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Abstract A broad spectrum of retinal diseases

affects both the retinal vasculature and the neural

retina, including photoreceptor and postreceptor lay-

ers. The accepted clinical hallmarks of acute

retinopathy of prematurity (ROP) are dilation and

tortuosity of the retinal vasculature. Additionally,

significant early and persistent effects on photore-

ceptor and postreceptor neural structures and function

are demonstrated in ROP. In this paper, we focus on

the results of longitudinal studies of electroretino-

graphic (ERG) and vascular features in rats with

induced retinopathies that model the gamut of human

ROP, mild to severe. Two potential targets for

pharmaceutical interventions emerge from the obser-

vations. The first target is immature photoreceptors

because the status of the photoreceptors at an early

age predicts later vascular outcome; this approach is

appealing as it holds promise to prevent ROP. The

second target is the interplay of the neural and

vascular retinal networks, which develop coopera-

tively. Beneficial pharmaceutical interventions may

be measured in improved visual outcome as well as

lessening of the vascular abnormalities.
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As a system, the mammalian retina is vulnerable to

diseases that affect the exquisitely balanced interplay

of the neural retina and the vasculature that nourishes

it. Visual loss occurs when this balance is disturbed.

On the one hand, diseases such as photoreceptor

degenerations that primarily affect the neural retina

also affect the retinal vasculature. On the other hand,

diseases that are clinically characterized by abnormal-

ity in the choroidal or retinal vasculature, such as age

related macular degeneration, diabetic retinopathy,

and retinopathy of prematurity (ROP), also affect the

retinal neurons. Thus, all such diseases fall within the

broad group of hypoxic ischemic disorders of neural

tissue. Photoreceptors, specialized cells that have the

highest oxygen requirements of any cell in the body

[1], are likely important in all hypoxic ischemic

diseases of the retina.

While categorized as a review article, this paper presents the

authors’ perspective on potential pharmaceutical interventions

for retinal degenerative and hypoxic ischemic retinal diseases;

it is not offered as a review of research into these conditions.
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Translation from animal models to patients

The photoreceptors are nestled closely to the choroidal

vasculature (Fig. 1). Highly organized postreceptor

retinal neurons form layers that are supplied by the

retinal vessels. Although the choroid is the principal

supply to the photoreceptors, degeneration of the

photoreceptors is, nonetheless, associated with atten-

uation of the retinal arterioles [2]. Because the

photoreceptor layer is such an extraordinary oxygen

sink, it is presumed that, as photoreceptors degenerate,

their metabolic demands wane and the retinal vascu-

lature becomes attenuated consequent to the neural

retina’s chronic lower requirement for oxygen [2].

A tight link between the photoreceptors and the

retinal vascular network is evident in the developing

retina. Postreceptor cells differentiate before the

photoreceptors, which are the last retinal cells to

mature. As the formation of rod outer segments

advances in a posterior to peripheral gradient, so too

does vascular coverage. Thus, concurrent and

cooperative development of the neural and vascular

components characterize normal retinal maturation.

In the preterm infant, the age of onset of ROP is

around the age of rapid developmental increase in rod

outer segment length and consequent increase in

rhodopsin content (Fig. 2). This observation is circum-

stantial evidence of a role for the rod photoreceptors in

the ROP disease process. In addition to immature

photoreceptors and retinal vasculature, the preterm

infant has immature lungs that create a precarious

respiratory status with attendant risk of hypoxic injury

to immature cells. This is countered by administration

of supplemental oxygen. Both high and low oxygen

levels are known to injure the immature photoreceptors

[3, 4]. Indeed, rat models of ROP are induced by

rearing pups in habitats with alternating periods of

relatively high and low oxygen during the critical

period of rod outer segment elongation [5–10].

Following induction, abnormalities of the retinal

vasculature ensue, as do abnormalities of the structure

and function of the neural retina (Fig. 3) [3, 5–9, 11].

The abnormalities in the morphology of the retinal

vasculature and in the function of the neural retina in

ROP rats are similar to those found in pediatric ROP

patients (Fig. 4) [7–9, 11–16]. Thus, translation from

the rat models to the human condition may be justified.

We use albino rat models of ROP to study the neural

and vascular characteristics of the retina during devel-

opment [5, 6, 8, 9]. Different schedules of oxygen

exposure induce a range of effects on the retinal

vasculature and the neural retina that model the gamut

of retinopathy, mild to severe, observed in human ROP

cases. As shown in Fig. 5, the oxygen exposures are

timed to impact the retina during the ages when the rod

outer segments are elongating and the rhodopsin content

of the retina is increasing. Longitudinal measures of

Fig. 1 Diagram of the neural retina and its vascular supplies

(not to scale). The layers of the neural retina (ganglion cell,

inner plexiform, inner nuclear, outer plexiform, outer nuclear)

are indicated. Blood flow through the choroidal vessels is swift.

The retinal vasculature, visible by ophthalmoscopy, lies among

the ganglion cells on the vitreal surface of the retina and

extends capillary networks deep into the postreceptor layers.

The caliber of the retinal arterioles adjusts to perturbations in

blood oxygen levels (‘‘autoregulation’’)
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Fig. 2 Logistic growth curve showing human rhodopsin

content [40] as a function of age. The red arrow indicates the

age of ROP onset in preterm infants [41]
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electroretinographic (ERG) responses and retinal vas-

cular features are obtained in infant (*20 days old),

adolescent (*30 days old), and adult (*60 days old)

rats. Our results from longitudinal investigations in

ROP rats suggest two retinal targets for drug therapies.

Assessment of neural function

We use the ERG to characterize neural function. ERG

responses to full-field stimuli over a range of

intensities are recorded from the dark-adapted animal

as previously described in detail [5]. To summarize

rod photoreceptor activity, a model of the activation

of phototransduction is fit to the a-waves [17–20] and

the resulting sensitivity (SROD) and saturated ampli-

tude (RROD) parameters are calculated. Postreceptor

activity is represented by the b-wave. The stimulus/

response functions are summarized by the saturated

amplitude (Vmax) and the stimulus producing a half-

maximum response (log r); these parameters are

derived from the Michaelis–Menten function fit to the
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Fig. 3 Rat model of

retinopathy of prematurity.

(a) Scanning laser

ophthalmoscope (SLO)

images obtained using blue

(488 nm) laser stimulation

[42] after injection of

fluorescein in 22 day old

control and ROP rats.

(Pigmented rats were used

to facilitate SLO imaging.)

The integrated curvature of

each retinal arteriole is

expressed as a proportion of

the mean (ICA) in the

control. The higher ICA

value for the ROP rat

reflects the greater

tortuosity of its arterioles.

The choroidal appearance is

similar in the control and

ROP fundi. (b) Sample

ERG responses to full-field

stimuli [43] in control and

ROP rats. Both rats were

tested with the same flash

intensities, as indicated. The

vertical gray lines indicate

the time at which the flash

was presented
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b-wave amplitudes [5]. Although we find significant

deficits in the amplitude parameters (RROD and

Vmax), it is the sensitivity parameters (SROD and log

r) that, as described in the following sections, direct

us to the postulated intervention sites.

Assessment of vascular characteristics

We derive retinal vascular parameters using image

analysis software applied to digital fundus photo-

graphs [5, 21, 22]. Integrated curvature (IC), which

agrees well with subjective assessment of vascular

tortuosity reported by experienced clinicians [14], is

used to specify the vascular status of each fundus.

Both arterioles and venules are significantly affected

by ROP. We find, however, that the arterioles are

markedly affected, while the venules are less so [5, 9,

14], and therefore use the arteriolar parameter ICA in

our analyses.

Relation of retinal sensitivity and vasculature

Rod photoreceptor sensitivity (SROD) at a young age

(20 days) predicts retinal vascular outcome as spec-

ified by ICA. Better sensitivity at an early age is

associated with better (less tortuous) vascular out-

come (Fig. 6) [5]. After cessation of the inducing

oxygen exposure, recovery of postreceptor neural

retinal sensitivity (b-wave log r) and decrease of

vascular tortuosity occur hand in hand (Fig. 7).

However, at a given age, sensitivity and vascular

status are not correlated. Thus, simple compromise of

vascular supply to the postreceptor neurons is, at

most, an incomplete explanation for the low sensi-

tivity. We note that the regulation of developing

retinal neurons and blood vessels is complex, being

under the cooperative control of several growth

factors, such as vascular endothelial growth factor

(VEGF), semaphorin, and their neuropilin receptors
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curvature (ICA) and rod

photoreceptor sensitivity

(SROD) in infants with a

history of ROP [13–15, 44]

and in rat models [5],

plotted as percent of normal

for age (SEM). In both the

human and animal subjects,

mean ICA is nearly two

times higher in ROP, and

rod sensitivity (SROD) is

reduced by *25%
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Fig. 5 Rat models of ROP. Two models, the ‘‘50/10 model’’

and the ‘‘75 model,’’ are induced by exposing infant rats to

alternating periods of relatively high and low ambient oxygen;

room air is 21%. For both models the exposures are delivered

at ages during which the rod photoreceptors are immature, as

indicated by the low rhodopsin content. ERGs and fundus

images are obtained longitudinally in infant (20 ± 1 days old),

adolescent (30 ± 1 days old), and adult (60 ± 1 days old) rats

(gray bars)
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[23]. In rat models of ROP, expression of these

growth factors is altered [24].

Identification of targets for pharmaceutical

interventions

The longitudinal data from rat models of ROP identify

two targets for pharmaceutical intervention: (1) the

immature photoreceptors and (2) the molecular cross

talk between neurons and retinal vasculature. We

outline the rationale for each.

VEGF promotes development of retinal vascula-

ture. Hypoxia promotes expression of VEGF. The

rods are the most demanding of aerobic energy of any

cells in the body [1]. Thus, rod-instigated hypoxia

must lead to up-regulation of growth factors that

promote retinal vascular development. Low rod

sensitivity at an early age predicts the poorer vascular

outcome at older ages (Fig. 6). Because low rod

sensitivity appears to be indicative of early injury to

the rod [3, 11], therapy designed to relieve the

immature rod of its burgeoning oxygen-based energy

requirements should be beneficial. It is at the ages

during which the developing rod outer segments

elongate with consequent escalation of energy

demands that ROP has its onset (Fig. 2). Arden et al.

[25] proposed treatment with light to reduce the ROP

rods’ energy requirements by suppressing the circu-

lating current. Light has a mild beneficial effect on a

rat model of ROP [26]. Careful regulation of

supplemental oxygen so that arterial oxygen levels

are neither too high nor too low may also have some

beneficial effect on ROP [27–30]. One can argue that

optimal timing for light and oxygen interventions has

yet to be specified, but, to date, adjustments in light

and oxygen have not been a panacea for ROP. Thus,

pharmaceutical approaches are warranted. We theo-

rize that improved management, or, better yet,

prevention of ROP may be achieved through timely

pharmaceutical suppression of rods’ energy demand-

ing processes such as turnover of outer segment

material [31] and generation of the circulating current

[19].

The second target for pharmaceutical intervention,

the molecular cross talk between the retinal vascu-

lature and postreceptor neurons, deserves attention

first because abnormal retinal vasculature provides

the usual clinical definition of ROP, and also because

the postreceptor neurons have a great capacity to

remodel [32] in the face of irreversible damage to the

photoreceptors [33]. Damage to photoreceptors in

ROP may be unavoidable as there is evidence of

persistent damage to the rods even in mild cases

[13, 34]. Conceivably, treatment of the retinal

vasculature could result in improved visual function

(e.g., contrast sensitivity) by an associated beneficial

effect on the postreceptor neurons. However,
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treatment of ROP by manipulating growth factors

must be approached with considerable caution

because the same growth factors regulate the devel-

oping photoreceptors and postreceptor retinal neurons

[35, 36]. Indeed, particular caution in use of anti-

VEGF treatment in immature retina has been advised

specifically because of the potential for adverse

effects on the developing neurons [37]. Further

knowledge about neurovascular interactions in the

immature retina, coupled with analysis of the func-

tion of those networks, is essential to delineate the

potential therapeutic role of growth factors in ROP.

Conclusions

A systems biology approach is applicable not only to

animal models but also to the human retina. Such an

approach is nicely supported by the combination of

full-field ERG analysis of the neural retina and image

analysis of the retinal vasculature. Using the multifocal

ERG and high resolution optical coherence tomogra-

phy (OCT), we are now also applying the systems

approach to study of disease of the macula in ROP [38,

39]. In summary, the perspective that we illustrate by

study of ROP may also yield novel perspectives on

other hypoxic ischemic retinal disorders, including

diabetic retinopathy and age related macular degener-

ation, diseases which are characterized by both

vascular and neural abnormalities of the retina.
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