have not been widely disseminated into
common practice. This lack of a practice base and experience hampers theory as well as
practice in technology-enhanced assessments, and points to the need illustrated by the
cases in the next section, for future research and practice to create a shared understand-
ing of the methods of data science in educational research.

4 Big data lessons from cases

Three cases illustrate how technology enabled educational assessment can produce a
large number of records, how time and process can be an included mediating factor in
analysis and how machine learning and data mining methods are needed to support the
rapid simultaneous testing of multiple hypotheses.

4.1 Case 1: Virtual performance assessment

A game-based assessment of scientific thinking was created at Harvard (Clarke-Midura
et al. 2012) and analysed by one of the authors (Gibson and Clarke-Midura 2013) to
ascertain the abilities of middle school students to design a scientific investigation and
construct a causal explanation. A summary of the data science findings and issues
included the observation of two of the three aspects of big data: volume (~821,000
records for 4000 subjects, or 205 records per subject); and variety of data (user actions,
decisions and artifacts provided evidence of learning and thought processes). The third
element of big data, velocity, was less important in this case; because the flow of data
was not used in near-real time to give hints, correct mistakes, or inform the learner
during the experience, so the data was streamed off to storage for later analysis.

This case illustrates several of the features of big data in educational assessment.
First, the context was captured along with the learner action, decision, and product, but
that context needed to be effectively constructed from the smallest items of data into
larger clusters of information. For example, a data element named ‘opened door’ by
itself was relatively meaningless compared to knowing that it was a particular door,
opened after another significant event such as talking to a scientist. Thus, patterns of
action were transformed into n-grams (Scheffel et al. 2012) or motifs, which then
became the transformed units of analysis. This concept of the unit of analysis contain-
ing the semantic, time and space contexts for lower levels of aggregation may be a new
methodological requirement of digital assessments, and needs further study.
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Second, as a large number of users traverse through the network of possibilities in a
digital performance space, key movements of the population within the network can be
counted and then used as the basis for empirical prior probabilities which assist in
creating Bayesian inferences about the scientific problem-solving path-maps of learners
(Stevens et al. 2005). In particular, each pathway in such a network can be further
characterized or specified with a predictive nonlinear mathematical relationship (Gib-
son and Clarke-Midura 2013), found through symbolic regression, an evolutionary
machine learning technique (Schmidt and Lipson 2009). Or, alternatively an associa-
tion rule network can be created that distinguishes user action patterns and motifs
according to the prevalence of utilizing one resource compared to another. For example,
if 100 % of the population goes to resource 3 after resource 1 (skipping over and not
utilising resource 2), then with a very high probability, if the sample is a good sample of
the greater population, the next user entering the system will follow that path and the
inference system can make a highly probable educated guess about what the person
now using resource 1 will do next.

The third feature is that the complex set of relationships in various analyses such as
those just mentioned, bear a structural relationship to something meaningful about the
digital performance space as outlined above. For example, a cluster analyses can reveal
that some resources are critical to success and others are ignored and not important to
the most successful learners (Quellmalz et al. 2012) or a network visualization can
highlight how people relate to each other or to a task such as quoting and using
scientific resources (Bollen et al. 2009).

4.2 Case 2: Student performance and completion in a MOOC

In the second case, a massively open online 4-week course (MOOC) in astronomy at a
large university in Western Australia was the setting for an analytics study of the
relationship of activity to completion (DeFreitas et al. 2015). This case again illustrates
that volume of data, compared to traditional norms in educational research, is one of the
new characteristic features; the size and resolution of the MOOC data comprised
31,000 records for 177 subjects or 175 records per subject. The data set did not have
a high degree of variety so simple descriptive statistics were used to establish regimes
of learner behaviour and completion status, which were then explored for predictive
relationships. Symbolic regression equations were found to indicate plausible structural
relationships between the digital performance space and learner performance charac-
teristics, and the findings tended to confirm literature-based findings of a positive
relationship between consistency of effort (Duckworth et al. 2007) and age. It is
lamentable perhaps that early versions of massive open online courses are not able to
utilize rapid analysis to provide feedback to learners until enough performance history
has accumulated, so the users are not often provided with feedback based on such
analyses. In this case, the analysis worked with traditional data structures and con-
firmed previous research while adding new detail about the specifics of the predictive
relationship. For example, instead of only knowing that there is some positive linear
correlation between age and consistency of effort in the MOOC, a specific nonlinear
equation was produced specifying how much consistency of effort and in what
relationship to age as a factor. This illustrates that a goal of data science in
technology-enabled learning might integrate descriptive with inferential purposes.
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4.3 Case 3: A study of retention

In the third case, an analytics methodology followed a staged process of stakeholder
involvement in data acquisition, preparation, discovery and analysis, for the creation of
a self-organised map that facilitated the simultaneous testing of over 50 hypotheses – a
perhaps novel data science method in educational research (Gibson and de Freitas
2015). The three aspects of big data (volume, variety and velocity) are again noticeable
in this case. The volume of data comprised 13 million records for 52,000 subjects, or
about 250 records per subject. A wide variety of data was collected from ten digital
sources that included study patterns, performance in units of study, attendance, survey
question answers, demographic profiles, library records, and other diverse sources. The
velocity element was represented by the short timeline for data acquisition, preparation,
discovery and analysis managed in stages and engaging over 200 people in focus
groups and feedback sessions. The machine learning method applied during the
exploratory phase was an unsupervised self-organizing map, which proceeds based
on a multidimensional similarity metric. Here, as in case 2, nonlinear methods were
combined with linear statistics as appropriate.

The list of key elements and methods from these cases (Table 3) are relevant to
technology-enhanced assessment of collaborative learning for several reasons: the
potential scale of the data records, the inclusion of time as a mediating factor, the need
for machine learning and data mining methods and the possibility of simultaneous
testing of multiple hypotheses. The OECD plan to assess problem solving in a
collaborative context, for example, transparently utilizes the notion of motifs and
dynamic data reduction of action, communication and products because although the
data record of the assessment might contain a large number of clicks, products and
communications, the aggregation of elements into only 5 to 30 classifications (i.e.,
mini-assessments) per scenario, with each student input considered a ‘test item’
indicates that a layer of classification must take place on top of the click track, guided
by the domain model (Table 1) into collections of evidence with constrained options
(e.g., an action might be a binary ‘low or high’ on some scale, and the total number of
scenario options is limited to 16 configurations of the digital performance space).

A rationale for a new foundation for research methods has been provided in Gibson
(2012) based on the rise of complexity and data science and the observation that global
communications and business interactions today have outpaced the tool sets for
research in the learning and behavioural sciences. The evidence from these cases and
from what the OECD assessment of collaborative problem solving is planning to do
also supports the need for an expansion of the tools of educational research to include
data science methods.

5 Conclusion and implications for teaching and learning

This article has introduced four challenges of big data in educational assessments that
are enabled by technology: how to deal with change over time and time-based data;
how a digital performance space’s relationships interact with learner actions, commu-
nications and products; how layers of interpretation are formed from translations of
atomistic data into meaningful larger units; and how to represent the dynamics of
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interactions between and among learners who are being assessed by their interactions in
digital performance spaces. The article linked the big data challenges to solutions
offered in the OECD PISA assessment of collaborative problem solving, and then
reviewed some of the same issues by briefly summarizing how the newer methods were
used in three additional cases.

The challenges and issues discussed in this article reveal the requirements for
developments in theory as well as some of the practical challenges that will need to
be overcome if educators are to achieve the vision of providing learners and teachers
with a ‘quiet assessment’ system in which the impact can be turned up at the request of
learners and teachers as they seek to understand the progress of learning. This joint
approach which emphasises assessment AS, FOR and OF learning (Bennett 2010) is
discussed further in our sister article (Webb and Gibson 2015).

In moving forward to embrace the opportunities that could be provided by technol-
ogy enhanced assessments the challenges that remain to be addressed must not be
underestimated before educators can use automated assessments of complex skills and
understanding with confidence. In the sister article (Webb and Gibson 2015) some of
the potential risks associated with technology-based assessments are examined, espe-
cially if they: 1) focus only on assessing what is possible to be assessed by technology;
2) fail to enable learners and teachers to understand the basis of judgements made and
3) do not involve teachers in the design of assessment.
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