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Abstract A lack of habituation in visual-evoked

potentials (VEPs) is the main abnormality observed

in migraineurs. However, no study of steady-state

VEPs has yet evaluated pattern-reversal stimuli with

respect to habituation behavior or spatial frequency.

The aim of this study was to clarify habituation

behavior in migraineurs between attacks and to

establish characteristics of VEPs in these patients.

Steady-state VEPs were sequentially recorded as

checkerboard patterns in four consecutive blocks

from 12 patients with migraine without aura (MO),

12 patients with migraine with aura (MA), and 12

healthy controls (HC) at four spatial frequencies of

0.5, 1.0, 2.0, and 4.0 cycles per degree (cpd) with a

stimulus rate of 7.5 Hz (15 reversal/s). VEP ampli-

tudes were consistently higher in migraineurs. How-

ever, habituation was not demonstrated in HCs, and

migraineurs did not reveal a clear lack of habituation.

MAs exhibited high-amplitude VEPs, depending on

spatial frequency. In the MA patients, amplitude

differences reached statistical significance at 2.0 cpd.

The sequential amplitude changes at 0.5 cpd were

significantly different in MAs compared with HCs.

Migraine patients exhibited high-amplitude VEPs,

which were dependent on spatial frequency, and may

be related to altered excitability in pre-cortical and

cortical visual processing.
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Introduction

Abnormal cortical excitability may play an important

role in predisposition to the spontaneous, cortical

spreading depression that has been suggested to

represent the pathophysiology of migraine aura [1, 2].

To date, a lack of habituation in migraineurs has been

the principal and reproducible interictal abnormality

observed in studies of evoked potentials, such as

visual-evoked potentials (VEPs) [3–10]. Previous

VEP studies revealed heterogeneous results; a lack

of VEP habituation may correlate with metabolic

abnormalities and decreased thalamo-cortical activity

[11, 12]. The increased VEP amplitude that is

revealed in migraine with aura (MA), but not in

migraine without aura (MO), suggests abnormal

excitability in the visual cortex [13–15].

There have been a number of reports on steady-

state VEPs induced by flash stimuli [16–27], including
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an habituation study [28]. These studies suggest a

general modification in the pattern of visual reactivity.

However, no study of steady-state VEPs (SSVEPs)

has yet evaluated pattern-reversal stimuli with respect

to habituation behavior or spatial frequency. The

present study hypothesized that various spatial fre-

quencies would differentially affect SSVEPs in MO

and MA. The aim of the present study was to clarify

habituation behavior in MO and MA at four different

spatial frequencies to determine the spatial and

temporal characteristics of VEP by means of SSVEP.

Methods

Subjects

Thirty-six subjects participated in the study: 12

patients with MO, 12 patients with MA, and 12 healthy

controls (HC). Migraine diagnosis was based on

criteria of ICHD-II [29]. Demographic and clinical

characteristics of patients and HC are shown in

Table 1. At the time of investigation, all patients were

in an interictal state, with at least 72 h from a migraine

attack. The interval before the next headache was also

monitored to avoid including patients who experienced

a migraine in the 72 h following the experimental task.

The patients and HCs exhibited normal or corrected-to-

normal visual acuity and were drug-free. Informed

consent was obtained from all subjects.

Visual stimulation

Black and white checkerboard patterns were generated

on a 17-inch monitor, which subtended 21� 9 17� at a

viewing distance of 90 cm. SSVEPs were performed

using Neuropak K (Nihon Kohden, Tokyo, Japan).

Four spatial frequencies of 0.5, 1.0, 2.0, and 4.0 cycle

per degree (cpd) were presented. The contrast in each

spatial frequency was set to 90%, with a mean

luminance of 14 cd/m2. The stimulus pattern was

alternated at 7.5 Hz (15 reversal/s). Four different

spatial frequencies of SSVEPs were randomly pre-

sented. The subjects were comfortably seated and

asked to maintain eyes on a fixed central point.

Recording

Silver–silver chloride electrodes were attached to the

scalp with collodion. Electrode impedance was

maintained below 5000 X. Binocular SSVEPs were

recorded from a mid-occipital electrode (2.5 cm

above the inion) with a mid-frontal reference

(12 cm above the nasion). Analog data were filtered

between 0.1 and 70 Hz, and were digitized at a

sampling rate of 1,000 Hz. Inputs from scalp elec-

trodes were fed into preamplifiers adjusted to a

bandwidth of 1–250 Hz. Artifact rejection was auto-

matically controlled to avoid contamination of the

signal by eye movement. For each spatial frequency,

a total 80 consecutive VEP responses were collected

and averaged off-line 4 blocks of 20 (30 s duration

per block). The blocks were acquired sequentially.

Under each spatial frequency condition, presentation

of visual stimuli was separated by at least 2 min.

Data analysis

The amplified electroencephalogram, which was

synchronized to temporal modulation of the stimulus,

was digitized and stored on a computer for further

analysis. Fast Fourier transforms (FFTs) were used to

Table 1 Demographic data and clinical characteristics

MO MA HC

n = 12 n = 12 n = 12

Gender (male: female) 3:9 4:8 3:9

Age (years) 20–59 (41.3) 20–60 (43.3) 20–60 (41.8)

Headache history (years) 4–34 (16) 3–36 (18) –

Frequency (per month) 1–5 (1.8) 1–5 (2.0) –

Time from last attack (day) 3–9 (6.1) 3–10 (5.6) –

Data shown are mean (in parenthesis)

MO migraine without aura, MA migraine with aura, HC healthy controls

66 Doc Ophthalmol (2011) 123:65–73

123



calculate amplitude (lV) for double the checkerboard

reversal frequency of 7.5 Hz, i.e., the second har-

monic response (2F = 15 Hz). According to our

previous study on SSVEPs [30], because there were

no significant phase differences between MO, MA,

and HC, only the 2F amplitude was analyzed.

Statistical analysis

Statistical analysis was performed using the SPSS

11.0 statistical software package for Windows. The

results were compared using repeated-measures anal-

ysis of variance (ANOVA). The within-subject factor

was spatial frequency, and between-subject factors

served as the diagnosis and the four blocks. Mau-

chly’s sphericity test was performed prior to

ANOVA. When appropriate, the number of degrees

of freedom was adjusted according to Greenhouse

and Geisser. The post hoc test analysis was per-

formed using Tukey’s HSD test. Habituation, i.e.,

sequential amplitude changes, was calculated using a

relative value, and amplitudes of blocks 2–4 were

divided by the amplitude of block 1. The level of

significance was set at P \ 0.05.

Results

Figure 1 shows representative VEP waveforms from

a normal subject and FFTs in four sequential blocks

at 2.0 cpd. VEPs were characterized by two dominant

waveform frequencies that corresponded to a reversal

frequency. In the FFTs, the second harmonic

response (2F, 15 Hz) was predominant.

Figure 2 shows sequential mean amplitudes at

each spatial frequency in the migraineurs and HC. In

the first block, the mean amplitude in MO at 0.5 cpd

was less than in the other blocks. However, ampli-

tudes were greater in migraineurs at all spatial

frequencies. A significant interaction between spatial

frequency and diagnosis was observed (Table 2),

showing that spatial frequency affected HC and

migraineurs differently. In the MA patients, a post

hoc test revealed that amplitude differences reached

statistical significance at 2.0 cpd [F(8, 258) = 5.0,

P \ 0.001 for MO, P \ 0.05 for HC]. There was no

interaction between block and diagnosis or spatial

frequency. HC and migraine patients did not show

clear habituation or a lack of habituation. Figure 3

shows sequential amplitude changes at each spatial

frequency in migraineurs and HC. A significant

interaction between diagnosis and spatial frequency

was observed (Table 3). In the MA patients, when a

lower spatial frequency (0.5 cpd) was presented, the

amplitude tended to increase over the blocks. In a

post hoc test, the sequential amplitude changes in MA

were significantly different from HC ([F(12,

262) = 2.4, P \ 0.05]). These results indicated that

MA showed increased sequential amplitude changes

only at lower spatial frequency.

1 sec

FFT

Normal subject. 26 yrs, female

4.0

0
0 50 0 50 0 50 0 50 Hz

µ
V

-10
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1 blockVEP 2 block 3 block 4 block

µV

Fig. 1 Representative VEP

waveforms and fast Fourier

transformations (FFTs) in a

healthy control during four

sequential blocks at

2.0 cpd. Steady-state

responses are shown in the

upper column. The FFTs

demonstrate that 2F is

clearly distinguishable in

the amplitude spectrum

(arrow head, lower
column). The 2F amplitude

was evaluated at each block

as 1.4, 1.6, 1.6, and 1.3 l,

respectively
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Discussion

Interictal SSVEPs at 7.5 Hz exhibited no habituation

in HCs, and migraine patients did not show a clear

lack of habituation. The mean amplitude in each

block, as well as sequential amplitude changes and

average amplitude, were influenced by spatial

frequency. At 2.0 cpd, MA patients exhibited greater

VEP amplitude in all four blocks, and 0.5 cpd

resulted in increased sequential amplitude changes.

Results from the present study were not consistent

with previous reports [3–5, 7], which demonstrated

deficient habituation in migraineurs recorded by

check size 80 and 3.1 Hz, i.e., higher spatial
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Fig. 2 Mean VEP amplitudes in four blocks in migraine without aura (MO), migraine with aura (MA), and healthy controls (HC) at

0.5, 1.0, 2.0, and 4.0 cpd. Error bars represent SEM

Table 2 Effect of diagnosis and spatial frequency on steady-state VEP amplitude1 and amplitude habituation (block factor inter-

action)2 and overall habituation effect3

F (df)a P value

Diagnosis1 24 (2, 175) 0.0001

Spatial frequency1 21 (3, 130) 0.0001

Block3 1.0 (3, 130) 0.37

Spatial frequency 9 diagnosis interaction1 4.2 (6, 260) 0.002

Block 9 diagnosis interaction2 1.2 (6, 260) 0.33

Block 9 spatial frequency interaction2 1.1 (9, 314) 0.40

Block 9 diagnosis 9 spatial frequency interaction2 1.0 (18, 368) 0.43

Repeated-measure ANOVA with diagnosis, spatial frequency and block as within-subject factors. Correction with Greenhause–

Geisser was applied
a F-statistical and corrected degrees of freedom (df)
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frequency and non-flickering higher temporal fre-

quency of transient-type pattern-reversal VEP

(TVEP). The TVEP alteration in migraine-dependent

pattern spatial frequency was reported to be 2.0 Hz or

less, which was a slower temporal frequency [14, 15,

31–33]. These studies failed to detect habituation

abnormalities. To date, habituation phenomena in

normal subjects have not been evaluated in a SSVEP

study. The present results are, however, consistent

with steady-state VEPs using flash stimuli in a low

frequency range of 3, 6, and 9 Hz [28]. These VEP

studies are supported by habituation characteristics
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Fig. 3 Sequential amplitude changes at 0.5, 1.0, 2.0, and 4.0 cpd in MO, MA, and HC. The error bars represent SEM

Table 3 Effect of diagnosis and spatial frequency on steady-state VEP amplitude1 and amplitude habituation2 and the overall

habituation effect3

F (df)a P value

Diagnosis1 7.0 (2, 131) 0.001

Spatial frequency1 2.6 (3, 97) 0.049

Blockb,3 3.5 (2, 131) 0.031

Spatial frequency 9 diagnosis interaction1 5.6 (6, 194) 0.001

Blockb 9 diagnosis interaction2 6.0 (6, 262) 0.95

Blockb 9 spatial frequency interaction2 4.0 (4, 264) 0.16

Blockb 9 diagnosis 9 spatial frequency interaction2 0.67 (12, 264) 0.78

Repeated-measure ANOVA with diagnosis, spatial frequency and block as within-subject factors. Correction with Greenhause–

Geisser was applied
a F-statistical and corrected degrees of freedom (df)
b Relative amplitude change (amplitudes of blocks 2–4 were divided by the amplitude of block 1) at block 2, 3 and 4
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that show a relationship among stimulus repetition

rates, stimulus characteristics, and degree of habitu-

ation [34]. Accordingly, the faster and smaller check-

size stimulation by TVEP may play a crucial role in

habituation behavior [14].

The present SSVEP study is in accordance with

previous studies [30, 35] that demonstrated greater

migraine amplitude between attacks. Furthermore,

the amplitude tended to increase depending on spatial

frequency. Generally, the response to higher spatial

frequency preferentially stimulates the macular

region, which has a much larger cortical representa-

tion, as opposed to lower spatial frequency that

preferentially stimulates the periphery of the retina

[36, 37]. The increased response to higher spatial

frequency could be explained by altered excitability

of the visual cortex in migraine patients [30]. A

number of studies have not observed consistent MA

versus MO, or migraine versus control, amplitude

differences [38–43]. However, the present data

suggested that increased amplitude was a general

phenomenon, in particular in MA patients [13–15,

30]. Although the lack of habituation could be a result

of a pre-cortical site [11, 12], high VEP amplitude

could be explained in the present study by the

concept of cortical hyper-responsiveness in the visual

cortex [1, 44, 45]. The discrepancy between these

studies might be explained by different recording

conditions, such as the use of spatial and temporal

frequency.

The visual system is subdivided into two parallel

channels of visual processing—the magnocellular

(M) and parvocellular (P) pathways, which specialize

in different visual functions. The M pathway, which

receives input primarily from the retinal periphery, is

more sensitive to high-temporal and low-spatial

frequency stimuli, while the P pathway receives

input primarily from the foveal and perifoveal areas

and is preferentially activated by low-temporal and

high-spatial frequency stimulation [14, 46, 47].

Spatial and temporal frequency has been suggested

to play an important role in visual processing of

migraine [30, 37, 48–53]. Psychophysical tests iden-

tified a pre-cortical site of action in the pathophys-

iology of migraine [49, 50, 52]. Previous reports have

suggested that migraine affects the M [50, 54], or

both the M and P [53, 55], pathways, while other

studies did not confirm M pathway deficits [56].

Using TVEP, Oelkers et al. [14] hypothesized that

migraine patients have a relatively impaired P

pathway and a predominant M pathway. Different

involvement of the P and M pathways may play a role

in habituation behavior.

In this study, the HC did not show habituation, but

there were increased sequential amplitude changes in

MA patients at lower spatial frequency of 0.5 cpd.

This suggests the excitability change cannot be

interpreted as ‘‘lack of habituation’’. In accordance

with our study, Chen et al. [33] reported that

migraineurs showed a larger amplitude increment

than controls in sequential blocks only at lower

spatial frequency. The findings may suggest ‘‘aug-

mented potentiation’’ or ‘‘relative habituation defi-

cit’’. A recent study by Omland et al. [57] also

revealed that habituation may not be detectable in

healthy subjects using large 650 checks, i.e., lower

spatial frequency and reversal rate had less influence

than lower spatial frequency on habituation. The

difference in excitability of the visual cortex in

migraine may preferentially involve the M pathway

[33].

A previous study [28] reported that steady-state

VEP, induced by flash stimuli at low frequency range,

altered amplitude in a complex way, which could be

explained by a variability phenomenon. Increased

variability with response to low-temporal frequency

in migraine could be interpreted as an overactive

regulation mechanism, and this effect may result

from activation of the M extrastriate pathways.

Unstructured flash stimuli are likely to be processed

primarily in the M pathway [36]. Therefore, increased

sequential amplitude changes in MA might be due to

stimulation conditions at a low-spatial frequency and

flickering, which are similar to M pathway condi-

tions. The current findings might be linked to

predominance of the M system in MA and suggest

that P–M imbalance plays a role in migraine path-

ophysiology. This is consistent with previous reports

of VEPs [30] and psychophysical findings [45, 58].

Although the question of predominance of P or M

neuronal dysfunction remains, it is likely that

migraine patients have pre-cortical dysfunctions, in

addition to altered excitability of the visual cortex

[28].

Our previous TVEP study [37] demonstrated high-

spatial frequency (4.0 cpd) with a high-contrast

(98%) pattern, which was preferable to stimulate

the P pathway. These conditions were determined to
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be effective for revealing abnormal reactivity in MO

and MA patients [58, 59]. However, using these

conditions, a low-contrast (29%) pattern also resulted

in increased amplitude. Similar to previous results

[60], hyperreactivity of the P pathway is not likely to

result in migraine.

Our previous SSVEP study at 5 and 10 Hz [30]

demonstrated that MA patients exhibited high-ampli-

tude VEPs, but no significant amplitude differences

were detected at 2.0 cpd. The discrepancy between this

and the current study may be due to the different

temporal frequencies utilized. A checkerboard VEP

pattern is very complex in terms of FFTs, and a 0.5 cpd

pattern includes other components of cpd [61]. Fur-

thermore, a temporal frequency of 7.5 Hz does not

selectively stimulate the M pathway in high-contrast

(90%) vs. low-contrast (20%) conditions [62, 63].

VEPs induced by square-wave gratings are required to

determine amplitude changes at each frequency, as

well as to determine P pathway functions [59].

A limitation of this study is the stimulus time of

VEPs. Previous VEP habituation studies used longer

recording sessions of 3–15 min [3, 4, 14, 15, 33, 57],

compared with 2 min in our study. The criteria of

habituation proposed that a high repetition rate

speeds up the habituation, and a low repetition rate

slows it down [34]. A future study with a longer

SSVEP stimulus time is required to clarify the

habituation behavior in migraine.

In conclusion, interictal migraine patients exhibited

high-amplitude SSVEPs, which were dependent on

spatial frequency, and may be related to altered excit-

ability in pre-cortical and cortical visual processing.

Conflict of interest None.
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50. Benedek K, Tajti J, Janáky M, Vécsei L, Benedek G (2002)

Spatial contrast sensitivity of migraine patients without

aura. Cephalalgia 22:142–145

51. Huang J, Cooper TG, Satana B, Kaufman DI, Cao Y (2003)

Visual distortion provoked by a stimulus in migraine

associated with hyperneuronal activity. Headache

43:664–671

52. Kowacs PA, Piovesan EJ, Werneck LC, Fameli H, Zani

AC, da Silva HP (2005) Critical flicker frequency in

migraine. A controlled study in patients without prophy-

lactic therapy. Cephalalgia 25:339–343

53. McKendrick AM, Badcock DR (2003) Contrast-processing

dysfunction in both magnocellular and parvocellular

pathways in migraineurs both with or without aura. Invest

Ophthalmol Vis Sci 44:442–448

54. McKendrick AM, Vingrys AJ, Badcock DR, Heywood JT

(2001) Visual dysfunction between migraine events. Invest

Ophthalmol Vis Sci 42:626–633

72 Doc Ophthalmol (2011) 123:65–73

123



55. McKendrick AM, Sampson GP (2009) Low spatial fre-

quency contrast sensitivity deficits in migraine are not

visual pathway selective. Cephalalgia 29:539–549

56. Harle DE, Evans BJW (2005) Frequency doubling tech-

nology perimetry and standard automated perimetry in

migraine. Ophthal Physiol Opt 25:233–239

57. Omland PM, Nilsen KB, Sand T (2011) Habituation

measured by pattern reversal visual evoked potentials

depends more on check size than reversal rate. Clin Neu-

rophysiol (in press)

58. McKendrick AM, Badcock DR (2004) Motion processing

deficits in migraine. Cephalalgia 24:363–372

59. Porciatti V, Sartucci F (1999) Normative data for onset

VEPs to red-green and blue-yellow chromatic contrast.

Clin Neurophysiol 110:772–781

60. Shibata K, Yamane K, Iwata M (2006) Change of excit-

ability in brainstem and cortical visual processing in

migraine exhibiting allodynia. Headache 46:1535–1544

61. Kelly DH (1976) Pattern detection and the two-dimen-

sional fourier transform: flickering checkerboards and

chromatic mechanisms. Vis Res 16:277–287

62. Schechter I, Butler P, Zemon VM, Revheim N, Saperstein

AM, Jalbrzikowski M, Pasternak R, Silipo G, Javitt DC

(2005) Impairments in generation of early-stage transient

visual evoked potentials to magno- and parvocellular-

selective stimuli in schizophrenia. Clin Neurophysiol

116:2204–2215

63. Tobimatsu S, Celesia GG (2006) Studies of human visual

pathophysiology with visual evoked potentials. Clin Neu-

rophysiol 117:1414–1433

Doc Ophthalmol (2011) 123:65–73 73

123


	Spatial frequency differentially affects habituation in migraineurs: a steady-state visual-evoked potential study
	Abstract
	Introduction
	Methods
	Subjects
	Visual stimulation
	Recording
	Data analysis
	Statistical analysis

	Results
	Discussion
	Conflict of interest
	References


