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Summary Purpose KRAS is frequently mutated in non-small
cell lung cancers (NSCLC), resulting in activation of the MEK/
ERK pathway. Because there are currently no drugs that target
oncogenic KRAS, MEK inhibitors have been tested clinically as
a possible treatment option for patients with NSCLC. However,
KRAS-mutant cancers exhibit resistance to MEK inhibitors.
Therefore, a combinational strategy is necessary for effective
therapy. To address this, we investigated the therapeutic effects
of combining selumetinib, a MEK1/2 inhibitor, with BYL719, a
PI3Kα inhibitor. Methods We evaluated the effects of
selumetinib and BYL719 in vitro and in vivo in NSCLC cell
lines. Results The combination of BYL719 and selumetinib
resulted in synergistic cytotoxic activity compared with the
single agents alone in KRAS-mutant NSCLC cells. At the mo-
lecular level, we found that AKT activation strongly influenced
the sensitivity of KRAS-mutant NSCLC cells to selumetinib.
Selumetinib upregulated phospho-AKT and phosphorylated
BAD at ser136, which is responsible for intrinsic drug resistance
in KRAS-mutant NSCLC cells. In contrast, inhibition of the
PI3K/AKT pathway by BYL719 hindered selumetinib-induced
BAD phosphorylation and increased the antitumor efficacy of
selumetinib. Furthermore, selumetinib and BYL719 combina-
tion therapy showed synergy in the suppression of A549 xeno-
graft tumor growth. On analysis of the pharmacodynamics,
selumetinib and BYL719 together resulted in effective inhibition

of both p-ERK and p-AKT expression in tumor tissue.
Conclusion Taken together, these data suggest that combination
treatment with selumetinib and BYL719 is a promising thera-
peutic approach to overcoming resistance to MEK inhibitors.
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Introduction

KRAS is a member of the RAS family of oncogenes, a collec-
tion of small guanosine triphosphate (GTP)-binding proteins
that activate intracellular signaling pathways to regulate cell
proliferation, differentiation, and survival [1]. KRAS muta-
tions predominantly arise as single amino acid substitutions at
residues G12, G13, or Q61, and confer transforming capacity.
Activating KRAS mutations are found in 15–30 % of patients
with non-small cell lung cancer (NSCLC) and are associated
with poor responses to conventional treatment regimens
[2–4]. These mutations lead to impaired GTPase activity and
constitutive activation of KRAS effectors, including RAF/
MEK/ERK and the phosphoinositide 3-kinase (PI3K)/AKT
signaling pathway [1, 4]. However, there are currently no
effective therapies for mutant KRAS, since KRAS itself has
proven difficult to directly target with small molecules [5, 6].

An alternative approach to targeting mutant KRAS in-
volves using small molecule inhibitors that target KRAS
effectors (e.g. RAF/MEK/ERK). As the MEK/ERK pathway
is critical for cell growth, survival, and transformation, MEK
inhibitors have been actively investigated as a treatment op-
tion for various cancers [7, 8]. Selumetinib is an orally active
MEK inhibitor that inhibits both basal and induced ERK
phosphorylation in numerous types of cancer cells [9]. Al-
though selumetinib has shown activity in vitro and in several
tumor xenografts models, a subset of tumors, particularly
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NSCLC, are resistant to this inhibition [7, 10–12]. Resistance to
inhibition of theMEK/ERK pathwaymay result frommutations
in MEK1 or activation of the PI3K pathway [13, 14]. Recently,
it has been reported that a high level of AKT activation is
associated with resistance to the MEK inhibitor selumetinib in
cases of lung cancer, and that dual inhibition of the AKT and
EKR pathways increased antitumor activity by selumetinib
[15–17]. In addition, several studies have also demonstrated that
simultaneous inhibition of MEK and PI3K leads to tumor
regression in KRAS-mutant cancer cell models [18–20].

PI3K/AKT signaling pathways are also activated in a vari-
ety of cancers including NSCLC, and PI3K is the second best-
characterized RAS effector [21, 22]. PI3K converts PIP2 to
PIP3, which activates AKT to promote cell growth and prolif-
eration. The PI3Ks are organized into three classes (I-III).
Class I PI3Ks are further divided into three class IA isoforms,
PI3Kα, PI3Kβ, and PI3Kδ, whereas PI3Kγ constitutes class
IB. As PI3Kα is ubiquitously expressed and has been linked
to AKT activation, PI3Kα appears to be an ideal target for
drug development [22]. In this regard, targeting PI3K repre-
sents a promising combination treatment strategy in KRAS-
mutant NSCLC.

In this study, we investigated the efficacy of a combination
of selumetinib and BYL719, a novel specific PI3Kα inhibitor
with pharmacologic and biologic properties [23, 24]. Here, we
present evidence that combining these two inhibitors in cases
of KRAS-mutant NSCLC results in enhanced antitumor activ-
ity in vitro as well as in vivo. These findings support the
potential clinical use of this drug combination in patients with
KRAS-mutant NSCLC.

Materials and methods

Cell lines and cell cultures

Human NSCLC cell lines A549 and NCI-H2009 were obtain-
ed from the American Type Culture Collection (ATCC, Ma-
nassas, VA, USA). Cells were cultured in RPMI-1640 contain-
ing 10 % FBS at 37 °C in a humidified atmosphere containing
5 % CO2.

Chemical reagents and antibodies

Selumetinib (AZD6244, AstraZeneca) and BYL 719
(Novartis) were dissolved in dimethyl sulfoxide (DMSO) to
a 10 mM concentration and stored in small aliquots at −20 °C
until further use. Antibodies to p-Akt (Ser473), Akt, p-ERK1/
2 (Thr202/Thy204), ERK1/2, p-BIM (Ser69), BIM, p-BAD
(Ser136), BAD, PARP, and β-actin were purchased from Cell
Signaling Technology. Anti-14-3-3 was purchased from Santa
Cruz Biotechnology.

Cell viability assay and combination index analysis

Cells were seeded on a 96-well plate, allowed to adhere
overnight, and treated with a dilution series of test compounds
for 72 h. Cell viability was determined using a Cell Counting
Kit (Dojindo Molecular Technologies) according to the man-
ufacturer’s instructions. Combination index (CI) data were
generated using CompuSyn (Combosyn). A CI of 1 indicated
an additive drug interaction, whereas a CI of <1 was syner-
gistic and a CI of> 1 was antagonistic.

Cell cycle and apoptosis assay

Cell cycle analysis was performed after 24 h of treatment. Cells
were fixed with ice-cold 70 % ethanol, stained with propidium
iodide, and analyzed by flow cytometry (BD Biosciences).

Western blot analysis

Cells were lysed in PRO-PREP™ protein extraction solution
(iNtRON Biotechnology) supplemented with a protease and
phosphatase inhibitor cocktail (Sigma). Equal amounts of
protein were then subjected to SDS-PAGE (NuPAGE 4–
12 % Bis-Tris Gel; Invitrogen) and transferred to
polyvinylidene difluoride (PVDF) membranes. Membranes
were then incubated with the aforementioned antibodies and
developed by ECL.

Immunoprecipitation

Cells were lysed in radioimmunoprecipitation assay (RIPA)
buffer supplemented with a protease and phosphatase inhibi-
tor cocktail (Sigma). Equal amounts of protein were incubated
with BAD, 14-3-3, or immunoglobulin G control antibodies
overnight at 4 °C to allow the formation of immune com-
plexes. Immune complexes were subsequently precipitated
with protein A/G agarose beads (Santa Cruz Biotechnology)
and analyzed using Western blot analyses with the aforemen-
tioned antibodies.

Xenograft studies

All procedures involving animals were reviewed and ap-
proved by the Institutional Animal Care and Use Committee
(IACUC) at the Samsung Biomedical Research Institute
(SBRI). SBRI is an Association of Assessment and Accredi-
tation of Laboratory Animal Care International (AAALAC
International) accredited facility and abides by the Institute of
Laboratory Animal Resources (ILAR) guidelines. Six-week-
old BALB/c female nude mice were injected subcutaneously
with A549 cells (5×106). When tumor sizes reached approx-
imately 100 mm3, mice were randomized into four groups of
10–12mice each. Each group of mice was dosed via daily oral
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gavage with vehicle, selumetinib (25 mg/kg/d, twice per day),
BYL719 (25 mg/kg/d), or a combination of both. The
selumetinib vehicle contained 0.5 % hydroxypropyl methyl-
cellulose plus 0.1 % Tween-80, and the BYL719 vehicle
contained 0.5 % hydroxypropyl methylcellulose. All mice
received both vehicles. Tumor volumes were determined
using calipers and were calculated using the following formu-
la: V = (L x W2)/2 (L, Length; W, width). Toxicity was
monitored according toweight loss. Three days after treatment
was initiated, the tumors were removed for Western blot
analysis 3 h after the last dose of medication or vehicle was
administered.

Statistical analysis

All numerical data are presented as the mean±SEM. Statistical
analyses were carried out using GraphPad Prism (GraphPad
software). P-values <0.05 were considered to be statistically
significant.

Results

PI3Kα and MEK inhibitors exhibit synergistic effects

To test whether a PI3Kα inhibitor in combination with aMEK
inhibitor have a synergistic effect on MEK inhibitor-resistant
cells, we first evaluated the sensitivity to MEK inhibitors in
KRAS-mutant NSCLC cell lines (A549 and NCI-H2009) by
assessing cell viability. Cells were treated with the selumetinib
(Fig. 1a) at concentrations ranging from 1 to 10,000 nM for
72 h. Both cell lines had a selumetinib IC50 of≥1 μM (Fig. 1b
and c). It was previously reported that 1 μM was close to the
average plasma concentration of selumetinib achieved in pa-
tients at the maximum tolerated dose for this agent [7]. Thus,
we considered these cell lines to be resistant to selumetinib.
We next examined the effects of a PI3Kα inhibitor, BYL719,
at increasing concentrations (Fig. 1a) from 1 to 10,000 nM.
BYL719 reduced cell viability in a manner similar to
selumetinib in both cell lines (Fig. 1b and c). The combination

Fig. 1 A combination of selumetinib and BYL719 was more efficacious
than selumetinib alone in the treatment of KRAS-mutant lung cancers. a
Structure of selumetinib and BYL719. b A549 and c NCI-H2009 cells
were treated with various concentrations of selumetinib, BYL719, or
selumetinib plus BYL719 for 72 h. Cell viability was measured using

CCK-8 assays. Results represent the mean of three independent experi-
ments. Error bars, SEM. d Combination index plots of selumetinib and
BYL719 in A549 and NCI-H2009 cells. Most of the data points were
presented with CI <1, indicating that the selumetinib-BYL719 combina-
tion is synergistic
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Fig. 2 Treatment with selumetinib and BYL719 synergistically induced
cell apoptosis in KRAS-mutant cells. a A549 and b H2009 cells were
treated with selumetinib, BYL719, or a combination of the two at the
indicated concentrations for 24 h. Flow cytometric histograms of cells

stained with propidium iodide were analyzed usingModifit software (BD
Bioscience). Percentages of cells in apoptotic sub-G1, G1, S, and G2/M
phases are presented



of selumetinib and BYL719 significantly reduced cell viabil-
ity in A549 and NCI-H2009 cells (Fig. 1b and c). To deter-
mine whether the antitumor effects obtained with different
doses of selumetinib and BYL719 combinations were syner-
gistic, we evaluated the combination index (CI). After treat-
ment with various concentrations (0.125–4 μM) of
selumetinib, BYL719, and selumetinib plus BYL719, the CI
was measured for each cell line. As shown in Fig. 1d, the
combination treatment produced a strong synergistic effect in
both cell lines (CI of A549: 0.003–0.321 and CI of H2009:
0.002–0.005).

BYL719 enhances selumetinib-induced apoptosis

To test whether this reduction in cell viability was attributed to
induction of apoptosis or growth arrest, we analyzed apoptosis
and cell cycle profiles using A549 (Fig. 2a) and H2009
(Fig. 2b) cells. After 24 h of treatment, apoptosis was assessed
by the detection sub-G1 peak. We found that cell death was
increased in a dose-dependent manner in combination-treated
cells. The apoptosis was more significantly increased in
H2009 cells. In the cell-cycle profile, G1 phase cells were
increased by selumetinib and BYL719 in both cells. However
the combination of selumetinib and BYL719 increased the G1

phase population in A549 cells. Thus, the combination treat-
ment induces both cell death and cell-cycle arrest at the G1

phase.

BYL719 enhances selumetinib-induced apoptosis
through BAD

A recent study reported that PI3K/AKT activation mediates
resistance to MEK inhibitors [16, 25, 26]. Based on those
results, we investigated the mechanism by which selumetinib
and BYL719 cooperate to induce apoptosis in KRAS-mutant
NSCLC cells. A549 cells were treated with 3 μM selumetinib
and levels of p-ERK and p-AKTwere measured at 2, 4, 8, and
24 h. As expected, ERK phosphorylation was inhibited by
selumetinib, but AKT phosphorylation was induced in a time-
dependent (Fig. 3a) and dose-dependent (Fig. 3b) manner.
BYL719 efficiently inhibited selumetinib-induced AKT phos-
phorylation in A549 (Fig. 3b) and H2009 (Fig. 3c). At high
concentrations (≥2.5 μM), BYL719 caused a slight reduction
of p-ERK in A549 cells after 24 h of treatment. Similar to our
results, it has been reported that lapatinib along with BYL719
inhibits ERK phosphorylation [27], and others have shown
that PI3K inhibition actually enhances ERK activation in
BT474 cells [28].

To determine the direct mediators of selumetinib/BYL719-
induced apoptosis, we determined protein levels of pro-
apoptotic Bcl-2 family members (BIM and BAD). Consistent
with prior studies, suppression of p-ERK by selumetinib led to
increased levels of BIMEL, and, to a lesser extent, of BIML and

BIMS which are well-known targets of MAPK signaling
[29–33]. However, selumetinib /BYL719 did not induce ob-
vious changes in BIM expression compared to selumetinib
alone in A549 and H2009 cells (Fig. 4). Interestingly, p-BAD
(ser136) was significantly induced by selumetinib alone, and
we also observed a clear synergistic inhibition of p-BAD with
the combination of selumetinib and BYL719 (Fig. 4). BAD
can be phosphorylated at ser112 and ser136 by theMEK/ERK
and the PI3K/AKT pathways, respectively [25], and this
phosphorylation inactivates its pro-apoptotic function [34].
In accordance with reduced BAD phosphorylation, PARP
cleavage was increased with combination therapy (Fig. 4).

Phosphorylation of BAD has been reported to promote
BAD translocation from the mitochondria into the cytosol,
interaction with the scaffold protein 14-3-3, and dissociation

Fig. 3 Pathway modulation in the KRAS-mutant cell line following
MEK and PI3K inhibition. a A549 cells were treated with 3 μM
selumetinib for 0, 2, 4, 8, or 24 h. Cell lysates were immunoblotted for
levels of p-ERK and p-Akt. b A549 and c H2009 Cells were treated with
the indicated concentrations of selumetinib or BYL719 for 24 h. Western
blot analysis was carried out to determine the levels of p-ERK and p-Akt
using specific antibodies. β-actin was used as a loading control
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from Bcl-XL [35, 36, 34]. Immunoprecipitation of BAD
revealed that when p-BAD levels were induced by
selumetinib, a proportional increase in the amount of 14-3-3
associated with BAD was observed. However, BYL719
disrupted the association of BAD with 14-3-3 following p-
BAD induction by selumetinib (Fig. 5). These results suggest
that selumetinib-induced BAD phosphorylation may lead to
the loss of pro-apoptotic activity and thereby contribute to the
resistance of KRAS-mutant NSCLC cells to MEK inhibitors.
Thus, BYL719 in combination with selumetinib effectively
promotes apoptosis by blocking the ability of BAD to bind 14-
3-3.

A combination of selumetinib and BYL719 leads to enhanced
antitumor efficacy in the KRAS-mutant xenograft model

In light of the synergistic effects of the combination therapy
observed in vitro, we investigated the efficacy of combining
selumetinib and BYL719 in vivo. Mice bearing A549 xeno-
grafts were treated with vehicle, selumetinib, BYL719, or a
combination of selumetinib and BYL719. As shown in
Fig. 6a, selumetinib and BYL719 alone had a modest effect
on the inhibition of tumor growth (55 and 65 % growth

compared with vehicle, respectively). The combination thera-
py resulted in a significantly enhanced reduction in tumor

Fig. 4 Simultaneous suppression
of PI3K sensitizes KRAS-mutant
cells to MEK inhibitors. a A549
and b H2009 cells were treated
with selumetinib, BYL719, or a
combination of the two for 24 h.
Western blot analysis was
performed using the indicated
antibodies to determine the
biochemical response

Fig. 5 BYL719 inhibits selumetinib-induced BAD association with 14-
3-3. A549 cells were treated for 24 h with selumetinib, BYL719, or a
combination of the two. Immunoprecipitation was performed with BAD,
14-3-3, or immunoglobulin G (IgG) control antibodies. BAD-associated
14-3-3, 14-3-3-associated BAD, total BAD, and total 14-3-3 were ana-
lyzed using Western blot. IgG was used as a negative control
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volume when compared with selumetinib alone (P=0.06),
BYL719 alone (P=0.0009), or vehicle (P=0.00001) at day
28. Furthermore, no significant differences in body weight
were found between the four groups during the 28 days of
treatment, and no obvious toxicities were observed (data not
shown). To investigate the pharmacodynamic effects of com-
bining selumetinib and BYL719 in vivo, A549 xenografts
were collected 3 h after the final dose of selumetinib and/or
BYL719 was administered on day 3. Tumor lysates were
analyzed for p-ERK and p-AKT by immunoblotting. Consis-
tent with the in vitro findings above, combination therapy
inhibited selumetinib-induced AKT activation (Fig. 6b). Tak-
en together, these results suggest that the combination of
selumetinib and BYL719 has a synergistic therapeutic effect
on KRAS-mutant NSCLC.

Discussion

Advances in the understanding of genetic alterations in
NSCLC have given rise to therapies that target specific onco-
genic pathways. At present, however, there are no effective
therapies for KRAS-driven lung cancers, and mutations in
KRAS are associated with poor prognosis and resistance to
both adjuvant therapy and targeted EGFRTKIs [37, 38]. Since
MEK/ERK and PI3K/AKTare two of the key pathways in the
transformational activity of mutant KRAS, the combined inhi-
bition of MEK and PI3K may constitute an anti-KRAS ther-
apeutic strategy.

Selumetinib is a small-molecule inhibitor that is selective
for MEK. It has been investigated in clinical trials for use in
the treatment of advanced NSCLC, melanoma, and a variety
of other cancers [7, 11, 39]. BIM, a member of the intrinsic
apoptosis pathway, has been shown to mediate selumetinib-
induced apoptosis in patients with lung cancer [29, 30, 33].
Although intrinsic and acquired resistance to this compound
occurs, especially in NSCLC, the precise underlying mecha-
nism remains controversial. Several specific genetic mutations
have been suggested as predictors of sensitivity to MEK
inhibitors, such as BRAF, MEK1, PI3Kα, and PTEN [40, 18,
41, 13]. However, more evidence indicates that feedback
activation of compensatory pathways is responsible for resis-
tance to MEK inhibitors, and identifying and targeting those
pathways may help overcome resistance and induce synergis-
tic antitumor effects [21, 42, 25, 12].

Previous studies have reported that resistance to
selumetinib in lung cancer cells is mediated by AKT activa-
tion [17, 26, 14]. It has been shown that dual-agent combina-
tion therapy using selumetinib and the AKT inhibitor
MK2206 resulted in synergistic effects on cell viability
in vitro as well as tumor growth in KRAS-driven NSCLC
tumors in vivo [17]. In another report, down-regulation of
PIK3CA resensitized cells with co-occurring KRAS and
PIK3CAmutations toMEK inhibition [14]. Collectively, these
findings demonstrate that PI3K pathway activation is a major
mechanism of resistance that impairs the efficacy of MEK
inhibitors in KRAS-mutant cancers. Thus, we hypothesized
that dual inhibition of MEK and PI3K could synergistically
induce antitumor effects in KRAS-mutant NSCLC.

In this study we demonstrated that the combination of the
MEK inhibitor selumetinib and the PI3Kα inhibitor BYL719
can induce synergistic inhibition of tumor growth in vitro and
in vivo. Previous studies reported that selumetinib -resistant
cells expressed higher levels of p-Akt than sensitive cells, and
that A549 cells showed persistent activation of AKTand were
resistant to selumetinib [15, 16]. In the same manner, due to
increased AKT phosphorylation, selumetinib caused only a
partial suppression of cell viability in KRAS-mutant A549
cells in this study. In contrast, in the presence of both
selumetinib and BYL719, AKT signaling was strongly

Fig. 6 The combination of selumetinib and BYL719 resulted in en-
hanced antitumor efficacy in a KRAS-mutant xenograft model. a A549
tumor cells were subcutaneously injected into the flank of Balb/c nude
mice. Drug treatments began after the tumor reached a volume of
~100 mm3 (day 0). All mice were treated with vehicle, selumetinib
(25 mg/kg/d), BYL719 (25 mg/kg/d), or selumetinib plus BYL719 by
oral gavage for 5 days each week for a total of 4 weeks. Error bars, SEM.
(n=10–12) **, P<0.01 for all groups vs. vehicle; ##, P<0.01 for
selumetinib+BYL719 vs. selumetinib or BYL719 alone. b Xenografts
from A were harvested for Western blot analysis on treatment day 3,
approximately 3 h after their last treatment. Tumors were subsequently
lysed and Western blot analysis was performed for p-Akt, Akt, p-ERK,
ERK, and β-actin
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suppressed and a highly synergistic induction of apoptosis
was observed. The PI3K/AKTand MEK/ERK pathways con-
verge on the pro-apoptotic Bcl-2 homology 3 (BH3) family of
proteins, which regulate apoptosis [30]. It has been recently
reported that induction of p-BAD is required for selumetinib -
resistance [25]. Therefore, we examined protein levels of this
family and found that the combination of selumetinib and
BYL719 led to a complete inhibition of phosphorylation of
the serine 136 residue on the pro-apoptotic protein BAD.
These findings provide evidence that selumetinib -induced
S136 site phosphorylation occurs through the PK3K/AKT
pathway. It has previously been shown that BAD is a down-
stream target that can integrate EGFR/ERK and PI3K/AKT
signaling in PTEN-negative/EGFR amplified tumors, and that
knocking down BAD significantly attenuates the effects of
combined pathway inhibition in breast and colon cancer cells
[43, 19]. In addition, phosphorylation of BAD sequesters it in
14-3-3 protein complexes at the plasma membrane, thereby
inhibiting its pro-apoptotic action [35, 44, 45]. In this study,
the combination of selumetinib and BYL719 induced syner-
gistic inhibition of p-BAD along with increased PARP cleav-
age, which is consistent with previous reports.

In summary, we have shown that treatment with BYL719,
a PI3Kα specific inhibitor which is currently in early phase
clinical trials, is able to overcome resistance to MEK inhibi-
tion in selumetinib-resistant cancer cell lines both in vitro and
in vivo. These results suggest that the PI3K/AKT pathway
could be activated in human cancer cells with intrinsic resis-
tance to selectiveMEK inhibitors, and represent a rationale for
the investigation of combined MEK and PI3K inhibitors for
treatment of NSCLC.
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