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Summary The goals of the present study were to define the
anticancer activity of LFM-A13 (α-cyano-β-hydroxy-β-
methyl-N-(2,5-dibromophenyl)-propenamide), a potent inhib-
itor of Polo-like kinase (PLK), in a mouse mammary cancer
model induced by 7,12-dimethylbenz(a)anthracene (DMBA)
in vivo and explore its anticancer mechanism(s). We also ex-
amined whether the inhibition of PLK by LFM-A13 would
improve the efficiency of paclitaxel in breast cancer growth
in vivo. To do this, female BALB/c mice received 1 mg of
DMBA once a week for 6 weeks with oral gavage. LFM-A13
(50 mg/kg body weight) was administered intraperitoneally
with DMBA administration and continued for 25 weeks. We
found that LFM-A13, paclitaxel, and their combination have a
significant effect on the DMBA-induced breast tumor inci-
dence, mean tumor numbers, average tumor weight, and size.
At the molecular level, the administration of LFM-A13 hin-
dered mammary gland carcinoma development by regulating
the expression of PLK1, cell cycle-regulating proteins cyclin
D1, cyclin dependent kinase-4 (CDK-4), and the CDK

inhibitor, p21. Moreover, LFM-A13 treatment upregulated
the levels of IκB, the pro-apoptotic proteins Bax, and cas-
pase-3, and down-regulated p53 and the antiapoptotic protein
Bcl-2 in mammary tumors. The combination of LFM-A13
with paclitaxel was found to be more effective compared with
either agent alone. Collectively, these results suggest that
LFM-A13 has an anti-proliferative activity against breast can-
cer in vivo and that LFM-A13 and paclitaxel combination
could be a strategy for the treatment of breast cancer.
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Introduction

Breast cancer is the most common cancer with the highest
morbidity and mortality in women all over the world. It is
estimated that there will be over 40,000 deaths from breast
cancer in 2017 in United States of America alone [1]. As the
number of breast cancer cases in many developing countries
has increased [2], it is a disease that afflicts both developed
and developing countries. Whilst African countries have ex-
perienced the lowest incidence rates of breast cancer, the inci-
dence of the disease in these areas is beginning to rise [3]. The
development of breast cancer is associated with alterations in
cellular differentiation, increased cell proliferation and defects
in apoptosis [4].

Polo-like kinases (PLK) are a family of highly conserved
mammalian serine/threonine protein kinases with multiple
functions during cell division, including centrosome matura-
tion, mitotic spindle formation, they can promote mitotic exit
and cytokinesis, and can regulate apoptosis [5–8]. There are
five mammalian PLKs called PLK1–5 [9]. PLK1 promotes
mitotic entry through the phosphorylation of Cdc25C [10].
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The expression of PLK1 is induced during S phase and
reaches its peak during the G2/M phase of the cell cycle
[11]. Notably, PLK1 expression is increased in different types
of cancer, including non-small cell lung cancer, ovarian cancer
and colon cancer [7, 11]. On the other hand, PLK3 functions
as an inhibitor of the Cdc25C and G2/M transition, and in-
creased expression of PLK3 leads to rapid cell cycle arrest and
apoptosis [12, 13]. Decreased expression of PLK3 has been
detected in lung carcinomas [14], head and neck cancer [15],
and rat colon tumors [16].

PLK inhibitors are being evaluated as a new class of anti-
cancer drugs. A number of animal studies has shown that PLK
inhibitors are useful in the treatment of tumors [17–19].
However, the molecular basis of the anti-cancer activity of
these inhibitors is still unknown. In this study, we evaluated
anti-tumor effects of PLK inhibitor, LFM-A13 (α-cyano-β-
hydroxy-β-methyl-N-(2,5-dibromophenyl)-propenamide) on
7,12-dimethylbenz(a)anthracene (DMBA)-induced breast tu-
mors in mice.We also evaluated the effect of LFM-A13 on the
expression of PLKs, cell-cycle regulatory proteins as well as
apoptosis-related proteins in DMBA-induced experimental
breast cancer to find the mechanism(s) underlying anti-
tumor activity in mice.

Materials and methods

Chemicals and reagents

LFM-A13 was synthesized and characterized as defined ear-
lier [20, 21]. LFM-A13 stock solutions were prepared inmeth-
anol and stored at −20 °C [18]. To obtain working solutions,
the stocks were further diluted in 90% methanol [18]. Non-
GMP grade solutions of LFM-A13 active drug were mixed
with 15% DMSO/PBS solutions for testing in mice. DMBA
and paclitaxel (taxol) were obtained from Sigma-Aldrich, Inc.
(St. Louis, MO, USA). Phosphate-buffered formalin (10%)
was purchased from Sigma (St Louis, MO). All the solvents
were of high purity and analytical grade (Merck Co.
Darmstadt, Germany). All antibodies were purchased from
Abcam (Abcam, UK).

Animals

Fifty day old female BALB/c mice were purchased from Firat
University, Elazig and housed in a constant temperature of 22
± 2 °C and humidity of 55 ± 5% under 12 h of light and 12 h of
darkness per day. Themice had an adaptation period of 1 week
before the beginning of the experiment.

The research was carried out within the framework of pro-
tocols approved by the Animal Care and Use Committee of
Firat University. All procedures for mice have been carried out

in accordance with the relevant law, the Animal Welfare Act,
the Public Health Service Policy.

Experimental design

The mice were allocated into five groups of 20 animals in
each: 1) control group, animals received no DMBA and was
given sesame oil, served as the negative control group; 2)
DMBA group, tumor-induced animals received a single dose
of DMBA dissolved in sesame oil, chosen as a positive con-
trol, 3) Paclitaxel + DMBA group, animals received paclitaxel
(10 mg/kg body weight, once per week intraperitoneally) [22]
after DMBA administration on day zero, 4) LFM-A13 +
DMBA group, received LFM-A13 (50 mg/kg body weight,
three times per week intraperitoneally), 5) Paclitaxel + LFM-
A13 + DMBA group, received paclitaxel and LFM-A13.
DMBAwas dissolved in sesame oil to give a 10 mg/ml stock
concentration and mice were gavaged p.o. with 0.1 ml (total
1 mg) DMBA once a week for 6 weeks [23]. Mice were
observed daily, and all the necessary data comprising body
weights and breast tumors were measured weekly. All mice
were sacrificed by cervical dislocation after an overnight fast
at the end of 25 week. Blood was collected and normal mam-
mary tissue, mammary tumors, and suspicious lesions were
rapidly removed, measured, and documented following by
rinsing in physiological saline.

The incidence of tumors was calculated in each group.
Tumors were histologically categorized as an adenocarcinoma
or benign. For histological evaluation, samples were
prepared in 10% buffered formalin and then embedded
in paraffin. The sections were mounted on glass slides
and stained with hematoxylin and eosin using routine
laboratory procedures in the Pathology Laboratory of
Faculty of Medicine at the University of Firat, Elazig,
Turkey.

Fresh tissue was used for each experiment. Blood samples
were centrifuged at 3000 x g for 10 min and the serum was
carefully removed and stored at −80 °C until further analysis.

Western blotting

Western blotting was carried out as previously described [24,
25]. The primary antibodies against PLK1, Cyclin D1, cyclin
dependent kinase-4 (CDK-4), p53, IκB, Bcl-2, Bax, cleaved
caspase-3, and β-actin, as well as the secondary goat
antirabbit horseradish-peroxidase-conjugated antibody was
purchased from Abcam (Abcam Inc., UK). Blots were per-
formed at least four times to confirm data reproducibility.
Protein levels were analyzed by densitometry using an image
analysis system (Image J; National Institute of Health,
Bethesda, USA).
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Toxicity studies in rats

Eight-week-old wistar albino rats were purchased at Firat
University Laboratory Animal Research Center (Elazig,
Turkey). Animals were housed in cages in a controlled
environment (12-h light/12-h dark photoperiod (22 ±
2 °C, 60 ± 10% relative humidity) conditions. Study
has been approved by the Committee for Animal
Research and Use of Animal Care at Firat University.
All procedures have been carried out in strict accor-
dance with the applicable law, the Animal Welfare
Act, the Public Health Service Policy.

In rats, acute toxicity profiles of LFM-A13 were studied as
previously reported [17, 21]. Intraperitoneal injection of LFM-
A13 (three times weekly) at 25, 50 and 100 mg / kg levels was
administered to 8-week-old rats (groups of 10, 5 male and 5
female rats per group). Each rat was monitored daily for mor-
bidity and mortality. Rats were sacrificed on day 30 for the
determination of the toxicity of LFM-A13 through examina-
tion of blood chemistry profiles, blood counts, and evaluation
of multiple organs for the presence of toxic lesions as de-
scribed [21].

Statistical analysis

In order to verify the replicability of the data, each
blotting was carried out at least four times. The discrete
variables (tumor incidence, tumor type count) were an-
alyzed by chi-square test using the PROC FREQ proce-
dure (SAS) while continuous variables (tumor weight
and volume, serum and molecular biology data) were
analyzed by ANOVA using the PROC GLM procedure
(SAS, 2002). Differences among groups were deter-
mined by the Tukey’s multiple comparison. Moreover,
the Fisher’s Exact chi-square test option was employed in 2 ×
2 cross tables due to insufficiency of sample size for each grid.
Statistical significance was declared when p < 0.05. SAS soft-
ware (SAS Institute Inc., Cary, NC, USA), Microsoft Excel
(Microsoft, Redmond, WA, USA), and GraphPad Prism
(GraphPad Software, La Jolla, CA, USA) were used for data
processing.

Results

Toxicity of LFM-A13 in rats

We first tested the toxicity of LFM-A13 in vivo .
Administration of three different doses of LFM-A13 to rats
revealed no severe toxicity (Table S1). There was no evidence
of a histopathological effect on multiple tissues from these
animals (i.e. heart, kidney, pancreas, lungs, and brain)
(Table S1). Consistently, biochemical and hematological

assessment of toxic effects of LFM-A13 also revealed no sign
of toxicity in LFM-A13-treated rats over a wide dosage range
(Table S2 and S3). These data illustrate that LFM-A13 has no
apparent toxicity when administered in vivo, which is consis-
tent with the previous results [17, 21].

LFM-A13 attenuates DMBA-induced mammary
tumorigenesis in mice

We next wanted to examine the effect of LFM-A13 as well as
paclitaxel on the survival of mice with mammary cancer in-
duced by DMBA. We found that while the survival rate is
15% in cancerous control group (DMBA), it is increased to
40% in the LFM-A13-treated group and 45% in the paclitaxel-
treated group at the final day of the experiment (Fig. 1).
Strikingly, the administration of both LFM-A13 and paclitaxel
(LFM-A13 + P) further improved the survival rate to 50%
(Fig. 1).

As expected, the tumor incidence in DMBA group was
100% at the end of the experimental period (Table 1) (X2 =
29.25, p < 0.0001). However, the incidence of mammary tu-
mors caused by DMBA administration in mice, including
those from animals that died or were killed during the exper-
iment, were significantly decreased by the treatment of LFM-
A13 and paclitaxel (Table 1). Administration of LFM-A13,
paclitaxel, and combination of LFM-A13 and paclitaxel re-
duced the tumor incidence by 25%, 22%, and 30% respective-
ly (Table 1). No tumors were detected in the control group that
did not receive DMBA. Moreover, the mean number of
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Fig. 1 Percentage of survival in DMBA, LFM-A13, P, and LFM-A13 +
P groups. DMBA, mice were treated with DMBA; DMBA+ LFM-A13,
mice were treated with LFM-A13 (50 mg/kg, three times a week, i.p.)
following DMBA administration; DMBA + P, mice were treated
with paclitaxel (10 mg/kg, once a week, i.p.) following DMBA
administration; DMBA + LFM-A13 + P, mice were treated with
combination of LFM-A13 and paclitaxel following DMBA admin-
istration. All animals were sacrificed 25 weeks following DMBA
exposure
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tumors in the groups treated with LFM-A13, paclitaxel, and
the combination of LFM-A13 and paclitaxel was significantly
decreased by 62%, 59% and 70% compared to the DMBA
group (p < 0.02; Table 1). The average weight of tumors was
2.3 g in DMBA group, 0.81 g in the LFM-A13-treated group,
1.04 g in the paclitaxel-treated group, and 0.45 g LFM-A13 +
paclitaxel-treated group (p < 0.05, Table 1 and Fig. 2). The
cumulative tumor size was also evaluated and found to be
smaller in the treatment groups compared to the cancerous
control group that was treated with DMBA only (Table 1
and Fig. 2). Interestingly, the smallest tumor size was found
in the group that was treated with a combination of LFM-A13
and paclitaxel (p < 0.05, Table 1 and Fig. 2). Collectively,
these data indicate that LFM-A13 attenuates DMBA-
induced mammary tumorigenesis in mice, and its effect is
more prominent when it is administered with paclitaxel.

Modulation of cell survival and cell cycle regulators
by LFM-A13

In order to understand molecular mechanisms of the preven-
tive effect of LFM-A13 on DMBA-induced breast cancer,
mammary gland tumors were analyzed for the expression of
PLK1, cell cycle-regulating proteins cyclin D1, cyclin depen-
dent kinase-4 (CDK-4), and the CDK inhibitor p21 by
western blotting. Administration of DMBA significantly
elevated expression of PLK1 (Fig. 3a, f), cyclin D1
(Fig. 3b, f), and CDK-4 (Fig. 3c, f) compared to control.
The treatment of LFM-A13 and paclitaxel or their combi-
nation to DMBA-treated animals significantly decreased
PLK1, cyclin D1, and CDK-4 expression (Fig. 3). Conversely,
LFM-A13 administration resulted in an increase in the expres-
sion of p21 (Fig. 3d, f), as well as IκB expression (Fig. 3e, f).

Table 1 Effect of LFM-A13 on DMBA-induced mammary tumorigenesis in mice

Parameters Groups (n = 20)

Control DMBA DMBA+ LFM-A13 DMBA+ P DMBA+ LFM-A13 + P -p-

Tumor incidence (%) 0.0 100 75 78 70 0.0001 (X2 = 29.245)

Average tumor numbers – 4.33 ± 0.88a 1.63 ± 0.50b 1.78 ± 0.52b 1.30 ± 0.37b 0.02

Tumor weight (g) – 2.3 ± 0.12a 0.81 ± 0.06b 1.04 ± 0.09b 0.45 ± 0.03c 0.05

Cumulative tumor size (cm3) – 2.73 ± 0.67a 1.00 ± 0.33ab 1.39 ± 0.78ab 0.74 ± 0.22b 0.03

DMBA, mice were treated with DMBA; DMBA+ LFM-A13, mice were treated with LFM-A13 (50 mg/kg, three times a week, i.p.) following DMBA
administration; DMBA+ P, mice were treated with paclitaxel (10 mg/kg, once a week, i.p.) following DMBA administration; DMBA+LFM-A13 + P,
mice were treated with combination of LFM-A13 and paclitaxel following DMBA administration. All animals were sacrificed 25 weeks following
DMBA exposure (n = 20), a-c: Means in the same line without a common superscript differs significantly (p < 0.05). Data are means ± SEM

Fig. 2 Chemoprevention of DMBA-experimental mouse mammary car-
cinogenesis by LFM-A13. DMBA, mice were treated with DMBA;
DMBA+ LFM-A13, mice were treated with LFM-A13 (50 mg/kg, three
times a week, i.p.) following DMBA administration; DMBA+ P, mice

were treated with paclitaxel (10 mg/kg, once a week, i.p.) following
DMBA administration; DMBA+ LFM-A13 + P, mice were treated with
combination of LFM-A13 and paclitaxel following DMBA administra-
tion. All animals were sacrificed 25 weeks following DMBA exposure
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Strikingly, a combination of LFM-A13 and paclitaxel was
found to be more effective than any agent alone, whereas both
LFM-A13 and paclitaxel had a similar effect on the expression
of these proteins (Fig. 3).

LFM-A13 treatment regulates expression
of apoptosis-related proteins

We next examined whether LFM-A13 modulates the expres-
sion levels of different proteins in mammary tumors that
are involved in regulation of apoptosis, such as P53 (tu-
mor suppressor), Bcl-2 (anti-apoptotic protein), Bax

(apoptotic activator), and Caspase 3. As shown in
Fig. 4, administration of DMBA alone led to an increase
in the expression of P53 and Bcl-2, and a decrease in the
expression of Bax and Caspase 3. However, LFM-A13
and paclitaxel treatment caused a significant decrease in
P53 expression (Fig. 4a, e) as well as Bcl-2 (Fig. 4b, e).
There also was a concomitant increase in the expression
of Bax (Fig. 4c, e) and caspase 3 (Fig. 4d, e). Similar to the
findings presented above, the combination of LFM-A13
and paclitaxel was more effective than either treatment
alone in the regulation of proteins that are involved in apo-
ptosis (Fig. 4).

0

50

100

150

200

250

Control DMBA DMBA+
LFM-A13

DMBA+P

a

b

c
b

d

DMBA+
LFM-A13+P

C
yc

lin
 D

1,
 P

er
ce

nt
 o

f c
on

tr
ol

0

100

200

300

400

Control DMBA DMBA+
LFM-A13

DMBA+P

c
b

c

b

a

DMBA+
LFM-A13+P

PL
K

-1
, P

er
ce

nt
 o

f c
on

tr
ol

0

100

200

300

400

Control DMBA DMBA+
LFM-A13

DMBA+P

a

b

c
b

c

DMBA+
LFM-A13+P

C
D

K
-4

, P
er

ce
nt

 o
f c

on
tr

ol

0

50

100

150

Control DMBA DMBA+
LFM-A13

DMBA+P

d
c

b
c

a

DMBA+
LFM-A13+P

P 
21

, P
er

ce
nt

 o
f c

on
tr

ol

0

50

100

150

Control DMBA DMBA+
LFM-A13

DMBA+P

d
c

b
c

a

DMBA+
LFM-A13+P

Ik
B

, P
er

ce
nt

 o
f c

on
tr

ol

Control DMBA DMBA+
LFM-A13

DMBA+P DMBA+
LFM-A13+P

Cyclin D-1

b-actin

CDK-4

P21

IkB

PLK-1

a b

c d

e
f

Fig. 3 Effect of LFM-A13 and paclitaxel administration on the expres-
sions of PLK-1 (a), Cyclin D1 (b), CDK-4 (c), P21 (d) and IκB (e).
DMBA, mice were treated with DMBA; DMBA+ LFM-A13, mice were
treated with LFM-A13 (50 mg/kg, three times a week, i.p.) following
DMBA administration; DMBA + P, mice were treated with paclitaxel
(10 mg/kg, once a week, i.p.) following DMBA administration;
DMBA+ LFM-A13 + P, mice were treated with combination of LFM-

A13 and paclitaxel following DMBA administration. The relative amount
of each protein was quantified by ImajeJ using β-actin as an internal
control. Results are expressed as percent of control. The bar represents
the standard error of the mean. Blots were repeated at least 4 times (n = 4),
and a representative blot is shown (f). Actin was included to ensure equal
protein loading. Small alphabet on top of each bar indicates significant
difference; p < 0.05 by Fisher’s multiple comparison test
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Discussion

This study highlights that LFM-A13 possesses a potent activ-
ity to ameliorate DMBA-induced mammary carcinogenesis in
a mouse model, and its mechanistic effect is through the inhi-
bition of cell proliferation and promotion of apoptosis in can-
cer cells.

Uncontrolled cellular proliferation resulting from changes
in the expression of proteins involved in the cell cycle is
linked to the development and progression of many types of
cancer. For this reason, it is critical to develop drugs that will
prevent the efficacy of these proteins for the targeted treatment
of different types of cancer. LFM-A13 was developed as a

specific inhibitor for both PLKs [17] and BTKs [20].
It has been well demonstrated that LFM-A13 blocks
the proliferative activity of cells in human breast cancer
cells and glioblastoma cells as well as in a zebrafish
embryo model [17]. The tumor progression was also
delayed by the use of LFM-A13 in the MMTV/Neu
transgenic mouse model of HER2 positive breast cancer
[17], and it was further delayed when LFM-A13 was
used in combination with paclitaxel [18]. Similarly, the
present study also demonstrated an anti-proliferative ef-
fect of LFM-A13 on the development of DMBA-
induced mammary tumorigenesis in mice with being
more effective together with paclitaxel. We showed
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mechanistically that these drugs impact on the expres-
sion of proteins that control cellular proliferation and
survival of cancer cells.

Because PLK1, the best-characterized member of the PLK
family, has a non-redundant role in the cell cycle, and dys-
function of PLK1 may contribute to the development and
progression of various cancers [11, 26]. Consistent with this
notion, over-expression of PLK1 has been shown in many
types of human cancer including lung, melanoma, renal can-
cer and hepatocellular carcinoma [26]. The elevated PLK1
expression has also been reported in human breast cancer
[27–30]. In agreement with this, we showed that PLK1 ex-
pression is increased upon DMBA administration in mice.
Importantly, our results demonstrated that the increased level
of PLK1 expression could be dampened by the use of LFM-
A13 alone or with paclitaxel. This suggests that inhibition of
PLK1 through LFM-A13 contributes to the amelioration of
mammary tumorigenesis in mice.

Cyclin D1 is a member of the highly-conserved cyclin pro-
teins that function as controllers in the cell cycle by activating
cyclin-dependent kinases (CDKs). Cyclin D1 may form a
complex with CDK4 and CDK6 to intiate a signaling cascade
that directs the cell cycle progression. Overexpression of cy-
clin D1 has been observed in many types of human cancer
[31]. Despite the importance of cyclin D1 in tumorigenesis,
the potent inhibitor of cyclin D1 has not yet been discovered.
The control of cyclin D1 is generally being through the inhi-
bition of its associated kinases CDK4/CDK6 [31]. In addition
to its role in the control of PLK1 expression, we observed that
LFM-A13 was able to decrease the DMBA-induced expres-
sion of cyclin D1 and CDK4, and there was a corresponding
increase in expression of p21, a cell cycle inhibitor [32, 33].
Moreover, the expression of IκB, an inhibitory protein that
regulates NF-κB activity [34], was also increased upon
LFM-A13 and paclitaxel supplementation. Thus, a reduction
in PLK1 and cyclin D1 expression and a corresponding in-
crease in p21 and IκB expression possibly contribute to the
suppression of mammary carcinogenesis in mice.

One of the aims for cancer treatment is to develop drugs for
inhibition of aberrantly-expressed proteins in order to sensi-
tize cancer cells to apoptosis. Small inhibitory molecules of
PLKs have emerged as to hinder the proliferation and survival
of various cancer types [7, 35]. Supporting this notion is the
observation that an inhibition of the cell proliferation and an
induction of apoptosis were observed in HeLa cells that lack
PLK1 expression [8]. Similarly, LFM-A13 has been reported
to induce apoptosis in multiple myeloma cells [36]. Moreover,
BI2536, another PLK inhibitor, has been shown to increase
the efficacy of paclitaxel in breast cancer cells through the
promotion of apoptosis [37]. The authors showed an increase
in the expression of Bax and cleaved caspase 9 and a decrease
in Bcl-2 expression in breast cancer cells upon administration
of the PLK inhibitor [37]. Similarly, we found here that LFM-

A13 inhibited proliferation of cancer cells through the induc-
tion of apoptosis upon drug administration as evident by the
observation of increased detection of apoptotic proteins, acti-
vated caspase 3 and Bax, and of decreased detection of Bcl-2.
Thus, LFM-A13 has an ability to sensitize cancer cells to
apoptosis.

In summary, our findings reveal that the inhibitor of PLKs,
LFM-A13, attenuates DMBA-induced mammary tumorigen-
esis in mice through regulation of multiple factors that are
involved in cell cycle, survival and apoptosis. Importantly,
LFM-A13 had no damage to cells of the immune system
and other tissues, and its effect was found to be more effective
when it is administered together with paclitaxel. Our results
suggest that inhibition of PLK activity by LFM-A13 could be
a beneficial approach for the treatment of breast cancer.
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