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Summary Although significant success has been achieved in
the treatment of advanced and recurrent ovarian cancer, there
is clearly room for improvement. The use of targeted agents in
this patient population has the promise to provide improved
survival and quality of life. There are a myriad of relevant
pathways under exploration in all settings of ovarian cancer.
Clinical trial data are accumulating for antiangiogenic therapy,
including vascular endothelial growth factor (VEGF)-specific
inhibitors and multiple angiogenic signaling target inhibitors,
as well as poly-ADP-ribose polymerase (PARP) inhibitors.
Other types of tumorigenic pathway inhibitors, including
those that target phosphatidylinositol-3-kinase (PI3K), mam-
malian target of rapamycin (mTOR), protein kinase B (AKT),
Src, folate receptor alpha, and insulin-like growth factor-1
receptor (IGF-1R) pathways are in earlier phases of develop-
ment for ovarian cancer. Attempts to target the epidermal
growth factor receptor (EGFR) of ovarian tumors have been
met with limited success; however, newer agents that inhibit
this pathway show promise. Finally, with recognition of the
role of Wee-1 in p53-deficient tumors, an inhibitor of this
tyrosine kinase is being evaluated in recurrent ovarian cancer.
The logistical challenge is to determine the optimal timing
and proper combinations of novel agents independently as

well as concomitantly with conventional chemotherapeutics.
Reported results have been modest; however, our growing
understanding of these pathways will be potentially reflected
in greater impact on response and survival.
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Introduction

Ovarian cancer is the second most common gynecologic
cancer and the most frequent cause of gynecologic
cancer-related death in the United States. Current esti-
mates for 2012 suggest that 22,280 women will be
diagnosed with ovarian cancer and 15,500 will die of
their disease [1]. It is encouraging that the incidence of
ovarian cancer has remained stable since 1992 and
death rates decreased by 1.9 % per year from 2004 to
2008. However, the majority of patients (63 %) are still
diagnosed with distant disease and 5-year survival rates
only reach 27 % [1]. These dismal rates occur despite
the high chemosensitivity of ovarian cancer, where 50–
80 % of patients will achieve a response or lack of
progression of disease after treatment with primary ther-
apy [2–5], which generally includes a combination of
surgical cytoreduction and platinum and taxane-based
chemotherapy [6]. High rates of relapse in the first
2 years following therapy and the emergence of drug
resistance highlight the key barriers to improving clini-
cal outcomes [2].

Interestingly, there is currently no therapeutic agent rec-
ommended as the treatment of choice for platinum-resistant
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recurrent ovarian cancer [6]. This underscores the critical
need to develop novel agents and combinations in this
population to impact overall survival (OS) while preserving
quality of life. The use of targeted agents which act on
pathways involved in tumorigenesis promises to reduce
mortality from ovarian cancer while reducing morbidity
associated with treatment by focusing on abnormal rather
than normal tissues. The majority of current research in
advanced and recurrent ovarian cancer focuses on the inhi-
bition of signal transduction pathways and targeting DNA
repair mechanisms. This review will discuss investigational
agents in development for the treatment of ovarian cancer,
including therapies targeted at single (with tyrosine kinase
inhibitors [TKIs] or monoclonal antibodies) or multiple
(with TKIs) signaling pathways in angiogenesis, cellular
survival, and DNA repair (Table 1). Special attention will
be paid to the development of resistance to these therapies,
and the need for rational combinations to avoid further
disappointments in the treatment of ovarian cancer.

Targeting angiogenesis

Arguably, the greatest success in targeted therapy for ovarian
cancer to date has been among agents that target angiogenesis
(Fig. 1). Angiogenesis is critical for normal ovarian physiology
and plays a fundamental role in the pathogenesis of ovarian
cancer by promoting tumor growth, progression, and metastatic
spread [7, 8]. Vascular endothelial growth factor (VEGF) and
its receptor, VEGFR, are expressed in many tumor types,
including ovarian cancer [8, 9]. High levels of expression of
VEGFR in ovarian cancer have been associated with increased
tumor growth, metastases, and higher mortality rates [10, 11].
Furthermore, increased VEGF expression has been found in
malignant ascites and is associated with its development [8, 12].

VEGF-specific inhibitors in ovarian cancer

Bevacizumab (Avastin®, Genentech; South San Francisco,
CA, USA), a humanized monoclonal antibody to human
VEGF, is the most widely studied targeted agent in ovarian
cancer. Unlike in other tumor types [13], bevacizumab has
demonstrated single-agent activity in ovarian cancer, likely
explained by the dual antitumor and antiangiogenic activity
induced by VEGF inhibition [14]. Two phase II trials of
bevacizumab as a single agent in heavily pretreated patients
with relapsed ovarian cancer yielded response rates (RRs) of
16 % and 21 %, with a median progression-free survival
(PFS) of 4.4 and 4.7 months, respectively [15, 16]. In the
study by Burger and colleagues, 40.3 % of patients had a
PFS of at least 6 months, with patients receiving a median
number of 7 cycles (1 or 2 prior regimens required) [16].
However, activity of bevacizumab in these trials was offset

by higher toxicity, with 4 of 44 (11 %) patients in the
Cannistra study having gastrointestinal perforation (GIP),
leading to early termination for toxicity concerns. The risk
of perforation was higher in those patients with more prior
chemotherapy treatments and in whom impending bowel
obstruction was suspected; however, a clear risk-based mod-
el has yet to be elucidated and may vary by clinical setting
where the agent is studied [15]. Further studies are ongoing
to define a clear set of risk factors for perforation in the
setting of bevacizumab therapy.

The combination of bevacizumabwith cytotoxic agents has
great promise in recurrent ovarian cancer. Bevacizumab was

Table 1 Targeted investigational agents in development for ovarian
cancer

Investigational
agent

Target(s) Phase of development
in ovarian cancer

Bevacizumab VEGF III

Aflibercept
(VEGF-Trap)

VEGF III

Cediranib VEGFR-1, -2, -3, PDGFR-α/β, FGFR-1,
c-kit

III

Nintedanib
(BIBF 1120)

VEGFR-1, -2, -3, PDGFR-α/β,
FGFR-1, -2, -3, Src family, Flt-3

III

Pazopanib VEGFR-1, -2, -3, PDGFR-α/β,
FGFR-1, -3, c-kit

III

Sorafenib VEGFR-2, -3, PDGFR-β, c-kit, Flt-3,
Raf

II

Sunitinib VEGFR-2, PDGFR-β, c-kit, Flt-3,
RET

II

Cabozantinib
(XL184)

VEGFR-2, c-kit, RET, MET II

Olaparib
(AZD2281)

PARP II

Iniparib
(BSI-201)

PARP II

MK-4827 PARP I

ABT-888 PARP I/II

XL147 PI3K I/II (advanced solid tumors;
endometrial cancer)

PX-866 PI3K I (advanced solid tumors)

Everolimus mTOR II

Temsirolimus mTOR II

Perifosine AKT I

Dasatinib Src II

Saracatinib
(AZD0530)

Src II/III

Erlotinib EGFR III

MM-121 EGFR (ErbB3) II

Vandetanib VEGFR-2, EGFR II

Farletuzumab
(MORab-003)

α-FR III

AMG 479 IGF-1R II

α-FR alpha folate receptor; AKT protein kinase B; c-kit stem cell factor
receptor; EGFR epidermal growth factor receptor; FGFR fibroblast
growth factor receptor; Flt-3 fms-like tyrosine kinase-3; IGF-1R
insulin-like growth factor-1 receptor; MET mesenchymal-epithelial
transition; mTOR mammalian target of rapamycin; PARP poly-ADP-
ribose polymerase; PDGFR platelet-derived growth factor receptor;
PI3K phosphatidylinositol-3-kinase; Raf v-raf 1 murine leukemia viral
oncogene homolog 1; RET rearranged during transfection; src, v-src
sarcoma viral oncogene homolog; VEGFR vascular endothelial growth
factor receptor
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combined with metronomic oral cyclophosphamide in a co-
hort of patients with multiple prior lines of chemotherapy.
With minimal toxicity, this study achieved a RR of 24 % at
a median follow up of 23.2 months. Further, PFS at 6 months
was 56 % [17]. A single-arm trial of bevacizumab with
carboplatin and pegylated liposomal doxorubicin (PLD) in
platinum-sensitive recurrent ovarian, fallopian tube, or primary
peritoneal cancer yielded an objective RR of 72.2 % among 54
patients. PFS was 14.1 months and median response duration
was 12.1 months, with 13 patients experiencing drug-related
serious adverse events (gastrointestinal, infectious, procedural,
respiratory, and/or vascular) [18]. The OCEANS trial com-
bined bevacizumab with at least 6 cycles (up to 10 cycles
allowed) of standard carboplatin and gemcitabine followed
by bevacizumab (or placebo) maintenance in the treatment of
platinum-sensitive recurrent ovarian cancer. The bevacizumab
arm demonstrated a 4-month improvement in PFS compared
with placebo (hazard ratio [HR], 0.484; 95 % confidence
interval [CI], 0.388–0.605; P<0.0001); OS data are not mature
[19]. Gynecologic Oncology Group (GOG) 213 is an ongoing
bifactorial randomized study to evaluate the impact of bevaci-
zumab in addition to paclitaxel and carboplatin on OS in
platinum-sensitive patients (NCT00565851). Additionally,
the study examines the role of secondary surgical cytoreduc-
tion in this patient population.

In the platinum-resistant setting, the fully accrued AUR-
ELIA trial is comparing bevacizumab in combination with
standard recurrent disease chemotherapy agents, including
paclitaxel, PLD, or topotecan, to the standard agent alone
(NCT00976911). Other studies have combined bevacizu-
mab with cyclophosphamide [17, 20], topotecan [21], PLD
[22], nab-paclitaxel [23], and docetaxel (Table 2) [24].

Bevacizumab has also been combined with other bio-
logics in recurrent Müllerian cancers. A phase II trial com-
bined with erlotinib, a TKI to epidermal growth factor
receptor (EGFR), demonstrated a RR of 15 % and 54 %
had stable disease (SD). However, there was no clear benefit
over single-agent bevacizumab and the rate of GIP was quite
high (15 %) [25].

Given the activity of bevacizumab in combination with
paclitaxel and carboplatin in early phase trials in the front-
line setting [26, 27], 2 large phase III trials have been recently
completed in previously untreated advanced ovarian cancer
(Table 2) [28, 29]. In the GOG 218 study, patients who
received bevacizumab and cytotoxic chemotherapy followed
by maintenance bevacizumab had significantly improved PFS
versus those who received chemotherapy alone (median 14.1
vs. 10.3months; HR, 0.717; 95%CI, 0.625–0.824;P<0.001).
Of note, there was no significant difference in PFS between
patients who received bevacizumab and chemotherapy without
maintenance bevacizumab compared with those who received
chemotherapy alone (median 11.2 vs. 10.3 months; HR, 0.908;
95 % CI, 0.795–1.040; P00.16) suggesting duration of expo-
sure may be important to the treatment strategy [28].

Although the design is somewhat different, primary
results from the International Collaborative Ovarian Neo-
plasm (ICON) 7 trial support a PFS benefit among patients
in the arm treated with bevacizumab in addition to standard
chemotherapy followed by maintenance bevacizumab after
a 19.4-month median follow-up (19.0 vs. 17.3 months; HR,
0.81; 95 % CI, 0.70–0.94; P00.004) [30], with similar
findings after an updated analysis (after a 28-month median
follow-up) [29]. Survival data are not yet mature for either
trial; however, preliminary results reveal no OS benefit for

Fig. 1 Key angiogenic targets
in ovarian cancer. AKT protein
kinase B; EGF epidermal
growth factor; EGFR epidermal
growth factor receptor; FGF
fibroblast growth factor; FGFR
fibroblast growth factor
receptor; Flt-3 fms-like tyrosine
kinase-3; mTOR mammalian
target of rapamycin; PDGF
platelet-derived growth factor;
PDGFR platelet-derived growth
factor receptor; PI3K
phosphatidylinositol-3-kinase;
Raf v-raf 1 murine leukemia
viral oncogene homolog 1; RET
rearranged during transfection;
src v-src sarcoma viral onco-
gene homolog; VEGF vascular
endothelial growth factor;
VEGFR vascular endothelial
growth factor receptor
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Table 2 Efficacy and safety in Phase II/III trials of antiangiogenic agents in combination with chemotherapy

Trial Setting Treatment RR, % SD, % Outcomes Reported grade 3 to 4 AEs

Bevacizumab – relapsed/refractory

Garcia [17]; phase
II (N070)a

Recurrent EOC/PPC; ≤3
prior regimens

Bev+cyclo 24 (PR) 63 TTP, 7.2 mo. Hypertension, proteinuria
OS, 16.9 mo.

del Carmen [18];
phase II (N054)b

Recurrent EOC/PPC/FTC;
relapse-free interval
>6 mo. after first-line
platinum regimen

Bev+carbo/PLD 72 (NR) NR PFS, 14.1 mo. Blood/lymphatic system,
gastrointestinal, vascular disorders,
hand-foot syndrome, DVT, and
small intestinal perforation

McGonigle [21];
phase II (N040)

Recurrent OC/PPC; ≤2
prior regimens

Bev + topo 25 (PR) 35 PFS, 7.8 mo. Hypertension, neutropenia,
gastrointestinal toxicity, pain,
metabolic toxicity, bowel
obstruction, cardiotoxicity

OS, 16.6 mo.

Kudoh [22]; phase
II (N030)

Recurrent EOC; ≥1 prior
regimen

Bev + PLD 7 (CR); 27 (PR) 40 PFS, 6 mo. Hand-foot syndrome, GIP

Tillmans [23];
phase II
(N048)b

Recurrent EOC/PPC; ≥1
prior regimen

Bev + nab-pac 46.1 (PR) 30.8 PFS, 8.3 mo. NR
OS, 16.5 mo.

Wenham [24];
phase II
(N027)b

Recurrent OC; ≤3 prior
regimens

Bev + doc 5 (CR); 53 (PR) 37 PFS, 21 % at 6 mo. Leukopenia, neutropenia, infection,
fatigue, anorexia, rash, metabolic
fistula, GIP

OCEANS [19];
phase III
(N0484)

Recurrent platinum-
sensitive EOC/PPC/
FTC; 1 prior regimen

Carbo/gem vs. carbo/gem
+ bev → bev

57.4 vs. 78.5
(P <0.0001)

NR PFS, 8.4 vs. 12.4 mo. Neutropenia, hypertension, proteinuria,
bleeding (non-CNS), venous
thrombolic event, left ventricular
dysfunction/congestive heart failure,
wound healing complicationd

OS, 35.2 vs. 33.3 mo.c

Bevacizumab – first line

Micha [26]; phase
II (N018)

Chemonaive advanced
EOC/PPC/FTC

Bev + pac/carbo 30 (CR); 50 (PR) 5 NR Neutropenia, hypertension,
neuropathy

Penson [27]; phase
II (N062)

Chemonaive EOC/FTC/
PPC/ UPC

Bev + pac/carbo → bev
maintenance

21 (CR); 55 (PR) 21 PFS, 29.8 mo. Hypertension, musculoskeletal pain,
proteinuria, metabolic,
thrombocytopenia

GOG 218 [28];
phase III
(N01,873)

Chemonaive EOC/PPC/
FTC

Pac/carbo vs. bev + pac/
carbo vs. bev + pac/
carbo → bev
maintenance

NR NR PFS, 10.3 vs. 11.2 (HR00.908;
95 % CI, 0.795-1.040;
P00.16) vs. 14.1 mo.
(HR00.717; 95 % CI,
0.625-0.824; P<0.001)

Proteinuria, neutropenia, non-CNS
bleeding (other AEs were reported
based on grade ≥2 or all-grade
incidences)

OS, 39.3 vs. 38.7 (HR01.036;
95 % CI, 0.827–1.297;
P00.76) vs. 39.7 mo.
(HR00.915; 95 % CI,
0.727–1.152; P00.45)

ICON7 [29]; phase
III (N01,528)

Chemonaive EOC/PPC/
FTC

Pac/carbo vs. bev + pac/
carbo → bev
maintenance

48 vs. 67
(P <0.001)

46 % vs. 29 % PFS, HR00.81 (95 % CI,
0.70–0.94); P00.004 favoring
bev arm

Bleeding, abscess and fistula, GIP,
hypertension, proteinuria,
thromboembolic event, neutropenia,
febrile neutropenia,
thrombocytopenia, congestive heart
failure, wound healing complication

OS, HR00.85 (95 % CI,
0.69–1.04); P00.11

Aflibercept

Coleman [34];
phase II
(N046)

Recurrent EOC/PPC/FTC;
≤2 prior regimens

Aflibercept + doc 54 24 PFS, 6.4 mo. Neutropenia, leukopenia, fatigue,
dyspnea, stomatitis, reduced
magnesium, elevated creatinine, GIP,
sensory neuropathy, TIA, headache

OS, 26.6 mo.

Sorafenib

Ramasubbaiah
[72]; phase I/II
(N030)

Platinum-resistant EOC/
PPC

Sorafenib + topo 16.7 (PR) 46.7 PFS, 3.7 mo. Neutropenia, thrombocytopenia,
anemia, fatigue, nausea, vomitingOS, 14.0 mo.

Welch [73]; phase
II (N043)

Platinum-refractory EOC Sorafenib + gem 4.7 (PR) 18.3 TTP, 5.4 mo. Lymphopenia, neutropenia,
thrombocytopenia, hand-foot syn-
drome, fatigue, hypokalemia, diarrhea

OS, 13.0 mo.

AEs adverse events; bev bevacizumab; carbo carboplatin; CI confidence interval; CNS central nervous system; CR complete response; cyclo
cyclophosphamide; doc docetaxel; DVT deep-vein thrombosis; EOC epithelial ovarian carcinoma; FTC fallopian tube cancer; gem gemcitabine;
GIP gastrointestinal perforation; HR hazard ratio; nab-pac nab-paclitaxel; NR not reported; OC ovarian cancer; OS overall survival; pac paclitaxel;
PFS progression-free survival; PLD pegylated liposomal doxorubicin; PPC primary peritoneal cancer; PR partial response; RR response rate; SD
stable disease; topo topotecan; TIA transient ischemic attack; TTP time to progression; UPC uterine papillary serous carcinoma
a Trial was closed early due to rate of GIP (11.4 %). A total of 3 treatment-related deaths occurred
b Represents interim data
c OS data are immature, with only 48.6 % of patients having had an event
d Selected AEs described
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bevacizumab plus chemotherapy followed by maintenance
bevacizumab versus the control arm (HR, 0.0915 [95 % CI,
0.727–1.152;P00.45] and 0.84 [95%CI, 0.69–1.04;P00.11]
for GOG 218 and ICON7, respectively) [28, 29]. Adverse
events associated with bevacizumab in GOG 218 and ICON7
were similar. The frequency of most adverse events was
comparable between the bevacizumab and control arms aside
from increased incidence of hypertension among bevacizu-
mab recipients in both studies [28, 29]. Additional studies are
ongoing to explore bevacizumab in combination with chemo-
therapy to determine its optimal role in ovarian cancer therapy
(NCT00951496 [GOG 252], NCT01167712 [GOG 262],
NCT01081262, NCT00483782).

Aflibercept (VEGF Trap, Regeneron; Tarrytown, NY,
USA) is a manufactured protein engineered through fusion
of the ligand-binding domains of human VEGFR-1 and
VEGFR-2 with the constant region of IgG. This agent binds
all isoforms of VEGF as well as placental growth factor
[31]. Two phase II studies of aflibercept as a single agent in
platinum-resistant ovarian cancer have demonstrated prom-
ising results given a heavily pretreated population [32, 33].
In a study of 162 patients, the RR was 11 % with 5 partial
responses (PRs) and no mention of SD [33]. As a treatment
for malignant ascites, Gotlieb and colleagues found that the
mean time to repeat paracentesis was prolonged with afli-
bercept (P00.019) compared with placebo; however, the
incidence of fatal gastrointestinal events was higher with
aflibercept (3 intestinal perforations) versus placebo (1 in-
testinal fistula leading to sepsis) [32]. Due to promising
results in phase I trials, Coleman and colleagues recently
reported the results of a phase II trial of aflibercept in
combination with docetaxel in recurrent ovarian cancer.
Overall the confirmed RR was 54 % (11 CRs and 14 PRs
among 46 evaluable patients), with impressive response in
platinum-sensitive (77 % [10 of 13]) and platinum-resistant
(45 % [15 of 33]) patients. Median duration of response was
6.0 months and median PFS and OS in the entire group were
6.4 months and 26.6 months, respectively. Adverse events
were mostly of grade 1/2 severity; the most common grade
3/4 events (≥5 % of patients) were fatigue, dyspnea, neu-
tropenia, leukopenia, and stomatitis [34].

Although RRs have been quite impressive with the use of
anti-VEGF therapies, there are patients that do not respond to
initial treatment and also those that develop resistance to these
therapies. There are multiple excellent reviews on the topic of
antiangiogenic therapy resistance as a thorough discussion is
beyond the scope of this article [35–37]. Briefly, it appears
there are multiple mechanisms at work, including develop-
ment of tumor hypoxia that may lead to more aggressive
behavior and sustained survival. In addition, it appears that
other angiogenic pathways are stimulated when VEGF block-
ade is achieved, leading to compensatory activation of angio-
genesis. Finally, the tumor microenvironment, including

fibroblasts and pericytes, protect tumor cells from the action
of agents targeting VEGF. Targeting other angiogenic signal-
ing pathways is one option to overcome the development of
resistance to these therapies.

Other angiogenic targets of importance

Although VEGF and related receptors have been the primary
focus for clinical targets heretofore, the development of resis-
tance and the failure to achieve CR have led to great interest in
other members in the antiangiogenic cascade. Several other
targets have gained focus in light of their apparent importance
in ovarian cancer and the potential for successful inhibition. For
example, higher levels of platelet-derived growth factor (PDGF)
have been found in ovarian carcinomas than in benign tissue and
inmalignant ascites, and have been associatedwith poor survival
[38–44]. In addition, the fibroblast growth factor (FGF) pathway
has also been implicated in angiogenesis and ovarian physiology
[45–50] and ascites [48]. Furthermore, both PDGF [41, 51, 52]
and FGF signaling [36, 53, 54] have been implicated in resis-
tance to VEGF inhibition, suggesting that combined inhibition
of VEGF and PDGF and/or FGF would more effectively block
angiogenesis than isolated VEGF inhibition [52, 55–57].

The inhibition of multiple angiogenic signaling targets is
characteristic of several drugs currently under development,
some with potentially promising early results. Cediranib
(Recentin™, AstraZeneca; Wilmington, DE, USA) demon-
strates strong inhibition of VEGFR-1, -2, -3 and c-kit, in
addition to lower affinity inhibition of PDGFR-α/β, and
fibroblast growth factor receptor 1 (FGFR-1) [58]. In a
study of this agent in 46 patients with recurrent ovarian
cancer, a clinical benefit rate of 30 % was achieved with
acceptable toxicity. Successful outcomes included 8 patients
with PR, 6 patients with SD, and a median PFS of
5.2 months [59]. Hirte and colleagues reported a 41 % RR
in platinum-sensitive patients and a 29 % RR in patients
with platinum-resistant ovarian cancer treated with cedira-
nib. The median time to progression and OS in the cohort
were 4.1 and 11.9 months, respectively [60]. A phase II/III
trial is evaluating cediranib in combination with paclitaxel and
carboplatin and as maintenance therapy in platinum-sensitive
recurrent ovarian cancer (NCT00544973 [ICON6]). Blinded
safety results for 60 patients treated in stage I (for which safety
was the primary outcome) have been published, supporting
trial expansion to stage II [61].

Nintedanib (BIBF 1120, Boehringer Ingelheim; Ingel-
heim, Germany) is a triple angiokinase inhibitor that targets
several key angiogenic receptors including VEGFR-1, -2,
and -3, PDGFR-α/β, and FGFR-1, -2, and -3. In addition,
this agent has activity against members of the v-src sarcoma
viral oncogene homolog (Src) family and fms-like tyrosine
kinase 3 (Flt-3) [62]. A phase I study of nintedanib combined
with paclitaxel and carboplatin in patients with advanced or
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recurrent gynecologic malignancies had promising results with
5 of 7 patients with measurable disease demonstrating response
and 2 achieving SD. Of the patients with response, 3 had
recurrent ovarian cancer. Overall, the treatment was well toler-
ated with primarily gastrointestinal adverse events that were
grade 1 to 2 in severity [63]. Nintedanib has also been assessed
as amaintenance therapy among patients with recurrent ovarian
cancer who responded to their last chemotherapy regimen,
defined as CR, PR, or 50 % reduction in CA125. Treatment
with nintedanib yielded a 36-week PFS rate of 16.3 % com-
pared with 5.0 % in patients treated with placebo (HR, 0.65;
95 % CI, 0.42–1.02; P00.06). Patients receiving nintedanib
maintenance experienced significantly more nausea, vomiting,
and diarrhea (mostly of grade 1/2 severity) compared with
those treated with placebo [64]. Grade 3/4 adverse events were
similar between groups, with the exception of grade 3 liver
enzyme elevations (51.2 % with nintedanib vs. 7.5 % with
placebo). These results led to the development of a randomized
phase III study of nintedanib in combination with paclitaxel
and carboplatin in the upfront setting for advanced ovarian
cancer followed by nintedanib monotherapy as maintenance
(NCT01015118 [AGO-OVAR12/LUME-Ovar1]). Treatment
with nintedanib is to be continued until toxicity, disease pro-
gression, or a maximum of 120 weeks is reached. Two ongoing
phase I studies are investigating the combination of nintedanib
with carboplatin and PLD in platinum-sensitive relapsed ovar-
ian cancer (NCT01329549; NCT01314105).

Pazopanib (GlaxoSmithKline; London, UK) is an agent that
inhibits signaling through VEGFR-1, -2, and -3, PDGFR-α/β,
FGFR-1 and -3, and c-kit [65, 66]. This small molecule inhib-
itor has been evaluated in a phase II study of 31 patients with
recurrent ovarian cancer with elevated CA125 and non-bulky
disease. This study reported a 31 % RR by CA125 level and a
56 % SD rate. Among 17 patients with measurable disease,
18 % achieved a PR [67]. Phase II studies in relapsed/resistant
ovarian cancer of pazopanib as a single agent (NCT01262014,
NCT01227928) and in combination with chemotherapy
(NCT01238770, NCT01035658) are ongoing. In addition, a
phase III study evaluating single-agent pazopanib maintenance
after first-line chemotherapy has recently completed enroll-
ment (NCT00866697).

Sorafenib (Nexavar®, Bayer; Leverkusen, Germany) is an
interesting small molecule inhibitor that effectively inhibits
several angiogenesis-related receptors (VEGFR-2 and -3,
PDGFR-β, c-kit, Flt-3) as well as Raf [68]. Matei and col-
leagues reported a phase II trial of this agent in recurrent
ovarian cancer after 1 or 2 prior therapies. Twenty-two of 59
patients achieved PR or SD with common toxicities of gas-
trointestinal, constitutional, and dermatologic events. Four-
teen patients with measurable disease were progression free
for 6 months or greater [69]. A phase I study of the combina-
tion of sorafenib with bevacizumab had an impressive RR of
46 % in heavily pretreated ovarian cancer. Toxicity was

common in this study, including diarrhea, fatigue, hyperten-
sion, hand-foot syndrome, and transaminitis, leading to dose-
reduction in the majority (74%) of patients [70]. A subsequent
phase II study of intermittently dosed sorafenib with bevaci-
zumab yielded clinical benefit in 88% of the first 25 response-
evaluable patients (including 6 PRs and 16 patients with SD)
with recurrent ovarian cancer. The most common grade 3/4
adverse events included hypertension and thrombosis [71].
Phase II studies combining sorafenib with traditional
second-line chemotherapy, including topotecan [72] and gem-
citabine [73], have yielded similar clinical benefit rates with
minimal additional toxicity. Sorafenib is under evaluation in
several phase II trials in combination with chemotherapy
(NCT00096200, NCT01047891) in recurrent ovarian cancer,
in the first-line setting in combination with standard chemo-
therapy (NCT00390611), and as a maintenance therapy after
complete clinical response (NCT00791778).

Sunitinib (Sutent®, Pfizer; New London, CT, USA) inhibits
VEGFR-2, PDGFR-β, c-kit, Flt-3, and the rearranged during
transfection (RET) proto-oncogene [74–78]. Single-agent suni-
tinib has been evaluated in 3 phase II studies in patients with
recurrent or refractory ovarian cancer [79–81]. RRs among the 3
trials ranged between 3.3 % to 19 % [79–81] and SD rates were
between 19 % and 53 % [79–81]. Common side effects were
hand-foot reaction, gastrointestinal symptoms, fatigue, hyper-
tension, and mucositis [80]. The utility of this agent in all types
of ovarian cancer is unclear; however, sunitinib is under explo-
ration for the treatment of advanced and recurrent ovarian cancer
of clear cell histology (NCT00979992 [GOG 254]).

Cabozantinib (XL-184, Exelixis, Inc; South San Francisco,
CA, USA) is new chemical entity that targets multiple receptor
tyrosine kinases promoting angiogenic, invasive and metastatic
properties, including RET, mesenchymal-epithelial transition
(MET), VEGFR-2, and c-kit. It has demonstrated preclinical
and clinical activity across a number of solid tumors, including
ovarian, medullary thyroid, and castrate-resistant prostate can-
cer. A recent phase II randomized discontinuation trial of
cabozantinib in recurrent, previously treated ovarian cancer
was stopped early based on an encouraging 12-week RR of
24 % in a mixed population (18 % in platinum-resistant, 29 %
in platinum-sensitive patients) [82]. The median duration of
response and PFS had not been reached after a median follow-
up of 4 months. Grade ≥3 adverse events were hand-foot
syndrome and diarrhea. A placebo-controlled phase II trial of
cabozantinib for progressive recurrent or advanced solid
tumors (including ovarian) is ongoing (NCT00940225).

Targeting DNA repair with poly-ADP-ribose polymerase
(PARP) inhibition

Increased signaling through DNA damage repair pathways
is a known mechanism of chemoresistance. PARP1 is an
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enzyme that plays a critical role in the repair of DNA single-
strand breaks through base-excision repair [83]. Loss of
PARP1 activity leads to accumulation of single-strand
breaks, subsequent double-stranded breaks, and cellular
death. In normal cells, double-stranded breaks are repaired
through homologous recombination [84].

Defects in DNA repair occur in carriers of breast cancer
susceptibility gene 1 (BRCA1) and BRCA2 gene mutations,
whether germline or somatic, as well as in patients with defects
in the homologous recombination pathway [85, 86]. The use of
PARP inhibitors in patients with defects in DNA repair is a
rational approach, as PARP inhibition in these tumor cells leads
to double-stranded DNA accumulation and cell death via a
process known as synthetic lethality. Germline BRCA1 and
BRCA2 mutations occur in approximately 5 % to 10 % of
patients with ovarian cancer [87–89]. In addition, recent find-
ings indicate that somatic mutations in BRCA1 and BRCA2 are
also common, suggesting that additional patients may be sen-
sitive to PARP inhibition [90]. Furthermore, the hypermethyla-
tion of DNA leading to loss of function of the BRCA1 gene has
also been observed in up to 31 % of sporadic ovarian cancers
[91]. Certain histology types, such as high grade serous adeno-
carcinoma, may respond to PARP inhibitors in the absence of
BRCA mutation. Recent studies have attempted to identify
patients with a “BRCAness” phenotype to determine those that
might benefit most from treatment with these agents [90, 92].

While several PARP inhibitors are currently being investi-
gated (Table 3), the most experience to date in ovarian cancer is
with olaparib (AZD2281, AstraZeneca; Wilmington, DE,
USA) in patients with BRCA1 and BRCA2 mutations. In an
ongoing phase II trial evaluating 2 doses of olaparib in 57
patients with BRCA1 and BRCA2 mutations and platinum-
resistant ovarian cancer, the RR was 33 % in patients receiving
olaparib 400 mg twice daily and 13 % in patients receiving
100mg twice daily [93]. Additional phase II studies of olaparib
in recurrent serous ovarian cancer have confirmed favorable
response in patients with and without BRCAmutations[94, 95].

PARP inhibitors are fairly well tolerated, with most com-
mon adverse events consisting of fatigue, nausea, and vom-
iting. Cognitive dysfunction and mood alterations have been
described as a dose-limiting toxicity [93–96]. Dose reduc-
tion has been necessary in early trials combining PARP
inhibitors with cytotoxic chemotherapy secondary to in-
creased toxicity. Further, it is unclear if these agents outper-
form chemotherapy in germline BRCA mutation carriers. A
randomized phase II trial comparing olaparib versus PLD in
patients with BRCA mutations and progression within
12 months of platinum chemotherapy revealed higher RRs
in the patients treated with olaparib. However, the primary
endpoint of PFS was not reached, with only a slight improve-
ment with olaparib (6.5 and 8.8 months for olaparib 200 and
400 mg, respectively, vs. 7.1 months for PLD; HR for com-
bined doses, 0.88; 80 % CI, 0.51–1.56; P00.66) [97].

The use of olaparib as a maintenance therapy in the
platinum-sensitive recurrent setting was recently publishedwith
promising findings. Patients, who were not required to carry a
germline mutation in BRCA1 or BRCA2, were treated with
olaparib or placebo until disease progression after any response
to platinum agent. This phase II study found a clear improve-
ment in PFS (HR, 0.35; 95 % CI, 0.25–0.49; P<0.001), with a
toxicity profile consistent with previous studies [98]. Several
ongoing phase II trials are evaluating olaparib in ovarian cancer,
including its use in combination with carboplatin and paclitaxel
in the recurrent platinum-sensitive setting (NCT01081951).

Several other PARP inhibitors are being evaluated in clinical
trials for ovarian cancer. A phase II trial of iniparib (BSI-201,
BiPar Sciences; South San Francisco, CA, USA) in combination
with carboplatin and gemcitabine in platinum-sensitive ovarian
cancer yielded improved RR over historical RRs for chemother-
apy alone (70.6 % vs. 47.2 %) [99]. Iniparib has also been
evaluated in combination with carboplatin and gemcitabine in
patients with platinum-resistant ovarian cancer. Among the first
19 evaluable patients in a single-arm phase II trial, this combi-
nation demonstrated a RR of 31.6 % and median PFS of
5.9 months with no unexpected toxicities [100]. Additional
studies of iniparib both as a single agent in patients with BRCA1
or BRCA2-associated ovarian cancer are ongoing
(NCT00677079). Interestingly, 2 recent publications reported
that the antitumor activity of iniparib is not consistent with
PARP inhibition, indicating a need for further preclinical assess-
ment of this agent [101, 102]. Other PARP inhibitors are in early
phase trials include MK-4827 (Merck & Co., Inc.; Whitehouse
Station,NJ, USA), ABT-888 (Abbott Laboratories; Abbott Park,
IL, USA), AG-14699 (rucaparib, Pfizer; New London, CT,
USA), and BMN-673 (Biomarin; Novato, CA, USA).

There are patients with BRCA mutations that are resistant
to PARP inhibition despite defects in base excision repair.
Preclinical data indicate that resistance to this therapy is
related to upregulation of other DNA repair pathways
[103]. Additional proposed mechanisms of resistance to
PARP inhibition are the loss of BRCA2 mutations or devel-
opment of secondary BRCA2 mutations that restore BRCA
function [104, 105].

Targeting the phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (AKT)/mammalian target of rapamycin (mTOR)
pathway

The PI3K pathway plays a key role in tumorigenesis
through stimulation of several downstream mediators, in-
cluding AKT. AKT acts on a variety of targets affecting
cellular proliferation, survival, and evasion of apoptosis.
mTOR is a critical target of AKT that subsequently activates
proteins such as S6 kinase, impacting protein translation and
progression of the cell cycle [106–108]. This pathway may
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be activated in ovarian cancers, serving as a potential mech-
anism of drug resistance [109]. Thus, inhibition of the PI3K
pathway appears to be an attractive target for the treatment
of ovarian cancer. Further, certain ovarian histology types
such as low grade serous, clear cell, and endometrioid
adenocarcinomas, are more likely to demonstrate aberra-
tions in this pathway [110–112]. Thus, there is the potential
for higher levels of clinical activity with appropriate patient
selection during trial design.

PI3K inhibitors

First-generation PI3K inhibitors were largely unsuccessful
in preclinical studies because of high toxicity, likely due to
an absence of selectivity [106]. There are multiple PI3K
inhibitors currently under exploration, although few have
reached phase II clinical development. XL147 (Exelixis,

Inc.; South San Francisco, CA, USA) is a reversible, highly
selective PI3K inhibitor that has shown dose-dependent
inhibition of the PI3K pathway in multiple tumor xenografts
[106]. A phase I study of single-agent XL147 in patients
with advanced solid tumors showed the agent had durable
clinical benefit and was well tolerated, with skin rash being
the most common drug-related toxicity [113]. An ongoing
phase Ib/II trial (NCT00756847) is evaluating the combina-
tion of XL147 and paclitaxel and carboplatin in patients
with advanced solid tumors; preliminary results suggest
the combination is well tolerated and induces tumor regres-
sion in a heavily pretreated patient population. Favorable
responses in ovarian cancer have led to a dose expansion in
this tumor type [114]. PX-866 (Oncothyreon Inc.; Seattle,
WA, USA) is an irreversible PI3K inhibitor that has shown
preclinical activity in ovarian cancer cell lines [115]. In a
phase I (first-in-human) study, PX-866 was well tolerated,

Table 3 Efficacy and safety in Phase II/III trials of PARP inhibitors

Trial Setting Treatment RR, % SD, % Outcomes Reported grade 3 to 4 AEs

Olaparib

Audeh [93]; phase II
(N057)

Recurrent EOC/PPC/FTC
with confirmed BRCA1
or BRCA2 mutations

Olaparib 400 or
100 mg BID

33 (400 mg); 13
(100 mg)

36 (400 mg); 29 (100 mg) PFS, 5.8 mo. (400 mg);
1.9 mo. (100 mg)

Nausea, fatigue, anemia,
vomiting, neutropenia,
GERD, lymphopenia

Gelmon [94]; phase II
(N090)

Advanced high-grade se
rous and/or undifferenti
ated and/or known
BRCA-mutated OC/PPC/
FTC (n064) or triple-
negative BC (n026)

Olaparib 400 mg BID 29 (OC only) 38 (OC only)a PFS, 219 d (OC only) Nausea, fatigue, decreased
appetite, diarrhea,
abdominal pain (OC only)

Ang [95]; phase II
(N026)b

Advanced BRCA1/
2-deficient OC

Olaparib followed by
CT at progression

54 (olaparib
only, before CT)

NR NR NR

Kaye [97]; phase II
(N097)

Recurrent OC within 12
mo. of platinum therapy
and confirmed BRCA1
or BRCA2 mutations

Olaparib 200 mg
BID vs. olaparib
400 mg BID vs. PLD

25 vs. 31 vs.
18 (P 0 NS)

47 vs. 59 vs. 52a PFS, 6.5 vs. 8.8 vs. 7.1
mo. (HR for combined
doses00.88; 80 % CI,
0.51–1.56; P00.66)

Nausea, fatigue, abdominal
pain, vomiting, constipation
(olaparib only), diarrhea
(PLD
only), asthenia, urinary tract
infection (PLD only), anemia
(olaparib only), rash/PPE
(PLD only), stomatitis
(PLD only)

OS, HR (200 mg vs.
PLD)00.66 (95 %
CI, 0.27–1.55); HR
(400 mg vs. PLD)0
1.01 (95 % CI,
0.44–2.27)

Ledermann [98]; phase II
(N0265)

Platinum-sensitive,
relapsed, high-
grade serous OC/
PPC/FTC; ≥2 prior
regimens and PR/CR to
most recent regimen

Maintenance olaparib
400 mg BID vs.
placebo

12 vs. 4 NR PFS, 8.4 vs. 4.8 mo.
(HR00.35; 95 % CI,
0.25–0.49; P <0.001)

Nausea, fatigue, vomiting,
diarrhea, abdominal pain,
anemia, asthenia, back pain

OS, 29.7 vs. 29.9 mo.
(HR00.94; 95 % CI,
0.63–1.39; P00.75)b

Iniparib

Penson [99]; phase II
(N041)b

Platinum-sensitive
EOC/PPC/FTC

Iniparib + carbo/gem 70.6c NR NR NR

Birrer [100]; phase II
(N048)b

Platinum-resistant
EOC/PPC/FTC

Iniparib + carbo/gem 31.6d NR PFS, 5.9 mo.d NR

AE adverse event; BC breast cancer; BID twice daily; BRCA breast cancer susceptibility gene; carbo carboplatin; CI confidence interval; CR
complete response; CT chemotherapy; EOC epithelial ovarian carcinoma; FTC fallopian tube cancer; gem, gemcitabine; GERD gastroesophageal
reflux disease; HR hazard ratio; NR not reported; NS not significant; OC ovarian cancer; OS overall survival; PARP poly-ADP-ribose polymerase;
PFS progression-free survival; PLD pegylated liposomal doxorubicin; PPC primary peritoneal cancer; PPE palmar-plantar erythrodysesthesia; PR
partial response; RR response rate; SD stable disease
a Stable disease for ≥8 weeks
b Represents interim data
c RR based on first 17 evaluable patients
d Efficacy reported for first 19 evaluable patients
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with adverse effects consisting primarily of grade 1/2 nau-
sea, vomiting, and diarrhea [116]. Further phase I studies
with PX-866 are ongoing in patients with advanced solid
tumors.

mTOR inhibitors

mTOR may be considered the most important target of
AKT, mediating the regulation of translation of different
effectors involved in cell growth [106]. There are several
agents of great interest that inhibit mTOR. Everolimus (Afi-
nitor®, RAD001, Novartis Pharmaceuticals Corporation;
East Hanover, NJ, USA) has shown preclinical activity in
ovarian cancer models [117–119], and is currently being
evaluated in phase II studies in combination with bevacizu-
mab for patients with recurrent or persistent ovarian cancer
(NCT00886691, NCT01031381). In addition, a phase I
study evaluating everolimus plus carboplatin and PLD in
relapsed ovarian cancer is ongoing (NCT01281514).

Temsirolimus (Torisel®, Pfizer; New London, CT, USA
[formerly Wyeth]; Philadelphia, PA, USA) was evaluated in
a phase I study in combination with topotecan in patients
with advanced or recurrent gynecologic malignancies. This
combination was well tolerated, with the dose-limiting tox-
icity of myelosuppression; 9 of 11 patients achieved SD at
8 weeks [120]. In an ongoing phase II trial combining
temsirolimus with bevacizumab in recurrent ovarian cancer
patients with up to 2 prior lines of therapy, there were 3 PRs
and 14 patients progression free at 6 months among the first
25 enrolled patients. This trial has opened for second stage
accrual [121]. A GOG phase II trial of single-agent temsir-
olimus for recurrent ovarian or primary peritoneal cancer
reported an overall RR of 9.3 % (5 PRs in 54 evaluable
patients), 6-month PFS rate of 24.1 %, and median PFS and
OS of 3.2 months and 11.6 months, respectively. The inves-
tigators concluded that this activity, albeit modest, was
insufficient to warrant further evaluation of temsirolimus
in a phase III trial in an unselected population [122]. Addi-
tional phase II trials are currently evaluating temsirolimus in
combination with PLD (NCT00982631) in relapsed ovarian
cancer as well as temsirolimus in patients with platinum-
refractory ovarian cancer (NCT01460979).

AKT inhibitors

Activation of downstream AKT is the most important PI3K
function for onset and progression of tumor cells [106].
Furthermore, the inhibition of mTOR results in upregulation
of AKT phosphorylation [123]. Thus, AKT is a rational
target alone or in combination with other agents for ovarian
cancer. Perifosine (Keryx Biopharmaceuticals, Inc; New
York, NY, USA), an alkylphospholipid, is known to inhibit
AKT by prevention of its recruitment to the cellular

membrane. This agent has demonstrated activity in phase I
studies in advanced solid tumors [124–126]. Results from a
phase I study of perifosine in combination with docetaxel in
patients with relapsed ovarian cancer suggest further study
of the combination in patients with defined PI3K pathway
mutational status is warranted [127]. MK-2206 (Merck &
Co., Inc.; Whitehouse Station, NJ, USA), an allosteric in-
hibitor of Akt, is now in phase II investigation for platinum-
resistant ovarian, fallopian tube, or primary peritoneal can-
cer in a biomarker-assessed clinical trial (NCT01283035).

As noted above, the inhibition of only 1 target in the
PI3K/AKT pathway may not be sufficient for an objective
tumor response, given the extensive cross-talk and feedback
loops found in this pathway. Furthermore, the PI3K/AKT
pathway appears tightly linked to the retrovirus-associated
DNA sequences (Ras)/v-raf 1 murine leukemia viral onco-
gene homolog 1 (Raf)/mitogen-activated protein kinase
(MAPK) pathway that regulates cellular survival, prolifera-
tion, and avoidance of apoptosis. The Ras/Raf/MAPK path-
way has been implicated in resistance to multiple targeted
therapies, including those agents targeting the PI3K path-
way [128]. For example, recent data demonstrate that cell
lines with activating Ras mutations demonstrated resistance
to everolimus in vitro [129]. Pairing drugs that target this
pathway, such as mitogen -activated protein/extracellular
signal-regulated kinase kinase (MEK) inhibitors, with
agents that target the PI3K pathway may be a rational way
to overcome poor RRs and resistance. This combination was
recently described in KRAS-mutated ovarian cancer cell
lines and resulted in significant tumor regression [130]. To
date, MEK inhibitors have not yet been explored in high-
grade serous ovarian cancer, although preliminary activity in
low-grade serous ovarian cancer was recently demonstrated
for one agent (selumetinib [AZD6244], AstraZeneca; Wil-
mington, DE, USA) in a phase II trial (GOG-239) [131].

Targeting Src

Src is a downstream nonreceptor tyrosine kinase that medi-
ates cancer cell growth, migration, adhesion, invasion, and
angiogenesis [87, 132]. Overexpression of Src has been
observed in ovarian cancer cell lines [133] and in late-
stage cancers [134]. Src inhibition has been shown to re-
verse chemoresistance and enhance the activity of paclitaxel
and platinum treatment in ovarian cancer cell lines [135,
136].

Dasatinib (Sprycel®, Bristol-Myers Squibb Company;
Princeton, NJ, USA) is a strong inhibitor of the Src family
of kinases, as well as other targets at higher doses, including
BCR-ABL, c-kit, and PDGF. Preclinical data strongly sup-
port further investigation of dasatinib as a single agent or in
combination with chemotherapy in patients with ovarian
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cancer [137, 138]. A phase II study is evaluating dasatinib
as monotherapy (NCT00671788) and a phase I study is
evaluating dasatinib combined with paclitaxel and carbopla-
tin (NCT00672295) for persistent or recurrent ovarian
cancer.

Saracatinib (AZD0530, AstraZeneca; Wilmington, DE,
USA) is an orally bioavailable inhibitor of Src. A phase II
study of saracatinib plus carboplatin and paclitaxel versus
chemotherapy alone in patients with platinum-sensitive
ovarian cancer revealed a similar PFS (median, 8.3 vs.
7.8 months, respectively; HR, 0.99; 80 % CI, 0.76–1.31)
and overall RR (53.4 % vs. 51.7 %; HR, 0.91; 80 % CI,
0.62–1.36) in both groups. The most common adverse
events were neutropenia, febrile neutropenia, thrombocyto-
penia, and anemia, which were usually reported during the
chemotherapy period [139]. An ongoing phase II study is
evaluating saracatinib in advanced ovarian cancer (OVERT-
1; NCT00610714) and a phase II/III study in combination
with weekly paclitaxel in platinum-resistant ovarian cancer
has begun recruitment (NCT01196741).

Targeting other novel pathways

Initial interest was high in the EGFR pathway in ovarian
cancer secondary to the high but variable level of over-
expression (4–100 %) found in this tumor type [140]. Acti-
vation of the EGFR pathway has impact on invasion and
metastasis as well as cell survival through the PI3K/AKT
and Ras/Raf pathways [141, 142]. Unfortunately, agents
targeting this pathway have not demonstrated significant
activity in ovarian cancer.

Several monoclonal antibodies targeting EGFR or anoth-
er ErbB family member (e.g., cetuximab [Erbitux®, Bristol-
Myers Squibb; New York, NY, USA], trastuzumab [Hercep-
tin®, Genentech; South San Francisco, CA, USA], lapatinib
[Tykerb®, GlaxoSmithKline; London, UK], pertuzumab
[Genentech; South San Francisco, CA, USA]) and TKIs
(e.g., erlotinib [Tarceva®, Genentech; South San Francisco,
CA, USA], gefitinib [Iressa®, AstraZeneca; Wilmington,
DE, USA]) have been investigated in ovarian cancer, but
have demonstrated only minimal activity as monotherapy or
in combination with standard chemotherapy [143–156].
This may be secondary to recent data that indicate that
response to EGFR-directed therapy is related to mutations
in EGFR, which are rare in ovarian cancer, rather than
overexpression of EGFR [157]. Despite weak evidence
supporting the benefit of inhibiting EGFR, the European
Organization for Research and Treatment of Cancer
(EORTC) has recently completed enrollment of a phase III
study of erlotinib versus observation in patients with no
evidence of disease progression after first-line platinum-
based therapy (EORTC 55041; NCT00263822).

One alternative strategy in this pathway is based on
efforts to block EGFR activation through prevention of
specific receptor dimerizations. One agent, MM-121 (Mer-
rimack Pharmaceuticals Inc.; Cambridge, MA, USA), which
is designed to block dimerization of ErbB3, has shown
promising preclinical and phase I data [158], which is sup-
porting a randomized phase II trial in combination with
weekly paclitaxel for platinum-resistant/refractory advanced
ovarian cancer (NCT01447706).

The agent vandetanib is a TKI that has dual action on
VEGFR-2 and EGFR to target angiogenesis and cellular
survival mechanisms. Unfortunately, a study of vandetanib
as a single agent for recurrent ovarian cancer had no activity,
resulting in study closure after first stage accrual. Molecular
testing that was performed on tissues after treatment was
significant for blockage of the EGFR pathway but had no
impact on VEGFR [159]. Based on preclinical studies that
indicated enhanced activity of antivascular therapy in com-
bination with docetaxel [160], a trial combining docetaxel
with vandetanib is now underway for the treatment of re-
current ovarian cancer (NCT00872989).

Folate receptor alpha (α-FR) is involved with folate
transport and binds the folate receptor with high affinity.
This is an attractive target in ovarian cancer, as greater than
70 % of primary and 82 % of recurrent ovarian tumors
overexpress α-FR [161]. Farletuzumab (MORAb-003, Mor-
photek, Inc.; Exton, PA, USA), a humanized monoclonal
antibody against α-FR, was generally safe and well tolerat-
ed in a phase I study of heavily pretreated patients with
ovarian cancer. There were no severe adverse events; the
majority of toxicity was mild including hypersensitivity,
fatigue, and diarrhea [162]. In addition, a phase II study of
farletuzumab alone with subsequent addition of carboplatin
and taxane at the time of disease progression in patients with
platinum-sensitive ovarian cancer in first relapse had prom-
ising results. Approximately 90 % of patients receiving
combination therapy achieved normalized CA125 and ap-
proximately 70 % had a response. Farletuzumab was well
tolerated as a single agent, with no additive toxicity com-
bined with chemotherapy [163]. A phase III randomized,
double-blind, placebo-controlled study was performed to
farletuzumab in combination with weekly paclitaxel in
patients with platinum-resistant or refractory ovarian cancer
(NCT00738699) [164]. Unfortunately, this study was closed
to accrual after failure to meet predefined efficacy endpoints
at interim analysis. This agent is currently under evaluation
in combination with carboplatin and taxane in an ongoing
phase III study in patients with platinum-sensitive ovarian
cancer in first relapse (NCT00849667). EC145 (Endocyte,
Inc.; West Lafayette, IN) is a conjugate of folic acid and
desacetylvinblastine that binds to the folate receptor with
high affinity. This agent demonstrated a significant improve-
ment in PFS in combination with PLD (21.7 weeks)
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compared to PLD alone (11.7 weeks) in patients with
platinum-resistant ovarian cancer in a phase II trial [165],
prompting an ongoing randomized phase III trial
(NCT01170650).

Activity of the insulin-like growth factor (IGF) family
impacts cell proliferation and tumorigenesis among many
solid tumors, including ovarian cancer [166, 167]. IGF can
activate the PI3K/AKT pathway leading to cellular survival
and metastasis [166]. Microarray studies have demonstrated
that upregulation of this pathway correlates with poor OS in
ovarian cancer [168]. Currently, a humanized monoclonal
antibody that targets the IGF-1 receptor, AMG 479 (Amgen
Inc.; Thousand Oaks, CA, USA), is under exploration as a
single agent in platinum-sensitive ovarian cancer
(NCT00719212) and in combination with standard cytotoxics
as first-line therapy (NCT00718523). In addition, a dual IGF
and PI3K/Akt/mTOR blockade strategy is being pursued with
dalotuzumab (Merck & Co., Inc.; Whitehouse Station, NJ,
USA) in combination with either anmTOR inhibitor or an Akt
inhibitor (either ridaforolimus orMK-2206, respectively [both
also Merck & Co, Inc]) in advanced malignancies, with pre-
liminary antitumor activity to be assessed in a subgroup of
patients withmetastatic or recurrent platinum-resistant ovarian
cancer (NCT01243762).

Serous ovarian cancer is characterized by near universal
aberration in the P53 tumor suppressor gene [169]. Normal-
ly p53 plays an important role as a cell cycle checkpoint
regulator, particularly at the G1 checkpoints. While protect-
ing normal cells from DNA injury, this regulator mechanism
can also allow tumor cells to repair induced DNA damage—
thereby reducing the effectiveness of chemotherapy. Cells
that lack normal p53 function are known to rely on other
checkpoints for cell cycle regulation. Wee-1 is a tyrosine
kinase that regulates the G2 cell cycle checkpoint. It gains
prominence when p53 function is perturbed. As inhibition
of Wee-1 in p53-deficient tumors leads to reduced capacity
for tumor cell repair of induced DNA damage (e.g., chemo-
therapy, radiation) [170], it represents a potential target for
p53-mutant ovarian cancer. Accordingly, a randomized,
placebo-controlled phase II study is evaluating paclitaxel
and carboplatin with or without the Wee-1 tyrosine kinase
inhibitor MK-1775 (Merck & Co, Inc; Whitehouse Station,
NJ, USA) in women with p53 mutation-positive platinum-
sensitive recurrent ovarian cancer.

Conclusions

Given the limited success of traditional cytotoxic chemo-
therapy in the treatment of ovarian cancer, recent clinical
studies have focused more heavily on molecular targeted
therapy. There are a number of promising pathways in
ovarian cancer that may prove to advance OS while

minimizing quality of life impact. Current study designs
will continue to clarify the role of these agents, specifically
use in the upfront versus recurrent settings, as well as
development of rational combinations to overcome resis-
tance. Certainly, close analysis of factors that predict ad-
verse events of these agents will be necessary as our
knowledge continues to expand.
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