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Summary The microtubule-targeting agents derived from
natural products, such as vinca-alkaloids and taxanes are an
important family of efficient anti-cancer drugs with thera-
peutic benefits in both haematological and solid tumors.
These drugs interfere with the assembly of microtubules of
α/β tubulin heterodimers without altering their expression
level. The aim of the present study was to investigate the
effect of thymoquinone (TQ), a natural product present in
black cumin seed oil known to exhibit putative anti-cancer
activities, on α/β tubulin expression in human astrocytoma
cells (cell line U87, solid tumor model) and in Jurkat cells
(T lymphoblastic leukaemia cells). TQ induced a
concentration- and time-dependent degradation of α/β
tubulin in both cancer cell types. This degradation was
associated with the up-regulation of the tumor suppressor
p73 with subsequent induction of apoptosis. Interestingly,
TQ had no effect on α/β tubulin protein expression in
normal human fibroblast cells, which were used as a non-
cancerous cell model. These data indicate that TQ exerts a

selective effect towards α/β tubulin in cancer cells. In
conclusion, the present findings indicate that TQ is a novel
anti-microtubule drug which targets the level of α/β tubulin
proteins in cancer cells. Furthermore, they highlight the
interest of developing anti-cancer therapies that target
directly tubulin rather than microtubules dynamics.
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Introduction

Microtubules, the major cytoskeleton components in cells,
are composed of α/β tubulin subunits. This structure is
considered as one of the best targets in cancer chemotherapy
[1]. Several natural compounds can target and inhibit
successfully the normal function of microtubules [2]. The
vinca-alkaloids and the taxanes are among the most
important anti-microtubule drugs [2]. Indeed, microtubule-
targeting drugs (MTDs) interfere with the assembly of
microtubules of α/β tubulin heterodimers without altering
their expression level [3]. Although MTDs have clinical
therapeutic benefits against haematological and solid tumors,
the development of resistance to these drugs, their specificity
towards tumors, and the induction of neutropenia, myeloid
and neurological toxicities are the major problems observed
during their clinical applications [4–10]. Deficiency of
MTDs-induced apoptotic pathways in different cancers has
been suggested as a mechanism of resistance to these drugs
[11]. In this context, it has been suggested that p53 might be
a guardian of microtubules composition and that mutations
in p53 are likely to contribute to the development of
resistance to MTDs [11]. Thus, increasing the tissue
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specificity, reducing the side effects, especially the peripheral
neuropathy and leukopenia, are major objectives in the
current research for new MTDs.

Many studies have shown that thymoquinone (TQ), a
natural product present in black cumin seed oil with anti-
inflammatory and anti-cancer activities, is a potent cyto-
toxic agent against many types of human cancer cells [12,
13]. It has been reported that TQ exerts its anti-cancer
effects through the inhibition of cell growth, cell cycle
arrest with subsequent apoptosis [14–17]. TQ can induce
apoptosis in cancer cells by p53-dependent and -
independent pathways [12, 16]. The TQ-induced apoptosis
in p53-null myeloblastic leukemia and human osteosarcoma
cells involves an increase in the Bax/Bcl2 ratio and the
activation of caspases [18, 19]. Recently, we have shown
that TQ induces apoptosis in acute lymphoblastic leukemia
cell line (Jurkat cells), a p53-deficient cell line, through
activation of the tumor suppressor p73, the structural and
functional homolog of p53, which targets the anti-apoptotic
protein UHRF1 (Ubiquitin-like PHD Ring Finger 1) [12].
Unlike p53, which is mutated in 50% of cancer cells, the
mutations of the p73 gene are very rare (less than 1%),
making it as an alternative strategy for anti-cancer
treatment, especially for those where p53 is deficient or
mutated [20, 21]. Indeed, several studies have proposed that
p73 is a novel promising target for cancer therapy [22–26].

The present study has indicated that TQ induces the
degradation of α/β tubulin in human astrocytoma cells (cell
line U87) and in the p53-deficient Jurkat cell line. This
degradation is associated with p73 up-regulation in both
cancer cell lines. Interestingly, TQ had no effect on α/β
tubulin protein level in normal human fibroblast cells.
Altogether, the present findings suggest that TQ is a new
MTD exhibing specificity towards cancer cells.

Material and methods

Cell culture and treatment

The human astrocytoma cells (line U87, WHO grade IV)
and human T lymphocyte cell line Jurkat were obtained
from the America Type Culture Collection (Mannassa, VA,
USA). Cell lines were maintained in a humidified incubator
with 5% CO2 at 37°C, and were grown in EMEM
(Biowhitaker, Lonza, Belgium) for human astrocytoma cells
and RPMI 1640 (Sigma-Aldrich, St-Louis, MO) for Jurkat
cells and human fibroblast cells. Both media were supple-
mented with 15% (v/v) fetal calf serum (FCS, Biowhitaker,),
2 mM glutamine, 100 U/ml penicillin and 50 mg/ml
streptomycin (Sigma St. Louis, MO). For all treatments, a
100 mM solution of TQ (Sigma–Aldrich, St) was prepared
in 100% DMSO (Dimethylsulfoxide; Millipore S.A.S.,

Molsheim, France) and appropriate working concentrations
were prepared with cell culture medium. The final concen-
tration of DMSO was less than 0.1% in both control and
treated conditions.

Western blot analysis

Cells were treated with TQ at different concentrations and
incubated for the indicated time. Cells were then harvested
and centrifuged at 200g for 5 min at room temperature. The
pellets were resuspended in RIPA buffer (25 mM Tris pH
7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,
0.1% SDS) containing different protease inhibitors (Sigma-
Aldrich) and incubated on ice for 20 min. The cell
suspensions were then sonicated three times (30 s each)
and the supernatants containing the proteins were collected
after centrifugation at 10,000g for 16 min at 4°C. The
protein concentration was determined by the Bradford assay
(Bio-Rad, Marnes la Coquette, France). Proteins were
separated on 10% SDS-polyacrylamide gels and transferred
to PVDF membranes (Millipore, Saint Quentin en Yvelines,
France), as previously described [27]. Immunoblot was
performed using either a mouse monoclonal anti-β tubulin
antibody (Sigma–Aldrich), a purified monoclonal anti-α
tubulin (Clone 10D8) antibody (Biolegend, San Diago,
CA), a mouse monoclonal anti-p73 antibody (BD Bio-
sciences Pharmingen), a mouse monoclonal anti-UHRF1
antibody (Proteogenix, Oberhausbergen, France), or a
mouse monoclonal anti-β actin antibody (Abcam, Paris,
France), according to the manufacturer’s instructions.

Apoptosis assay

For detection of apoptosis, the annexin V-binding capacity
of treated cells was examined using the annexin V Binding
Guava Nexin® Assay by capillary cytometry (Guava Easy-
cyte Plus HP system, with absolute cell count and six
parameters) following the manufacturer’s recommendations
(Guava Technologies Inc, Hayward, CA, USA). Guava
Nexin® Assay utilizes annexin V-Phycoerythrin (PE) to
detect phosphatidylserine (PS) on the external membrane of
apoptotic cells. The cell impermeant dye, 7-Amino-
Actinomycin (7AAD), is used in the Guava Nexin® Assay
as an indicator of cell membrane structural integrity. 7-AAD
is excluded from viable cells as well as early apoptotic
cells. Jurkat cells were seeded into 6-multiwell plates at a
density of 2×106 cells/well, grown for 24 h and exposed to
TQ at different concentrations for 24 h. Jurkat cells were
stained directly in the 96-well microplate with 100 μl of
Guava Nexin Reagent, a pre-made cocktail containing
annexin V-PE and 7-AAD in buffer, in 200 μl final volume.
After 20 min incubation at room temperature, the samples
were analysed using Guava® System.
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Statistical analysis

Data are presented in a bar graph form, expressed as means
±SEM from at least three independent experiments.
Statistical analyses were performed using the one-way
ANOVA. Significance levels were defined as **, P<0.01;
***, P<0.001 (versus the corresponding untreated group).

Results

TQ induces a concentration-dependent degradation of α/β
tubulin associated with p73 up-regulation in human
astrocytoma cells (line U87)

We first investigated the effect of TQ on α/β tubulin and
p73 proteins in human astrocytoma cells (line U87 MG,
Fig. 1). For this purpose, human astrocytoma cells were
exposed to different concentrations of TQ for 24 h. We
observed that TQ induces a concentration-dependent α/β
tubulin down-regulation in U87 MG cells (Fig. 1). Indeed,
TQ at 100 μM caused a pronounced decrease in α tubulin
level, while β tubulin was undetectable (Fig. 1). TQ-
induced α/β tubulin degradation in astrocytoma cells was
associated with a concentration-dependent p73 up-
regulation which started at 50 μM suggesting that α/β
tubulin degradation is a downstream effect of p73 up-
regulation in the mechanism of action of TQ. These results
show that TQ induced α/β tubulin down-regulation
associated with the up-regulation of p73 in human
astrocytoma cells (line U87).

TQ induces a concentration- and time-dependent degrada-
tion of α/β tubulin in acute lymphoblastic leukaemia cells
(Jurkat cell line)

We have investigated the effect of TQ on the expression
of α/β tubulin in the p53-deficient Jurkat cell line.
Figure 2a shows that TQ induced β tubulin down-
regulation and the appearance of a lower molecular weight
form of α tubulin starting at 10 μM. Interestingly, at
50 μM of TQ, α/β tubulin protein level became
undetectable (Fig. 2a). The apoptotic effect of TQ in
Jurkat cells was also studied under the same experimental
conditions. Cells were exposed to different concentration
of TQ for 24 h and then apoptosis was assessed as
described in “Material and methods”. As shown in
Fig. 2b, increasing concentrations of TQ induced an
increasing number of apoptotic cells. TQ began to trigger
apoptosis at 10 μM, a concentration where α/β tubulin
proteins were down-regulated. TQ at 50 μM, induced
approximately apoptosis of 90% of cells (Fig. 2b), a
response which was associated with a total loss of α/β
tubulin proteins (Fig. 2a). In our previous study we have
shown that p73 is expressed at a low level in untreated
Jurkat cells and that TQ induced a marked up-regulation
of its expression starting at concentrations of or greater
than 10 μM [12]. Taken together, these results indicate
that TQ like in human astrocytoma cells induced α/β
tubulin down-regulation in acute lymphoblastic leukae-
mia cells and that this effect is associated with activation
of the tumor suppressor p73 leading subsequently to
apoptosis.

TQ has no effect on α/β tubulin protein expression
in normal human fibroblast cells as compared to Jurkat cells

In order to determine the chronology of the molecular
events induced by TQ leading to down-regulation of α/β
tubulin proteins, we analyzed the time-course effect of
TQ in Jurkat cells at 50 μM (concentration at which α/β
tubulin proteins were completely depleted, Fig. 2a).
Figure 3a shows that TQ induced a rapid α/β tubulin
down-regulation in Jurkat cells at 3 h associated with a
p73 up-regulation, this decrease in the α/β tubulin level
was more pronounced at 6 h. In the next step, we have
investigated the effect of TQ on α/β tubulin protein in
normal human fibroblast cells as a non-cancerous cell
model (Fig. 3b). Interestingly, in the same conditions, TQ
had no effect on α/β tubulin protein expression in normal
human fibroblast cells (Fig. 3b), even after 12 h of
treatment (data not shown). All these findings indicate
that TQ degrades α/β tubulin proteins in Jurkat cells
without affecting their level in normal human fibroblast
cells.

0           10          30          50         100         150 

[TQ] (µM) 24 h 

 actin 45 kDa 

Human astrocytoma cells 

 tubulin 53 kDa 

 tubulin 55 kDa 

70 kDa 
p73
p73

80 kDa 

Fig. 1 Effects of TQ on α/β tubulin and p73 expression in human
astrocytoma cells (cell line U87). Cells were exposed to TQ at the
indicated concentration and incubated for 24 h. Immunoblot analyses
were performed as described in “Material and methods” with different
antibodies. Specific bands were detected with their expected apparent
molecular weight. All membranes were reblotted with an anti β actin
probe to ensure equal protein loading and transfer. The data are
representative of at least three independent experiments
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Discussion

Because of their essential role in cell proliferation, micro-
tubules are considered as one of the best targets for the
development of anti-cancer drugs [2, 28]. It has been
suggested that targeting tubulin level directly without
manipulating microtubules dynamics could be an additional
approach to induce apoptosis in cancer cells [28]. In the
present study, we evaluated the effect of TQ on α/β tubulin
protein level in human astrocytoma cells (line U87) and in
p53-deficient acute lymphoblastic leukaemia cell line
(Jurkat cells). Our results showed that TQ induces a
concentration- and time-dependent degradation of α/β
tubulin associated with the up-regulation of tumor suppres-
sor p73 in both cancer cell lines. In human astrocytoma
cells, TQ induced α/β tubulin down-regulation at 100 μM

while in Jurkat cells this effect started at 10 μM suggesting
that leukaemia cells are more sensitive to TQ than
astrocytoma cells. Interestingly, TQ had no effect on the
expression of α/β tubulin protein in normal human
fibroblast cells as compared to Jurkat cells. The human
astrocytoma cell line (U87 MG) is a high-grade invasive
form of astrocytic brain tumors with a mean survival time
of less than 1 year. As microtubules are essential compo-
nents for cell division and intracellular transport, it is
reasonable to suggest that α/β tubulin degradation which
was observed in TQ-treated human astrocytoma cells is
likely to limit tumor cells’ invasiveness. Indeed, previous
studies have shown that TQ reduced colon tumor cell
invasion as well as significantly inhibited the invasion of
lung cancer cell [29, 30]. Presently, we dont have an
explanation why TQ selectively induced α/β tubulin
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Fig. 2 Effects of TQ on α/β tubulin expression and apoptosis in
Jurkat cells. a Cells were exposed to TQ at different concentrations
and incubated for 24 h. Immunoblot analyses were performed as
described in “Material and methods” with different antibodies. The
data are representative of at least three independent experiments. b
Cell apoptosis rate was assessed by capillary cytometry using the
annexin V-Phycoerythrin (PE) and 7-Amino-Actinomycin (7AAD)
staining assay. Events in each of the four quadrants were: Lower-left
quadrant: viable cells, not undergoing detectable apoptosis (Annexin

V-PE negative and 7-AAD negative cells). Lower-right quadrant: cells
in the early stage of apoptosis (Annexin V-PE positive and 7-AAD
negative cells). Upper right quadrant: cells in the late apoptotic or
dead (Annexin V-PE positive and 7-AAD positive cells, their number,
expressed as percentage relative to the total cell number, is indicated
on the right). Upper-left quadrant: mostly nuclear debris (Annexin V-
PE negative and 7-AAD positive). The data are representative of at
least three independent experiments
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degradation in cancer cells without affecting their level in
normal cells. Since α/β tubulin proteins are essential for
cell proliferation, it is possible that because cancer cells
multiply rapidly they are more sensitive to TQ compared to
normal-growing cells. In agreement with such a hypothesis,
we observed that TQ induced a dramatic decrease in the
expression of UHRF1, an anti-apoptotic protein, which is
over-expressed in numerous cancers and essential for cell
proliferation [12, 13] in Jurkat cells without affecting its
level in normal human fibroblast cells (Fig. 1A-B, supple-
mentary data). Since previous studies have shown that TQ
induces p73 up-regulation-dependent UHRF1 down-
regulation [12, 14] and that UHRF1 down-regulation
induces cell cycle arrest in G2/M and apoptosis [31], it is
likely that TQ-induced p73 up-regulation in the present
study leads to UHRF1 and α/β tubulin degradation resulting
ultimately in extensive apoptosis. Although the present
study indicates that α/β tubulin proteins are selectively
degraded in human astrocytoma cells and leukaemia cells,
the mechanism underlying the inhibitory effect of TQ
remains to be clarified. Some studies have shown that
MTDs such as paclitaxel (taxol) can induce caspase-
independent mitotic death (CIMD) by up-regulating of p73
but not its homolog p53 [32–35]. In addition, high

concentrations of TQ also induced the up-regulation of
p73 with the subsequent induction of apoptosis indepen-
dently of caspase 3 activation in Jurkat cells [12]. Thus, TQ
might be able to induce the degradation of α/β tubulin
proteins through a caspase-independent pathway, which is
activated by the up-regulation of p73. Furthermore, iso-
thiocyanates (ITCs), one of the best chemopreventive small
molecules, have been shown to induce a selective degrada-
tion of α/β tubulin and that this degradation is initiated by
their interaction resulting in the ubiquitination of α/β
tubulin and their subsequent degradation by the proteasome
[36]. It has also been shown that the small molecule
T0070907 (a PPAR inhibitor) is able to decrease the protein
level of α/β tubulin by activation of the proteasome
pathway [37]. Since TQ is a small drug-like molecule
[38, 39], it is likely that TQ decreases α/β tubulin level in
cancer cells by increasing the rate of proteasomal
degradation rather than by interfering with its synthesis.
The present findings suggest that TQ is an attractive MTD
with potent anticancer-activity, associated to low cytotoxic
effects on normal human cells and which also has anti-
inflammatory and neuroprotective activities as well as a
sensitizing effect on cancer cells resistant to chemotherapy
[15, 40–44]. In conclusion, we have shown that TQ causes
in cancer cells α/β tubulin degradation associated with
p73 up-regulation. These data support the idea that small
molecules can be used to decrease α/β tubulin levels, and
suggest that TQ might act as a novel and potent anti-
microtubule drug.
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