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Summary
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) 
superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental 
research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into 
osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed 
the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated 
signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. 
In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in 
tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating 
cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment 
(TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assess-
ing treatment efficacy.
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Introduction

The transforming growth factor β (TGF-β) superfamily is 
an evolutionarily conserved group of proteins with simi-
lar structural characteristics that are considered to appear 
from the early life history stage of multicellular (metazoan) 
evolution [1, 2]. The TGF-β superfamily has more than 30 
members, including TGF-1, activin, nodal, and bone mor-
phogenetic proteins (BMPs), and they can bind to different 
receptors, including activin-like kinases (ALKs), TGF-beta 

receptors (TGFBRs), and BMP receptors (BMPRs) [3]. 
BMPs were first discovered in 1965 for their ability to cause 
ectopic bone formation [4]. Subsequently, several studies 
indicated that BMP signaling is established as an organism 
develops and plays an important role in early embryogen-
esis, neural development, and retinal development [5–7]. A 
large amount of recent evidence emphasizes the relationship 
between cancer and BMP family members, BMP antago-
nists, and BMP receptors [8–10]. In addition, BMPs widely 
regulate various signaling molecules that may regulate cru-
cial events in tumor growth, metastasis, and tumor angiogen-
esis via diverse signaling pathways [11, 12]. Based on gene 
homology, protein structure, and function, BMP members 
have been further divided into seven subgroups: BMP-2/4, 
BMP-3/3b, BMP-5/6/7/8/8b, BMP-9/10, BMP-11/growth, 
BMP-12/13/14 and BMP-15/GDF9 [13–15]. In mechanis-
tic analysis, disulfide bonds covalently link two monomers 
of BMP molecules to form mature molecules that regulate 
normal physiological development and several diseases [16, 
17]. Within the BMP family, BMP2 has been widely studied 
for its functions in osteogenic differentiation, chondrogenic 
differentiation, and endochondral ossification in stem cells 
and mesenchymal tissue [18–20]. In oncology research, bone 
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marrow‐derived mesenchymal stem cells (BM-MSCs) are 
vital precursors of tumor stromal cells [21]. These results 
suggest that the potential role of BMP2 in cancer develop-
ment deserves further elucidation [22].

The functions of the other family members have been 
extensively investigated. The detailed information is shown 
in Table 1. The function of TGF-β family members is highly 
associated with the regulation of fibrosis, immune responses, 
chondrogenesis, osteogenic differentiation, and cancer. 
Throughout history, cancer has been one of the biggest 

threats to human health and life and one of the major causes 
of death [23]. Fortunately, cancer therapy research has made 
great progress in recent years, providing patients with vari-
ous new treatments. Molecular targeted therapy has been 
a real breakthrough in the treatment of cancer patients in 
recent years. Genes and proteins involved in cancers could be 
potential targets for the development of molecular targeted 
therapy. The functions and molecular mechanisms underly-
ing the anticancer potential of BMP2 are included in this 
review.

Table 1   Names and functions of TGF-β family proteins

Protein name Official symbol Functions

TGF-β1 TGFB1 Fibrosis [24], recovery after intracerebral hemorrhage [25], skeletal muscle regeneration [26], immune regulation 
[27], cancer [28, 29], chondrocyte dedifferentiation [30], atherosclerosis [31], nervous system development [32], 
cardiac remodeling [33], Alzheimer's disease [34], diabetic nephropathy [35], atopic asthma [36]

TGF-β2 TGFB2 Glucose and fatty acid metabolism [37], biliary-derived liver diseases [38], fibrosis [39], cancer [40, 41], 
regulating human hair cycle [42], extracellular matrix production in human trabecular meshwork cells [43], 
severe asthma [44], cartilage development and diseases [45], ameliorating osteonecrosis of the femoral head 
[46], activating proliferative scar fibroblasts [47], glaucomatous eyes [48], diabetic retinopathy [49]

TGF-β3 TGFB3 Regulation of immune responses [50], cancer [51], cerebral ischemia‒reperfusion injury [52], chondrogenesis 
[53], osteogenic differentiation [54]

Inhibin α INHA Follicle-stimulating hormone secretion [55], cancer [56–58], inhibiting osteogenic differentiation [59]
Inhibin β INHB Follicle-stimulating hormone secretion [55], cancer [60, 61], oxytocin secretion [62], metabolic disease [63]
Nodal NODAL Human placental development [64], cancer [65]
Myostatin MSTN Negatively regulates skeletal muscle cell proliferation and differentiation [66]
BMP-2 BMP2 Bone and cartilage development [67, 68], cancer [69]
BMP-3 BMP3 Suppressing osteoblast differentiation [70], negatively regulates bone density [71], fibrosis [72], cancer [73]
BMP-4 BMP4 Stimulated osteoprotegerin synthesis in osteoblasts [74], cancer [75], arterial stiffness and carotid atherosclerosis 

in patients with type 2 diabetes [76]
BMP-5 BMP5 Primary chondrocyte proliferation and cartilage matrix synthesis [77], sympathetic neuron dendritic growth 

[78], nephrosclerosis [79]
BMP-6 BMP6 Osteogenic differentiation [80], iron homeostasis [81], cancer [82], ovulation [83]
BMP-7 BMP7 Fibrosis [84], inflammation [85], callus remodeling [86], osteogenesis [87], cancer [88], kidney tissue 

development [89]
BMP-8 BMP8 Thermogenesis in brown adipose tissue [90]
BMP-9 GDF2 Idiopathic pulmonary arterial hypertension [91], fibrosis [92], cancer [93], osteogenic and angiogenic 

differentiation [94]
BMP-10 BMP10 Cardiovascular development [95], cancer [96]
GDF-1 GDF1 Congenital cardiovascular malformations [97]
GDF-3 GDF3 Cancer [98], embryonic development [99], myogenic cell fusion [100]
GDF-5 GDF5 Osteoblastic differentiation [101], white adipose tissue thermogenesis [102], osteoarthritis [103], Parkinson's 

disease [104]
GDF-6 GDF6 Normal formation of some bones and joints [105], ocular developmental anomalies [106]
GDF-7 GDF7 Cancer [107], osteogenic differentiation [108]
GDF-9 GDF9 Ovarian function [109]
GDF-9B BMP15 Ovarian function [109]
GDF-10 GDF10 Neural repair after stroke [110], cancer [111]
GDF-11 GDF11 Anti-Aging [112], cancer [113, 114], neuroprotection [115]
GDF-15 GDF15 Growth control [116], metabolic diseases [117], fibrosis [118], cachexia [119], cancer [120], aging [121]
MIS AMH Fertility [122]
Lefty A LEFTY2 Left–right asymmetry determination of organ systems [123], cancer [124]
Lefty B LEFTY1 Left–right asymmetry determination of organ systems [123], cancer [125]
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There are two types of BMPRs: type I BMP receptors 
(BMPIRs: BMPRIA, BMPRIB, and ActRI) and type II 
BMP receptors (BMPIIRs: BMPRII, ActRII, and ActRIIB). 
Studies have indicated that the expression of BMPRIA, 
BMPRIB, and BMPRII is related to tumor grade in human 
prostate cancer tissues [126]. In addition, the protein expres-
sion levels of BMPRIA, BMPRIB, and BMPRII were sig-
nificantly higher in B-cell chronic lymphocytic leukemia 
(B-CLL) cells than in normal cells. In particular, BMPRIA 
and BMPRIB were significantly upregulated in B-CLL 
patients with the advanced-stage disease [127]. BMP or 
BMPR mutations have been demonstrated in neoplasms in 
additional studies [128]. Thus, fully addressing the effects 
of BMPs in cancer is urgently needed. BMP2 is a candidate 
growth factor that has been approved by the Food and Drug 
Administration (FDA) for bone and cartilage repair and 
regeneration [129]. Abnormal activation of BMP2 can be 
detected in osteoarticular diseases [130]. It is worth noting 
that BMP2 signaling promotes non-small cell lung cancer 
bone metastases [131]. Recent studies have also highlighted 
the possible relationships of BMP2 with malignant cancer 
transformation, growth, and metastasis. We discuss the rel-
evant findings next.

BMP2 signaling

TGF-β signal transduction is usually divided into SMAD 
(small mother against decapentaplegic)-dependent classical 
pathways and nonclassical pathways that are independent 
of SMAD in most instances [131]. The TGF-β family com-
prises several members, and we used the TGF-β subfamily 
as an example to demonstrate the process of the TGF-β/
SMAD signaling cascade. The initiation of TGF-β/SMAD 
signaling is mediated by the binding of TGF-β ligands to 
its transmembrane TGF-β receptors, which include TGF-β 
type 1 receptor (TGF-βR1) and type 2 receptor (TGF-βR2) 
[132]. First, TGF-β ligands binding to TβRII form a heter-
odimeric that recruits and activates TβRI by phosphorylating 
specific serine and threonine residues. Then, activated TβRI 
phosphorylates SMAD proteins (SMAD2 and SMAD3) at 
C-terminal serine residues and forms phosphorylated het-
erodimers. Extracellular signals are transmitted intracel-
lularly. SMAD proteins act as the intracellular transducers 
of TGF-β signals and are grouped into three major classes: 
receptor-regulated SMADs (R-SMADs, e.g., SMAD1, 
SMAD2, SMAD3, SMAD5, SMAD8, and SMAD9), com-
mon SMADs (Co-SMAD, e.g., SMAD4), and inhibitor 
SMADs (I-SMAD, e.g., SMAD6, SMAD7) [133]. In the 
cytosol, SMAD4 is a common binding target for SMAD2/
SMAD3, which stabilizes the structure of SMAD2/SMAD3 
phosphorylated heterodimers by forming a trimeric complex. 
Subsequently, the trimeric complex is transported into the 

nucleus, cooperating with other DNA-binding transcrip-
tion factors, to regulate target gene expression [134, 135]. 
Additionally, I-SMADs may inhibit R-SMAD function by 
competing with SMAD4 for R-SMAD binding [136]. Simi-
lar to TGF-β/SMAD signaling, BMPs also activate SMAD 
proteins by relying on the binding of BMP ligands to type 
I and II BMP receptors in transmembrane signaling. Nota-
bly, the downstream targets of BMP receptors are SMAD1/
SMAD5/SMAD8, which form multimers with SMAD4 for 
transport into the nucleus and regulate the transcription of 
target genes by BMP responsive elements (BREs) [137, 138] 
(Fig. 1). The target genes of BMP2/SMADs include some 
key proteins that induce osteogenic differentiation, angio-
genesis, and signaling molecules to regulate other signaling 
pathways and networks [139, 140]. BMPRIA is the most 
effective receptor for BMP2 among the three types of I 
receptors [141]. Studies have shown that BMP2/BMPRIA/
SMAD signaling can upregulate the expression of the Wnt 
inhibitors Dkk1 and Sost in osteoblasts [142]. In addition 
to canonical SMAD-dependent signaling, several SMAD-
independent downstream signaling pathways, including 
classic mitogen-activated protein kinase (MAPK) pathways 
and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway 
[143–145], have also been reported.

BMP2 functions and molecular mechanisms 
in cancer

Early studies of BMP2/SMAD signaling mainly focused on 
the effect of inducing bone and cartilage formation [146, 
147]. With the in-depth study of BMP2 and the molecular 
biological mechanism of tumorigenesis, the role of BMP2 
in tumorigenesis has attracted increasing attention. Gene 
Expression Profiling Interactive Analysis (GEPIA, http://​
gepia.​cancer-​pku.​cn/​index.​html) is a web server for cancer 
and normal gene expression profiling and interactive analy-
ses based on t samples from the TCGA and GTEx databases. 
Differential expression analysis of BMP2 was performed on 
cancerous and para-cancerous tissues from the GEPIA data-
base, as presented in Fig. 2, implicating an important role 
for BMP2 in cancer. Further investigations will be reviewed 
to clarify the detailed mechanism.

Cancer stem cells (CSCs)

CSCs constitute a special subpopulation in cancer and are 
inherently present in cancer cell populations. With the ability 
to self-renew and produce heterogeneous cancer cells, CSCs 
are key drivers of processes of malignant cancer progression, 
such as metastasis, chemoresistance, and recurrence [148]. 
BMP2 can be used as a marker and promote the differentia-
tion of stem cells into chondrogenic and osteogenic tissues 
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[129]. Studies have demonstrated that BMP-2 can decrease 
the tumorigenicity of CSCs with high aldehyde dehydroge-
nase activity in the human osteosarcoma cell line OS99-1 

by reducing the expression of embryonic stem cell markers 
(Oct3/4, Nanog, and Sox-2) and inducing the transcription 
of osteogenic markers (Runx-2 and Collagen Type I) [149, 

Fig. 1   BMP2 signaling

Fig. 2   Gene expression profiles across all tumor samples and paired normal tissues from the GEPIA database (T: tumor, N: normal). Dot plot. 
Each dot represents the expression of BMP2 in a sample
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150]. BMP‑2 also weakened the tumor‑initiating ability of 
human renal cancer stem cells by initiating bone formation 
[151]. These results suggest that BMP-2 may provide an 
opportunity for cancer treatments by inducing differentiation 
along an osteogenic pathway. Additionally, BMP2 maintains 
the regulation of stemness features in cancer development. 
Glioblastoma multiforme (GBM) is characterized by spe-
cial hypoxic microenvironment centers and partially necrotic 
cores enriched with stem-like cancer cells that increase the 
formation of resistant populations. Studies have demon-
strated that BMP2 can increase glioblastoma stem-like cell 
responsiveness to chemotherapy by downmodulating the 
HIF-1α/MGMT axis [152]. Although intriguing, BMP2 
appears to regulate CSCs in a contradictory manner. BMP2 
signals also contribute to the emergence of cancer stem cells. 
In breast cancer, BMP2 induces epithelial-mesenchymal 
transition (EMT) and stemness through Rb and CD44 [153, 
154]. In colon cancer, BMP-2 induces cancer cell metastasis 
by regulating STAT3-mediated EMT and/or CSC marker 
expression [155]. In addition, BMP2 signaling activity can 
be detected in mesenchymal stem cells (MSCs) [156]. Bone 
MSCs have the ability to promote cancer growth and stem 
cell niche formation [157]. The regulatory mechanism is 
summarized in Fig. 3.

EMT

EMT refers to the process by which epithelial cells transform 
into mesenchymal cells [158]. Physiologically, epithelial 
cells are normally associated tightly with their adjacent cells 
via adherent junctions, tight junctions, and desmosomes. 
They also maintain apical-basal polarity and contact that 
inhibits their potential to dissociate from the epithelial layer 
[159]. Although mesenchymal cells are located adjacent to 
epithelial cells, they are loosely packed and lack polarity 
and intercellular junctions, which allows them to migrate 
through the extracellular matrix [160]. Epithelial cells trans-
formed into mesenchymal cells may lose their connection 
and polarity, change their morphology, and enhance their 
migration ability, thus gaining invasion and metastasis 
abilities [161]. Early studies pointed to the fact that BMP2 
induces EMT and invasion in colon cancer by activating the 
PI3K/Akt pathway [145, 162]. Similarly, BMP2 induces the 
mTORC1 pathway to promote nasopharyngeal carcinoma 
cell proliferation and invasion [163]. In human pancreatic 
cancer PANC-1 cells, BMP2 increases EMT-associated pro-
tein matrix metalloproteinase-2 (MMP-2) levels through the 
activation of ROS and ERK signaling pathways [164]. The 
regulatory mechanism is summarized in Fig. 1.

Fig. 3   The regulatory mecha-
nism of BMP2 in CSCs
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Angiogenesis

Angiogenesis is essential to maintain the supply of nutrients 
and oxygen required to support cancer growth. It is difficult 
for cancers to grow more than 2 mm in diameter without 
an increased supply of oxygen and nutrients [165]. Stud-
ies have indicated that BMP2 expression can be detected in 
several cancer tissues, and BMP receptors are overexpressed 
in circulating endothelial progenitor cells (EPCs) and MSCs; 
all of these factors are involved in cancer angiogenesis 
[166]. BMP2 overexpression was demonstrated to activate 
angiogenesis in cancer by inducing the phosphorylation of 
SMAD 1/5/8 and ERK-1/2. ERK-1/2 activation increased 
the expression levels of epidermal growth factor (EGF), vas-
cular endothelial growth factor (VEGF), fibroblast growth 
factor (FGF), and angiogenin, which all mediate cellular 
responses in endothelial cells. The inhibitor of DNA bind-
ing 1 (Id1) protein, which promotes angiogenesis, is the 
direct downstream effector of SMAD 1/5/8 [167]. In addi-
tion, a positive correlation between VEGF and BMP2 has 
been confirmed in lung cancer patients [168]. In an in vitro 
experiment, coculture with the hepatocellular carcinoma cell 
line HepG2 enhanced the angiogenic ability of endothelial 
cells via the BMP2-mediated MAPK/p38 signaling pathway 
[169]. Given its pivotal role in cancer angiogenesis, BMP2 
has been termed a potential target for the inhibition of cancer 
angiogenesis. Thus, BMP2 also has an anticancer effect on 
some natural compounds. For instance, linalool inhibited 
the angiogenic activity of endothelial cells by activating 
ERK-mediated BMP2 deregulation [170]. An arabinoga-
lactan from flowers of Panax notoginseng may reduce the 
migratory activity and tube formation ability of endothelial 
cells by inducing BMP2/SMAD/Id1 signaling [171]. The 
heparan sulfate (HS) mimetic WSS25 also inhibits cancer 
angiogenesis by blocking BMP2/SMAD/Id1 signaling [172]. 
The regulatory mechanism is summarized in Fig. 1.

Microenvironment

The influence of the TME on tumor cell behavior empha-
sizes the important relationship between the environment 
and cancer cell origin, growth, or metastasis. TME factors 
not only include carcinoma tissue structure, function, and 
metabolism but also include the intrinsic environment of 
cancer cells [173]. Overexpression of various growth fac-
tors and cytokines can be detected in the TME, and this 
phenotype is mediated by cancer cells via autocrine, par-
acrine, and juxtracrine mechanisms [174]. An increase in 
BMP2 protein levels in diverse TME has been detected, 
particularly in luminal cancers. Studies have indicated that 
high levels of BMP2 signaling mediated by the receptor 
BMPR1B promote the transformation of immature human 

mammary epithelial cells into luminal cancer-like cells, 
which could be related to the effect of BMP2 in control-
ling the maintenance and differentiation of early luminal 
progenitors [175].

Recent studies have found that several carcinoma-associated 
mesenchymal stem cells (CA-MSCs) are recruited to and aggre-
gate in the TME and promote cancer growth by increasing the 
number of CSCs. Notably, on the basis of expressing tradi-
tional MSC markers, CA-MSCs have a characteristic expres-
sion profile distinguished from MSCs in healthy individuals, 
and this profile includes BMP2. In a human ovarian carcinoma 
model in vitro, BMP2 augmented the effects of CA-MSCs on 
tumorigenesis and cancer stem cells [176]. In the bone micro-
environment, BMP2 upregulated the expression of osteogenic 
markers that facilitated MSC transformation into osteosarcoma 
with the help of WNT signaling [177]. The underlying mecha-
nism of high BMP2 expression in the TME may be attributed 
to intratumoural acidosis [178]. The regulatory mechanism is 
summarized in Fig. 1.

As innate immune cells of the myeloid lineage, macrophages 
have diverse capacities, including phagocytosis (such as path-
ogens, cell debris, foreign substances, microbes, and cancer 
cells), antigen presentation, and immunomodulation [179]. 
Tumor-associated macrophages (TAMs) are macrophages that 
infiltrate the TME and are major components of the tumor 
immune system [180]. Immune function regulation by BMP2 
signaling is dependent on the microenvironment. In the inflam-
matory response, BMP2 is known as a chemoattractant for lym-
phocytes, monocytes, and macrophages [181]. In liver cancer, 
high levels of BMP2 can aggravate cancer growth by regulating 
immune cells in the TME [182]. In turn, several immune cell 
types are important regulators of BMP2. Studies have indi-
cated that macrophages produce BMP2 in the process of bone 
healing [183]. A similar mechanism was detected in TAMs. 
In breast cancer, BMP2 has been demonstrated to be a driving 
force implicated in breast microcalcification formation; it is 
secreted by TAMs in the TME but not by the breast cancer cells 
themselves [184]. Therefore, BMP2 acts as a linker between the 
microenvironment and carcinogenesis, and cancer patients may 
benefit from treatments targeting BMP2.

Conclusions and perspective

Among the BMP family members, BMP2 is one of the most 
heavily studied. BMP2 protein can promote bone formation, 
similar to other BMPs that are well known as osteogenic 
growth factors. The biology of BMP2 has recently gained 
attention in a wide range of research fields, especially in 
cancer, resulting in the expansion of scientific understand-
ing around this protein. In this review, we discuss the 
roles of BMP2 in cancer, which may be associated with 
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transcriptional activation and signal transduction. Studies 
have also suggested that BMP2 plays roles in several char-
acteristic processes that contribute to cancer progressions, 
such as those related to CSCs, EMT, cancer angiogenesis, 
and the TME. Moreover, BMP2 mediates multiple signal-
ing pathways, including SMAD-dependent and SMAD-
independent pathways, many of which are carcinogenic. 
The most noteworthy finding is that BMP2 has dual roles in 
cancer development. On the one hand, BMP2 can inhibit the 
expansion of several malignant cancer stem cell subpopula-
tions by inducing chondrogenic differentiation, osteogenic 
differentiation, and endochondral ossification. On the other 
hand, BMP2 can promote tumorigenesis and development 
by mediating cancer-related gene regulation and signal acti-
vation. Nevertheless, a range of cancer patients may benefit 
from BMP2 inhibition.

BMP2 and BMP2-associated signaling pathways play 
a variety of roles in cancer based on current studies in 
molecular biology and model organisms. It is highlighted 
that the conflicting data on BMP2 indicate a demand for 
additional meticulous studies. For example, BMP2 acts as 
a tumor suppressor that inhibits CSC expansion by reduc-
ing the expression of embryonic stem cell markers and 
inducing the transcription of osteogenic markers in cancer 
progression. In contrast, BMP2 acts as an oncogene by 
inducing EMT and CSC formation. BMP2 also augments 
the effects of CA-MSCs on tumorigenesis and CSCs. In 
summary, published studies have suggested that BMP2 is 
essential for tumor development, and paradoxical effects 
have been observed. A therapeutic strategy aimed at 
BMP2 can only be developed after the role of BMP2 has 
been clarified.
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