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Summary
Breast cancer threatens women’s health. Although there are a lot of methods to treat breast cancer, chemotherapy
resistance still hinders the effectiveness of treatment. This study attempts to explore the mechanism of chemotherapy
resistance from the perspective of miRNA and look for several new targets for developing new drugs. Three datasets
(GSE73736, GSE71142 and GSE6434) from Gene Expression Omnibus (GEO) were used for the bioinformatics anal-
ysis. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DE-genes) were obtained by
using R package “limma”. DAVID tool was used to perform gene ontology annotation analysis (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the overlapping genes. Protein-protein
interaction (PPI) network was established by STRING database and visualized by software Cytoscape. Hub genes were
identified by software Cytoscape. The prognostic value of hub genes was assessed through Kaplan–Meier plotter
website. In total, 22 DE-miRNAs, 1932 DE-genes and top 10 hub genes were obtained. The genes were mainly enriched
in cell signaling pathways like ErbB signaling pathway and PI3K / AKT/mTOR pathway. These pathways have a
significant impact on the proliferation, invasion and drug resistance in cancer. MiRNA-Gene interaction may provide
new insight for exploring the mechanism of chemotherapy resistance in breast cancer. Our study ultimately identified
effective biomarkers and potential drug targets, which may enhance the effect of chemotherapy in patients with breast
cancer.

Keywords Breast cancer . Chemotherapy . Drug resistance . miRNA . Bioinformatics analysis

Introduction

Breast cancer is the most common malignant tumor among
women and is a highly heterogeneous disease [1]. According
to the hormone status and human epidermal growth factor
receptor 2 (Her2) status, it can be divided into four subtypes:
luminal A, luminal B, Her2-positive and triple negative breast
cancer (TNBC) [2]. Due to improvements in treatment and
early detection, the mortality of breast cancer declines year
by year. However, as a result of resistance to chemotherapy,
some patients especially those who can not benefit from other
treatments still have low survival rates [3]. Therefore, it is very

necessary to identify effective biomarkers and novel drug tar-
gets to improve the prognosis of breast cancer patients.

MicroRNA(miRNA) is a class of small noncoding RNAs
whose length is 19–22 nucleotides. MiRNAs can regulate
gene expression at the post-transcriptional level by binding
to the complementary sequence in the untranslated regions
(UTRs) of their target mRNAs [4]. Besides, miRNAs also
can interact with long non-coding RNAs (lncRNAs),
preventing miRNAs from binding to their target genes, there-
by interfering with gene expression [5]. In addition to cancer,
aberrant expression of miRNAs is also associated with many
other human diseases, like Parkinson’s disease and Coronary
Artery disease [6, 7]. In breast cancer, studies have shown that
miRNAs are involved in proliferation, apoptosis, migration,
invasion and drug-resistance [8–11].

In this study, we detected differentially expressed miRNAs
between chemo-sensitive breast cancer tissues and chemo-
resistant breast cancer tissues through the integration of two
microarray profiling datasets from Gene Expression Omnibus
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(GEO) database. Then, we used miRNA-Genes interaction
prediction database to obtain their target genes and compared
them with chemo-resistant related genes from another dataset
to generate a link between chemo-resistant miRNAs and
genes. Finally, we applied bioinformatics analysis to identify
the miRNAs and genes that play an important role in breast
cancer chemotherapy resistance, which might become new
biomarkers or drug targets.

Materials and methods

MiRNA microarray

The microarray datasets GSE71142, GSE73736 and
GSE6434 were downloaded from the GEO database.
GSE71142 and GSE73736 contained miRNA microarrays
from both chemo-sensitive tissues and chemo-resistant tissues
of breast cancer. GSE6434 contained the gene expression data
from chemotherapy sensitive and resistant patients.

Screening for DE-miRNAs

The raw data were normalized and analyzed by R package
“limma” from the Bioconductor project. The miRNAs with
|log2 fold changes (FC)|>1 and P value<0.05 were considered
as DE-miRNAs. The overlapping DE-miRNAs from the two
datasets were finally selected.

Prediction of target genes of DE-miRNAs and identi-
fication of DE-genes

The target genes of DE-miRNAs were predicted by
miRWalk3 database, which predicted target genes by
using its own TarPmiR algorithm or other miRNA-target
prediction datasets like TargetScan, miRDB and
miRTarBase. Only common target genes predicted by at
least two methods were chosen as potential target genes.
The common genes from both the potential target genes
and differentially expressed genes in GSE6434 were con-
sidered as DE-genes.

Gene ontology annotation (GO) and KEGG pathway
analysis

The online website, DAVID (http://david-d.ncifcrf.gov/), was
used to perform gene ontology annotation and KEGG
pathway enrichment analysis for DE-genes. All the data
were visualized by R package “ggplot2”.

PPI network analysis, hub gene identification and
miRNA-gene network construction

The STRING database is an online tool to analyze protein-
protein interaction. We submitted the DE-genes to the
STRING database and only chose the interactions with a con-
fidence score > 0.7. The PPI network was constructed by
software Cytoscape. The degree of connectivity in networks
was calculated to obtain the significant nodes and hub genes
(25). The miRNA-gene network was visualized by software
Cytoscape.

Survival analysis of hub genes

Kaplan-Meier plotter website (https://kmplot.com/analysis/)
is able to assess the effect of fifty thousand genes on
survival in several cancer types including breast, ovarian,
lung and gastric cancer. In order to analyze the relapse free
survival (RFS), the patient samples were split into two groups
according to the median level of each gene’s expression. The
website can automatically compare the two patient groups by
a Kaplan-Meier survival plot and calculate the hazard ratio
(HR) with 95% confidence intervals and log rank P values.

Results

Identification of DE-miRNAs and their target genes

According to the previously defined threshold, 22 DE-
miRNAs were finally screened out, including 10 upregulated
and 12 downregulated miRNAs (Fig. 1) in chemo-resistant
tissues, compared with chemo-sensitive tissues. MiRWalk3
database was employed to predict the target genes of the
DE-miRNAs and finally generated 3754 potential target
genes, including 1824 genes related to upregulated miRNAs
and 1930 genes related to downregulated miRNAs. Then, we
took the intersection of two miRNA sourced target genes and
chose the common part of genes between miRNA sourced
genes and GSE6434 sourced genes. Totally, 1932 genes were
acquired, including 978 genes for upregulated miRNAs and
954 genes for downregulated miRNAs.

Functional and pathway enrichment analysis

To further investigate the biological functions, KEGG path-
way analysis and GO analysis including molecular function
(MF), cellular component (CC) and biological process (BP)
were performed through DAVID tools. The top 10 most sig-
nificant Go terms and KEGG pathway terms for the target
genes of upregulated DE-miRNAs were shown in Fig. 2. On
the BP level, the genes were mainly enriched in positive reg-
ulation of transcription from RNA polymerase II promoter,
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regulation of phosphatidylinositol 3-kinase signaling and sig-
nal transduction. On the CC level, the genes were mainly
enriched in cytosol, nucleoplasm and cytoplasm. On the MF
level, the genes were mainly enriched in protein binding,
RNA polymerase II core promoter proximal region sequence
specific binding and kinase activity. The enriched KEGG
pathways included ErbB signaling pathway, pathways in can-
cer and insulin signaling pathway.

We also conducted GO functional and KEGG pathway
analysis for the target genes of the downregulated DE-
miRNAs. The top 10 most significant Go terms and KEGG
pathway terms were shown in Fig. 3. On the BP level, the
genes were mainly enriched in positive regulation of transcrip-
tion fromRNA polymerase II promoter, negative regulation of
transcription from RNA polymerase II promoter and intracel-
lular signal transduction. On the CC level, the genes were
mainly enriched in cytosol, cytoplasm and nucleoplasm. On
the MF level, the genes were mainly enriched in protein

binding, transcription factor binding and sequence-specific
DNA binding. The enriched KEGG pathways included pro-
teoglycans in cancer, neurotrophin signaling pathway and
GnRH signaling pathway.

PPI network analysis, hub gene identification and
miRNA-gene network construction

As we all know, proteins usually perform their functions by
interacting with other proteins. Thus, we used STRING data-
base to analyze the PPI network of the DE-genes of the both
upregulated and downregulated miRNAs. Software
Cytoscape was used to identify the top 25 hub genes accord-
ing to degree level (Fig. 4). For the upregulated miRNAs, the
top 10 hub genes were MAPK1, CTNNB1, PIK3CA,
PIK3R1, MAPK3, KRAS, APP, HSP90AA1, PTEN and
MAPK8. Among these genes, MAPK1 showed the highest
node degree(degree=64). For the downregulated miRNAs,
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Fig. 1 Heatmap for DE-miRNAs. a GSE71142, b GSE73736
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the top 10 hub genes were PRKACA, CDC42, MAPK1,
MAPK8, KRAS, POLR2E, SMAD3, STAT3, PTPN11 and
PTEN. Among these genes, PRKACA showed the highest
node degree(degree=54). As shown in Fig. 5, miRNA-hub
genes network was constructed by software Cytoscape. Hub
genes of upregulated miRNAs could be regulated by miR-

200c-3p, miR-214-3p, miR-33b-3p, miR-3927-3p, miR-
4277, miR-4422 and miR-4771. Among them, miR-214-3p
was predicted to target the most hub genes (n=12), indicating
that this miRNA may play an important role in chemotherapy
resistance in breast cancer. The hub genes of downregulated
miRNAs could be regulated by miR-30c-2-3p, miR-586,
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miR-587, miR-592, miR-1178-3p, miR-2681-3p, miR-3116,
miR-3162-5p, miR-4282 and miR-4472. Among them, miR-
587 was predicted to target the most hub genes (n=9). Besides,
miR-4472 and miR-4422 could respectively regulate 6 and 7
hub genes suggesting these four miRNAs may have great
effect on chemotherapy resistance in breast cancer.

Prognostic value of hub genes

The prognostic value of 16 unrepeated hub genes was obtain-
ed from Kaplan–Meier plotter website. As shown in Fig. 6, 13
out of 16 genes had statistical significance including SMAD3,
PTPN11, KRAS. High expression of PIK3R1, MAPK3,
KRAS, MAPK8, PRKACA, CDC42, SMAD3, STAT3,
PTPN11 and lower expression of PIK3CA, HSP90AA1,
PTEN, POLR2E were associated with a better RFS of breast
cancer patients (p<0.05).

Discussion

Although significant progress has been achieved in targeted ther-
apy, immunotherapy and endocrine therapy, breast cancer che-
motherapy resistance is still the main reason for limiting patients’
survival rates [12]. Yusuf Baran et.al pointed out that there are
many reasons for chemotherapy resistance and the main reason
that limits the success of chemotherapy is the development of
multidrug resistance [13]. Wang et.al showed that changing the
expression of miRNAs can effectively re-sensitise cancer cells to
cisplatin regimen in certain types of cancers including breast,

gastric, ovarian and prostate [14]. Here, we explored the possible
biomarkers and drug targets of breast cancer chemotherapy re-
sistance from the perspective of miRNA. In this study, we used
the method of bioinformatics to download data from public da-
tabases and screened out the disorderedmiRNAs associated with
breast cancer chemotherapy resistance and their corresponding
target genes. We found that mir-3927-3p had the largest differ-
ence multiple in the upregulated miRNAs, but probably because
mir-3927-3p was found late, it has not been studied yet in the
aspect of tumor proliferation or drug resistance. Mir-619 had the
largest difference multiple in the downregulated miRNAs. Study
has shown that the expression of mir-619 decreased in drug
resistant head and neck tumors [15]. As a sponge to lncRNA
and mRNA, mir-619 can not only promote tumor angiogenesis
but also the proliferation and invasion of colorectal cancer [16,
17]. In our study, the genes interactingwithmiR-214-3pwere the
most, sowe can speculate that miR-214-3pmay play a big role in
chemotherapy resistance of breast cancer. Study showed that
miR-214-3p can enhance cells’ proliferation by directly binding
to the 3’UTR of FOXP2 and down-regulating its expression in
breast cancer [18]. MiR-214-3p also can regulate the viability,
invasion, migration and Epithelial-Mesenchymal Transition
(EMT) of TNBC cells by targeting to ST6GAL1 [19]. Besides,
overexpression of miR-214-3p in NCCIT cells may lead to cis-
platin resistance [20]. Therefore, what roles these miRNAs play
in chemotherapy resistance is worth studying in depth.

Subsequently, we performed functional enrichment analysis
and pathway analysis of target genes of dysregulated miRNAs.
Consistent with the predictions, we found that these genes were
mainly concentrated in the cell signal transduction, and the
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signaling pathways were concentrated in the cell proliferation
and invasion-related pathways, such as Ras signaling pathway,
mTOR signaling pathway and ErbB signaling pathway. In the
study of hub genes, we also found the similar situation. Most of
the identified hub geneswere key genes in the signal transduction
pathways, such as MAPK1, CTNNB1 (encoding β-catenin),
KRAS, PTEN, SMAD3, BRCA1, etc. They mainly focus on
Ras/MAPK pathway, PI3K / AKT/mTOR pathway, Wnt / β-
catenin/mTOR pathway and SMAD / TGF- β pathway. Ras/
MAPK pathway is a classical pathway in tumor. About 15%

TNBC patients were Ras/MAPK altered at the genomic level
and Ras/MAPK activity can suppress expression of MHC-I
andMHC-II, which suggests cancer cells can circumvent antigen
presentation pathways by activating the MAPK pathway [21]. It
is believed that Ras/MAPK pathway is involved in chemothera-
py resistance in breast cancer. Steelman et.al pointed out that
PI3K/AKT/mTOR andRas/MAPK signaling pathways can reg-
ulate HER2 expression, while HER2 overexpression can also
activate both the PI3K/Akt/mTOR and Ras/ MAPK pathways
[22]. New evidence showed that activation of PI3K/AKT/mTOR
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pathway can partly cause the drug resistance in HER2-positive
breast cancer with brain metastasis [23]. In addition, TGF-β/
SMAD3 pathway also plays an important role in the induction
and maintenance of resistance to anti-HER2 drugs and inhibiting
SMAD3 can attenuate resistance to anti-HER2 drugs in HER2-
positive breast cancer cells [24]. All these studies indicate that
our research is credible and the interactions between miRNAs
and genes may have a great effect on the chemotherapy resis-
tance in breast cancer.

In summary, our study identified several miRNAs and hub
genes involved in chemotherapy resistance in breast cancer.
According to the functional analysis and survival analysis,
these genes and miRNAs may serve as potential biomarkers
or drug targets contributing to improve the survival rates of
breast cancer patients with chemotherapy resistance. In the
next plan, we will continue to explore the underlying mecha-
nisms of breast cancer chemotherapy resistance inmore depth.

Acknowledgements We thank every member of the research group for
their cooperation. We are also grateful to the creators and maintainers of
the public databases for providing resources for our research.

Authors’ contributions Bo Chen designed and guided this research.
Yujie Zhao, Nanxi Peng and Zuo Tao contributed to collection of data.
Ming Wu performed data analysis and wrote the first draft of the manu-
script. Bo Chen commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Data availability All data is available under reasonable request.

Compliance with ethical standards

Research involving human participants and/or animals This article
does not contain any studies with human participants or animals per-
formed by any of the authors.

Informed consent For this type of study, formal consent is not required.

Conflict of interest The authors declare no conflict of interest.

Ethics approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Consent to participate Not applicable.

Consent for publication All authors consent to the publication of this
study.

Code availability Not applicable.

References

1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA
Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

2. DeSantis CE, Ma J, Gaudet MM, Newman LA,Miller KD, Goding
Sauer A, Jemal A, Siegel RL (2019) Breast cancer statistics, 2019.

CA Cancer J Clin 69(6):438–451. https://doi.org/10.3322/caac.
21583

3. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N,
Poortmans P, Ruddy K, Tsang J, Cardoso F (2019) Breast cancer.
Nat Rev Dis Primers 5(1):66. https://doi.org/10.1038/s41572-019-
0111-2

4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism,
and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-
8674(04)00045-5

5. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of
ceRNA crosstalk and competition. Nature 505(7483):344–352.
https://doi.org/10.1038/nature12986

6. Hu YB, Zhang YF, Wang H, Ren RJ, Cui HL, Huang WY, Cheng
Q, Chen HZ, Wang G (2019) miR-425 deficiency promotes
necroptosis and dopaminergic neurodegeneration in Parkinson's
disease. Cell Death Dis 10(8):589. https://doi.org/10.1038/
s41419-019-1809-5

7. Dégano IR, Camps-Vilaró A, Subirana I, García-Mateo N, Cidad P,
Muñoz-Aguayo D, Puigdecanet E, Nonell L, Vila J, Crepaldi FM,
de Gonzalo-Calvo D, Llorente-Cortés V, Pérez-García MT, Elosua
R, Fitó M, Marrugat J (2020) Association of Circulating
microRNAs with coronary artery disease and usefulness for reclas-
sification of healthy individuals: the REGICOR study. J Clin Med
9(5):1402. https://doi.org/10.3390/jcm9051402

8. Liu Y, Yang Y, Du J, Lin D, Li F (2020) MiR-3613-3p from
carcinoma-associated fibroblasts exosomes promoted breast cancer
cell proliferation and metastasis by regulating SOCS2 expression.
IUBMB Life 72:1705–1714. https://doi.org/10.1002/iub.2292

9. Lei B, Wang D, ZhangM, Deng Y, Jiang H, Li Y (2020) miR-615-
3p promotes the epithelial-mesenchymal transition and metastasis
of breast cancer by targeting PICK1/TGFBRI axis. J Exp Clin
Cancer Res 39(1):71. https://doi.org/10.1186/s13046-020-01571-5

10. Zhou Q, Guo J, Huang W, Yu X, Xu C, Long X (2020) Linc-ROR
promotes the progression of breast cancer and decreases the sensi-
tivity to rapamycin through miR-194-3p targeting MECP2. Mol
Oncol 14:2231–2250. https://doi.org/10.1002/1878-0261.12700

11. Yi D,Wang R, Shi X, Xu L, Yilihamu Y, Sang J (2020)METTL14
promotes the migration and invasion of breast cancer cells by mod-
ulating N6-methyladenosine and hsa-miR-146a-5p expression.
Oncol Rep 43(5):1375–1386. https://doi.org/10.3892/or.2020.7515

12. Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L,
Mohammadinejad S, Baradaran B (2016) Cancer chemoresistance;
biochemical and molecular aspects: a brief overview. Eur J Pharm
Sci 89:20–30. https://doi.org/10.1016/j.ejps.2016.03.025

13. Kartal-Yandim M, Adan-Gokbulut A, Baran Y (2016) Molecular
mechanisms of drug resistance and its reversal in cancer. Crit Rev
Biotechnol 36(4):716–726. https://doi.org/10.3109/07388551.
2015.1015957

14. Wang S, LiMY, LiuY, Vlantis AC, Chan JY, Xue L, HuBG, Yang
S, Chen MX, Zhou S, Guo W, Zeng X, Qiu S, van Hasselt CA,
Tong MC, Chen GG (2020) The role of microRNA in Cisplatin
resistance or sensitivity. Expert Opin Ther Targets 24:885–897.
https://doi.org/10.1080/14728222.2020.1785431

15. Zheng Y, Song A, Zhou Y, Zhong Y, Zhang W, Wang C, Ding X,
Du Y, Zhang W, Li G, Wu H, Wu Y, Song X (2020) Identification
of extracellular vesicles-transported miRNAs in Erlotinib-resistant
head and neck squamous cell carcinoma. J Cell Commun Signal 14:
389–402. https://doi.org/10.1007/s12079-020-00546-7

16. Kim DH, Park S, Kim H, Choi YJ, Kim SY, Sung KJ, Sung YH,
Choi CM, Yun M, Yi YS, Lee CW, Kim SY, Lee JC, Rho JK
(2020) Tumor-derived exosomal miR-619-5p promotes tumor an-
giogenesis and metastasis through the inhibition of RCAN1.4.
Cancer Lett 475:2–13. https://doi.org/10.1016/j.canlet.2020.01.023

17. Chen G, Gu Y, Han P, Li Z, Zhao JL, Gao MZ (2019) Long
noncoding RNA SBF2-AS1 promotes colorectal cancer prolifera-
tion and invasion by inhibiting miR-619-5p activity and facilitating

711Invest New Drugs (2021) 39:705–712

https://doi.org/10.3322/caac.21590
https://doi.org/10.3322/caac.21583
https://doi.org/10.3322/caac.21583
https://doi.org/10.1038/s41572-019-0111-2
https://doi.org/10.1038/s41572-019-0111-2
https://doi.org/10.1016/s0092-8674(04)00045-5
https://doi.org/10.1016/s0092-8674(04)00045-5
https://doi.org/10.1038/nature12986
https://doi.org/10.1038/s41419-019-1809-5
https://doi.org/10.1038/s41419-019-1809-5
https://doi.org/10.3390/jcm9051402
https://doi.org/10.1002/iub.2292
https://doi.org/10.1186/s13046-020-01571-5
https://doi.org/10.1002/1878-0261.12700
https://doi.org/10.3892/or.2020.7515
https://doi.org/10.1016/j.ejps.2016.03.025
https://doi.org/10.3109/07388551.2015.1015957
https://doi.org/10.3109/07388551.2015.1015957
https://doi.org/10.1080/14728222.2020.1785431
https://doi.org/10.1007/s12079-020-00546-7
https://doi.org/10.1016/j.canlet.2020.01.023


HDAC3 expression. J Cell Physiol 234(10):18688–18696. https://
doi.org/10.1002/jcp.28509

18. Qin CX, Yang XQ, Jin GC, Zhan ZY (2019) LncRNA TSLNC8
inhibits proliferation of breast cancer cell through the miR-214-3p/
FOXP2 axis. Eur Rev Med Pharmacol Sci 23(19):8440–8448.
https://doi.org/10.26355/eurrev_201910_19156

19. Tao Y, Zhao Z, Ma J, Dong L, Liang Y, Li S, Mao Y, Li Y, Zhang
Y (2019) MiR-214-3p regulates the viability, invasion, migration
and EMT of TNBC cells by targeting ST6GAL1. Cytotechnology
71(6):1155–1165. https://doi.org/10.1007/s10616-019-00352-z

20. Hsieh TH, Liu YR, Chang TY, Liang ML, Chen HH, Wang HW,
Yen Y,Wong TT (2018) Global DNAmethylation analysis reveals
miR-214-3p contributes to cisplatin resistance in pediatric intracra-
nial nongerminomatous malignant germ cell tumors. Neuro-
oncology 20(4):519–530. https://doi.org/10.1093/neuonc/nox186

21. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P,
Combs S, Rimm DL, Giltnane JM, Estrada MV, Sánchez V,
Sanders ME, Cook RS, Pilkinton MA, Mallal SA, Wang K,
Miller VA, Stephens PJ, Yelensky R, Doimi FD, Gómez H,
Ryzhov SV, Darcy PK, Arteaga CL, Balko JM (2016) RAS/
MAPK activation is associated with reduced tumor-infiltrating lym-
phocytes in triple-negative breast cancer: therapeutic cooperation
between MEK and PD-1/PD-L1 immune checkpoint inhibitors.

Clin Cancer Res 22(6):1499–1509. https://doi.org/10.1158/1078-
0432.Ccr-15-1125

22. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J,
Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F,
Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F,
Libra M, Milella M, Tafuri A, Bonati A, Bäsecke J, Cocco L,
Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey
JA (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/
mTOR pathways in controlling growth and sensitivity to therapy-
implications for cancer and aging. Aging (Albany NY) 3(3):192–
222. https://doi.org/10.18632/aging.100296

23. Kabraji S, Ni J, Lin NU, Xie S, Winer EP, Zhao JJ (2018) Drug
resistance in HER2-positive breast cancer brain metastases: blame
the barrier or the brain? Clin Cancer Res 24(8):1795–1804. https://
doi.org/10.1158/1078-0432.Ccr-17-3351

24. Chihara Y, ShimodaM, Hori A, Ohara A, Naoi Y, Ikeda JI, Kagara N,
Tanei T, Shimomura A, Shimazu K, Kim SJ, Noguchi S (2017) A
small-molecule inhibitor of SMAD3 attenuates resistance to anti-
HER2 drugs in HER2-positive breast cancer cells. Breast Cancer Res
Treat 166(1):55–68. https://doi.org/10.1007/s10549-017-4382-6

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

712 Invest New Drugs (2021) 39:705–712

https://doi.org/10.1002/jcp.28509
https://doi.org/10.1002/jcp.28509
https://doi.org/10.26355/eurrev_201910_19156
https://doi.org/10.1007/s10616-019-00352-z
https://doi.org/10.1093/neuonc/nox186
https://doi.org/10.1158/1078-0432.Ccr-15-1125
https://doi.org/10.1158/1078-0432.Ccr-15-1125
https://doi.org/10.18632/aging.100296
https://doi.org/10.1158/1078-0432.Ccr-17-3351
https://doi.org/10.1158/1078-0432.Ccr-17-3351
https://doi.org/10.1007/s10549-017-4382-6

	Identification of chemoresistance-associated microRNAs and hub genes in breast cancer using bioinformatics analysis
	Abstract
	Introduction
	Materials and methods
	MiRNA microarray
	Screening for DE-miRNAs
	Prediction of target genes of DE-miRNAs and identification of DE-genes
	Gene ontology annotation (GO) and KEGG pathway analysis
	PPI network analysis, hub gene identification and miRNA-gene network construction
	Survival analysis of hub genes

	Results
	Identification of DE-miRNAs and their target genes
	Functional and pathway enrichment analysis
	PPI network analysis, hub gene identification and miRNA-gene network construction
	Prognostic value of hub genes

	Discussion
	References


