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Abstract
A fundamental step in circuit design is the placement of pipeline stages, which can dras-
tically increase the data throughput. Retiming allows optimizing the pipeline with regard
to a criterion, for example the required number of registers. This article presents an exten-
sion of Timed Petri Net to model synchronous electronic circuits, in order to explore the
design space of pipelines. The Timed Petri Nets “à la Ramchandani” with a maximal step
firing rule, have notably been used for the modeling of electronic circuits. The RTPN
extension, through the reset which model the pipeline stages, and through the delayable
transitions which relax some temporal constraints, makes it possible to widen the design
space of pipelined systems, and thus to deal with both the retiming and the verification.
After a formal definition of this model, we present a method to explore pipelines verifying
temporal properties. We apply our approach to a time-multiplexing property allowing the
mutualization of operators while minimizing the number of registers.
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1 Introduction

Timing constraints are a major problem in the design of synchronous logical circuits. To
meet these constraints the pipeline is often inevitable, it allows increasing the operating
frequency and thus the throughput. The circuit composed of atomic operators is sliced in
several steps called stages. This slicing, physically implemented with memories (flip-flops),
allows the concurrent execution of stages and the synchronization of their inputs/outputs.
The automatic generation of a pipeline, i.e. the efficient placement of flip-flops (1-bit
registers), aims not only at ensuring a target frequency but also minimizing the resources
consumed by the pipeline.

1.1 Automatic pipeline generation

The automatic pipeline generation was initially formalized by Leiserson and Saxe (1991),
using a model of graph. Their method is based on retiming, i.e. moving registers in the
circuit without altering its behavior. Thanks to retiming they are able to build a pipeline guar-
anteeing a minimal throughput, while minimizing the resources consumed by the pipeline
registers (Leiserson and Saxe 1991). They reformulate the problem with a minimum cost
flow problem. But it turned out to be inefficient for large circuits, and therefore has been
replaced in Hurst et al. (2007) by a reformulation into an iterative maximal flow problem.
This solution is implemented at the logical synthesis level in the ABC tool (Brayton 2020),
which is to our knowledge the current state of the art. However, these approaches are in prac-
tice hard to implement, and are mainly used by FPGA vendor tools at the logical synthesis
level.

We propose a new approach able to solve this same problem, but also to verify by model
checking temporal constraints. Moreover, this model, which preserves the structure of the
circuit, is quite suitable for optimizations beyond the pipeline, such as the sharing of circuit
parts.

1.2 Circuit design with Petri Nets

The authors of Leiserson and Saxe (1991) introduced an abstraction of circuits as weighted
directed graphs. The intuition is actually that the model is a marked graph, which is a sub-
class of Petri Net (PN) where every place has exactly one input arc and one output arc.
Because of their concurrent nature, the PNs have been widely employed to analyze and opti-
mize temporal properties of synchronous and asynchronous circuits: Bufistov et al. (2007),
Campos et al. (1992), Najibi and Beerel (2013), and Kim and Beerel (2006).

They proved to be very efficient for latency insensitive systems. Bufistov et al. (2007)
extended the works of Leiserson and Saxe on latency insensitive systems, by combining
retiming with recycling, i.e. insertion of bubbles (registers with no informative value), in
order to reduce the total number of registers while ensuring a minimal throughput. More
recently, Josipović et al. (2020) proposed a temporal optimization of circuits generated from
an HLS (High Level Synthesis) description with control flow structures, by applying the
approach of Bufistov et al. (2007) on extracted sub-circuits.

All those works share the same solving method: deduce temporal constraints from the
structure of the PN, and reformulate with a linear optimization problem. In contrast, our
approach makes use of the semantics of PNs and synthesizes directly the pipeline from
the states of the model. The explicit exploration of the states offers a simple way to verify
logical and temporal properties on the resulting pipelined circuit.
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1.3 Model-checking

Model-checking was initially developed, among others, for the verification of electronic cir-
cuits (Kern and Greenstreet 1999). The expressive power of formal models like PN, allows
modeling both the circuit and its environment, thus to verify a complete system. We can,
for example, verify an FPGA working together with a microcontroler, and all connected to
a set of sensors and actuators.

The temporal logics were first introduced by Pnueli (1977) as specification languages to
describe the behavior of sequential and concurrent systems. The TCTL (Alur et al. 1993)
and weighted CTL (Bouyer et al. 2008) logics extend respectively the temporal tree logic
CTL, to time and to cost constraints.

We propose to illustrate a usage of those temporal logics for the model-checking of
circuits with the example of time-multiplexing. It is a technique of resources sharing using
time to sequence the access to a resource. This kind of property can be easily expressed and
verified on a PN model.

1.4 Time-multiplexing

Time-multiplexing is especially interesting for applications with a low throughput with
respect to the clock frequency. Such applications include, for example, signal processing
applications implemented on FPGA, which require a very low sampling rate compared to
the FPGA frequency (e.g. a 1 MHz signal processing algorithm onto a 100 MHz FPGA). In
this kind of context, it is beneficial to implement only once, parts of the circuit which are
used several times, and to schedule their access with the pipeline.

Many works have been carried out in this domain, notably through a problem called mod-
ulo scheduling. This problem aims for a minimal latency in a time-multiplexed circuit, given
limited available resources (arithmetic or logic operators). The authors of Sittel et al. (2018)
proposed an ILP (Integer Linear Programming) formulation which combines scheduling
constraints, bounds on available resources, minimization of needed registers, and mutual-
ization of registers when it is possible. More recently, a two-step process was demonstrated
by Sittel et al. (2019): first the shareable configurations are detected, then each configu-
ration is scheduled. This approach called folding allows sharing portions of the circuit in
contrast with the previous approaches which were only able to share operators one by one.

1.5 Context of application

As part of a collaboration with Renault, the automotive company, we aim at optimizing
VHDL synthesis for an FPGA target, from a Matlab/Simulink project. Specifically, the goal
is to implement a synchronous circuit with a minimum resource consumption, both for
logical units and flip-flops, while ensuring that the whole computation is done in a limited
time-frame (the sampling period). A tool is under heavy development, in order to propose
a complete chain for the hardware implementation of control laws directly in FPGA. This
section briefly introduces the different parts considered in this tool.

The compiler is classically organized around an internal representation, independent of
both the input (Simulink) and output (VHDL) representations. This internal model serves
as a pivot for all the tools, with different optimizations. The general architecture of the tool
is depicted in Fig. 1.

The front-end consists in parsing the input file to transform it into this internal model.
During this phase, some optimizations are directly performed, such as signal connections
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Fig. 1 Simulink-to-VHDL compiler dataflow diagram

between the different modules. In the same way, the back-end (VHDL only at this date)
allows generating the hardware description. These output files can be synthesized through
the hardware vendor development chain.

Several steps are then performed, each time based on the same internal model and input
and output. They allow refining the model. On the diagram presented in Fig. 1, only the 3
main steps are shown.

The first pass concerns the evaluation of the size of the signals and the associated encod-
ing (fixpoint). It is currently done manually and is based on a labeling of the signals. This
pass can be replaced by the internal tools of Matlab like the toolbox fixpoint designer. Even-
tually, the goal is to make this pass semi-automatic, using both interval arithmetic and affine
arithmetic (Lee et al. 2006), as well as recent work for example for linear looped systems
(Hilaire and Volkova 2017).

The evaluation of operator delays is required in modeling with Petri nets extensions
defined in the paper. The level of abstraction of the operators in Simulink does not allow to
calculate precisely these delays. The approach used, as for the FloPoco tool (de Dinechin
and Pasca 2011), is to synthesize each operator to determine its critical path. The delay of
each evaluated operator is then recorded in a database because this synthesis is computer
intensive. This pass is automated through a script and is based on an experimental-only
approach. The delay of the operators will necessarily vary during the synthesis of the
final project (because of branching, internal optimizations, interconnections, . . . ). It is only
possible to validate that all deadlines are met after the final synthesis.

The last pass (in green in the figure) is the one that is presented in this article and is a
synthesis and extension of the articles (Parrot et al. 2021b; 2021a), which introduce the
model Timed Petri Net with reset and delayable transitions (RTPN in short) and present its
usage for pipeline synthesis. Here, the focus is on the addition of temporal logic constraints
to the generation of pipelines.

1.6 Outline

We first present in Section 2 a semantics of Timed Petri Nets “à la Ramchandani” (1974)
with an atomic firing rule using maximal steps, i.e. without the three phases firing. Then,
in Section 3, we present an extension of Timed Petri Nets (proposed in Parrot et al. 2021b)
closer to real synchronous circuits, which embeds the impacts of registers on the delay
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of the circuit with a particular reset operation, and which allows relaxing some temporal
constraints with delayable transitions.

Thanks to this accurate model of pipelined synchronous circuits, we present in Section 4
a design space exploration guided by a cost which stands for the number of needed registers
(proposed in Parrot et al. 2021a). We extend this approach in Section 5 in order to build opti-
mized pipelines (in terms of number of registers), while guaranteeing that a set of properties
are verified by the synthesized circuit. We apply this approach to the time-multiplexing
problem.

2 A synchronousmodel for the pipeline

The use of deterministic time in PN was first introduced by Ramchandani (1974), which led
to a model called Timed Petri Net. Each transition is associated with a delay, representing
the fact that actions take time to complete.

and are respectively the sets of integer and non-negative real numbers. For vectors
of size n, the usual operators +, −,<, ≤,>, ≥ and = are used on vectors of and
and are the point-wise extensions of their counterparts in and . As a reminder, for
example the point-wise extension of the operator ≤ over is defined by ,
u ≤ v ⇐⇒ ∀i ∈ [1..n], u(i) ≤ v(i). Let 0̄ be the null vector of size n.

2.1 The three-phases firing semantics

Ramchandani’s semantics is a three-phases firing semantic: delete the input tokens of the
transition (consumption), wait until the firing time is reached (delay) and create the output
tokens of the transition (production). Once initiated, this firing process cannot be interrupted
or stopped. The consumption phase can therefore be seen as a reservation (in particular in
case of conflict). Moreover, the transitions in the firing process are synchronized to a global
clock. He furthermore prohibits zero-time firing, which prevents the same transition from
being fired twice when other transitions are in conflict.

Popova proposed a semantics based on the same three-phases firing, but selecting before-
hand a maximal step of transitions to fire in the same atomic action (Popova-Zeugmann
2013). In other words, instead of being reserved one after the other, the transitions are
selected and then reserved all at the same time (consumption phase).

2.2 Themaximal-step firing semantics

Classically the semantics of (timeless) PN is the interleaving semantics, in which transitions
are fired one after the other. In the maximal-step semantics, a maximal set of fireable transi-
tions is selected and are then fired all at once. In practice the maximal-step semantics avoids
the interleaving, which is interesting for the modeling of synchronous systems. It imposes
more constraints than the interleaving semantics, and thus increases the expressiveness and
eliminates reachable markings.

Popova shows how a counter machine can be encoded and simulated by timeless PN
with maximal-step firing, which then also applies to TPNs (Popova-Zeugmann 2013).
In particular, she shows the modeling of the so-called zero-test, which is recalled in
Fig. 2a. It means that Timeless as well as Timed PNs firing in maximal-step are Turing
equivalent.
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Fig. 2 Zero-test pattern

2.3 An atomic semantics for TPNs

We consider a TPNs atomic semantics (Parrot et al. 2021b) without any reservation: waiting
is done while keeping the tokens in their place, then when at least one transition is fireable
we select the maximal step and fire (consumption and production) all the transitions in one
atomic action. The maximal step contains enabled transitions which have been enabled for
a period of time equal to their delays.

Informally, a clock and a delay are associated with each transition of the Net. The clock
measures the time elapsed since the transition has been enabled and the delay is interpreted
as a firing condition: the transition may and must fire if the value of its clock is equal to the
delay.

Formally:

Definition 1 (TPN) A TPN is a tuple (P, T ,•(.), (.)•, δ, M0) defined by:

• P = {p1, p2, . . . , pm} is a non-empty set of places,
• T = {t1, t2, . . . , tn} is a non-empty set of transitions,
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• •(.) : is the backward incidence function,
• (.)• : is the forward incidence function,

• is the initial marking of the Petri Net,
• is the function giving the firing times (delays) of transitions.

A marking M is an element of such that ∀p ∈ P , M(p) is the number of tokens in
place p. A marking M enables a transition t ∈ T if: M ≥• t . The set of transitions enabled
by a marking M is enab(M) = {t ∈ T | M ≥• t}. A transition is fireable if it is enabled
and its clock has reached its delay.

Fireable transitions are fired simultaneously according to the maximal-step firing rule.
For a marked graph where every place has one incoming arc, and one outgoing arc, there
can not be any conflict and the firing of a transition cannot disable another transition. In
the general case, there can be conflict and, from a given state, there can be several maximal
steps τ .

From a marking M , the simultaneous firing of a set τ of transitions leads to a marking
M ′ = M + �t∈τ (t

• −• t).
A transition t ′ is said to be newly enabled by the firing of a set of transitions τ if M +

�t∈τ (t
• −• t) enables t ′ and (M − �t∈τ

•t) did not enable t ′. If t remains enabled after its
firing then t is newly enabled. The set of transitions newly enabled by a set of transitions τ

for a marking M is noted ↑enab (M, τ).
A state is a pair (M, v) where M is a marking and is a time valuation of the system

(i.e. the value of the clocks). v(t) is the time elapsed since the transition t ∈ T has been
newly enabled. 0̄ is the valuation assigning 0 to every transition.

Definition 2 (Maximal Step) Let q = (M, v) be a state of the TPN (P, T ,• (.), (.)•, δ, M0),
τ ⊆ T is a maximal step from q iff:

1. ∀t ∈ τ, v(t) = δ(t)

2.
∑

t∈τ
•t ≤ M

3. ∀t ′ ∈ T , (v(t ′) = δ(t ′) and •t ′ ≤ M and t ′ �∈ τ) ⇒ ∑
t∈τ

•t +• t ′ �≤ M

The set of maximal steps from q is noted maxStep(q)

The first condition ensures that the transitions are ready to fire, i.e. the clocks are equal
to the delays. The second condition ensures that the transition are fireable, i.e. enabled and
not in conflict with another transition of τ . The third condition disallows the existence of a
proper superset of τ which fulfills the previous two conditions.

The semantics of TPN is defined as a Timed Transition System (TTS). Waiting in a
marking is a delay transition of the TTS and firing a maximal step is a discrete transition of
the TTS.

Definition 3 (Semantics of a TPN) The semantics of a TPN is defined by the Timed
Transition System S = (Q, q0,→):

• is the set of states,
• q0 = (M0, 0̄) is the initial state,
• is the transition relation including a discrete transition and

a delay transition.
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– The delay transition is defined by:

(M, v)
d−→ (M, v′) iff

⎧
⎪⎨

⎪⎩

v′(t) =
{

v(t) + d if t ∈ enab (M)

v(t) otherwise

∀t ∈ enab (M), v′(t) ≤ δ(t)

– The discrete transition is defined ∀τ ∈ maxStep
(
(M, v)

)
by: (M, v)

τ−→

(M ′, v′) iff

⎧
⎪⎨

⎪⎩

M ′ = M + ∑
t∈τ (t

• −• t)

v′(t) =
{
0 if t ∈↑enab (M, τ) or t �∈ enab (M ′)
v(t) otherwise

A run in a TPN is a sequence q0
α1−→ q1

α2−→ . . . , such that for all i, qi

αi+1−−→ qi+1 is a
transition in the semantics.

In the absence of conflict, the atomic semantics of Definition 3 is equivalent to the three-
phases one of Ramchandani (extended with zero firing delay Popova-Zeugmann 2013):
there exists only one run, there is no indeterminism. In case of conflict, it is possible to
construct the three-phases firing in our semantics: just add a zero time transition before each
transition, in order to simulate the reservation action (Parrot et al. 2021b).

2.4 Zero-test andmodel of the pipeline

Thanks to the maximal step firing, the TPN represented on Fig. 2a can perform the zero-
test. The zero-test in the case of TPN is materialized by testing if a place is marked or
not, here the place p. After firing the transition start , the transitions test and cancel are
fired simultaneously if and only if the place p is marked. The next step will contain the
transition is zero iff p wasn’t marked, which leads to a token in pzero. We will use this test
several times in the following, thus we will replace it by the graphical shortcut of Fig. 2b
for convenience.

Using this zero-test, it is directly possible to model the dataflow of a pipeline. The TPN
of Fig. 3 models a D flip-flop, which is used for the synchronization of a signal between
two pipeline stages. The marking of the place Qi (or Di) represents the presence of data
(not its truth value).

On the left of the zero-test, the generator models the oscillator by adding a token in the
place clock every N time units. When the place clock is marked, the zero-test will put a

Fig. 3 Model of pipeline dataflow with frequency 1
N

(D flip-flop)
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token in Qi (output) only if the place Di (input) is marked. We thus model a D flip-flop
(copy the input signalDi to the outputQi on a rising edge of the clock), which synchronizes
the dataflow with clock.

Model-checking on pipeline is then possible. However, this model only allows the study
of one pipeline (one placement of the D flip-flops in the circuit) at a time. Studying others
pipeline requires to change completely the model by moving the flip-flop pattern.

3 TPNwith reset and delayable transitions

We have proposed in Parrot et al. (2021b) an extension of TPN where transitions are sep-
arated in two groups: asap transitions (non-delayable) must fire as soon as possible, as in
Definition 1, and delayable transitions can fire when their clock reaches their delay, or when
their clock exceeds their delay and they are associated with another transition whose clock
just reaches its delay. In addition, the clocks can be resetted (the corresponding action is
called reset) and the delay between two consecutive resets is fixed by an interval Ireset .

3.1 Definitions

Definition 4 (RTPN) A RTPNN is a tuple (P, T , TD,• (.), (.)•, δ, Ireset ,M0) defined by:

• (P, T ,• (.), (.)•, δ, M0) is a TPN;
• TD ⊆ T is the set of delayable transitions;
• Ireset is the reset time interval with lower (Ireset ) and upper (Ireset ) bounds in .

From a state (M, v), a transition is fireable if it is enabled and its clock is greater or equal
to its delay. As for the TPN, the clock of an asap transition t �∈ TD cannot exceed δ(t).
Consequently, v(t) ≤ δ(t) and t must fire when its clock is equal to its delay. A delayable
transition t ∈ TD may fire either when v(t) = δ(t) (not delayed in that case), or when
v(t) > δ(t), but in this case t must be associated with at least one (or more) other fireable
transition t ′ such that v(t ′) = δ(t ′).

The maximal step is then maximal only with regard to the asap transitions:

Definition 5 (Maximal Step w.r.t. TD) Let q = (M, v) be a state of N . A set τ ⊆ T is a
maximal step with regard to TD from q iff:

1. ∀t ∈ τ, v(t) ≥ δ(t)

2. ∃t ∈ τ s.t. v(t) = δ(t)

3.
∑

t∈τ
•t ≤ M

4. ∀t ′ ∈ T \ TD, (v(t ′) = δ(t ′) and •t ′ ≤ M and t ′ �∈ τ) ⇒ ∑
t∈τ

•t +• t ′ �≤ M

The set of maximal steps w.r.t. TD from q is noted maxStep\TD
(q).

A state is now a pair (M, v) such that is extended with a clock value for
reset , evaluating the time elapsed since the last reset . The reset action resets all clocks
of the net. It is possible only when its clock value belongs to the reset interval v(reset) ∈
Ireset .

The semantics of a RTPN is defined as a Timed Transition System (TTS). Waiting in a
marking is a delay transition of the TTS, and firing a maximal step or the reset are discrete
transitions of the TTS.
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Definition 6 (Semantics of a RTPN) The semantics of a RTPNN is defined by the Timed
Transition System SN = (Q, q0,→) with is the set of states;
q0 = (M0, 0̄) is the initial state; and is the transition
relation including a discrete transition and a delay transition:

• The delay transition is defined by:

(M, v)
d−→ (M, v′) iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v′(t) =
{

v(t) + d if t ∈ enab (M) ∪ {reset}
v(t) otherwise

v′(reset) ≤ Ireset

∀t ∈ enab (M) \ TD, v′(t) ≤ δ(t)

• The discrete transition is defined by:

– ∀τ ∈ maxStep\TD

(
(M, v)

)
,

(M, v)
τ−→ (M ′, v′) iff

⎧
⎪⎨

⎪⎩

M ′ = M + �t∈τ (t
• −• t)

v′(t) =
{
0 if t ∈↑enab (M, τ) or t �∈ enab

(
M ′)

v(t) otherwise

– (M, v)
{reset}−−−−→ (M, v′) iff

{
v(reset) ∈ Ireset

v′ = 0̄

Definition 7 (Runs) LetN be a RTPN and SN its semantics. A run ofN from q is finite or

infinite sequence ρ = q
d1−→ qd1

τ1−→ qτ1 . . .
dn−→ qdn

τn−→ qτn of alternating delay di (possibly
null) and discrete transition τi where either τi ⊆ T or τi = {reset}. For all run ρ, there
exists a discrete run ρd̄ = q

τ1−→ qτ1 . . .
τn−→ qτn , in which only the discrete transitions are

present.

3.2 Example

Let us consider the RTPN depicted in Fig. 4a. Figure 4b shows a part of its state graph,
restricted to the first occurrence of a reset . States after a reset are framed in cyan. For more
convenience, the markings are represented as the set of marked places. The initial state of
the net is the state q0 in the state graph.

Note that the transition t0 being delayable, it can fire either when it reaches its delay
(edge between q1 and q2), or together with t3 (edge between q8 and q9). Finally, it should
be noted that not all the possible runs are represented here. It is for example possible to wait
7 time units from q0 and then do a reset . Actually it exists infinitely many runs, as a result
of the density of time.

3.3 Properties of RTPNs

Symbolic states The RTPN semantics is a transition system in which each state consists
of a marking and a valuation of the clocks. Note that there is (because we only consider
bounded nets) only a finite number of markings, but there are an uncountable quantity of
valuations because of the density of time (particularly for the states from which a reset is
possible). For example, there is infinitely many states between q8 and q11 (in the Fig. 4b).
These states correspond to the wait between 6 and 9 time units from the state q0 which can
be abstracted by v(t0) = v(t3) = v(reset) ∈ [6, 9]. The state space can then easily be
abstracted by a finite set of symbolic states (shown in Parrot et al. 2021b).
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Fig. 4 Example of RTPN and some of its possible runs. Delays are represented in red under the transitions,
and delayable transitions are in gray (only t0 in this example)

Definition 8 (Symbolic state) A symbolic state is a pair (M,Z) where M is a marking, and
the zone Z is a set of valuations v of T ∪ {reset} defined by the conjunction of:

• rectangular constraints: (v(x) ∼ c) where x ∈ T ∪ {reset}, ∼∈ {≤,=, ≥} and ,
• diagonal constraints: (v(reset) − v(t) = c) where t ∈ enab (M) and .

It is then possible to build a symbolic state graph as defined in Parrot et al. (2021b),
illustrated in the example in Fig. 5. Compared to the part of state graph of Fig. 4b, we can
see that some states have been grouped into a single symbolic state.

It is interesting to note that the zones have a particular shape: the diagonal constraints
are equalities and compare all the clocks against v(reset). Thus, by simply setting a value

11Discrete Event Dynamic Systems (2023) 33:1–24



Fig. 5 Part of the symbolic state graph of N (until the first resets)

of v(reset) we can “choose” a point of the zone. The discrete actions (other than reset)
are then only done on integer points of the space and the symbolic state space preserves
the language in addition to the reachability. Based on this abstraction it is possible to build
a single clock automata that recognized the same language, as presented in Parrot et al.
(2021b).

An abstraction preserving branching is readily accessible. Simply split the zone when a
transition is no more fireable. For example the state sa of Fig. 5 becomes the states presented
in Fig. 6.

Without going into details on symbolic state graphs, it should be noted that only few
discrete runs are sufficient to describe all the behaviors. We will then only represent the
relevant states in the following state graphs.

Decidability and complexity Timeless PNs, with maximal-step firing, are as expressive
as Turing Machines and are a subclass of RTPN for whom the reachability problem
is then also not decidable. But if we consider bounded nets, we obtain the following
results:

Fig. 6 Abstraction preserving the branching of state sa of Fig. 5
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Theorem 1 Reachability and TCTL model checking for a bounded TPN, with or without
reset and delayable transitions, are PSPACE-complete.

Proof PSPACE-hardness comes from the PSPACE-completness of the reachability problem
for a safe timeless PN with the classical interleaving semantics, which is a subclass of
bounded TPN. Then the PSPACE-completness is obtained by applying the same procedure
as in Alur et al. (1993) and Boucheneb et al. (2009) by checking TCTL formulae with an
inductive algorithm for region graph exploration, which is polynomial in space.

Theorem 2 For bounded RTPN, the universality and language inclusion problems are
decidable for finite timed words.

Proof It is a consequence of the translation preserving the timed bisimulation proposed
in Parrot et al. (2021b) of bounded RTPNs to one clock timed automata, for which these
problems are decidable (Ouaknine and Worrell 2004; Abdulla et al. 2008).

4 Pipeline synthesis

The model presented in Section 3 can accurately represent pipelined synchronous circuits.
The following will demonstrate how to use this model to build an optimized pipeline which
ensures a minimal frequency while minimizing the required registers (and thus the material
resource consumed).

In this modeling, transitions represent the operators and places represent the connections
of the circuit. The PN is actually a Marked Graph, and there is no conflict. However, the
state space still has an exponential size regarding the size of the RTPN. Some features are
then used to limit the exploration according to an optimization objective.

The goal is to build the pipeline that minimizes the total number of flip-flops (1-bit
registers). The RTPN model is then extended with a cost representing the number of flip-
flops of a given pipeline. Note that the considered circuits are finite and with unfolded loops,
so we focus on finite runs of RTPN: the accumulation of an increasing cost will not affect
the termination.

This pipeline building problem that minimizes the number of registers while ensuring
a minimal frequency was already solved by Leiserson and Saxe (1991). However, the pro-
posed solution cannot be easily extended with additional constraints on the pipeline. The
originality of the approach lies in the possibility to append a set of properties to check, to
the pipeline synthesis. Those properties can, for example, permit sharing a portion of the
circuit between several pipeline stages. The synthesis of pipeline allowing resource sharing
will be addressed afterwards in Section 5.

4.1 RTPNwith cost

The RTPN class is extended with a cost on each place, and a marking cost function.

Definition 9 (CRTPN) A CRTPN is a tuple (N , C, ω) where N = (P, T , TD,• (.), (.)•,
δ, Ireset , M0) is a RTPN and

• is the cost assigned to each place;
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• is the marking cost function (recall that a marking is ).

A classical marking cost function is ω(M) = ∑
p∈P M(p) · C(p) which is the sum of

the marking of each place weighted by its cost. This function is not necessarily linear, as we
will see for the model of branching points.

Definition 10 (Cost of a run) The cost �(ρ) of a run ρ is the accumulated marking cost
of the states that immediately follow a reset in the run, starting by the cost of the initial
marking.

It is defined inductively on a run ρn = ρn−1
αn−→ qn, with and

qn = (Mn, vn) by:

• �(q0) = ω(M0)

• �(ρn) =
{

�(ρn−1) + ω(Mn) if αn = {reset}
�(ρn−1) otherwise

4.2 Modeling circuits

A set of rules to model a circuit with a CRTPN is defined in this section. Figure 7 shows an
example of circuit, with the operators opi connected by signals si . The size of each signal
is noted between parentheses (in green). The propagation delay of each operator is noted
under it (in red). Lastly the pipeline’s registers are represented by (blue) rectangles on the
edges.

In the following, a circuit is considered as a weighted graph (V ,E, d,w), in which
V = Op � B is the set of operators Op joint with the set of branching points B (� is the
disjoint union), and E is the set of signals. Additional signals following a branching point
are defined, in order to match with the edges of the graph (on the example Fig. 7 the signal
s1 gives three signals s11, s12 and s13 after the branching). Finally, the weights d and w rep-
resent respectively the propagation delay of the operators d(op) and the size of the signals
w(s) (number of bits).

The CRTPN ((P, T ,• (.), (.)•, δ, Ireset ,M0), C, ω) built from the circuit Fig. 7a is repre-
sented on Fig. 7b, and is obtained thanks to 7 rules. The four first rules preserve the elements
of the circuit and their connections:

rule 1: ∃φe : E �→ P a bijection, with ∀s ∈ E, C(φe(s)) = w(s);
rule 2: ∃φv : V �→ T a bijection, with ∀op ∈ Op, δ(φv(op)) = d(op) and ∀b ∈ B,

δ(φv(b)) = 0;
T = TOp � TB with TOp = φv(Op) and TB = φv(B).

rule 3: If s ∈ E is an input signal of v ∈ V , then •t (p) = 1 with t = φv(v) and p = φe(s);
rule 4: If s ∈ E is an output signal of v ∈ V , then t•(p) = 1 with t = φv(v) and

p = φe(s);

A place and its associated cost model respectively a signal and its size. A transition and its
firing delay model respectively an operator and its propagation delay. Moreover, a transition
with a null delay models each branching point (only b1 in the example). Its purpose is to
allow the placement of registers either before the branching (s1), or on a particular output
branch (s11, s12 or s13). Rules 3 and 4 preserve the structure of the net.

All the input signals are considered synchronous, which is equivalent to have them all on
the first pipeline stage. In the model, this corresponds to the initial marking M0 defined by
rule 5:
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Fig. 7 An example of pipelined circuit and its corresponding model

rule 5: If s is an input signal (not outgoing from any operator), then M0(p) = 1 with p =
φe(s);

The reset action models the placement of a border of pipeline stage, and resets all the
clocks of the CRTPN for the following stage. Rule 6 defines the upper bound of the reset
interval:

rule 6: Ireset = 1
f
;

The time elapsed since the last reset is “stored” in v(reset). The semantics enforces a
reset to happen only if v(reset) ∈ Ireset . Then, if the upper bound is fixed to 1

f
, the pipeline

produced has at least a frequency f . Here 1
f
, and in the following 1

2f , are supposed to be in

, but they can be rational without altering the results (just apply a factor to all the delays
of the model to come back to integer values).

The cost function gives the total number of flip-flops needed in the current pipeline stage:

rule 7: We define POp = {p ∈ P | ∃t ∈ TOp,• t (p) = 1} and PB(p) = {p′ ∈ P | ∃t ∈
TB,• t (p) = 1 and t•(p′) = 1}.
Then ∀M ∈ {0, 1}P , ω(M) = ∑

p∈POp
C(p) · max(M(p),maxp′∈PB(p)(M(p′))).

Indeed, the cost of a place matches the size of the signal, and consequently the number of
flip-flops needed per register. The cost function manages specifically the branching points,
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Fig. 8 Example of pipeline synthesized from a run

where a mutualization of the registers on the output is possible. That explains why the
cost of places after a transition modeling a branching point following a place p, is C(p) ·
maxp′∈PB(p)(M(p′)).

These modeling rules are sufficient to fully define the circuit model with CRTPN. All
possible pipelines can then be explored thanks to this model. In particular it is possible to
find the optimal one, i.e. the one that minimizes the resource consumed while ensuring a
minimal frequency. However, in practice we quickly face a combinatorial explosion dur-
ing state space exploration. To avoid combinatorial explosion, the two heuristics proposed
in Parrot et al. (2021a) lead to good pratical results by limiting the number of delayable
transitions1 and increasing the lower bound of the reset interval.

4.3 Pipeline synthesis from themodel

Each reachable state of the model represents a pipeline stage that is possible on the real
circuit. The reset operation sets the transition from a stage to the following one. The full
pipeline is recovered by walking through a branch of the state graph, and accumulating the
states following a reset .

1This explains why in the Fig. 7b, the transitions modeling the operators op0 and op5 are not delayable.
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A run ρ of the CRTPN of Fig. 7b, is represented on Fig. 8a. It is actually the best achiev-
able run, i.e. the one minimizing the cost. The corresponding pipeline in the circuit is drawn
on Fig. 8b.

Let qi = (Mi, vi) (0 ≤ i ≤ 14) be the states of this run ρ. The marking of each state
after a reset gives the placement of the registers in the pipelined circuit, except for the
signals after a branching point: if several are marked, then only one register is needed in
the pipelined circuit (mutualization). For example, the marking M4 = {s11, s12, s13} leads
to only one register on s1.

The cost of this run is �(ρ) = ω(M0) + ω(M4) + ω(M7) + ω(M14) = C(s0) + C(s1) +
(C(s1)+C(s2))+(C(s6)+C(s7)+Cs8) = 61. This cost matches the total number of flip-flops
in the pipeline of Fig. 8b. On this example, a classical greedy “as-soon-as-possible” algo-
rithm as implemented in FloPoCo (Istoan and de Dinechin 2017) (a generator of pipelined
arithmetic operators for FPGA), produces the example of Fig. 7a, with a total of 94 flip-
flops (54% more). The improvement of this approach over the classical greedy has been
studied in Parrot et al. (2021a), on several arithmetic circuits.

5 Application to time-multiplexing

The RTPN model allows exploring many pipelines of a circuit with a frequency guaranteed
in an interval. We can check temporal logic properties, such as ensuring that the time spent
between the production and consumption of a data on a portion of the circuit is less than a
bound. It is in fact possible to impose some specific constraints to the resulting pipelines.

In this section, we apply this approach to the time-multiplexing problem. As stated in
the introduction, we focus here on circuits with a low throughput compared to the clock
frequency, thus the whole computation is done in one sampling period.

5.1 Folding or time-multiplexing

With an ongoing concern of saving resources, a method called time-multiplexing (also
called folding) has been developed. It aims at sharing the instantiation of operators or group
of operators which are needed at several places of the circuit. The sharing is secured by
sequential access to the instantiation.

Figure 9 shows an example of circuit that is suitable for resource sharing (based on an
example of Sittel et al. 2017). Suppose that the operators op1 (resp. op2; op3) and op′

1 (resp.
op′

2; op
′
3) are two instances of the same operator. It is then possible to instantiate only once

the portions of circuit in (orange) dotted frame, and to share the instantiation. Note that the
signal sizes are willingly omitted for ease of understanding, but this approach is still valid
with different signal sizes (as long as they are equal on the portions to be shared).

The sequencing of resources access is done with a particular pipeline. Identify this (or
one of these) pipeline constitutes the modulo scheduling problem. A key step of modulo
scheduling is to find the initiation interval: the delay between two introductions of new
entries in the circuit. This periodical data introduction can be represented in a RTPN by a
token generator on the input. However, as a first step, we will assume that a new data is
introduced once the whole computation is done. This assumption is perfectly relevant in
signal processing, where the initiation interval (the sampling period) is often significantly
higher than the pipeline period (related to the FPGA frequency).
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Fig. 9 Example of time-multiplexing

Our goal is to find a particular pipeline on the initial circuit containing all the instances,
and afterwards to fold the instances (i.e. to merge them). The pipeline must then verify two
properties:

1. The first is mutual exclusion. The resources must not be accessible at the same time by
several clients.

2. The second concerns the register placement. The registers must be placed on the same
locations in the portions of circuit to fold.

In the example in Fig. 9, the first constraint ensures that there is never some data at the same
time on the twin signals: simultaneously in s5 (resp. s6) and in s8 (resp. s10). The second
constraint means that there must be the same amount of registers in the pair of twin signals.
That is why the pipeline of Fig. 9b doesn’t allow time-multiplexing, contrary to the one of
Fig. 9a. Indeed, s5 crosses no register whereas s8 crosses one, which violates the second
constraint.

It is possible to build these particular pipeline, using the approach presented in Section 4,
by guiding the exploration with CTL properties. Thus, the exploration will be restricted to
runs verifying those properties. Mutual exclusion can be simply expressed as a marking
constraint verified by all states of the run. However, the CTL properties are expressed on
markings, they do not allow observing the reset fired, which is required by the second
constraint. As the reset is defined in the semantics of the model, it is not explicitly present in
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the net like the other transitions, it then cannot be connected to an observer place. Somehow
the CTL must be extended with the ability to capture the resets fired in each place.

5.2 Explicit reset

As explained in Section 3, due to the density of time the reset can fire from an infinite
number of states with the same marking, but the successor state will always be the same.
Therefore, the only relevant firing times either correspond to the bounds of the interval
(Ireset and Ireset ) or are grouped together with a maximal step (in the semantics just after
the maximal step firing). One can then consider the reset as a delayable transition with a
temporal upper bound, and this preserves the discrete runs. Thus, for all RTPN, a TPN with
delayable transitions that verifies the same CTL properties can be built.

Indeed, a reset can be explicitly expressed with the pattern drawn in Fig. 10. The place
preset holds a token since the last firing of reset . The delayable transition with delay Ireset

and the non-delayable transition with delay Ireset model the reset interval. For all places pi

of the net, the pattern in the dashed frame is added and connected to the transitions reset

and end reset . This pattern achieves the reset of the transitions enabled by the place pi . It
works in two steps: first the tokens in the place are drained and temporarily held in pstock

i ,
then once the draining is finished all tokens are replaced in the place pi . Each step is based
on a zero-test with a loopback which simulates a while loop. In other words, the tokens
are removed from pi (resp. pstock

i ) while there are some left. Note that with a safe net, the
pattern can be greatly simplified: only one zero-test that removes and sets back the token in
pi is enough.

In the pattern drawn in Fig. 10, the place pobs
i counts the total number of tokens which

underwent a reset in pi since the initial state. This observer place allows us to extend the
temporal logic CTL for RTPN.

Definition 11 Let N be an RTPN, and q = (M, v) a state of N . Let the property φ =
(reset (pi) ∼ n) with ∼∈ {<,>, ≤, ≥, =, �=} and . The state q verifies the property
φ if and only if q verifies the property ψ = ((M(pobs

i ) ∼ n).

Fig. 10 Pattern expressing the reset
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5.3 Synthesis of a pipeline for the folding

With the RTPN approach and the CTL extension presented previously, it is possible to solve
the modulo scheduling problem for the folding of circuits. More specifically, it is possible to
build a pipeline allowing folding, while ensuring a minimal frequency and minimizing the
number of flip-flops. This solution is applied to the example of circuit given in Section 5.1.

Our method for solving the folding problem is a reachability problem, where a CTL
property define mutual exclusion. This property allows the state space exploration to be
pruned on the fly. Thus, the synthesis is guided by the CTL property.

The RTPN model of the circuit of Fig. 9 is built using the modeling rules presented in
Section 4. It is represented in Fig. 11a. Note that the transitions modeling the shared opera-
tors are delayable in order to relax the exploration, and so to satisfy the folding constraints.
The places drawn in orange (s5, s6, s6a , s6b, s8 and s10) are subject to CTL constraints.

A first atomic property guarantees the mutual exclusion of data in the twin places:
φmutex = (M(s5)+M(s8) ≤ 1)∧(M(s6)+M(s10) ≤ 1)∧(M(s6a)+M(s10) ≤ 1)∧(M(s6b)+M(s10) ≤ 1).
In fact, in the model, tokens represent both the placement of the future registers, and the
data propagated when the circuit is pipelined (as soon as pipeline registers are in place).
The property φmutex checks that the two signals s5 (resp. s6, s6a , s6b) and s8 (resp. s10) will
never contain data simultaneously.

A second atomic property guarantees the consistency of registers placement in the twin
places in a final state (state with the final marking): φconsist = (M(s11) = 1) ∧ (reset (s5) =
reset (s8))∧(reset (s6)+reset (s6a) = reset (s10))∧(reset (s6)+reset (s6b) = reset (s10)). It checks that
in a final state (M(s11) = 1), the twin places have passed through the same number of resets.

Fig. 11 Time-multiplexing with RTPN
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The final CTL property guarantees that φmutex holds until it is satisfied together with
φconsist (once a final state is reached): φf old = A(φmutexU(φmutex ∧ φconsist )). The pruning
during the state space exploration insures that each run satisfies the property φf old , as the
one presented in Fig. 11b. The synthesized pipeline from this run is the one drawn in Fig. 9b.

5.4 Actually fold the circuit

The parts of shareable circuits are currently selected by hand. This problem has been
addressed in the literature as automatic identification of isomorphic subgraphs, and some
solutions have already been proposed (Sittel et al. 2017). In our case study, we benefit
from the high-level abstraction of Matlab/Simulink and some parts of the evaluated models
have fairly obvious redundancies to be determined. On the other hand, the use of libraries
facilitates the identification of shareable parts.

Once the portions to be shared have been chosen, a minimum bound on the pipeline
frequency fp can be deduced from the desired minimum sampling rate fs . Let n be the
maximum number of times a circuit portion is shared, then the pipeline frequency must
satisfy fp ≥ n·fs . This bound generalizes to the case of sharing nested parts, by multiplying
the maximum number of occurrences between nested levels. However, this bound does not
guarantee that the resulting folded circuit will have the minimum sampling rate fs . A post-
selection of the produced pipelines, based on their latency (which is the sampling period),
is therefore necessary. In other words, the lower bound on the pipeline frequency fp is only
used to reduce the exploration to a few potential solutions.

Our pipeline synthesis approach for folding has been implemented in a prototype tool.
The first tests are encouraging, and on the example presented, the tool produces the expected
pipeline in a few milliseconds: 24ms on an Intel Core i7-6700HQ processor.

The last step is to generate the operators effectively folding the circuit. To do so, the
shareable parts are merged, and multiplexers (MUX) are added in the circuit in place of
their input/output registers. Figure 12 shows the folded circuit obtained from the pipelined
circuit of Fig. 9a. Multiplexers (and de-multiplexers) are associated with a control signal
produced by a sequencer (sel on the figure), that selects the input (output) signals. This part
is under development since the code generation associated with the folding step is not yet
implemented.

Fig. 12 Circuit defined in Fig. 9a after folding
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6 Conclusion

We proposed a model for the pipeline of synchronous circuit based on TPN “à la Ramchan-
dani”. Although it allows verification, this model is only able to study one pipeline at a
time.

We then focused on the optimization of the pipeline in terms of resources. The RTPN
model allows generating multiple pipelines with a target frequency, and to select one min-
imizing the resource consumption with regard to the size of registers and their eventual
mutualization.

Using this result we then concentrated on handling together the optimization with the
synthesis of pipeline following a specification expressed in temporal logic. In particular, we
presented a solution to the time-multiplexing problem. It relies on the explicit expression of
the reset in the RTPN model. This method produces a pipeline allowing time-multiplexing,
ensuring a target frequency, and minimizing the number of flip-flops.

While these results are encouraging, their implementation may be slowed down by com-
binatorial explosion. We consider the possibility to combine them with an ILP approach in
order to obtain both the computation speed and the possibilities offered by model-checking.
We also think about exploiting further model-checking towards the interactions with the
environment.
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