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Abstract
There is an increasing need to study the vulnerability of communication protocols in dis-
tributed systems to malicious attacks that attempt to violate properties such as safety or 
nonblockingness. In this paper, we propose a common methodology for formal synthesis 
of successful attacks against two well-known protocols, the Alternating Bit Protocol (ABP) 
and the Transmission Control Protocol (TCP), where the attacker can always eventually 
win, called For-all attacks. This extends previous work on the synthesis of There-exisTs 
attacks for TCP, where the attacker can sometimes win. We model the ABP and TCP pro-
tocols and system architecture by finite-state automata and employ the supervisory control 
theory of discrete event systems to pose and solve the synthesis of For-all attacks, where 
the attacker has partial observability and controllability of the system events. We consider 
several scenarios of person-in-the-middle attacks against ABP and TCP and present the 
results of attack synthesis using our methodology for each case.

Keywords Distributed protocols · Person-in-the-middle attacks · Supervisory control · 
Alternating bit protocol · transmission control protocol

1 Introduction

Keeping systems secure against attacks and preventing security incidents are chal-
lenging tasks due to the increasing complexity of modern system architectures, where 
a number of hardware and software components communicate over potentially heter-
ogenous networks. To analyze systems which are too complex to be fully described 
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monolithically, abstraction employing formal methods plays a key role and it has been 
studied in particular in the computer science literature (see, e.g., Baier and Katoen 
2008; Kang et al. 2016). In networked systems, components with different architectures 
cooperate with each other using various pre-designed protocols. Due to the prolifera-
tion of communication using standardized protocols, vulnerabilities or misuses of pro-
tocols can result in serious security issues. As a concrete example, Bagheri et al. (2015) 
introduces a formal model and analysis of a protocol used in Android OS, one of the 
most popular operating systems for smart phones. In order for components to cooperate 
with each other without damaging systems and without data corruption, robustness of 
protocols against communication failures is essential in modern system architectures. 
To ensure such robustness of protocols, relevant properties, such as safety and liveness, 
should be satisfied even if packets are dropped for instance. However, the situation is 
different in the context of malicious attacks, where an attacker that has infiltrated part of 
the system (e.g., the network) may be able to induce a violation of the safety or liveness 
properties, thereby causing the protocol to enter an abnormal state.

The development of resilient protocols that satisfy requirements and are applicable to 
various systems requires formal methods for modelling, verification, and synthesis. These 
problems have a long history in computer science as well as in control engineering. The 
readers are referred to Baier and Katoen (2008) and Holzmann and Lieberman (1991) for 
a comprehensive treatment of modelling and verification by employing formal methods, 
such as temporal logic. To prevent systems from being damaged by attacks that exploit vul-
nerabilities of protocols, the recent work (Alur and Tripakis 2017) introduces the process 
of completing an incompletely specified protocol so that the completed protocol satisfies 
required properties and does not suffer from deadlock. Alur and Tripakis (2017) explains 
its methodology of protocol completion using the Alternating Bit Protocol (ABP).

In control engineering, the formalism of of discrete event systems (DES) (Cassandras 
and Lafortune 2021) and its supervisory control theory (SCT) (Wonham and Cai 2019) 
are useful tools to treat the problem of protocol verification as a supervisory control prob-
lem (Rudie and Wonham 1992), so as to determine whether a given protocol satisfies the 
required properties. Not only can SCT be used to analyze existing protocols, it can also be 
used to synthesize a desired protocol based on given requirements. For instance, Kumar 
et  al. (1997) introduces a systematic approach to design a protocol converter for mis-
matched protocols so that the specifications of the entire system and protocols themselves 
are satisfied simultaneously. On the other hand, Rudie and Wonham (1990) considers pro-
tocols comprising local communicating processes, and formalizes protocol synthesis as the 
problem of controlling the local processes so that the global specification of the entire sys-
tem is satisfied, employing the decentralized version of SCT. For a comprehensive survey 
of protocol synthesis, focusing on the formalization of the design of protocols, the readers 
are referred to Saleh (1996).

More generally, detection, mitigation, and prevention of attacks on supervisory con-
trol systems within the framework of SCT has been considered in several works, such as 
Carvalho et  al. (2018), Wakaiki et  al. (2019), Su (2018), and Meira-Góes et  al. (2019). 
Carvalho et al. (2018) presents a methodology of designing intrusion detectors to mitigate 
online four types of attacks; actuator enablement/disablement and sensor erasure/inser-
tion. Focusing on sensor deception attacks under which the attacker arbitrarily edits sen-
sor readings by intervening between the target system and its control module to trick the 
supervisor to issue improper control commands, Wakaiki et al. (2019) and Su (2018) study 
how to synthesize robust supervisors against sensor deception attacks, while (Su 2018) 
also introduces the synthesis problem of attack strategies from the attacker’s point of view. 
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Subsequently, a different technique from Su (2018) to compute a solution of the synthesis 
problem of robust supervisors was proposed in Meira-Góes et al. (2019).

As protection against attacks is one of the main subjects of systems security, method-
ologies for designing attack strategies against systems have been reported in the litera-
ture (Meira-Góes et al. 2020; Lin et al. 2019; Von Hippel et al. 2020a). Meira-Góes et al. 
(2020) presents how to synthesize an attacker in the context of stealthy deception attacks, 
modelled in the framework of SCT, which cannot be detected by the supervisor and cause 
damage to the system, as a counter weapon against intrusion detection modules as in Car-
valho et al. (2018). While (Meira-Góes et al. 2020) considers sensor deception attacks as 
the attacker’s weapon, Lin et al. (2019) introduces the synthesis of actuator attacks under 
which the attacker has the ability to hijack the control commands generated by the supervi-
sor, to damage the system.

Formal synthesis of successful attacks against protocols is the problem considered in 
this paper, in the context of two case studies. The work in Von Hippel et al. (2020a) (and 
its conference version (Von Hippel et al. 2020b)) is of special relevance, as it introduces 
a methodology of attacker synthesis against systems whose components are modelled as 
finite-state automata (FSA). It presents how so-called “There-exisTs” attackers can be 
found (if they exist) using a formal methodology that has been implemented in the software 
tool Korg (Von Hippel 2020). In the terminology of Von Hippel et al. (2020a), “There-
exisTs” refers to attackers that cannot always lead protocols to a violation of required prop-
erties, but sometimes succeed (“there exists” a winning run for the attacker). (Von Hippel 
et al. 2020a) formulates the properties that protocols must protect against as threat mod-
els, and it illustrates its methodology with the Transmission Control Protocol (TCP), spe-
cifically connnection establishment using three-way handshake, as standardized in Postel 
(1981). The formal model in Von Hippel et al. (2020a) was inspired by that in Jero et al. 
(2015) where automated attack discovery for TCP is performed using a state-machine-
informed search.

In this paper, we revisit the respective ABP and TCP models of Alur and Tripakis 
(2017) and Von Hippel et  al. (2020a) in the standard framework of DES modelled as 
FSA. In contrast to the feedback-loop control system architecture in the previously-men-
tioned works on sensor/actuator deception attacks in SCT, we consider a network sys-
tem architecture in which two peers are sending and receiving packets through channels 
and/or networks, as explained in Section 3. We consider “person-in-the-middle” (PITM) 
attacks as in Von Hippel et al. (2020a) and Jero et al. (2015), in a manner reminiscent 
of deception attacks. Inspired by and complementary to the approach in Von Hippel 
et al. (2020a), we exploit results in SCT and develop a methodology to synthesize “For-
all” attackers, that is, attackers that can always eventually cause a violation of required 
properties of the system, extending the previous work by Von Hippel et al. (2020a) on 
There-exisTs attackers. Section 4 will present the details of our methodology, and will 
state our main results as Theorem 1. We then apply this methodology to both ABP and 
TCP, using essentially the same models as in Alur and Tripakis (2017) and Von Hip-
pel et  al. (2020a). Thus, our results extend those in Von Hippel et  al. (2020a) by for-
mally considering the synthesis of “For-all” attackers on TCP, since For-all attacks 
are more powerful than There-exisTs attacks. In both of our case studies, we approach 
attack synthesis as a supervisory control problem under partial observation from the 
attacker’s viewpoint, which is then solved using existing techniques (Cassandras and 
Lafortune 2021; Wonham and Cai 2019). As specifically discussed in Section 4.3, under 
the assumptions of our PITM attack model, a “For-all” attacker for a given threat 
model is obtained by building the realization of the (partial-observation) nonblocking 
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supervisor that results in the supremal controllable and normal sublanguage (supCN) of 
the threat model language with respect to the system language and to the attacker’s con-
trollable and observable event sets. The supCN operation was first introduced in Cho 
and Marcus (1989), and several formulas to compute supCN were derived in Brandt 
et  al. (1990). For each of the two protocols ABP and TCP, respectively in Sections 5 
and 6, we analyze several setups capturing different PITM attacker capabilities.

The detailed case studies presented in this paper, based upon established models of ABP 
and TCP (three-way handshake part), show the various steps on how to build, in a system-
atic manner, successful PITM attacks (if they exist) on these two well-know protocols. We 
believe they can also serve as inspiration for similar case studies on other protocols.

The remainder of this paper is organized as follows. Section 2 provides a brief review 
of the DES framework and its Supervisory Control Theory employed in this paper. In Sec-
tion  3, we introduce the context on modelling of communication protocols and give an 
overview of the PITM attack model under consideration, which is based on specifying a 
safety or nonblockingness property that the attacker is intent on violating in the context 
of SCT. Section 4 formulates the SCT-based synthesis problem of a For-all attacker (if it 
exists) and presents the features of the common methodology that is used in the subsequent 
sections on ABP and TCP, respectively. ABP is considered first in Section 5, and then TCP 
is considered in Section 6. Both sections contain sufficient details so that these case studies 
can be replicated. Finally, we conclude the paper in Section 7.

2  Preliminaries

In this section, we introduce several notions of the DES framework in Cassandras and 
Lafortune (2021), leveraged to build our models in this paper. The central definitions we 
need here are automata, nonblockingness of automata, parallel composition, supervisory 
control theory and nonblocking supervisor.

In DES, what happens in the system is explained by sequences of predefined events 
which discretely occur. Specifically, the system’s behaviour is represented as a set of 
sequences of events, called a language, and each sequence is called a string. Namely, a 
language is a set of strings. Note that strings could be arbitrary long and languages could 
be infinite sets.

One of the intuitive methods to represent (regular) languages is finite state automata 
(FSA), or simply automata, represented as a quintuple

where X is the finite set of states, E is the finite set of events, f : X × E → X is the (partial) 
transition function, x0 is the initial state and Xm ⊆ X is the set of marked states. The func-
tion f denotes the system’s behaviour as state transitions defined in the automaton G, e.g., 
f(x,e) = x′ represents a transition labelled by event e ∈ E from state x ∈ X to state x� ∈ X . 
From Eq.  1, the connection between languages and automata is formally defined as the 
generated language L(G) ∶= {s ∈ E∗ ∣ f (x0, s) is defined}.

From the perspective of system control, it makes sense to consider that sev-
eral behaviours of the system are acceptable or desired. We call the strings denot-
ing acceptable behaviours marked strings, and the language consisting of marked 
strings is called a marked language. To represent the marked language associated 
with G, the marked states in Xm come to play that role. Mathematically, the language 

(1)G = (X,E, f , x0,Xm)
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marked by G is defined by Lm(G) ∶= {s ∈ L(G) ∣ f (x0, s) ∈ Xm} . However, depending 
on the structure of G, it may not be guaranteed that the system G can always even-
tually reach its marked states. In particular, the existence of deadlock and livelock 
in G can prevent the marked states from being reached. Such a property in DES is 
called nonblockingness. Specifically, G is said to be blocking if Lm(G) ⊂ L(G) and 
nonblocking if Lm(G) = L(G) . In other words, if G is blocking, then there exists 
deadlock or livelock in G, that is, there exists a state from which the marked states 
cannot be reached, and vice versa.

In many cases, the systems we analyze consist of several subcomponents, or one 
may want to examine at once the entire behaviour of multiple system models. The DES 
framework has an operation of automata called parallel composition to build models 
of entire systems from subsystem models. For example, the parallel composition G′ of 
system G1 and system G2 is denoted by G� = G1 ∥ G2 . Roughly speaking, a common 
event in G1 and G2 can only occur in G′ if both G1 and G2 execute it simultaneously. 
The private (unshared) events, on the other hand, can be executed in G′ whenever fea-
sible in either G1 or G2. For the detailed definition and properties of parallel composi-
tion, readers are referred to (Cassandras and Lafortune 2021, pp. 81–87).

Considering that the given systems do not always follow their specifications, supervi-
sory control is a concept to control the systems represented as DES, and its mathematical 
framework is called supervisory control theory (SCT), which is to synthesize a control-
ler attached to the system so that the given specifications are satisfied. In the framework 
of SCT in DES, a system to be controlled is called a plant, and a plant is controlled by a 
supervisor that enables or disables particular (controllable) events so that the plant satisfies 
a given specification for safety or nonblockingness for instance. The control actions of the 
supervisor are determined by observation of the strings generated by the plant; thus the 
plant and supervisor from a feedback loop as depicted in Fig. 1.

Technically speaking, a supervisor S is defined as a function

which takes a string generated by G and returns a set of events permitted to occur in G. 
In other words, S(s) is a control action for a string s ∈ L(G) . Note that supervisor S is 
prohibited from disabling a feasible uncontrollable event at any state. Namely, letting 
Euc ⊆ E be a set of uncontrollable events in G, for each s ∈ L(G) , it always holds that 
Euc ∩ {e ∈ E ∣ f (f (x0, s), e) is defined} ⊆ S(s).

(2)S ∶ L(G) → 2E

Fig. 1  The feedback loop of 
supervisory control
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In the framework of SCT, it is also considered that the supervisor has a limited observ-
ability of events generated by the plant. This limitation is represented by partitioning the 
set of events E into two disjoint subsets: the sets of observable events Eo and of unobserv-
able events Euo, namely E = Eo ∪ Euo. To implement this property, the supervisor in Eq. 2 
is extended to the partial-observation supervisorSP defined by

where P is the natural projection from domain E* to codomain E∗
o
 , removing unobservable 

events from a string generated by G. Note that in this scheme, the control action by SP is 
supposed to always take effect before any unobservable event occurs.

Given G and SP, the closed-loop behaviour of G controlled by SP is denoted by a DES 
SP/G, formalized in the following definition.

Definition 1 (Languages generated and marked by SP/G) (cf. (Cassandras and Lafor-
tune 2021, p. 151)) The generated language L(SP∕G) is recursively defined as

1.  � ∈ L(SP∕G)

2.  [s ∈ L(SP∕G) ∧ s� ∈ L(G) ∧ � ∈ SP[P(s)]] ⟺ [s� ∈ L(SP∕G)]

and the marked language Lm(SP∕G) is defined as

We can also examine the blockingness of SP/G as a meaningful characteristic of the 
controlled system. Similarly to the blockingness of G, the DES SP/G is said to be block-
ing if L(SP∕G) ≠ Lm(SP∕G) and blocking if L(SP∕G) = Lm(SP∕G) . Since these properties 
depend on the synthesis result of SP, SP is said to be blocking if SP/G is blocking and to be 
nonblocking if SP/G is nonblocking.

The specification that the plant should obey is given as a specification language 
Lspec ⊆ L(G) , or its automaton representation H such that Lm(H) = Lspec . It is an important 
point that Lspec may not be Lm(G)-closed, namely Lspec ≠ Lspec ∩ Lm(G) , and we may want 
the supervisor SP to “mark” strings in L(SP∕G) based on Lspec, rather than Lm(G) . There-
fore, the SCT framework provides an alternative version of SP, called a marking supervi-
sor, defined as

For the technical details of marking supervisors, the readers are referred to Section 3.9 
in Cassandras and Lafortune (2021). In the rest of this paper, nonblockingness of SP will be 
defined by either Eqs. 4 or 5, depending on the properties of the considered specification 
Lspec (namely, Lspec being Lm(G)-closed or not).

3  System and attack models

Before proceeding to the specific ABP and TCP protocols, we highlight in this section and 
in the next one the common elements of our two case studies.

(3)SP ∶ P[L(G)] → 2E

(4)Lm(SP∕G) ∶= L(SP∕G) ∩ Lm(G).

(5)Lm(SP∕G) ∶= L(SP∕G) ∩ Lspec.
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3.1  System architecture

When modelling communication protocols such as ABP and TCP, we consider a “system” 
that consists of peers communicating with each other, channels, and networks. For clarity 
of presentation, we suppose the system comprises two peers, two or four channels, and one 
network. If peers form a small network using channels, e.g., a local area network (LAN), 
then networks can be omitted and we consider two channels connecting each peer, namely, 
the forward and backward channels.

Figure 2 illustrates an overview of the flow of packets between two peers through channels. 
Peers A and B exchange packets using communication protocols through the channels and net-
work. In this paper, we consider “person-in-the-middle” (PITM) as the attack model on the sys-
tem. In this model, the attacker infiltrates the network or channels, and afterwards sends fake pack-
ets and/or discards genuine ones, exploiting vulnerabilities of the protocol (as captured by the peer 
automata), to damage the system. The system may contain other processes for exogenous events, 
e.g., timers, called environment processes, which are not depicted in Fig. 2. Channels work as 
interfaces between the peers and the network, relaying packets to their destinations. Each compo-
nent of the system is modelled by a finite-state automaton, and denoted as follows:

GPA: Peer A; GPB: Peer B; GC: Channel; GN: Network; and Ge: Environment processes.
Each channel is represented by one finite-state automaton, thus GC is the parallel composition 

of the channel automata. For example, if the system architecture is that in Fig. 2a, then GC = GC1 
∥ GC2 ∥ GC3 ∥ GC4 where GCi (i = [1,4]) are the respective automata modelling each channel. If 
the system architecture is that in Fig. 2b, then GC = GFC ∥ GBC where GFC and GBC are the for-
ward and backward channels, respectively, and GN is empty since there is no network in such an 
architecture. In the case where there exist more than two environment processes in the system, Ge 
is also constructed as the parallel composition of all environment processes.

To capture PITM attacks on the above system, we create new versions of the channels and 
network automata when they are infiltrated by the attacker and denote them by GC,a and GN,a, 
respectively. We consider that the attacker cannot directly tamper the internal codes of peers 
in our model of PITM attacks, meaning that the attacker cannot disable nor enable the pri-
vate events of the peers. Instead, in the infiltrated channels or network, the attacker intercepts 

Fig. 2  Communication overview
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packets and can delete them, and can also insert new packets to impersonate the sender or 
receiver, as similarly considered in Jero et al. (2015). Thus, we construct GC,a and GN,a by the 
addition of new transitions and events that represent the feasible actions of the attacker, as the 
addition can capture insertion and replacement of packets, and packet deletion by the attacker 
can be captured by disabling transitions which indicate packet transfer. Concrete examples of 
GC,a and GN,a will be presented in the case studies in Sections 5 and 6.

Let us define a nominal system model (i.e., without attacker) by

Gnom is the parallel composition of the peers, channels, network, and environment pro-
cesses, namely

As we consider PITM attacks on the system, we enhance Gnom to the new model of the 
system under attack

where possible new transitions and events representing the actions of the attacker come 
from the enhanced GC,a and GN,a automata described above. The other compoents of Gnom, 
namely the peer automata GPA and GPB, as well as Ge, remain unchanged. In our case stud-
ies, the plant Ga is acted upon by the attacker; hence, the plant consists of the entire system 
under attack:

The sending and receiving of packets are represented by events. As we consider PITM 
attacks, it is reasonable to assume that an attacker infiltrating the network or channels can 
only monitor incoming and outgoing packets at the infiltrated component. In other words, 
the attacker cannot observe the private events of the peers. Therefore, we consider that the 
events in our system model are partitioned into observable events and unobservable events, 
based on the system structure and the capability of the attacker. It is also natural to assume 
that the attacker cannot prevent the peers from sending packets to the network or chan-
nels, although the attacker can discard their packets. That is, the attacker cannot control the 
receiving of packets by the network or channels.

Example 1 Let us consider PITM attacks on the Alternating Bit Protocol (ABP). ABP is 
a protocol which defines the communication mechanism between two peers depicted in 
Fig. 2b. Each peer sends and receives packets from its counterpart through the forward and 
backward channels using first-in-first-out (FIFO) semantics. Inspired by (Alur and Tripakis 
2017), we consider Gnom as the parallel composition of the following 7 automata.

• GS = (XS, ES, fS, xS,0, XS,m): ABP sender
• GR = (XR, ER, fR, xR,0, XR,m): ABP receiver
• GFC = (XFC, EFC, fFC, xFC,0, XFC,m): Forward channel
• GBC = (XBC, EBC, fBC, xBC,0, XBC,m): Backward channel
• GSC = (XSC, ESC, fSC, xSC,0, XSC,m): Sending client
• GRC = (XRC, ERC, fRC, xRC,0, XRC,m): Receiving client
• GT = (XT, ET, fT, xT,0, XT,m): Timer

(6)Gnom ∶= (Xnom,Enom, fnom, xnom,0,Xnom,m).

(7)Gnom = GPA ∥ GPB ∥ GC ∥ GN ∥ Ge

(8)Ga ∶= (Xa,Ea, fa, xa,0,Xa,m)

Ga = GPA ∥ GPB ∥ GC,a ∥ GN,a ∥ Ge
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Therefore, we have

We also consider that Peer A first sends packets to Peer B, and afterwards Peer B sends 
an acknowledgement to Peer A. Since Peer A plays a role of the sender side and Peer B is 
at the receiver side, GPA = GS, GPB = GR, GC = GFC ∥ GBC, and Ge = GSC ∥ GRC ∥ GT, thus 
Eq. 9 reduces to Eq. 7. Note that GN in Eq. 7 will be empty in this case.

The various event sets are defined as follows, where synchronization in || will be 
achieved by common events:

Hence

The events with prefix “p” indicate that a packet with indicator bit “0” or “1” has been sent 
from the ABP sender to the ABP receiver (i.e., from Peer A to Peer B), and prefix “a” indicates 
an acknowledgement sent from the ABP receiver to the ABP sender, corresponding to which 
“0” or “1” has been received by the ABP receiver. The prime symbol is attached to the events 
of packets and acknowledgement to distinguish those before going through the channel from the 
corresponding ones after the channels, as is done in Alur and Tripakis (2017).

Figure 4 shows the models of the ABP components. GS and GR are example solutions 
of the distributed protocol completion problem in Alur and Tripakis (2017). Note that we 
have removed from the models in Fig. 4 “dead” transitions which are never executed by the 
system when the attacker is not present. The terminology “dead” is from (Alur and Tripa-
kis 2017). In addition, we mark all the states of the ABP components, for reasons that will 
become clear later. Namely,

In (Alur and Tripakis 2017), the forward and backward channels are modelled as nonde-
terministic finite-state automata as shown in Fig. 4b and d. That nondeterminism is intro-
duced to model nonadversarial errors in communication channels, such as packet drop and 

(9)Gnom = GS ∥ GR ∥ GFC ∥ GBC ∥ GSC ∥ GRC ∥ GT

(10)ES = {send, done, timeout, p0, p1, a
�
0
, a�

1
}

(11)ER = {deliver, p�
0
, p�

1
, a0, a1}

(12)EFC = {p0, p1, p
�
0
, p�

1
}

(13)EBC = {a0, a1, a
�
0
, a�

1
}

(14)ESC = {send, done}

(15)ERC = {deliver}

(16)ET = {timeout}

(17)Enom = ES ∪ ER ∪ EFC ∪ EBC ∪ ESC ∪ ERC ∪ ET

(18)= {send, done, timeout, deliver, p0, p1, p
�
0
, p�

1
, a0, a1, a

�
0
, a�

1
}.

XS,m = XS, XR,m = XR, XFC,m = XFC, XBC,m = XBC, XSC,m = XSC, XRC,m = XRC, XT ,m = XT
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duplication (see Section 4.2 in Alur and Tripakis (2017)). To construct the system model 
in Eq. 9, we need deterministic finite-state automata as factors of the parallel composition. 
Thus, we construct GFC and GBC as observer automata of Gnd

FC
 and Gnd

BC
 , depicted in Fig. 5:

where “observers” are as defined in Cassandras and Lafortune (2021) and capture the 
standard conversion of a nondeterministic automaton to a deterministic one (often referred 
to as subset construction). Observe that GFC and GBC generate exactly the same languages 
as Gnd

FC
 and Gnd

BC
 , respectively.

Let us consider one example case of PITM attacks where a powerful attacker infil-
trates the forward channel. To construct the plant under attack Ga capturing the attack-
er’s actions, we enhance Gnd

FC
 to Gnd

FC,a
 as depicted in Fig. 8a by adding the new transi-

tions shown as the red arrows. This enhanced channel model represents the attacker’s 
capability that can send packets to the recipient with whichever bit 0 or 1, regardless of 
the incoming packets from the sender. Letting GFC,a = Obs(Gnd

FC,a
) in the same way as 

Eq. 19, Ga is hereby given by

Section 5 describes in detail the procedure to model the PITM attack against ABP.

In our case studies, Ga is the plant and the attacker plays a role of the supervisor; in 
this context, the specification represents what damage the attacker wants to cause to the 
system. In other words, the specification should capture violations of a desired property of 
the communication protocol, such as absence of deadlock or proper delivery of packets. 
Therefore, using SCT to synthesize a supervisor that enforces the violation of a desired 
property of the communication protocol under consideration means that we have actually 
synthesized an attack strategy that indeed causes a violation of that property.

3.2  For‑all attack

One of the contributions of this paper as compared to previous work is that we consider 
that the attacker wants to attack the system in a “For-all” manner, to be interpreted in the 
following sense: the attacker can always eventually cause a violation of the given prop-
erty. Such specifications are naturally captured in SCT using the notion of marked states 
and nonblockingness. When the marked states capture the violation of the given property, 
then a nonblocking supervisory in SCT will exactly achieve the goal of a For-all attacker, 
since it will always be possible to eventually reach a marked state. Specifically, consider an 
attacker’s marked (i.e., non-prefix-closed) specification language Lspeca ⊂ L(Ga) which con-
sists of strings that are illegal but feasible in the system under attack. Let Sa be a supervisor 
(aka attacker) for Ga that achieves as much of Lspeca  as possible in the controlled system 
Sa/Ga. We denote this marked language by K, namely, K ⊆ L

spec
a  and the attacker wants 

K to be as large as possible. In order to achieve a For-all attack, the attacker wants Sa 
to be nonblocking, namely, Lm(Sa∕Ga) = K and L(Sa∕Ga) = K . Thus, nonblockingness of 

(19)GFC = Obs(Gnd
FC
)

(20)GBC = Obs(Gnd
BC
)

(21)Ga = GS ∥ GR ∥ GFC,a ∥ GBC ∥ Ge
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the system under attack implies that the attacker can always eventually win; thus, we have 
indeed obtained a For-all attack strategy. This is how For-all attacks are defined in this 
paper.

The above definition of For-all attacks is formalized in Definition 2.

Definition 2 (For‑all Attack‑Supervisor) Given Lspeca ⊂ L(G) , let K ⊆ L
spec
a  be a non-

empty sublanguage. Sa is said to be a For-all attack-supervisor with respect to Ga and K if

1.  Lm(Sa∕Ga) = K ; and
2.  L(Sa∕Ga) = K.

3.3  There‑exisTs attack

If there exists a supervisor Sa not satisfying the condition in Definition 2 but 
L(Sa∕Ga) ∩ K ≠ ∅ , then we say that such an Sa achieves a There-exisTs attack, because in 
that case the controlled system (under the actions of the attacker) Sa/Ga will contain dead-
locks and/or livelocks (i.e., the system under attack is blocking in the terminology of SCT); 
this prohibits the attacker from always being able to eventually win. Still, the nonempty-
ness of Lm(Sa∕Ga) means that the attacker can sometimes win. This is how There-exisTs 
attacks are defined in this paper.

The above definition of There-exisTs attacks is formalized in Definition 3.

Definition 3 (There‑exisTs Attack‑Supervisor) Given Lspeca ⊂ L(G) , let K ⊆ L
spec
a  be a non-

empty sublanguage. Sa is said to be a There-exisTs attack-supervisor with respect to Ga and K if

1.  L(Sa∕Ga) ∩ K ≠ ∅ ; and
2. Sa is not a For-all attack-supervisor.

Now that we have shown how to build the plant model Ga, we address in the next sec-
tion the construction of an automaton representation for the (non-prefix-closed) language 
L
spec
a  , which will be the “specification automaton” for the attacker that is needed in the con-

text of SCT algorithmic procedures.
Remark 1 In the prior work (Von Hippel et  al. 2020a), mostly analogous definitions of 
There-exisTs and For-all attackers are given, but in the framework of reactive synthesis 
with infinite strings and temporal logic (LTL) specifications (see Definition 6 in Von Hip-
pel et al. (2020a)). The technical difference comes from requiring “can always eventually 
win” instead of requiring “will always eventually win” (as is typically done in LTL and is 
done in Von Hippel et al. (2020a)). The latter is expressible in LTL, but not the former. 
The reactive synthesis setting is formally compared to that of SCT in Ehlers et al. (2017), 
where it is shown that nonblockingness in SCT is not expressible in LTL but instead corre-
sponds to “AGEF(marked)” in CTL. In this paper, since we use SCT, we match the notion 
of “AGEF(marked)”, i.e., “can always eventually win”. Moreover, since we are working 
in the context of SCT, we will use the term “nonblockingness” for the class of “liveness” 
properties that will be considered in this paper.
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4  Procedure for synthesis of For‑all attacks on communication 
protocols

In this section, we discuss the modelling procedure to construct a specification automaton 
for the attacker based on the considered properties (instances of safety or nonblockingness) 
of the communication protocol that are to be violated by actions of the attacker. Then, we 
formulate the problem of finding For-all feasible attacks on the system as a supervisor 
synthesis problem in SCT which has a known solution. The SCT-based methodology pre-
sented in this section will be applied to ABP and TCP in the next two sections.

4.1  Safety properties

As in Alur and Tripakis (2017), consider a safety property whose violation is modelled by an 
automaton, termed a safety monitor Gsm. Gsm captures the violation of the given safety property 
in terms of illegal states in its structure. Since the specification for attackers represents a violation 
of the property, the illegal states are represented by marked states in Gsm. In other words, Gsm cap-
tures the violation of the safety property of interest when it reaches its marked states. (Note that in 
our problem context, we do require marked states to capture violation of safety properties.)

Gsm can be derived from automata composing Gnom, namely, the peers, channels, or 
network, by modifying state marking for instance. One can also independently design Gsm 
as a new automaton that we call a dedicated automaton in this paper. Both instances will 
occur in our case studies. For example, in Section 5, the safety monitors Gsm for ABP are 
given as dedicated automata in Fig. 6. Let Gother be the parallel composition of the autom-
ata in Gnom which are not used to construct Gsm. For example, from Eq. 7, if Gsm is built by 
modifying GPA ∥ GPB, then Gother = GC ∥ GN ∥ Ge. In Section 6, we will construct Gsm for 
the TCP case study using TCP peer models GPA and GPB in Fig. 16 later on.

The specification automaton will in our case studies be the parallel composition of Gother 
and Gsm, as is commonly done in SCT. Letting Hnom be the specification automaton with 
respect to Gnom (system without attacker), we have that Hnom = Gother ∥ Gsm. Note that since 
we want marking in Hnom to be determined by marking in Gsm, all the states of Gother are to 
be marked. In the absence of attackers, the communication protocol should ensure the safety 
property under consideration, which means that its violation should never occur. This can be 
verified by confirming that Hnom has no reachable marked states, i.e., Hnom captures no viola-
tions of the given safety property with respect to Gnom.

To represent the specification automaton with respect to the system under attack, namely 
Ga, we construct Gother,a based on Ga in the same manner as Gother. For instance, if Gsm is a 
dedicated automaton and the attacker infiltrates the network, then Gother,a = GPA ∥ GPB ∥ GC 
∥ GN,a ∥ Ge. Let Ha = Gother,a ∥ Gsm be the specification automaton under attack. Similarly to 
marking in Gother, we want Gsm to determine marking in Ha, thus all the states of Gother,a are 
to be marked. If there exist no marked states in Ha, then the attacker is not powerful enough 
to cause a violation of the safety property. Even if Ha has marked states, there may not exist 
For-all attacks (but possibly only There-exisTs attacks), depending on whether a nonblock-
ing supervisor can be synthesized with respect to plant Ga and specification automaton Ha; 
this will be addressed in the solution of the SCT problem discussed below.

In summary, the procedure to build Ha for a given safety property is presented in 
Algorithm 1.
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Proposition 1 Suppose that Ynom,m = ∅ in Algorithm 1, that is, the given system model is 
correct in terms of the safety properties. If Ya,m on line 16 is empty, then no For-all attack 
exists and no There-exisTs attack exists.

Proof By construction, Gsm captures a violation of the given safety property by reach-
ing its marked states. Let Xother,a and Xsm be the sets of states of Gother,a and Gsm, 
respectively. Note that Ya ⊆ Xother,a × Xsm from line 15 of Algorithm  1. Since all the 
states in Xother,a are marked, it holds that Ya,m = ∅ iff for every (xother,a, xsm) ∈ Ya, xsm 
is not marked. This means that the safety monitor Gsm never captures the violation iff 
Ha has no marked states. In other words, the attacker can never cause a violation of 
the given safety property. Therefore, if Ya,m = ∅ , then no For-all attack exists and no 
There-exisTs attack exists.

We build several instances of Ha for ABP in Section 5.4 and for TCP in Section 6.5. The 
safety monitors for ABP are given as dedicated automata in Fig. 6, as will be explained in 
Section 5.1, while those for TCP are derived from Ga based on the given safety property, as 
will be explained in Section 6.2.

4.2  Nonblockingness properties

We examine a “limited” liveness property, called nonblockingness, as expressible in SCT 
for *-languages, namely, languages of finite strings. Nonblockingness is an adequate tool 
in many applications, such as in software systems; see, e.g.: deadlock in database con-
currency control (Lafortune 1988); deadlock in multithreaded programs (Gadara project) 
(Liao et al. 2013). Since our approach is based on SCT, nonblockingness is the only type 
of liveness property that we consider in our case studies. Thus, the set of marked states 

Algorithm 1  Attack Specification against Safety (saFespec).
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used for nonblockingness will be the “parameter” that captures the desired instance of 
liveness. In our setting, in For-all attacks the attacker wants to cause a violation of non-
blockingness with respect to the chosen marked states. First of all, Gnom in Eq. 7 should 
be trim for correctness of the system without attacker, as otherwise Gnom would contain 
deadlocks or livelocks. However, Ga should not be trim, meaning that the system under 
attack should contain deadlock or livelock states, i.e., be blocking.

As for the case of safety monitors previously considered, in several instances the 
violation of the nonblockingness property of interest will be modelled using a dedi-
cated automaton, the nonblockingness monitor  Gnm; one such example is shown in 
Fig.  7, inspired by Alur and Tripakis (2017) and considered in in Section 5.2. The 
marked states of Gnm will record the violation of the given nonblockingness property.

On the other hand, if Gnm is not given a priori, then violations of nonblockingness will 
be captured as follows: starting from Ga, unmark all states and mark instead the desired 
(from the viewpoint of the attacker) deadlock and livelock states in Ga, resulting in a suit-
able Gnm model. This is done because deadlock and livelock states are illegal, and the 
attacker wants the system to reach those illegal states (some or all of them, depending on 
the type of attack). This is the approach that we will follow in our case study on TCP, as 
will be explained in Section 6.5.3 and 6.5.4.

Next, we construct Gother,a in the same way as in Section 4.1. That is, we model Gother,a 
as the parallel composition of the automata in Ga which are not used to build Gnm, and 
ensure that all the states in Gother,a are marked. Note that if Gnm is not given as a dedicated 
automaton and we derive Gnm from Ga, then Gother,a is empty.

Finally, we define Ha = Trim(Gother,a ∥ Gnm), to represent the specification for the 
attacker which leads the plant to deadlock or livelock states. As a result, we introduce the 
algorithm to construct Ha in the case of the nonblockingness properties in Algorithm 2.

Algorithm 2  Attack Specification against Nonblockingness (NoNblocKspec).

586 Discrete Event Dynamic Systems (2022) 32:573–610



1 3

Proposition 2 Suppose that Gnom is trim in Algorithm 2, that is, the given system model 
is correct in terms of the nonblockingness properties. If Ya,m on line 19 is empty, then no 
For-all attack exists and no There-exisTs attack exists.

Proof The proof can be done in the same manner as of Proposition 1, replacing Gsm by 
Gnm.

We will discuss several instances of Ha for ABP in Section 5.4 and TCP in Section 6.5.

4.3  Problem formulation

In this section, we formulate the Attack-Supervisor Synthesis Problem (ASSP), 
which is an instance of a standard SCT partial-observation supervisory control 
problem, but where the attacker plays the role of “supervisor” and the specifica-
tion is a violation of a given communication protocol property. ASSP is the for-
mal statement of the For-all attack synthesis problem that is solved in our case 
studies on ABP and TCP.
Attacked‑plant As was described earlier, GC and/or GN are modified to represent the 
attacker’s ability of inserting and/or discarding packets, resulting in new automata denoted 
by GC,a and GN,a. Next, we form the plant Ga for ASSP as the parallel composition of 
nominal and infiltrated automata. For example, if the network is infiltrated by the attacker, 
then Ga = GPA ∥ GPB ∥ GC ∥ GN,a ∥ Ge.

Attack specification Next, we construct Ha using Algorithm 1 or Algorithm 2 based 
on the given safety or nonblockingness property to be violated, as discussed in Sec-
tion 4.1 and Section 4.2. Since marking of states in Ha is determined by marking in 
Gsm or Gnm, the language marked by Ha, Lm(Ha) , represents strings where the attacker 
wins, because

 (i) These strings are feasible in Ga by construction.
 (ii) These strings lead the safety or nonblockingness monitor to a marked state.

As we discussed in Section  3.1, it is reasonable to assume that in PITM attacks the 
attacker cannot disable or enable the events in the nominal (non-infiltrated) automata, and 
also that the attacker only observes the events in the automata of the infiltrated compo-
nents. Thus we define the two partitions of Ea in Eq. 8, from the viewpoint of the attacker 
(which plays the role of supervisor):

 (i) Controllable events Ea,c and uncontrollable events Ea,uc for controllability.
 (ii) Obsevable events Ea,o and unobservable events Ea,uo for observability.

Consequently, we have the following supervisory control problem, under partial obser-
vation, for the attacker.
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Problem 1 (Attack‑Supervisor Synthesis Problem, or ASSP) Let Ga be a plant automa-
ton, under attack, as in Eq. 8; Ea,c be a set of controllable events; Ea,o be a set of observable 
events; and Lm(Ha) ⊂ L(Ga) be a marked (non-prefix-closed) specification language. Find 
a maximal controllable and observable sublanguage of Lm(Ha) with respect to L(Ga) , Ea,c, 
and Ea,o, if a non-empty one exists.

The following theorem states that a non-empty output of ASSP will be the controlled 
behaviour under a successful For-all attack, highlighting our main results in this paper.

Theorem 1 Let K be a solution of ASSP. Then there exists a For-all attack-supervisor 
with respect to Ga and K. Conversely, if ASSP has no non-empty solution, then there does 
not exist a For-all attack-supervisor for Lspeca = Lm(Ha) , with the given controllable and 
observable event sets for the attacker.

Proof Since K is a controllable and observable sublanguage of Lm(Ha) ⊂ L(Ga) , from the 
“controllability and observability theorem” (Cassandras and Lafortune 2021, p. 197), there 
exists a supervisor SP such that Lm(SP∕Ga) = K and L(SP∕Ga) = K . From Definition 2, 
SP here is a For-all attack-supervisor with respect to Ga and K. If Lm(Ha) is not Lm(G)

-closed, we consider SP to be a marking supervisor, as mentioned in Section 2. Conversely, 
if the empty set is the only solution to ASSP, then there is no For-all attacker: this is 
because there is no non-empty language satisfying conditions 1 and 2 in Definition 2.

The realization (using standard SCT terminology) of the corresponding (nonblocking) 
supervisor will encode the control actions of the attacker. By taking the parallel composi-
tion of the supervisor’s realization with the plant, we obtain an automaton that is language 
equivalent (generated and marked) to the plant under supervision. Namely, letting Ra be the 
realization of SP, it holds that Ra ∥ Ga is language equivalent to the controlled plant SP/Ga; 
see (Cassandras and Lafortune 2021; Wonham and Cai 2019). Ra therefore corresponds to 
a TM-attacker as defined in Von Hippel et al. (2020a). In ASSP, we require maximalty of 
the controllable and observable sublanguage, since this problem is known to be solvable 
(Yin and Lafortune 2015).

In the PITM attack model, the assumption of Ea,c ⊆ Ea,o usually holds. In fact, in all of 
the scenarios considered in Sections 5 and 6, the condition Ea,c ⊆ Ea,o will hold. In this 
important special case, the supremal controllable and observable sublanguage of Lm(Ha) 
with respect to L(Ga) , Ea,c, and Ea,o exists and is equal to the supremal controllable and 
normal sublanguage of Lm(Ha) , denoted by Lm(Ha)

↑CN , with respect to L(Ga) , Ea,c, and 
Ea,o. If it is empty, then no For-all attack exists for the given safety or nonblockingness 
property.

If Lm(Ha)
↑CN ≠ ∅ , then this language represents the largest attacked behaviour which 

is possible in the context of a For-all attack against the safety or nonblockingness prop-
erty. Any marked string in that language provides an example of a successful attack, which 
is feasible in Ga and steers Gnm or Gsm to its marked (illegal) state. Let HCN

a
 be the trim 

automaton output by the algorithm for the supremal controllable and normal sublanguage, 
namely

and

(22)Lm(H
CN
a

) = Lm(Ha)
↑CN
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From the controllability and observability theorem of SCT, there exists a partial-obser-
vation nonblocking supervisor SP such that

SP corresponds to a For-all attack-supervisor since every string in the controlled 
behaviour, SP/Ga, can be extended to a marked string, by nonblockingness of SP. In other 
words, it is always eventually possible for the system under attack by SP to violate the given 
property.

In the above formulation, Lm(Ha) may not be Lm(Ga)-closed, since it is possible that Ga 
= Gother,a and all the states in Ga are marked. Therefore, according to the use of Gsm and 
Gnm, whenever necessary we define SP as a marking supervisor by following (5), namely

As a last step, we need to build a realization of SP as an automaton that: (i) only changes 
its state upon the occurrence of observable events, since HCN

a
 contains transitions with 

unobservable events; and (ii) whose active event set at each state of the realization is equal 
to the events enabled by the supervisor (attacker) at that state. Noting that marking of states 
may be relevant in the case of a marking supervisor, the standard process for automaton 
realization of a partial-observation supervisor (see Section 3.7.2 in Cassandras and Lafor-
tune (2021)) can be followed. From Eqs. 24 and 25, we build an automaton realization of 
SP using HCN

a
 , where SP is such that

and

First, we build the observer of HCN
a

 , Obs(HCN
a

) , with respect to Ea,o, using the 
standard process of observer construction (Cassandras and Lafortune 2021). Next, 
we add self loops for all events in Ea,c ∩ Ea,uo that need to be enabled at each 
state of Obs(HCN

a
) , obtained by examining the corresponding states of HCN

a
 . The 

attack strategy of the successful For-all attacker is encoded in this realization, as 
desired.

Based on the above discussion, we introduce Algorithm 3 to synthesize For-all 
attacks with respect to the given Gnom, Ga and Gm (either a safety or nonblockingness 
monitor). We also state in Proposition 3 that Algorithm 3 returns the realization of 
a For-all attack-supervisor, if it exists, which encodes the attack strategy in order 
for the attacker to lead the plant to a violation of the given safety/nonblockingness 
monitor.

Proposition 3 Suppose that Ha on line 2 or line 4 in Algorithm  3 is non-empty, i.e., 
Algorithm 1 or Algorithm 2 returns a non-empty solution. If ASSP (Problem 1) is solvable, 
then Algorithm 3 returns the realization of a For-all attack-supervisor.

(23)L(HCN
a

) = Lm(Ha)
↑CN

(24)L(SP∕Ga) = Lm(Ha)
↑CN = L(HCN

a
)

(25)Lm(SP∕Ga) ∶= L(SP∕Ga) ∩ Lm(H
CN
a

) = Lm(Ha)
↑CN

(26)Lm(SP∕Ga) = Lm(Ha)
↑CN

(27)L(SP∕Ga) = Lm(Ha)
↑CN
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Proof Since Ea,c ⊆ Ea,o , if there exists a solution of ASSP, then the supremal controllable and 
observable sublanguage of Lm(Ha) exists and is equal to Lm(Ha)

↑CN , which is a solution of 
ASSP. Thus from the proof of Theorem 1, a supervisor SP such that Lm(SP∕Ga) = Lm(Ha)

↑CN 
and L(SP∕Ga) = Lm(Ha)

↑CN  is a For-all attack-supervisor. Therefore, if ASSP is solvable, 
then Algorithm 3 returns the realization of a For-all attack-supervisor.

As long as Algorithm 3 returns a non-empty automaton, from Proposition 3, the above 
methodology results in a closed-loop system that produces For-all attacks, in the presence 
of the attacker. Since HCN

a
 in Algorithm 3 is a trim automaton, we know that at any state in 

HCN
a

 , it is possible to reach a marked state, resulting in a violation of the monitor. There-
fore, it is always possible for the attacker to eventually win.
Remark 2 When Ha output by Algorithm 1 or Algorithm 2 is not empty (i.e., when 
it has at least one marked state) but there is no For-all attack-supervisor (i.e., Algo-
rithm  3 returns the empty solution), then we can conclude that there exists at least 
one There-exisTs attack-supervisor, according to Definition 3. For instance, one can 
take the supervisor Sall that always enables all events. Then L(Sall∕Ga) = L(Ga) and 
L(Ga) ∩ Lm(Ha) = Lm(Ha) by construction of Ha. Hence, this attack-supervisor can 
reach any of the marked states in Ha where it “wins”, but the closed-loop system will 
be blocking. Techniques in SCT for synthesizing blocking supervisors, as described 
in Section  3.5.5 of (Cassandras and Lafortune 2021) for instance, can be employed 
to guide the design of There-exisTs attack-supervisors when no For-all attack-super-
visor exists. Further investigation of There-exisTs attack-supervisors is beyond the 
scope of this paper.

Algorithm 3  For-all attack synthesis.
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5  ABP Case study

Our first case study for synthesis of For-all attacks is for the Alternating Bit Protocol 
(ABP), as studied and modelled in Alur and Tripakis (2017). The models of ABP compo-
nents we use in this section are described in Example 1.

5.1  Safety property models

As introduced in Section 4.1, safety properties are represented by safety monitor automata 
which define what states in the system must not be reached, i.e., define illegal states. (Alur 
and Tripakis 2017) provides two safety monitor automata, G1

sm
 and G2

sm
 , capturing the vio-

lation of safety properties for ABP, depicted in Fig. 6. The marked state q2 in G1
sm

 and G2
sm

 
indicates the illegal state, namely, the safety property is violated if the monitor reaches this 
state from the initial state. G1

sm
 expresses that:

• deliver should happen after send, meaning that deliver of the ABP receiver and the 
Receiving client should not happen before the Sending client tells the ABP sender to 
send a bit to the forward channel.

• After send happens, the next send should not occur before deliver occurs, meaning that 
the Sending client should wait for the acknowledgement signal from the ABP receiver.

On the other hand, G2
sm

 expresses that:

• done should happen after deliver, meaning that done of the ABP sender and the Send-
ing client should not happen before the ABP receiver receives the signal and sends the 
acknowledgement to the ABP sender.

• After deliver happens, the next deliver should not occur before done occurs, meaning 
that deliver cannot happen before the Sending client tells the ABP sender to send the 
next signal to the forward channel.

Since the safety monitors are provided as dedicated automata, G1
sm

 and G2
sm

 , Gother in Algo-
rithm 1 is equal to Gnom. In our ABP system model, Hnom on line 10 in Algorithm 1 has no 
marked states, thus we state that our ABP model is correct in terms of the safety properties. 
Namely, the nominal system (without attacker) does not violate the given safety properties.

5.2  Nonblockingness property models

The nonblockingness monitor in Fig. 7, Gnm, captures a violation of the nonblocking-
ness property that the entire system should not get stuck, and should not keep invoking 
send. Namely, the first send should eventually be followed by a deliver. Gnm in Fig. 7 is 
a simplified version of a monitor provided by (Alur and Tripakis 2017) so that our non-
blockingness monitor Gnm captures that the first transmission is never completed, which 
is adequate for our case study.
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5.3  Attack model

As we consider the system architecture in Fig. 2b for ABP, the attacker infiltrates the for-
ward and/or backward channels. To follow Algorithms 1 and 2, we first construct a modified 
model of the plant Ga in Eq. 8 under attack. Since the channels of ABP are under attack, we 
enhance GFC and GBC to those under attack, GFC,a and GBC,a, by adding new transitions to 
represent capabilities of the attacker. Note that if we keep either of the channels nominal, 
then GFC,a = GFC or GBC,a = GBC accordingly. Therefore, GC,a = GFC,a ∥ GBC,a.

The PITM attacker is represented by a modified forward or backward channel that 
can send the recipient a different packet from the incoming packet. For example, if the 
attacker has infiltrated the forward channel, then the attacker can send either p′

0
 or p′

1
 to 

the ABP receiver regardless of which p0 or p1 occurs. Figure 8 shows the attacked for-
ward and backward channels. Red transitions are added to the original channel models 
in Fig.  4c and d. These new transitions enable the attacker to send whichever packet 
they want. To construct Ga, we model GFC,a and GBC,a as observer automata of Gnd

FC,a
 and 

Gnd
BC,a

 , as was done for Gnom. Figure 9 depicts GFC,a and GBC,a, representing new transi-
tions compared to Fig. 5 as red transitions.

As discussed in Section 3.1, we suppose that the attacker cannot control and observe 
events outside the channels. Therefore, the event set Ea is partitioned as follows:

• Controllable events: Ea,c = {p�
0
, p�

1
, a�

0
, a�

1
}

• Uncontrollable events: Ea,uc = {send, done, timeout, deliver, p0, p1, a0, a1}
• Observable events: Ea,o = {p0, p1, p

�
0
, p�

1
, a0, a1, a

�
0
, a�

1
}  

• Unobservable events: Ea,uo = {send, done, timeout, deliver}.

We consider that in our attack model, the attacker controls the output packets from the 
channels so that each safety or nonblockingness monitor in Sections 5.1 and 5.2 reaches 
its marked state, if possible.

5.4  Examination of the PITM attack for ABP

In this section, we examine the PITM attack for the above safety and nonblockingness 
properties of ABP according to the following steps:

1. Construct the plant under attack Ga as the parallel composition of the component models 
of ABP under attack, namely

where GC,a = GFC,a ∥ GBC,a and Ge = GSC ∥ GRC ∥ GT.
2. Using Algorithm 3, compute the realization of a For-all attack-supervisor with respect 

to Gnom, Ga and the safety/nonblockingness monitor for ABP.

For illustration purposes, if Algorithm 3 returns the realization of an attack-supervisor, we 
pick one example string from the initial state to one marked state in Lm(Ha)

↑CN , which rep-
resents one system behaviour under attack that reaches a marked state in the monitor.

Ga varies depending on GC,a, namely which channel is under the PITM attack, so we 
consider the following three cases in each setup:

(28)Ga = GS ∥ GR ∥ GC,a ∥ Ge
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1. The forward channel is under the PITM attack (i.e. GBC,a = GBC):

2. The backward channel is under the PITM attack (i.e. GFC,a = GFC):

3. Both channels are under the PITM attack:

For clarity of presentation, we henceforth focus on the use of the safety monitor 1 and Ga in Eq. 29 
in which the forward channel is under attack, as presented in Example 1. In other words, we con-
sider Ha as the parallel composition of Ga in Eq. 29 and the safety monitor 1 G1

sm
 . The other cases of 

Eqs. 30 and 31 and the safety monitor 2 can be examined using the same procedure.

5.4.1  Attack against safety properties
Setup 1 Consider the PITM channels in Fig. 8 which represent a powerful attacker that can send 
packets to the recipient with whichever bit 0 or 1, regardless of the incoming packets.

Following our procedure, we found that Ha has 168 marked states out of 265 states and 
HCN

a
 is non-empty. Here, Lm(H

CN
a

) = Lm(Ha) and L(HCN
a

) = L(Ga) , so Ha is already control-
lable and normal with respect to Ga, thus the attacker issues no disablement actions. Let us 
pick the example string send.p0.p′0.deliver.a0.p

′
1
.deliver , which means that the attacker sends 

the correct packet with bit 0 first, and afterwards sends a fake packet with bit 1 to the ABP 
receiver when it observes a0. In other words, the attacker inserts q′

1
 soon after it observes a0. 

Consequently, G1
sm

 captures the violation by reaching q2 with send.deliver.deliver.

Setup 2 Let us represent a less-powerful attacker by removing additional transitions from 
the PITM channels in Fig. 8. First, we remove all red transitions except p′

1
 from f1 to f0 in 

Fig. 8a, so that the attacker can send packets with bit 1 at the particular timing. Let Gnd
FC,wa

 
be the less powerful forward PITM channel derived from Gnd

FC,a
 . Figure 10 shows Gnd

FC,wa
 

and GFC,wa = Obs(Gnd
FC,wa

) . The red transitions are new ones compared to Gnd
FC

 and GFC.
Next, we compute Ga, Ha, and HCN

a
 by following the steps at the beginning of Sec-

tion  5.4. Ga = G�
S
∥ GR ∥ GFC,wa ∥ GBC ∥ G�

e
 has 248 states, and Ha = Ga ∥ G1

sm
 has 

370 states and 228 marked states. HCN
a

 is non-empty and consists of 1099 states and 771 
marked states. In every case, L(HCN

a
) = L(Ga) , so no disabling happens. As the example 

string in HCN
a

 , we pick send.p0.p′0.deliver.a0.p
′
1
.deliver which is the same as that in Setup 

1, but HCN
a

 here is not equivalent. Let (HCN
a

)2 be HCN
a

 here and (HCN
a

)1 be HCN
a

 in Setup 1. 
Since (HCN

a
)
comp

2
× (HCN

a
)1 is non-empty, we conclude that (HCN

a
)2 lacks some attack strate-

gies, but one additional p′
1
 in Gnd

FC,wa
 is enough to cause the violation of the safety property.

Setup 3 Let us make the attacker much less powerful than in Setup 2, by building a new automa-
ton of the infiltrated forward channel and changing the sets of controllable and observable events.

Consider the new automaton of the infiltrated forward channel, depicted in Fig.  11. 
We denote this new automaton by Goneshot,nd

FC,a
 and its observer by Goneshot

FC,a
 , namely 

Goneshot
FC,a

= Obs(Goneshot,nd

FC,a
) . This forward channel means that the attacker can send a fake 

packet with bit 1 to the ABP receiver only once (one-shot attacker). After the fake packet, 

(29)Ga = GS ∥ GR ∥ GFC,a ∥ GBC ∥ Ge

(30)Ga = GS ∥ GR ∥ GFC ∥ GBC,a ∥ Ge

(31)Ga = GS ∥ GR ∥ GFC,a ∥ GBC,a ∥ Ge
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the channel’s behaviour will get back to normal. Moreover, we consider the following con-
trollable and observable event sets:

• Controllable events: Ea,c = {p�
1
}

• Observable events: Ea,o = {p0, p1, p
�
0
, p�

1
, a0, a1, a

�
0
, a�

1
}

meaning that the attacker can observe events in both of the channels, but can only 
control p′

1
 in the (infiltrated) forward channel. By following the procedure as we have 

done, Ga in Eq. 29, where GFC,a = Goneshot
FC,a

 , has 334 states. Also, Ha = Ga ∥ Gsm1 has 190 
marked states out of 431 states, and HCN

a
 is non-empty. Moreover, Lm(H

CN
a

) ≠ Lm(Ha) 
and L(HCN

a
) ≠ L(Ga) , thus the attacker issues event disablement actions during its attack 

on the system. For illustration, we pick the following example string in HCN
a

:

By observation, the second a′
1
  is of nonadversarial error packets which are sent mis-

takenly, and the second  p′
1
 is inserted by the attacker. Note that the attacker can observe 

p′
1
 and a′

1
 here. Accordingly, this string means that the attacker can lead the system to the 

undesired state by sending the fake packet p′
1
 only once after the observation of one error 

packet. Moreover, the attacker disables p′
1
 several times before sending the fake p′

1
 . There-

fore, in this case, the violation is caused “by chance”, since the attacker exploits errors, 
but that violation is enabled by the attacker’s intervention. It is worth mentioning that if 
we remove the events in the backward channel (i.e., a0, a1, a′0 and a′

1
 ) from Ea,o, then HCN

a
 

is empty. This means that the attacker needs to observe the behaviour of the backward 
channel so as to exploit nonadversarial errors to attack. Moreover, if we set Ea,c = ∅ and 
Ea,o = {p0, p1, p

�
0
, p�

1
, a0, a1, a

�
0
, a�

1
} , then HCN

a
 is empty again, meaning that the attacker 

needs to have the controllability of p′
1
 to attack successfully.

5.4.2  Attack against nonblockingness properties

Setup 4 Consider that the attacker wants the system to violate the nonblockingness prop-
erty represented by the nonblockingness monitor Gnm in Fig. 7. Let us examine the sys-
tem under attack where the forward channels are infiltrated by the attacker, namely Ga in 
Eq. 29. Note that the forward PITM channel here is that in Fig. 8a which is quite powerful. 
Since Gnm is given as a dedicated automaton, we build Ha = Trim(Gother,a ∥ Gnm) where 
Gother,a = Ga.

In this case, Ga consists of 174 states, and Ha comprises 14 states and 13 marked states. 
HCN

a
 is non-empty and consists of 10 states and 9 marked states. As the example string 

in HCN
a

 , we pick string send.p0.p1′.a1.timeout which means that the attacker sends a fake 
packet with bit 1 to the ABP receiver after it observes p0, and expects the system to suffer 
from timeout. Moreover, from HCN

a
 , the attacker-supervisor disables p′

0
 to prevent deliver, 

resulting in L(HCN
a

) ≠ L(Ga) . Therefore, there exist no deliver transitions in HCN
a

 . This 
result shows that the attacker successfully leads the system to violate the nonblockingness 
property that send should eventually be followed by deliver.

send.p0.p
′
0
.deliver.a0.a

′
0
.done.send.p1.p

′
1
.deliver.a1.a

′
1
.done.send.p0.p

′
0
.deliver.a0.a

′
1
.p′

1
.deliver.a1
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6  TCP case study

Our second case study concerns one of the major protocols in the Internet, the Transmis-
sion Control Protocol (TCP) (Postel 1981). TCP is widely used to communicate through 
unreliable paths. We consider a communication architecture as in Fig. 2a. Each peer sends 
and receives packets to and from channels, and the network interconnects channels to relay 
the incoming packets to their destinations. As in Von Hippel et al. (2020a), we consider the 
connection establishment phase of TCP, based on three-way handshake, and do not model 
the congestion control part of that protocol.

6.1  Component models of TCP

Let Gnom in Eq. 6 be the entire connection establishment part of TCP without an attacker. 
Based on the architecture of TCP introduced in Von Hippel et  al. (2020a), we consider 
Gnom as the parallel composition of the following components:

• GPA = (XPA, EPA, fPA, xPA,0, XPA,m): Peer A
• GPB = (XPB, EPB, fPB, xPB,0, XPB,m): Peer B
• GC1 = (XC1, EC1, fC1, xC1,0, XC1,m): Channel 1
• GC2 = (XC2, EC2, fC2, xC2,0, XC2,m): Channel 2
• GC3 = (XC3, EC3, fC3, xC3,0, XC3,m): Channel 3
• GC4 = (XC4, EC4, fC4, xC4,0, XC4,m): Channel 4
• GN = (XN, EN, fN, xN,0, XN,m): Network

namely

Hence, GC = GC1 ∥ GC2 ∥ GC3 ∥ GC4 and Ge = GN, so Eq. 32 reduces to Eq. 7.
fvThe event sets are defined as follows:

(32)Gnom = GPA ∥ GPB ∥ GC1 ∥ GC2 ∥ GC3 ∥ GC4 ∥ GN

(33)
EPA = {listenA, timeoutA, deleteTCBA, SYNAC1, SYNC2A,

ACKAC1,ACKC2A,FINAC1,FINC2A, SYN_ACKAC1, SYN_ACKC2A}

(34)
EPB = {listenB, timeoutB, deleteTCBB, SYNBC3, SYNC4B,

ACKBC3,ACKC4B,FINBC3,FINC4B, SYN_ACKBC3, SYN_ACKC4B}

(35)
EC1 = {SYNAC1, SYNC1N ,ACKAC1,ACKC1N ,FINAC1,FINC1N , SYN_ACKAC1, SYN_ACKC1N}

(36)
EC2 = {SYNNC2, SYNC2A,ACKNC2,ACKC2A,FINNC2,FINC2A, SYN_ACKNC2, SYN_ACKC2A}

(37)
EC3 = {SYNBC3, SYNC3N ,ACKBC3,ACKC3N ,FINBC3,FINC3N , SYN_ACKBC3, SYN_ACKC3N}

(38)
EC4 = {SYNNC4, SYNC4B,ACKNC4,ACKC4B,FINNC4,FINC4B, SYN_ACKNC4, SYN_ACKC4B}
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Hence

The subscripts in the event names indicate the directions of packets. For example, 
“AC1” means packets from Peer A to Channel 1. Note that the subscripts “A” and “B” are 
added to “listen” and “deleteTCB” to make these events private.

Figures 12, 13, 14, 15, and 16 depict the models of the above TCP components. GPA and 
GPB illustrate the sequence of three-way handshake and cleanup. We mark the states “closed”, 
“listen”, and “established” in the automata of the peers, because the peer should not stay in 
other states during communication, based on Postel (1981). We also mark all states in the 
automata of the channels and network, to prevent these automata from marking the system. 
Namely,

6.2  Safety property models

In Von Hippel et al. (2020a), the safety/liveness property of interest is defined as a threat 
model (TM). TM explains the property using Linear Temporal Logic (LTL) (Baier and 
Katoen 2008). In this paper, we represent the required properties in Von Hippel et  al. 
(2020a) as finite-state automata.

Von Hippel et al. (2020a) provides one threat model, TM1, for one relevant safety prop-
erty of TCP. TM1 defines the safety property that if Peer A is at state “closed”, then Peer 
B should not be at state “established”, because both peers should consecutively reach their 
“established” states after beginning the connection handshake. Let GTM1

sm
 be the safety mon-

itor to capture the violation of TM1. We represent GTM1
sm

 as the parallel composition of the 
automata in Fig. 16 where the marked states are only “closed” in Peer A and “established” 
in Peer B, namely GTM1

sm
= GTM1

PA
∥ GTM1

PB
 , where GTM1

PA
= (XTM1

PA
,ETM1

PA
, f TM1

PA
, xTM1

PA,0
,XTM1

PA,m
) and 

GTM1

PB
= (XTM1

PB
,ETM1

PB
, f TM1

PB
, xTM1

PB,0
,XTM1

PB,m
) . Note that

Hence, the marked states in GTM1
sm

 are illegal states, capturing that Peer A is at “closed” 
and Peer B is at “established” simultaneously.

Since the safety monitor for TM1, GTM1
sm

 , is derived from GPA and GPB, Gother in 
Algorithm  1 is the parallel composition of the automata of the channels and net-
work, namely Gother = GC1 ∥ GC2 ∥ GC3 ∥ GC4 ∥ GN. Let Hnom in Algorithm 1 be a nomi-
nal specification automaton (without attacker) for TM1. In our system model of TCP, 
Hnom = Trim(GTM1

nm
∥ Gother) has no marked states, thus we conclude that our TCP model, 

without attackers, is correct in terms of TM1.

(39)

E
N
={SYN

C1N , SYNC3N , SYNNC2, SYNNC4,

ACK
C1N ,ACKC3N ,ACKNC2,ACKNC4,

FIN
C1N ,FINC3N ,FINNC2,FINNC4,

SYN_ACK
C1N , SYN_ACKC3N , SYN_ACKNC2, SYN_ACKNC4}

(40)Enom = EPA ∪ EPB ∪ EC1 ∪ EC2 ∪ EC3 ∪ EC4 ∪ EN

XC1,m = XC1, XC2,m = XC2, XC3,m = XC3, XC4,m = XC4, XN = XN,m.

XTM1

PA
= XPA, ETM1

PA
= EPA, xTM1

PA,0
= xPA,0, XTM1

PA,m
= {closed} ≠ XPA,m,

XTM1

PB
= XPB, ETM1

PB
= EPB, xTM1

PB,0
= xPB,0, XTM1

PB,m
= {established} ≠ XPB,m
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6.3  Nonblockingness property models

Von Hippel et al. (2020a) also provides two liveness properties denoted as TM2 and TM3. 
TM2 defines the liveness property that Peer 2 should eventually reach the “established” state. 
TM3 requires that both peers should not get stuck except at “closed” state, that is, no dead-
locks except at “closed” state are allowed. Both TM2 and TM3 requires the system to remain 
alive during the communication process. In our case study, we translate TM2 and TM3 into 
“equivalent” nonblockingness properties as expressible representations in the SCT framework, 
thus slightly abusing the notations “TM2” and “TM3” in Von Hippel et al. (2020a).

We construct the nonblockingness monitors of TM2 and TM3, GTM2
nm

 and GTM3
nm

 , by fol-
lowing Section 4.2. In this case, the nonblockingness monitors are not given as dedicated 
automata, thus we construct GTM2

nm
 and GTM3

nm
 based on Gnom and Ga. We discuss the con-

struction of GTM2
nm

 and GTM3
nm

 in Section  6.5, because to build these automata, we rebuild 
Gnom and Ga as new automata according to TM2 and TM3.

6.4  Attack model

In this section, we explain the attack model for TCP. As we consider the system architec-
ture in Fig. 2a for TCP, the attacker infiltrates the network. First, we construct a modified 
model of the plant Ga in Eq. 8 under attack. Since the network of TCP is under attack, we 
enhance GN to that under attack, GN,a = (XN,a,EN,a,fN,a,xN,a,0,XN,a,m), by adding new transi-
tions and events to represent the capabilities of the attacker. Thus,

Figure 14 depicts the PITM attacked model of the network, GN,a, where “ATTK” is the 
set of events of outgoing packets from the network, namely

representing multiple transitions, illustrated as the red transitions, by events in ATTK. 
Hence, the event set of GN,a, EN,a, is as follows:

where EN is in Eq. 40. This allows the attacker to be flexible so that the attacker can send 
any packets and freely choose the destination of packets. As in the discussion in Sec-
tion 3.1 and in the ABP model, we suppose that the attacker cannot control and observe 
events outside the network. Hence, the event set of Ga, Ea, is partitioned for controllability 
and observability of the attacker as follows:

• Controllable events: Ea,c = ATT K in Eq. 42
• Uncontrollable events: Ea,uc = Enom ∖ Ea,c
• Observable events: Ea,o = EN,a in Eq. 43
• Unobservable events: Ea,uo = Enom ∖ Ea,o

In our attack model, the attacker controls the outgoing packets from the network, to lead the 
safety/nonblockingness monitor to reach its marked (illegal) state.

(41)Ga = GPA ∥ GPB ∥ GC1 ∥ GC2 ∥ GC3 ∥ GC4 ∥ GN,a

(42)
ATTK = {SYNNC2,ACKNC2,FINNC2, SYN_ACKNC2, SYNNC4,ACKNC4,FINNC4, SYN_ACKNC4},

(43)E
N, a = ATTK ∪ E

N
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6.5  Examination of the PITM attack for TCP

In this section, we examine whether a For-all attack exists in terms of TM1, TM2, and TM3. 
As in Section 5.4, we try to synthesize a For-all attack by the following procedure:

1. Construct the plant under attack Ga in Eq. 41.
2. Using Algorithm 3, compute the realization of a For-all attack-supervisor with respect 

to Gnom, Ga and the safety/nonblockingness monitor for TCP.

As done in Section 5.4, if Algorithm 3 returns the realization, we pick one example string 
from the initial state to one marked state in Lm(Ha)

↑CN , which represents one system behav-
iour under attack that reaches the marked state in the monitor.

6.5.1  Threat model 1 with channels
Setup 1 Let us consider a powerful attacker represented by GN,a in Fig. 14. By following the 
above procedure, Ga has 118761 states and 6307 marked states, and Ha has 38270 states and 
704 marked states.

Next, we compute HCN
a

 with respect to Ga and Ha by following the procedure for TM1. 
As a result, HCN

a
 is non-empty, having 52783 states and 626 marked states, and Lm(H

CN
a

) 
contains the string

 which steers GTM1
sm

 to its marked states. Therefore, we conclude that there exists a 
For-all attacker SP defined in Eq.  25 with respect to Ga and Ha in this setup. From 
L(Ga) ≠ L(HCN

a
) , the attacker disables some transitions by controllable events in Ga, to 

always eventually win.

6.5.2  Threat model 1 without channels

Setup 2 One may find that in our TCP model, the channels just relay the incoming packets 
to their destinations, without any deletion or manipulation of packets. Since we assume 
ideal channels, we can reduce the communication architecture in Fig. 2a to that without 
channels, namely the architecture in Fig. 3.

Due to the removal of the channels, to assure the synchronization of the peers and net-
work in the parallel composition, we rename the subscripts of the events in EPA in Eq. 33, 
EPB in Eq. 34, EN in Eq. 40, and EN,a in Eq. 43, as follows:

SYNBC3.SYNC3N .SYN_ACKNC4.SYN_ACKC4B.ACKBC3

Fig. 3  Communication overview without channels
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According to this change, the new Gnom and Ga are as follows:

Gnom in Eq. 45 is trim, consisting of 41 states and 5 marked states, and Ga in Eq. 46 
comprises 580 states and 27 marked states, and is not trim. Since we removed the automata 
of the channels from our system model, Gother and Gother,a in Algorithm 1 are equal to GN 
and GN,a, respectively. Even after the removal of the channels, Hnom has no marked states.

Noting that Ea,c ⊆ Ea,o still holds after renaming, let us revisit the procedure at the begin-
ning of Section 6.5 for the construction of Ha and the computation of HCN

a
 with the new Ga. 

In this setup, Ha consists of 547 states and 3 marked states, HCN
a

 with respect to Ga and Ha is 
non-empty with 513 states and 3 marked states. Lm(H

CN
a

) contains the following string:

where SY NNB and ACKNB are fake packets inserted by the attacker, tricking Peer B into 
reaching “established” whereas Peer A does not move out from “closed”. Finally, from 
L(HCN

a
) ≠ L(Ga) and non-trim Ga, the attack-supervisor disables several transitions in Ga.

Setup 3 As we have done in the ABP case study, let us consider a less-powerful attacker than 
the previous setups. First, we change the controllable events for the attacker, Ea,c, as follows:

whereas Ea,o and Ea,uo do not change. Note that Ea,c ⊆ Ea,o still holds. SY NAN in Ea,c means 
that the attacker can discard SYN packets coming from Peer A. Next, we redesign the infil-
trated network by the attacker, GN,a, to represent the reduced capability of the attacker. Fig-
ure 15 indicates the model of an infiltrated network by a less powerful attacker, Gw

N,a
 . The 

red transitions are where the attacker can take action.
From the change of GN,a to Gw

N,a
 , we change Ga to the entire system under the less powerful 

PITM attack, namely Ga = GPA ∥ GPB ∥ Gw
N,a

 , in this setup. As a result, the new Ga is not trim, 
consisting of 48 states, 7 marked states, and 1 deadlock state. Because GTM1

sm
 is not different from 

Setup 2, Gother,a = Gw
N,a

 here. Therefore by following the same procedure as above, Ha comprises 
47 states and 1 marked state, and HCN

a
 with respect to Ga and Ha here is non-empty with 63 states 

and 2 marked states, containing the following string leading GTM1
sm

 to its marked state:

In conclusion, there still exists a For-all attacker with the less-powerful PITM model.
From Gw

N,a
 in Fig.  15, the attacker can send a fake SYN_ACK packet to Peer B only 

when Peer B enters “SYN sent” state, and the attacker must keep Peer A at “closed” state. 
Hence, the attacker must disable SY NAN at “closed” state in GPA shown in Fig. 16 where 

(44)
AC1 → AN, C2A → NA, BC3 → BN, C4B → NB,

C1N → AN, NC2 → NA, C3N → BN, NC4 → NB

(45)Gnom = GPA ∥ GPB ∥ GN

(46)Ga = GPA ∥ GPB ∥ GN,a

(47)SYNBN .SYNNB.ACKBN .ACKNB

(48)Ea,c = {SYNAN , SYN_ACKNB}

(49)Ea,uc = Ea ⧵ Ea,c

(50)SYNBN .SYN_ACKNB.ACKBN
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the subscripts of events are changed as in Eq. 44, and L(HCN
a

) ≠ L(Ga) reflects this disa-
blement action. Therefore, if SY NAN is uncontrollable, then HCN

a
 is empty.

6.5.3  Threat model 2

Consider GPA, GPB, GN, and GN,a in Setup 2. Recall that Threat Model 2 (TM2) requires 
Peer A to reach its “established” state eventually. To design the nonblockingness monitor 
which captures the violation of TM2, we first unmark all states of GPA and mark its “estab-
lished” state. Let GTM2

PA
 be a new automaton derived from GPA in Fig. 16a by this marking 

and renaming as in Eq. 44. In contrast to the construction of safety monitors, GTM2

PA
 captures 

the desired behaviour where Peer A reaches its “established” state eventually. Thus we con-
struct Gnom and Ga as follows:

To prevent it from marking Gnom and Ga, we mark all states in GPB, so the marked states 
of Gnom and Ga are determined by the “established” state in GTM2

PA
.

Setup 4 Let us construct Ha by following Algorithm 2. First of all, Gnom in Eq. 51 is trim, thus 
the system model without attacker is correct in terms of TM2, meaning that Peer A eventually 
reaches its “established” state. So, let us proceed to the next step. From the additional transitions 
of GN,a in Fig. 14, Ga in Eq. 52 is not trim, thus Ga contains several deadlock and/or livelock 
states. In this scenario, we build GTM2

nm
 for TM2 based on Ga and not as a separate automaton. 

In Ga, there are 25 deadlock states. These deadlock states are those the attacker wants Ga to 
reach so that Peer A cannot always reach its “established” state. To design GTM2

nm
 representing 

the violation of TM2, namely reaching the deadlock states, we unmark all states in Ga and then 
mark all the deadlock states. Hence, let GTM2

nm
 be the new automaton built by the marking of 

deadlock states in Ga, so that every string in Lm(G
TM2
nm

) ends with one of the deadlock states in 
Ga. Finally, the specification automaton for the attacker is Ha = Trim(GTM2

nm
).

In this case, Ha consists of 580 states and 25 deadlock states which are determined by 
Ga, and HCN

a
 with respect to Ga and Ha is non-empty, where Lm(H

CN
a

) contains the follow-
ing string:

SY N_ACKNA, FINNA, and SY NNB in Eq. 53 are fake packets inserted by the attacker. This 
string makes Peer A and Peer B stuck at “close wait” state and at “i1” state, respectively. 
Here, L(HCN

a
) = L(Ga) , thus the attacker just inserts fake packets and does not disable any 

controllable events. In conclusion, there exists a For-all attack for TM2 in this setup.

(51)Gnom = GTM2

PA
∥ GPB ∥ GN

(52)Ga = GTM2

PA
∥ GPB ∥ GN,a

(53)SYNAN .SYN_ACKNA.ACKAN .FINNA.SYNBN .SYNNB.ACKAN
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6.5.4  Threat model 3

In this section, we examine whether any For-all attacks against the Threat Model 3 (TM3) 
exist. TM3 captures the following nonblockingness requirement for the system: the peers 
should not suffer from any deadlocks if they leave “closed” state.

Consider GPA, GPB, GN, and GN,a in Setup 2 again. Since TM3 is defined by a nonblocking-
ness property, we design a nonblockingness monitor for TM3 similarly as a monitor for TM2, 
discussed in Section 6.5.3. According to TM3, we first unmark all states and mark “closed” 
state in GPA and GPB. Let GTM3

PA
 and GTM3

PB
 be the new automata derived from GPA and GPB in 

Fig. 16 by this marking and renaming as in Eq. 44, respectively. Since GTM3

PA
 and GTM3

PB
 capture 

the desired behaviour of the system model, we construct Gnom and Ga as follows:

Since all states in GN and GN,a are marked, the marked states in Gnom and Ga are deter-
mined by “closed” state of GTM3

PA
 and GTM3

PB
.

Setup 5 We construct Ha using Algorithm 2. First, Gnom in Eq. 54 consisting of 41 states and 
1 marked state is trim, thus our system model without attacker is correct in terms of TM3. 
This means that neither Peer A nor Peer B suffers from deadlocks and/or livelocks when they 
are not at “closed” state. In the next step, due to GN,a, Ga in Eq. 55 comprising 580 states and 
3 marked states is not trim, thus Ga contains deadlock and/or livelock states. In particular, Ga 
has 25 deadlock states and no livelock states. Since the nonblockingness monitor for TM3, 
GTM3

nm
 , is not given as a dedicated automaton, GTM3

nm
 is derived from Ga by unmarking all states 

and marking the 25 deadlock states in Ga. Finally, we have Ha = Trim(GTM3
nm

).
As a result, Ha in this setup consists of 580 states and 25 marked (deadlock in Ga) states, 

and HCN
a

 with respect to Ga and Ha is non-empty with 660 states and 25 marked states. To 
see a behaviour of the system under the attack, we pick the following example string in 
Lm(H

CN
a

):

where the fifth and seventh ACKNA are fake packets sent from the attacker to Peer A. This 
string makes Peer A and Peer B stuck at “FIN wait 2” and “SYN sent”, respectively. Here, 
L(HCN

a
) = L(Ga) , thus the attacker inserts fake packets and does not disable any controlla-

ble events. To sum up, there exists a For-all attack for TM3 in this setup.

7  Conclusion

We investigated the synthesis problem of For-all attacks under which the attacker 
can always eventually win, in the specific context of person-in-the-middle attacks on 
two well-known communication protocols, ABP and TCP, where in each case a sender 
and a receiver communicate over channels and a network. We formulated this problem 
in the framework of discrete event systems in order to leverage its supervisory control 

(54)Gnom = GTM3

PA
∥ GTM3

PB
∥ GN

(55)Ga = GTM3

PA
∥ GTM3

PB
∥ GN,a

(56)listenA.SYNBN .SYNNA.SYN_ACKAN .ACKNA.FINAN .ACKNA
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theory for attacker synthesis. We showed that the synthesis of a For-all attack can 
be formulated as the problem of finding a maximal controllable and observable sub-
language of the specification language for the attacker with respect to the given plant 
and the capabilities of the attacker in terms of controllable and observable events. The 
plant is the combination of the models of the sender, receiver, channels, and network. 
The specification language for the attacker is derived from a suitable specification 
automaton; we described in Sections 4.1 and 4.2 how to construct that automaton for 
various examples of safety properties and nonblockingness properties, respectively. 
The goal of the attacker is to force a violation of the given safety or nonblockingness 
property of the communication protocol. We formally derived in Sections  5 and  6, 
when they existed, several For-all person-in-the-middle attacks for ABP and TCP 
under different scenarios of attacker capabilities and safety or nonblockingness prop-
erty to be violated. We are not aware of any prior work where formal methods are 
used to synthesize attacks on ABP. For the case of TCP, our results extend the results 
in Von Hippel et  al. (2020a), where the authors considered the synthesis of There-
exisTs attacks under which the attacker may not always win, but will sometimes win. 
In total, we presented four setups for ABP and five setups for TCP, where the plant, 
specification, and event partitions vary. Further setups are discussed in the expanded 
version of this paper available at Matsui and Lafortune (2022).

In the PITM attack setups we considered, it was reasonable to assume that the 
attacker observes all the events it controls. Hence, the synthesis of a For-all attack 
reduced to the computation of the supremal controllable and normal sublanguage in 
supervisory control theory of discrete event systems. This means that the methodology 
that we employed for ABP and TCP could be applied to other protocols and other types 
of attacks that can be modelled as additional transitions in the transition structure of 
the protocol. This shows that formulating attacker synthesis as a supervisory control 
problem is a powerful approach in the study of vulnerabilities of distributed protocols. 
In the future, it would be of interest to investigate how to make distributed protocols 
more resilient to both There-exisTs and For-all attacks.

602 Discrete Event Dynamic Systems (2022) 32:573–610



1 3

Appendix : A: Figures of ABP

Fig. 4  Models of ABP components adopted from Alur and Tripakis (2017)

Fig. 5  Observer automata of channels
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Fig. 6  Safety monitors from Alur and Tripakis (2017)

Fig. 7  Nonblockingness monitor Gnm inspired by Alur and Tripakis (2017); the first send should eventually 
be followed by a deliver 

Fig. 8  Channel models under the MITM attack
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Fig. 9  Observer automata of the MITM channels

Fig. 10  Lesspowerful forward MITM channel

Fig. 11  One-shot forward MITM channel
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Appendix : B: Figures of TCP

Fig. 12  Channel models of TCP

Fig. 13  Network model of TCP
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Fig. 14  Network model under the MITM attack GN,a

Fig. 15  Network model under the lesspowerful MITM attack Gw

N,a
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Fig. 16  Peers with timeout
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