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Abstract

Purpose This study reports the ophthalmic and

genetic findings of a Cameroonian patient with

autosomal recessive retinitis pigmentosa (arRP)

caused by a novel Receptor Expression Enhancing

Protein 6 (REEP6) homozygous mutation.

Patient and methods A 33-year-old man underwent

comprehensive ophthalmic examinations, including

visual acuity measurements, dilated fundus imaging,

electroretinography (ERG), and spectral-domain

optical coherence tomography (SD-OCT). Short-

wavelength fundus autofluorescence (SW-AF) and

near-infrared fundus autofluorescence (NIR-AF) were

also evaluated. Whole exome sequencing (WES) was

used to identify potential pathogenic variants.

Results Fundus examination revealed typical RP

findings with additional temporal ten micron yellow

dots. SD-OCT imaging revealed cystoid macular

edema and perifoveal outer retinal atrophy with

centrally preserved inner segment ellipsoid zone
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(EZ) bands. Hyperreflective spots were seen in the

inner retinal layers. On SW-AF images, a hypoaut-

ofluorescent area in the perifoveal area was observed.

NIR-AF imaging revealed an irregularly shaped

hyperautofluorescent ring. His visual acuity was

mildly affected. ERG showed undetectable rod

responses and intact cone responses. Genetic testing

via WES revealed a novel homozygous mutation

(c.295G[A, p.Glu99Lys) in the gene encoding

REEP6, which is predicted to alter the charge in the

transmembrane helix.

Conclusions This report is not only the first descrip-

tion of a Cameroonian patient with arRP associated

with a REEP6mutation, but also this particular genetic

alteration. Substitution of p.Glu99Lys in REEP6 likely

disrupts the interactions between REEP6 and the ER

membrane. NIR-AF imaging may be particularly

useful for assessing functional photoreceptor cells

and show an ‘‘avocado’’ pattern of hyperautofluores-

cence in patients with the REEP6 mutation.

Keywords Retinitis pigmentosa � REEP6 �
Autosomal recessive � Whole exome sequencing

Introduction

Retinitis pigmentosa (RP) is the most common

inherited retinal disorder, affecting approximately 1

in 4000 people worldwide [1]. The affected individ-

uals are characterized initially by nyctalopia sec-

ondary to loss of rods, followed by peripheral visual

field constriction and severe vision loss from degen-

eration of cones and the RPE [2–4]. RP includes

autosomal recessive (50–60%), autosomal dominant

(30–40%), and X-linked recessive (5–15%) inheri-

tance [2, 5]. More than 60 genes associated with RP

have been identified, and the relationship between

these genes and clinical features has been extensively

compiled in Retnet (updated January 4, 2019; https://

sph.uth.edu/retnet/).

Mutations in the gene REEP6 (Receptor Expression

Enhancing Protein 6; OMIM#609346) have been

recently reported to cause syndromic autosomal

recessive retinitis pigmentosa (arRP) in eight unre-

lated families [6–8]. It is expressed specifically in rod

photoreceptors [9], where it functions in trafficking for

a subset of Clathrin-coated vesicles, and interacts with

the t-SNARE, Syntaxin3 [6]. REEP6 encodes a

putative endoplasmic reticulum (ER) shaping factor,

which is highly expressed in rod photoreceptors [10].

The protein encoded by this gene may be involved in

the transport of receptors from the ER to the cell

surface, and thus, regulation of the ER membrane

structure [9, 11].

The phenotype of the REEP6-associated RP is

typical of RP: attenuated retinal vessels [7], bone

spicules, and progressive photoreceptor cell degener-

ation [6–8]. In past reports, the ages of RP patients

with the REEP6 mutation ranged from 18 to 60 years,

and most of them reported night blindness starting in

early childhood [6–8]. The ophthalmic examinations

typically showed constricted visual fields; the central

vision was often reduced in the fifth decade of life [7].

The rod responses of the electroretinograms (ERGs)

were undetectable, and the cone responses were

severely reduced at early stages [7].

In this study, we report the case of a Cameroonian

patient with a novel homozygous mutation c.295G[A,

p.(Glu99Lys) in REEP6. While many of the present-

ing features are typical for the RP phenotype, the

additional small yellow dots in the temporal retina and

a parafoveal irregularly shaped hyperautofluorescent

ring with near-infrared fundus autofluorescence imag-

ing (NIR-AF) could be a characteristic of the REEP6

mutation.

Patients and methods

Clinical assessment

This study was approved by the Institutional Review

Board of Columbia University Medical Center and

adhered to the tenets of the Declaration of Helsinki.

Informed consent was obtained from the patient. The

33-year-old Cameroonian male was examined at the

Columbia University Medical Center. Ophthalmic

evaluations, including best-corrected visual acuity

(BCVA) measurements, slit-lamp biomicroscopy,

fundus examination and photography after pupillary

dilation ([ 7 mm), spectral-domain optical coherence

tomography (SD-OCT), short-wavelength fundus aut-

ofluorescence (SW-AF, 488 nm), and near-infrared

fundus autofluorescence (NIR-AF), were performed

(Spectralis HRA ? OCT; Heidelberg Engineering,

Heidelberg, Germany). Full-field electroretinography
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(ff-ERGs) was performed using Dawson, Trick, and

Litzkow (DTL) recording electrodes and Ganzfeld

stimulation according to standards from the Interna-

tional Society for Clinical Electrophysiology of

Vision [12]. The ERG recordings in the normal

controls were performed at Columbia University

Medical Center.

DNA analyses

Whole exome sequencing (WES) was obtained from

the patient’s peripheral blood. It was performed with

SureSelectXT Human All Exon V5 ? UTRs (Agilent

Technologies) capture and HiSeq2500 (Illumina)

sequencing technology. Sequence reads obtained were

analyzed for the presence of pathogenic mutations

using the NextGENe software (Softgenetics) and our

own analytical pipeline at the Laboratory of Person-

alized Genomic Medicine at Columbia University

[13]. Identified variants were assessed for clinical

phenotypic match and American College of Medical

Genetics and Genomics (ACMG) guidelines for the

interpretation of sequence variants [14]. The variants

were confirmed by Sanger sequencing by using

primers 50- GCCTGTATCTGCTGTTCGGC-30 (for-
ward) and 50-CACCATCAGACGTCCTAC TG-30

(reverse).

Measurement of hyperautofluorescent ring

on NIR-AF

The fovea was identified to be the center of the

elliptical-shaped hyperautofluorescent ring. A vertical

line was drawn through the fovea. The intersection of

the vertical line and the outer border of the ring were

used as the start and end points for measuring of nasal

and temporal circumferences. The circumferences and

distances of the ring were analyzed by ImageJ (https://

imagej.nih.gov/ij/; provided in the public domain by

the NIH, Bethesda, MD, USA).

Structural bioinformatics analysis

A BLAST search for human REEP6 against the

protein database (PDB) did not return sequences

producing significant alignments of greater than 31%

coverage. The lack of usable template structures

prevented homology-based modeling of the full-

length REEP6 3-dimensional structure. Instead, we

analyzed the biochemical features of the REEP6

protein using the primary sequence as input. Predic-

tion of membrane-spanning segments in the REEP6

sequence was performed using TMHMM 2.0 [15]

under default parameters. This analysis predicted

residues 87-140 containing the p.Glu99Lys mutation

to contain a putative transmembrane helix. This

putative REEP6 transmembrane helix (residues

87-105) was then modeled in MODELLER 9.14 [16]

using the ASH1L histone methyltransferase structure

as a template (PDB: 4YPA; 30% sequence identity).

Sequence alignments were performed with ClustalW

[17] and visualized using Espript 3.0 (http://espript.

ibcp.fr/). PyMOL (http://www.pymol.org/) generated

all structural figures.

Results

Clinical findings

A 33-year-old man was referred for RP evaluation.

Around the age of 18, he noticed problems with night

vision. He was of Cameroonian descent, and family

history was negative for consanguinity. One of the

patient’s cousins was also affected with RP (Fig. 1),

but he did not undergo genetic testing. There were no

other similarly affected individuals in the family.

The anterior segment appeared normal and quiet on

slit-lamp examination in both eyes. His best-corrected

visual acuity (BCVA) was 20/30-2 in the right eye and

20/20-2 in the left eye. Fundus examination revealed

attenuated retinal vessels and intra-retinal bone

spicule pigmentary migration in the periphery bilater-

ally. Temporal tiny yellow dots and waxy-pale optic

disks were also found (Fig. 2a–c0). On short-wave-

length fundus autofluorescence (SW-AF) images, a

hypoautofluorescent ring in the perifoveal area was

observed (Fig. 2d, d0). The NIR-reflectance (NIR-R)

image corresponding to the SD-OCT exhibited dark-

ening within the macula, with a slightly brighter

elliptical ring in the parafovea (Fig. 2e, e0). SD-OCT
imaging revealed cystoid macular edema (CME) and

perifoveal outer retinal atrophy with centrally pre-

served ellipsoid zone (EZ). Hyperreflective spots

(HRS) were seen in the SD-OCT image within the

ganglion cell layer (GCL), inner plexiform layer

(IPL), and inner nuclear layer (INL) (Fig. 2f, f0). NIR-
AF showed an irregular-shaped
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hyperautofluorescence ring in this patient (Fig. 2g, g0).
The hyperautofluorescent ring had an elliptical shape.

The ring extended further on the nasal side of the

fovea; the nasal one was 9933 lm in the right eye and

9375 lm in the left eye, while the temporal circum-

ference of the ring was 8290 lm in the right eye and

7995 lm in the left eye. The horizontal diameter (right

eye: 3509 lm, left eye: 3370 lm) was longer than the

vertical diameter (right eye: 2117 lm, left eye:

1975 lm). The location of the outer border of the

ring was not well defined in either SW-AF or NIR-R

images. However, in the NIR-AF image, the location

of the outer border corresponded to the position in the

SD-OCT scans where the ellipsoid zone (EZ) band

was at least partially intact. Scotopic rod-specific and

maximal responses on ff-ERG were extinguished in

both eyes. Photopic cone-specific and 30 Hz-flicker

amplitudes were significantly abnormal bilaterally,

but there was approximately 3 lV on the cone

response (Fig. 3).

Mutation analyses

Genetic testing of the proband via WES revealed a

homozygous missense variant c.295G[A in the gene

REEP6 (NM_138393.3; OMIM# 609346) (Fig. 4a),

and it is confirmed by Sanger sequencing (Fig. 4b). A

multiple sequence alignment of REEP6 homologs

revealed that the Glu99 residue is 100% conserved

among vertebrates and among REEP paralogs

(Fig. 4c, d). This change replaces the highly evolu-

tionarily conserved glutamic acid with a lysine, and in

silico algorithms predicted it was deleterious to

protein structure and/or function (SIFT Score: 0.00;

Provean Score: - 3.99). This variant occurred at a

very low allele frequency of 8.137E-6 (2 heterozy-

gotes, 0 homozygotes out of 245,790 individuals) in

the Genome Aggregation Database (gnomAD)

exomes and was absent in genomes (median coverage:

34.0X), indicating it was not a common benign

polymorphism represented by these databases. Results

obtained with the bioinformatics software Mutation

Taster (http://www.mutationtaster.org/) indicated that

the mutation was predicted to be ‘‘disease causing.’’

Other rare variants identified in WES analysis were

excluded based on clinical assessment of phenotypic

fit, or were benign or likely benign, using ACMG

guidelines for the interpretation of sequence variants

[14]. Based on the prediction of membrane-spanning

residues by TMHMM, Glu99 is predicted to lie in a

putative transmembrane region, C-terminal to a stretch

of six hydrophobic residues (residues 93-98; ALF-

GLA; Fig. 4e). Substitution of a glutamic acid to a

lysine in this region would alter the charge, potentially

disrupting interactions between REEP6 and the ER

membrane (Fig. 4f).

Discussion

REEP6 is essential for the sorting of certain proteins

involved in phototransduction. In particular, the

absence of REEP6 impacts the synthesis, stability,

and trafficking phototransduction proteins such as

phosphodiesterase-6 (PDE6) and guanylate cyclases

(GCs) in the outer segment of rods [6, 18]. The patient

Fig. 1 Segregation analysis of the REEP6 variant in a pedigree. The arrow indicates the proband described in this pedigree. Family

history was negative for consanguinity
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described in this study was found to harbor a

homozygous missense variant mutation (c.295G[A,

p.Glu99Lys) in the putative membrane-spanning

region in REEP6. Alteration of a charge in this

transmembrane region likely disrupts interactions

between REEP6 and the ER membrane. Based on

these results, we predict that the p.Glu99Lys mutation

may affect REEP6 function by disrupting phototrans-

duction protein localization.

The patient in this study had a phenotype typical of

autosomal recessive RP. Past studies have shown

severely contracted retinal vessels, mid-peripheral

RPE atrophy, diffuse retinal atrophy, and intra-retinal

pigmented bone spicules in individuals with homozy-

gous mutations in the REEP6 gene of exon 1, 3, 4, and

Fig. 2 Multimodal retinal imaging of both eyes in the patient.

a, a0 Color fundus photography shows retinal degeneration,

macular atrophy, peripheral bone-spicule pigmentation, tempo-

ral tiny yellow dots, narrowed retinal vessels, and waxy optic

disk pallor. b, b0 Posterior pole (white dot frame of a, a0) is
magnified. c, c0 Peripheral features (yellow frame of a, a0) are
also magnified. d, d0 Short-wavelength fundus autofluorescence
imaging showed diffuse perimacular hypoautofluorescence. e, e0

Near-infrared (NIR) reflectance showed hyporeflectivity around

the fovea, which was surrounded by a slightly brighter elliptical

ring with unclear border. f, f0 Spectral-domain optical coherence

tomography showed cystoid macular edema and perifoveal

outer retinal atrophy with centrally preserved inner segment

ellipsoid (ISe) bands. Hyperreflective spots were seen under the

ganglion cell, inner plexiform and inner nuclear layers. g, g0 NIR
autofluorescence showed an elliptical hyperautofluorescence

ring resembling an ‘‘avocado’’
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5 [7]. In comparison, the phenotype of our patient was

not severe, as only slight vascular attenuation and

minor pigmentary changes in the form of bone

spicules. These differences may be attributed to the

relatively early stage of the disease process in our

patient. A homozygous missense variant in REEP6

(c.279_280del, p.Leu94Valfs*320) was recently been

reported in a 29-year-old man [6], whose mutation was

also in exon 3 with a phenotype (and age) similar to the

patient in this study. We also found HRS located in the

GCL, IPL, and INL. According to Vujosevic et al.’s

study [19], HRS may represent a biomarker of

microglial activation in the retina. Microglial cells

are activated in neurodegenerative diseases and

migrate beyond the retinal layers where degeneration

is occurring [20]. Some HRS have been proposed as

indicators of a prevalent inflammatory condition [21].

With progressing retinopathy, HRS reaches the outer

retinal layer. The HRS found in the outer retina of

diabetic macular edema patients are associated with

disrupted external limiting membrane and IS/OS

anatomy and are closely related to decreased visual

acuity, suggesting they are derived from degraded

photoreceptors or macrophages that phagocytose them

[22]. We suspect that HRS in patients with RP and

Fig. 3 Electroretinography (ERG) of the patient and a normal

control. Scotopic rod-specific ERG b-wave amplitudes were

9.744 lV in the right and 10.02 lV in the left. Maximal ERG a-

and b-wave amplitudes were 15.75 and 22.49 lV in the right,

15.29 and 21.77 lV in the left. Photopic single-flash responses

had a b-wave amplitude and implicit time of 4.005 lV and

26 ms in the right, 4.752 lV and 37 ms in the left. Photopic

30 Hz amplitudes were reduced to 3.174 lV in the right eye and

2.625 lV in the left, with implicit times of 39 and 32 ms in the

right and left eye, respectively

cFig. 4 Identification of a variant in REEP6 gene and protein

structural modeling of the mutation. a Alignment of WES data

in the REEP6 gene, with the reference sequence above, the

patient’s arrangement below, and the changes highlighted in

blue. In the reads, there is an G to A change at base pair 295 of

the coding sequence resulting in a missense change from

glutamine to lysine at position 99. b The homozygous mutation

of c.295G[A in REEP6 is confirmed by Sanger sequencing.

c Based on protein alignment, the affected amino acid is highly

conserved in vertebrates and located in a conserved region of the

protein. d The phylogenetic tree of REEP6 with other REEP

paralogs. e Based on the prediction of membrane-spanning

residues by TMHMM, Glu99 is predicted to lie in a putative

transmembrane region. f Substitution of a glutamic acid to a

lysine in the putative transmembrane region would alter the

charge
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diabetic macular edema have similar mechanisms, but

whether or not the location of HRS in these patients is

different is currently unknown.

The apparent hyperautofluorescence in the NIR-AF

images may be indicative of the preservation of central

retina. It is notable that the patient in this study showed

an ‘‘avocado-shaped’’ elliptical, hyperautofluorescent

ring around the fovea on the NIR-AF image, which is

more clearly distinguishable than the ring on the SW-

AF image. The outer border of the ring corresponded

to the location in SD-OCT scans where the EZ band

was intact. The EZ is now thought to be formed mainly

by mitochondria within the EZ band of the outer

portion of the inner segments of the photoreceptors

[23]. Loss of REEP6 function leads to ER stress and

abnormal mitochondrial proliferation, eventually

leading to photoreceptor degeneration [18]. The

NIR-AF may be a viable choice for identifying the

shape and position of the EZ band, thus allowing us to

indirectly infer the function of photoreceptor cells in

patients with REEP6 mutations.

Although it is still not clear why the patient’s rod

ERG signal was reduced, it is noteworthy that a

previous study [7] also showed rod dysfunction in

patients with a homozygous REEP6mutation. Veleri S

et al. [6] reported similar ERG findings in their

patients. There was generalized retinal dysfunction in

our patient affecting the rods more than the cones.

Thus, homozygous or compound heterozygous muta-

tions in the REEP6 gene may cause typical RP with

retinal dysfunction of various degrees. Further study is

needed, however, as we do not know with certainty

that the mutations of REEP6 in exon 3 truly have

slower progression than mutation sites in other exons.

The patient is currently undergoing treatment of

macular edema. Although no effective therapy is

available on human REEP6-associated RP, attempts at

replacing REEP6 by adeno-associated virus vectors

have been reported in mouse models of RP, which

showed significant improvements in retinal function

and morphology after a prolonged period [18].

Further, gene therapy-related research and signaling

pathway studies for REEP6 are expected.

In conclusion, we report the clinical features of an

African patient with arRP caused by a novel homozy-

gous nonsense variant c.295G[A, (p. Glu99Lys) in the

REEP6 gene. Future studies will more accurately

determine the clinical course of REEP6-related RP

patients as well as the precise boundaries of REEP6

mutations.
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