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Summary
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Under various treatments, some patients still have
a poor prognosis. Hence, it is necessary to find new valid targets for NB therapy. In this study, a comprehensive bioinformatic
analysis was used to identify differentially expressed genes (DEGs) between NB and control cells, and to select hub genes
associated with NB. GSE66586 and GSE78061 datasets were downloaded from the Gene Expression Omnibus (GEO) database
and DEGs were selected. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
applied to the selected DEGs. The STRING database and Cytoscape software were used to construct protein-protein interaction
(PPI) networks and perform modular analysis of the DEGs. The R2 database was used for prognostic analysis. We identified a
total of 238 DEGs from twomicroarray databases. GO enrichment analysis shows that these DEGs are mainly concentrated in the
regulation of cell growth, cell migration, cell fate determination, and cell maturation. KEGG pathway analysis showed that these
DEGs are mainly involved in focal adhesion, the TNF signaling pathway, cancer-related pathways, and signaling pathways
regulating stem cell pluripotency. We identified the 15 most closely related DEGs from the PPI network, and performed R2
database prognostic analysis to select five hub genes – CTGF, EDN1, GATA2, LOX, and SERPINE1. This study distinguished
hub genes and related signaling pathways that can potentially serve as diagnostic indicators and therapeutic biomarkers for NB,
thereby improving understanding of the molecular mechanisms involved in NB.
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Introduction

Neuroblastoma (NB) is the most common extracranial solid
tumor in children and an important cause of childhood cancer
deaths. It originates from the neural crest progenitor and most-
ly occurs in the abdomen, particularly the adrenal gland [1].
Although the incidence rate accounts for only 8% of all child-
hood cancers, the mortality rate is 15% of the total [2, 3]. The
clinical manifestations of patients with NB are diverse. Some

patients experience spontaneous degeneration or differentia-
tion into benign ganglioneuroma, whereas others remain af-
fected by tumor hazards after adopting intensive treatment
strategies [4, 5]. According to the clinical manifestations and
biological characteristics of tumors, including age, disease
grade, MYCN expansion or not, and histopathological mani-
festations, NB patients can be divided into low-, moderate-,
and high-risk groups [2, 6]. Patients in the low- and moderate-
risk groups responded better to surgery and chemotherapy,
and their long-term survival rate was over 90% [7]. Patients
in the high-risk group often have extensive metastatic lesions.
Even with intense chemotherapy combined with surgery, ra-
diotherapy, and autologous bone marrow stem cell transplan-
tation, their long-term survival rate is still less than 50%
[8–10]. Improving the cure rate and long-term survival rate
of NB patients in the high-risk group is key to improving the
overall prognosis, and an urgent problem that needs to be
solved in basic research and clinical treatment. Therefore, it
is necessary to find new valid targets for NB diagnosis and
treatment.
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Studies have shown that many biochemical molecular
markers are related to tumor occurrence and development
and can be used for early tumor screening [11]. However,
many markers are highly expressed in various types of tumors
and do not have excellent specificity [12]. Therefore, it is
necessary to further explore new specific diagnostic NB
markers as an auxiliary detection scheme for early diagnosis.
Currently, microarray technology and bioinformatic analysis
have become a promising and useful tool for screening

significant genetic or epigenetic variations that occur during
carcinogenesis and determining cancer diagnosis and progno-
sis [13]. Gene Expression Omnibus (GEO) is an international
public repository for the archival and free distribution of mi-
croarrays, next-generation sequencing, and other forms of
high-throughput functional genomic data [14, 15].
Researchers can obtain publicly available cancer data from
around the world, providing opportunities for mining of can-
cer gene expression profiles [15] and laying a foundation for

Fig. 1 Volcano plot distribution
ofDEGs and heatmap of the top
100 DEGs between the two
datasets. The volcano plot of (a)
GSE66586 and (b) GSE78061.
The blue points indicate the
screened downregulated DEGs,
red points indicate the screened
upregulated DEGs, and gray
points indicate genes with no
significant differences; Heatmap
for top 100 DEGs of (c)
GSE66586 and (d) GSE78061.
From red to blue, the expression
level of the gene in the sample
gradually decreases. All DEGs
are screened based on an Adjust P
value <0.01 and | fold change | >
2. (DEGs, differentially expressed
genes)
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improving the early diagnosis, treatment, and prevention of
various cancers.

In this study, we downloaded two NB chip datasets,
GSE66586 and GSE78061, from the GEO database [16,
17]. Differentially expressed genes (DEGs) were screened
by comparing gene expression between NB and control cells.
A protein-protein interaction (PPI) network was constructed
and module analysis of DEGs was performed through the
STRING database and Cytoscape software. Then, using gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis in the DAVID data-
base, functional annotation and signal pathway analysis were
performed on DEGs, and survival analysis was performed to
confirm the importance of prognosis. Finally, CTGF, EDN1,

GATA2, LOX, and SERPINE1 are the hub genes. These find-
ings may provide insights into the occurrence and develop-
ment of NB, as well as potential therapeutic targets for future
research.

Materials and methods

Microarray data

Two gene expression datasets (GSE66586, GSE78061) were
obtained from the NCBI Gene Expression Synthesis (GEO)
database, which can be obtained from http://www.ncbi.nlm.
nih.gov/geo/ [18]. The GSE66586 array data was submitted

Table 1 Overlapped
differentially expressed genes
(DEGs) between GSE66586 and
GSE78061 microarray data

DEGs Genes

Upregulated CRYAB, DAB2, TMEM47, SRGN, GLIPR1, ABI3BP, VGLL3, ANKRD1, DSP,
SERPINE1, IGFBP7, TAGLN, GRAMD3, NTN4, CAV4, ATP8B1, CTGF, ITGBL1,
PTX3, NEXN, CPQ, OX, CYP1B1,CCDC80, FBN1, CDH6, ITGA11, SGMS2,
CFH,ADGRL4, PDE1C, GJA1, CEMIP, IGFBP3, EMP1, MICAL2, KDELRS3,
TNFRSF10D, ACTA2, PTRF, NAV3, TRIM22, MICA, NID2, MIR31HG, PAPSS2,
SLC4A4, LOXL2, FST, PPP1R3C, RHOJ. LMO7, MYL9, RAB3B, PXDC1, MR1,
TPM2, COPZ2, ELL2, PDCD1LG2, PERP, FAM114A1, GPR1, GBP3, FXYD5, CSPG4,
SLC1A1, TRPC4, COL4A1, VEPH1, FSTL1, STC2, MGLL, NEK7, FSTL3, COL8A1,
MSRB3, GALNT10, TBC1D8B, LMOD1, EDN1, ITGA7, P4HA2, TMEM173,
NAALADL2, GBE1, NNMT, PLSCR4, UST, MYO10, ABHD4, P4HA1, SYNC, FLI1,
TBC1D2, CREB2L1, GCNT1, SGK3, NIPAL3, HTRA1, PHF11, SRPX2, CARD6,
MMP14, NCEH1, CCDC19, EFEMP2, LIF, SLC9A7, RNF144B,ADAMTS6, SQRDLM
C5orf46, PIEZO1, RNF180, PALLD, GLIS3, CD68, DYSF, MICB, MYH9, IL1RAP,
MYO1E, TPD52L1, PLA2R1, ADAMTS12, PLAUR, PLS3, QSOX1, SLFN12, KIFIC,
MAMLD1, CCBE1, RIN2, CD151, FAM129B, NMRL1, HFE, ABLIM3, LOXL1,
PRICKLE2, NALCN, GPRC5A, SPTLC3, UBASH3B, FHL2, TRAM2, KCTD11,
SIRPA, LXN, RUNX1

Downregulated STMN2, PLPPR5, CNTN1, PHYHIPL, GATA3, KIF21A, CHRNA3, ELAVL4, HAND2,
GNG4, UNC5C, PHOX2B, SLAIN1, KIF5C, NCAM1, ADAMTS9, ICA1, HIST1H3F,
TMOD1, ASCL1, EYA1, FZD3, ISL1, RNF157, SENA6A, SOGA3, JAKMIP2,
ADAM22, GAL, ZNF711, LINGO2, ELMO1, KLHL13, GATA2, GNG2, HIST2H4A,
CNTFR, ELAVL2, HISTIH3J, PPM1E, SNAP25, PDE3B, HIST1H3I, KIF5A, GLB1L2,
ADGRB3, ST6GALNAC3, TBX20, ATP8A1, TEX15, CENPV, GDAP1, FXYD6,
RNF144A, MMD, MAP2K6, 6-Sep, SYT4, LINC01296, SCML2, NDRG4, PTCH1,
CHRNB4, STRBP, EEF1A2, RCOR2, DNAJC12, ZNF124, LRRC8B, SCG2,
RUNX1T1, LRRFIP1, XNF670, CADM1, PITPNC1, CNIH2, 1-Mar, ADGRL1,
RAB39B, SMA4, ZNF660, SNORA5A, PELI1, NCALD, RND2, LSAMP, TBX3

DEG differently expressed gene

Fig. 2 Identification of
overlapped DEGs. Venn
diagram of (a) 151 overlapped
upregulated DEGs and (b) 87
overlapped downregulated DEGs
between GSE66586 and
GSE78061. (DEGs, differentially
expressed genes)
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by Gu L. et al., including eight NB and two control cells [17].
The GSE78061 dataset was submitted by Cole KA. et al., and
consisted of 25 NB and four control cells [16]. Both datasets
are based on the GPL6244 platform (Affymetrix Human Gene
1.0 ST Array; Agilent Technologies, Palo Alto, California,
USA).

Microarray data processing

The Affy package in R (http://cran.r-project.org/) was used to
perform a robust multi-array average (RMA) algorithm, the
original array data was converted into expression values, and
background correction, normalization, and probe summary
were performed [19, 20]. The paired T-test of the limma

package based on R was used to analyze the DEGs between
NB and control cells [21, 22]. Adjust P value (AdjP-value) <
0.01 and | log2FC | > 2 were considered as the critical values
for DEGs screening.

Integration of microarray data

The list of DEGs obtained from the two microarray datasets
was saved as a CSV file through limma packet analysis [21].
We downloaded the robust rank aggregation (RRA) software
package and used R to run the instruction code [23]. The gene
list was up- or downregulated and the two chips were used for
subsequent analysis. The RRAmethod can be publicly used in
the comprehensive R package.

Fig. 3 Functional enrichment
analysis of upregulated
differentially expressed genes
(DEGs). Analysis of (a)
biological process, (b) cellular
component, and (c) molecular
function
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Enrichment analysis of DEGs with GO and KEGG

The GO (http://www.geneontology.org) database can provide
a functional classification for genomic data, including
biological process (BP), cellular component (CC), and
molecular function (MF) [24]. Hence, GO analysis is a widely
used gene and gene product annotation tool. The “Kyoto
Encyclopedia of Genes and Genomes” (KEGG, http://www.
genome.ad.jp/kegg/) database is a networked website
designed to analyze, explain, and visualize gene functions
[25, 26]. DAVID (http://david.abcc.ncifcrf.gov/) is an
annotation, visualization, and comprehensive discovery
database, and an online tool for gene function classification,
useful for assessing the biological function of genes [27]. In

this study, GO enrichment analysis and KEGG pathway
analysis were performed using the DAVID website to study
the function of DEGs. Values with P < 0.05 were deemed
statistically significant.

PPI network construction and analysis

STRING (version: 11.0, https://string-db.org) is a search tool
for identifying interacting genes and proteins, and importing
DEGs into a database to construct a PPI network, which
shows physical and functional interactions [26]. In this
study, protein pairs with a total score > 0.4 were selected for
PPI network construction. Additionally, Cytoscape software
(version 3.6.1) was used to calculate the node degree through

Fig. 4 Functional enrichment
analysis of downregulated
differentially expressed genes
(DEGs). Analysis of (a)
biological process, (b) cellular
component, and (c) molecular
function
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the Network Analyzer application, and draw PPI networks
with different colors and sizes to show the adjustment (up or
down) and node degree [28]. Twelve methods in cytoHubba
(Betweenness, BottleNeck, Closeness, Clustering Coefficient,
Degree, DMNC, EcCentricity, EPC, MCC, MNC, Radiality,
and Stress) were used to rank and evaluate the hub genes, and
to finally generate the hub gene network; DAVID was used
for hub gene enrichment analysis of GO, and KEGG further
explained the reliability of the results.

Hub gene survival analysis

The R2 platform (http://r2platform.com) is a genomic analysis
and visualization platform that provides a biologist-friendly
interface for high-throughput data analysis. It was developed
in the Netherlands AMC Cancer Genomics Department,
where it remains the main entry point for all types of high-
throughput data. The R2 platform consists of two parts: a

publicly accessible database that stores data, coupled with a
web interface that provides a set of tools and visualizations to
mine the database. In this study, the hub DEGs were selected,
and the survival analysis of gene expression in related tumors
were performed through the R2 database to determine the
relationship between their expression in NB and patient prog-
noses. Bonfferoni P Value (Bonf P) < 0.05 was regarded as
the critical point with statistical significance.

Result

Microarray data information and identification of
DEGs

In order to identify DEGs, we performed background correc-
tion, and normalization of the NB expression microarray
datasets GDS66586 and GSE78061. When filtering the
GDS66586 dataset through the limma software package in R
(AdjP-value <0.01 and | log2FC | > 2), 778 DEGs were ob-
tained, including 355 upregulated and 423 downregulated
DEGs. Besides, 846 DEGs were screened from the
GSE78061 dataset, including 500 upregulated and 346 down-
regulated DEGs. The differential expression of multiple genes
in both sample datasets from each of the two microarrays is
shown in Fig. 1a and b. In addition, the cluster heatmap of the
top 100 DEGs is shown in Fig. 1c and d.

Identification of DEGs using integrated bioinformatics

In order to identify overlapped DEGs, we used the limma
software package to analyze the two NB gene expression mi-
croarray datasets, classified them according to logarithmic
change values, and then conducted an RRA analysis (Adjust
P value <0.01), which is based on the assumption that each
gene in each experiment is randomly ordered. If a gene is
ranked higher in all experiments, the smaller the Adjust P
value, the higher the likelihood of differential gene expres-
sion. RRA analysis showed 238 overlapping DEGs
(Table 1), including 151 upregulated and 87 downregulated
DEGs (Fig. 2).

GO and KEGG enrichment analysis of overlapped
DEGs

In order to understand the molecular functions and pathways
involving DEGs, we conducted a functional enrichment anal-
ysis. GO-based BP analysis showed that upregulated DEGs
were significantly enriched in cell adhesion, extracellular ma-
trix organization, angiogenesis, regulation of cell growth, and
cell migration (Fig. 3a), while downregulated DEGs were sig-
nificantly enriched in negative regulation of transcription,
neuron migration, cell fate determination, axon guidance,

Fig. 5 Pathway enrichment analysis of DEGs. KEGG pathway
analysis of (a) upregulated and (b) downregulated DEGs. (DEGs,
differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes
and Genomes)
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and cell maturation (Fig. 4a). GO analysis of CC showed that
upregulated DEGs were significantly enriched in the plasma
membrane, extracellular exosome, extracellular region, extra-
cellular space, and integral component of plasma membrane
(Fig. 3b), while downregulated DEGs were mainly involved
in the plasma membrane, Golgi apparatus, neuron projection,
cell junction, and neuronal cell body (Fig. 4b). RegardingMF,
upregulated DEGs were significantly enriched in protein

binding, transcription factor activity, RNA polymerase II reg-
ulatory region DNA binding, transcriptional activator activity,
and RNA polymerase II transcription factor binding (Fig. 3c),
while downregulated DEGs were mainly involved in calcium
ion binding, actin binding, heparin binding, actin filament
binding, and collagen binding (Fig. 4c). In addition, KEGG
analysis showed that upregulated DEGs were significantly
enriched in focal adhesion, the TNF signaling pathway, and

Fig. 6 Protein-Protein Interaction (PPI) network of differentially expressed genes (DEGs) constructed in STRING

58 Invest New Drugs  (2021) 39:52–65



arrhythmogenic right ventricular cardiomyopathy (Fig. 5a),
while downregulated DEGs were mainly involved in cholin-
ergic synapse, dopaminergic synapse, morphine addiction,
cancer pathways, and signaling pathways regulating stem cell
pluripotency (Fig. 5b).

PPI network construction, module analysis, and hub
gene determination

In order to study the protein-protein interactions of DEGs, we
used STRING network-based protein interaction analysis to
generate a PPI network from 238 DEGs overlapped in two
datasets (Fig. 6). Following further analysis in Cytoscape, the

top 100 DEGs were selected by 12 modules in cytoHubba and
intersected. A total of 48 overlapped DEGs were identified and
visualized (Fig. 7a). The 48 overlapped DEGs were sorted ac-
cording to their degree scores, and the top 15 DEGs with the
highest scores, namely ACTA2, COL4A1, LOX, CTGF,
FBN1, SERPINE1, FSTL1, GATA3, GATA2, TAGLN,
ISL1, HAND2, GJA1, MMP14, and EDN1, were selected
(Table 2) and visualized (Fig. 7b).

Hub gene survival analysis

In order to study the correlation between DEG expression
and NB patient prognosis, we further analyzed data for
649 samples through R2 database. Finally, we selected
the prognosis of CTGF, EDN1, GATA2, LOX,
SERPINE1, and NB patients in these 15 DEGs. The
closely related DEGs serve as hub genes. Among them,
the overall survival rates of patients with low CTGF and
LOX express ion and high EDN1, GATA2, and
SERPINE1 expression in NB were high (Figs. 8 and 9a-
e). Subsequent GO and KEGG enrichment analyses
showed that hub genes were mainly enriched in intracel-
lular signal transduction, cell-cell signaling, protein bind-
ing, HIF-1 signaling pathway, and Hippo signaling path-
way (Table 3), and the visualization results are shown in
Fig. 8. Bonf p < 0.05 was regarded as the critical point
with statistical significance.

Discussion

NB is a significant cause of childhood death, and early diag-
nosis and treatment are essential to prolonging the survival

Fig. 7 PPI network of DEGs
constructed in Cytoscape. PPI
network of (a) overlapped DEGs,
filtered out by 12 modules of
cytoHubba in Cytoscape, and (b)
the top 15 overlapped hub DEGs.
Red points represent upregulated
DEGs, and green points represent
downregulated DEGs. (DEGs,
differentially expressed genes;
PPI, protein-protein interaction)

Table 2 Top 15
differentially expressed
genes (DEGs) by degree
score ranking

Rank Gene Degree

1 ACTA2 14

2 COL4A1 13

3 LOX 13

4 CTGF 13

5 FBN1 12

6 SERPINE1 11

7 FSTL1 10

8 GATA3 10

9 GATA2 9

10 TAGLN 8

11 ISL1 8

12 HAND2 8

13 GJA1 8

14 MMP14 7

15 EDN1 7
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time of patients [29]. Therefore, it is necessary to further ex-
plore the predictive indicators and treatment goals of NB.
With the development of bioinformatics, DNA microarrays
are increasingly used to explore the early diagnosis, treatment,
and prognosis of cancer [30]. This study aimed to identify
DEGs between NB and control cells to further understand
the pathogenesis of NB and potentially provide diagnostic
biomarkers and therapeutic targets.

According to reports, studies using multiple cohorts tend to
have lower false positive and false negative rates than single
cohort studies [31]. However, due to factors, such as batch
effects and biological differences, multiple microarrays from
different platforms may obscure and confuse the real situation
[32]. In order to improve the reliability of DEG identification,
we selected two microarray datasets from the same platform,
then identified a total of 704 upregulated and 682 downregu-
lated DEGs. Among them, 151 upregulated and 87 downreg-
ulated DEGs were significantly expressed in both datasets. To
further define the role of these DEGs in NB, we conducted a
series of bioinformatic and prognostic analyses of these
DEGs.

GO enrichment analysis showed the upregulation of
DEGs mainly involved in BP, such as cell adhesion, regu-
lation of cell growth, and cell migration. In contrast, DEGs
mainly involved in BP, such as negative regulation of tran-
scription, cell fate determination, and cell maturation were
downregulated. Studies have shown that the reduction in

cell adhesion and the change in cell migration ability are
critical steps in cancer metastasis, which is consistent with
our the results from our analysis [33, 34]. For MF, DEGs
mainly involved in protein binding, transcription factor
activity, and cadherin binding were upregulated, whereas
DEGs mainly enriched in calcium ion binding, actin bind-
ing, and heparin binding were downregulated. Villalobos
and others pointed out that calmodulin plays an essential
role in tumor cell migration, invasion, and metastasis,
which supports our findings [35]. CC analysis showed that
the upregulation of DEGs was concentrated in the plasma
membrane, extracellular exosome, and extracellular re-
gion, whereas the downregulation of DEGs was concen-
trated in the plasma membrane, Golgi apparatus, and cell
junction. Some previous studies have shown that the role
of extracellular exosome and transcription factor activity in
tumor development and progression is consistent with the
results of this study [36]. Besides, KEGG enrichment anal-
ysis showed the upregulation of DEGs that were signifi-
cantly enriched in the TNF signaling pathway and the
downregulation of DEGs significantly enriched in the can-
cer pathways, signaling pathways regulating pluripotency
of stem cells, and cell adhesion molecules. This is also
consistent with the fact that TNF is a cytokine that can
directly kill tumor cells and has no apparent cytotoxicity
to healthy cells. The activation of the TNF signaling path-
way also plays a crucial role in tumor regulation [37, 38].

Fig. 8 Distribution of hub
DEGs in NB for GO
enrichment. (DEGs,
differentially expressed genes;
NB, Neuroblastoma; GO, gene
ontology)
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A PPI network was constructed for the identified DEGs,
and critical genes were defined according to degree levels.
ACTA2, COL4A1, LOX, CTGF, FBN1, SERPINE1,
FSTL1, GATA3, GATA2, TAGLN, ISL1, HAND2, GJA1,
MMP14, and EDN1were determined to have a high degree of

network connectivity, combinedwith gene expression and NB
prognosis correlation. We finally identified CTGF, EDN1,
GATA2, LOX, and SERPINE1 as hub genes among these
15 genes. Functional enrichment analysis of the hub genes
showed that the development of NB is related to angiogenesis,

Fig. 9 Survival Analysis of hub
differentially expressed genes
(DEGs). Survival Analysis of (a)
CTGF, (b) EDN1, (c) GATA2,
(d) LOX, and (e) SERPINE1 in
NB. Bonf p < 0.05 was regarded
as the critical point with statistical
significance
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protein binding, the HIF-1 signaling pathway, and the Hippo
signaling pathway.

CTGF, also known as CCN2 (Cell Communication
Network Factor 2), is a protein-coding gene that encodes pro-
teins that play a role in cell adhesion in many cell types and
participates in ERK signaling and the TGF-β pathway
[39–42]. Wang et al. pointed out that in cells overexpressing
TAZ, knocking out CTGF with small interfering RNA can
inhibit the expression of CTGF induced by TAZ, thereby
inhibiting the proliferation and colony formation of NB cells
[43]. Although there are relatively few studies on the role of
CTGF in NB, this provides some potential value for the study
of its role in NB.

EDN1 is a member of the endothelin family and is a
protein-coding gene. Abnormal expression of genes may
promote tumorigenesis [44]. SERPINE1 is a member of
the serpin protease inhibitor (serpin) superfamily, reported
to be involved in the Hippo signaling pathway [45].
Although there are no reports related to the research on
the role of EDN1 and SERPINE1 in NB, our GO and
KEGG enrichment analysis showed that EDN1 and
SERPINE1 were involved in the regulation of cell-cell
signaling, protein binding, the HIF-1 signaling pathway,

and the Hippo signaling pathway. This agrees with previ-
ous reports that the HIF-1 and Hippo signaling pathways
play a vital role in NB regulation [46–48].

GATA2 (GATA binding protein 2) is a protein-coding
gene that plays an essential role in regulating the transcription
of genes involved in the development and proliferation of
hematopoietic and endocrine cell lineages [49]. Hoene et al.
Pointed out that changes in the expression levels of GATA2
and its family in NB may be related to the pathogenesis of
neuroblastoma [50]. Wei and others pointed out that in the
transcriptome sequencing of three tumors including NB,
LPAR1, GATA2, and NUFIP1 had high expression levels
of mutant alleles, indicating that these mutant genes may have
carcinogenic effects [51]. These results indicate that GATA2
may be a potential marker for early cancer detection and
prognosis.

LOX is an extracellular copper-dependent amine oxidase,
which is involved in the crosslinking of collagen and elastin
lysine residues in the extracellular matrix. Its expression level
in tumors is related to tumor prognosis [52]. Studies have
shown that LOX/COX inhibitors can promote the differentia-
tion of neuroblastoma cells induced by all-trans retinoic acid
to a certain extent [53, 54]. Based on the role of LOX in

Table 3 Functional and pathway
enrichment analysis of hub
DEGs. (GO, gene ontology; BP,
biological process; CC, cellular
component; MF, molecular
function; KEGG: Kyoto
Encyclopedia of Genes and
Genomes)

Category GO ID Term Count

BP GO:0007507 herat development LOX, GATA2, EDN1

BP GO:0030195 negative regulation of bloof coagulation SERPINE1, EDN1

BP GO:0043200 response to amino acid CTGF, EDN1

BP GO0030324 lung development LOX, CTGF

positive regulation transcription from RNA

BP GO0045944 SERPINE1, GATA2, EDN1

polymarase II promoter

BP GO:0045766 positive regulation of angiogenesis SERPINE1, GATA2

positive regulation of cytosolic calcium ion

BP GO:0007204 GATA2, EDN1

concentration

BP GO:0030198 extracellular matrix organization LOX, SERPINE1

BP GO:0001525 angiogenesis SERPINE1, CTGF

BP GO:0007267 cell-cell signaling CTGF, EDN1

BO GO:0035556 intracellular signal transduction CTGF, EDN1

CC GO:0005615 extracellular space LOX, SERPINE1, CTGF, EDN1

CC GO:0005576 extracellular region LOX, SERPINE1, CTGF, EDN1

CC GO:0005578 proteinceous extracellular matrix LOX, CTGF

LOX, SERPINE1, CTGF

MF GO:0005515 protein binding

EDN1, GATA2

KEGG hsa04066 HIF-1 signaling pathway SERPINE1, EDN1

KEGG hsa04390 Hippo signaling pathway SERPINE1, CTGF

GO gene ontology, BP biological process, CC cellular component, MF molecular function
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tumors, with further in-depth research, LOX is expected to
become a potential target molecule for NB treatment.

In summary, the results from this study suggest that CTGF,
EDN1, GATA2, LOX, and SERPINE1 are NB hub genes.
GO and KEGG enrichment analysis of these five hub genes
further revealed their functions and pathways, and survival
analysis found them to be closely associated to the prognosis
of NB patients. These genes may become potential markers
for improving diagnosis, optimizing chemotherapy, and
predicting prognosis for NB, as pathways related to the genes
are potential therapeutic targets for NB. We plan to verify the
potential functions and pathways of these genes in future
research.
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