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Abstract
Our work is integrated into a global methodology to design synchronously executed embed-
ded critical systems. It is used for the development of medical devices implanted into human
body to perform functional electrical stimulation solutions (used in pacemakers, deep brain
stimulation...). These systems are of course critical and real time, and the reliability of their
behaviors must be guaranteed. These medical devices are implemented into a programmable
logic circuit in a synchronous way, which allows efficient implementation (space, consump-
tion and actual parallelism of tasks execution). This paper presents a solution that helps to
prove that the behavior of the implemented system respects a set of properties, using Petri
nets for modeling and analysis purposes. But one problem in formal methods is that the
hardware target and the implementation strategy can have an influence on the execution of
the system, but is usually not considered in the modeling and verification processes. Resolv-
ing this issue is the goal of this article. Our work has two main results: an operational one,
and a theoretical one. First, we can now design critical controllers with hard safety or real
time constraints, being sure the behavior is still guaranteed during the execution. Second,
this work broadens the scope of expressivity and analyzability of Petri nets extensions. Until
then, none managed in the same formalism, both for modeling and analysis, all the charac-
teristics we have considered (weights on arcs, specific test and inhibitor arcs, interpretation,
and time intervals, including the management of effective conflicts and the blocking of
transitions).
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1 Introduction

1.1 Contexte

In the context of critical embedded systems, such as avionics, automotive and medical, it
is imperative to prove that requirements are met, whether they are regulatory or normative
requirements, or performance ones. To achieve this, design and development methodologies
are rigorous and testing is as thorough as possible. In most cases, these critical systems
must be certified before industrial and commercial operation. Within the framework of this
certification, the potential contributions of formal methods are studied, not as a substitute
for testing at this stage, but as a complement. This is the case, for example, with RTCA
DO-333, “Formal Methods Supplement to DO-178C and DO-278A”. The use of formal
methods includes, for example, the use of theorem proving, model checking, or abstract
interpretation.

Our work is part of such an approach, i.e. to contribute to the proof of satisfaction of
requirements, more particularly those related to performance and reliability. In other words,
we are interested in building a tool-based methodology that helps to prove that the behav-
ior of the implemented system respects a set of formally validated properties. This work
therefore falls within the scope of the HILECOP (High-Level Hardware Component Pro-
gramming) methodology, which was initially designed to assist in the development of safe
active implantable medical devices (Andreu et al. 2009; Leroux et al. 2015). These devices
are implanted into human body to perform FES (Functional Electrical Stimulation) solu-
tions which are being successfully used in an increasing number of applications, including
pacemakers, deep brain stimulation, pain control and hearing restoration.

Therefore, the designed systems are submitted to usual constraints like dimensions and
energy consumption, as well as more specific ones as electrical safety, intrinsic reliability,
without omitting the need to deal with architectural and programming complexity, or com-
munication needs. Mostly, these systems are critical and real time as the reliability of their
behaviors must be guaranteed, including in a temporal point of view: the stimulation must
be turned on and off at very specific times. Also, beyond the medical field, this methodology
could be useful for any system with similar constraints: avionics, automotive, spatial, etc.

The HILECOP methodology deals with the complexity of digital systems thanks to a
component modular approach as well as the use of a formal language (Petri nets) for model-
ing the behavior and composing the components. Formal languages offer the possibility of
using formal validation methods to deal with the critical constraints of the targeted systems.
Formal methods are complementary to more usual methods (as test and simulation), pro-
viding more complete validation results at an earlier step of the design process. Finally, the
embedded and real time constraints are managed by selecting a specific execution target:
FPGA (Field-Programmable Gate Arrays) or ASIC (Application Specific Integrated Cir-
cuit), which allows efficient implementation in terms of space and consumption, and time
efficiency thanks to the actual parallelism of tasks execution.

The very critical aspect of our system incites us to use formal methods, especially model
checking. Model checking (Baier and Katoen 2008) is based on the exhaustive enumera-
tion of all the reachable states of a model of the system. It is then possible to verify specific
properties (safety, liveness, ..) to validate the system behavior. But the usual issue of the
model checking approach is that properties are verified on a model, not on the system itself.
The programming step can introduce errors. This problem is managed in the HILECOP
methodology, as the programming step is done with an automatic generation of the VHDL
code corresponding to the model (Andreu et al. 2008; Leroux et al. 2015). Another problem
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resides in the hardware target, which can has an influence on the execution of the system as
it is usually not considered at the modeling level. To be consistent, the model and the valida-
tion method must finely consider the implementation constraints imposed by the hardware
target and the implementation strategy.

Thus, taking into account implementation and execution constraints into the modeling
and validation steps is the goal of this article. We show here that our methodology allows
to formally verify some properties on the system model, which remain guaranteed at the
execution step. The next section presents the implementation problematic and choices we
have done for modeling and analysis purpose.

1.2 Implementation and execution issues

1.2.1 Interpretation problematic

In the HILECOP methodology, Petri nets (PN) are used for the design of industrial sys-
tems. The designed model has a real signification: it is linked with the real world as it will
be implemented on industrial products. For example for the design of an implanted medi-
cal controller for FES (Andreu et al. 2009), the PN places will represent the states of the
controller, and are directly associated to actions executed by the neural stimulator. Transi-
tions between these states are linked with events or variables of the system environment (for
example sensor values or external commands). Then the behavior of the system, and there-
fore the evolution of the model, depend on the environment events and the variable values.
This specific use of PN can not be ignored in a global methodology where the correct behav-
ior of the implemented system must be guaranteed by the analysis of its designed model.
Thus, we have to integrate the interpretation characteristics into the formal definition and
semantics of our modeling formalism.

In our context, interpretation is composed of conditions, continuous actions and impul-
sive actions, which handle signals and variables coming from the system environment.
Conditions allow to restrict the evolution of the PN model with signals or variables. In the
form of a logical expression, a condition is associated with a transition, and then this tran-
sition is fired only if the associated condition is true. This introduces a particularity into the
semantics of the Petri nets: to be fired, a transition must not only be enabled by the marking
of its input places, but it must also take into account its associated condition. Actions allow

Fig. 1 Incorrect behavior because of interpretation in asynchronous execution

29Discrete Event Dynamic Systems (2022) 32:27–64



to handle signals or variables. Continuous actions are associated to places and are executed
as long as one of its associated places is marked. Impulsive actions are associated to transi-
tions, and are executed once when one of their associated transitions is fired. Incrementing a
counter is a typical example of such impulsive actions. An example of such a PN, named an
Interpreted PN (IPN), is given in Fig. 1a, with a continuous action A0 associated to the place
p0, an impulsive action F0 associated to the transition t0 which set the internal variables a

to 0 and b to 1, and a condition C1 = a.b associated to the transition t1.

1.2.2 Synchronous implementation problematic

In programmable logic devices (such as FPGA) context, the asynchronous implementation
of PN is well-known (for example in Uzam et al. (2009) and Wegrzyn et al. (2014). But
the addition of interpretation makes it difficult as VHDL is not executed sequentially but
combinatorially. Indeed, impulsive actions could handle internal variables and then modify
the condition values. Yet it is necessary to guarantee that the signals are stable to have a
deterministic behavior, but there is no (automatic) way to exactly know when the impulsive
actions are finished (Leroux et al. 2015).

For example for the interpreted PN of Fig. 1a, the correct behavior should be the one of
Fig. 1b: t0 is fired, which starts the impulsive action F0; at the end of F0, a is set to 0; in
the same time the markings of the places p0 and p1 are evolving; then, when t1 becomes
enabled (i.e. when p1 is marked), the evaluation of the condition C1 is done: C1 is now
f alse, preventing the firing of t1. But if the execution time of F0 is longer than the evolution
of the marking, the decision of firing t1 could be taken before the stabilization of the C1
value, leading to an unexpected behavior (Fig. 1c).

One solution is to implement the interpreted PN in a synchronous way. The principle is
that the evolution of the PN is driven by a clock. In our approach, the two clock edges are
used, and the following steps concerning the evolution of the model states are repeated at
each clock cycle (Fig. 2):

– On the falling edge of the clock : evaluation, from the current state, of which tran-
sitions have to be fired (i.e. they are enabled because of the marking, and firable
depending on their condition values).

– On the rising edge of the clock : update of the marking depending on the previously
fired transitions.

– Periods and are necessary for the transmission and the stabilization of the signals
and the variable values.

Fig. 2 Principle of the synchronous implementation of IPN
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Fig. 3 Simultaneous firing of transitions in synchronous execution

Continuous and impulsive actions are performed on stable states:

– Continuous actions are activated on the falling edge of the clock , once the marking
of the places is stable, and are maintained as long as their associated places are marked.

– Impulsive actions are triggered on the rising edge following the firing of the transi-
tions they are associated to, and must end before the next falling edge (their maximum
execution time is the half-period ).

The synchronous implementation in such a parallel execution target (FPGA or ASIC)
specifically manages the parallelism: all the transitions firable at the same clock tick will be
fired simultaneously, as shown Fig. 3: if t0 and t1 are firable at the initial state (i.e. C0 and
C1 are true), then they are both fired on the first falling edge.

But this behavior could be problematic in a Petri net, in case of conflicts. Informally
speaking, a conflict is a situation in which a token could be used by several transitions at
the same time. In synchronous execution, this could induce inconsistencies as one shared
token could be used to fire two different transitions at the same time, potentially leading
to an unacceptable behavior in case of a choice structure. Figure 4 illustrates this problem:
transitions t0 and t1, which are in conflict, are both firable, and then are simultaneously
fired in synchronous execution. It leads to the marking of both places p1 and p2, which
is not the expected behavior of such a classical choice structure in Petri nets. Thus the
synchronous execution of a Petri nets model must manage the simultaneous firing of the
firable transitions while considering the conflict problem.

Fig. 4 Problem of an effective conflict in synchronous execution
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1.3 State of the art of Petri nets formalisms

We have quickly present earlier the classical Petri nets, as well as their extension with inter-
pretation. But in our context, the model must reflect the whole behavior of our targeted
system. Thus it is necessary to integrate into the modeling formalism all the needed char-
acteristics. We also have to study the analysis capacity of the formalism, as we want to use
model checking techniques for properties verification.

The use of Petri nets is a natural choice as the actual parallelism of the FPGA target fits
with the actual parallelism of PN. PN are a well-known formalism in the discrete event sys-
tems and control synthesis communities. Time Petri nets (TPN) (Merlin 1974), a temporal
extension of PN for quantitative time in which transitions are associated with firing inter-
vals, are often used for modeling and analysis of real time systems (Girault and Valk 2013).
But we have seen that our need of determinism, as well as our specific implementation tar-
get, make it necessary to execute the Petri nets in a synchronous way, which does not fit
with the classical asynchronous hypothesis of PN and TPN formalisms. Furthermore, the
formalism we need must deal with interpretation, as the designed model is linked with the
real world by variables and signals. We thus have to consider others PN extensions to deal
with our constraints.

Few works deal with the formal definition and analysis of interpreted Petri nets. In the
work done on SPIN (Signal Interpreted PN, Frey (2002)), as well as the one on CIPN
(Control Interpreted PN, Grobelna and Adamski (2011), interpretation is handled like the
classic way in controller programming: it is associated as input with transitions and as out-
put with places. But, in these cases, the execution hypothesis is that the transition firing
is instantaneous, which is not the case in our context. Furthermore, both SPIN and CIPN
solutions do not manage conflicts in a deterministic way, and do not allow quantitative time
representation.

The interpretation could also be seen as synchronization: in the synchronized Petri nets
formalism defined in David and Alla (2010) and Moalla et al. (1978), synchronization is
considered as the association of transitions with event occurrences. Similarly, in Basile et al.
(2020), the input/output interpretation are associated with event occurences, mixing Inter-
preted and Synchronized Petri nets. Traditionally used for logic controllers specification
and synthesis (Devillers and Van Begin 2006; David and Alla 2010), synchronized PN have
been used in various application domains, for example testing (Pocci et al. 2016) or fault
diagnosis and control (Chen et al. 2013). But synchronized PN have some differences with
our implementation choices, especially as they make the hypothesis that the firing execu-
tion time of transitions is instantaneous, and so do not consider the execution time for the
associated impulsive actions. This could lead to problem in case of too long execution time
as illustrated Fig. 1, and also could lead to instantaneous multiple firing of transitions (see
David and Alla (2010)). A solution could be to combine timed PN and synchronized PN as
in Huang et al. (2018) and Elidrissi et al. (2020). But timed PN are different from tempo-
ral PN. The semantics describes in these articles uses timed transitions to represent a fixed
duration of firing, and the decision of firing is done without considering the temporal infor-
mation. Thus we could not represent a firing interval, which could be useful to represent the
behavior of real time systems. Finally, Synchronized PN and Timed Synchronized PN also
make the hypothesis that two independent events never occur simultaneously (David and
Alla 2010), which simplifies the problematic of simultaneous firings, reducing the problem
to transitions associated to the same event (Pocci et al. 2016).
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Furthermore, synchronized PN are a more general definition than needed in our context,
where the events associated with transitions are the clock edges. In our context, clock edges
are the only events that could trigger the firing of transitions, we do not need to represent
more events. Thus the synchronous semantics we need seems closer to the discrete-time
semantics of TPN (Popova 1991; Magnin et al. 2008; Magnin et al. 2009; Knapik et al.
2010) where time can not elapse more then 1tu (time unit) at a time. But this seman-
tics is only a discrete interpretation of the time firing intervals of the TPN, while keeping
the asynchronous firing hypothesis. Thus, the simultaneous firing of transitions is not
managed.

So, the only way to be really close from our implementation choices is definitively to
use the specific synchronous semantics of Petri nets. Unfortunately, few works deal with
synchronous Petri nets, and even less with a precise and formal description of their corre-
sponding behavior. In Hilal and Ladet (1993), Synchronous Petri nets (SynPN) are based
on the traditional assumptions as for synchronous languages, which means that “the firing
cycle duration is considered as null”. But we think that this assumption is not realistic, as
the marking evolution as well as the diffusion of the variable values are not instantaneous in
a circuit. In Ribeiro and Fernandes (2007), the authors define synchronous interpreted Petri
nets, named SIP-nets, in a close way of our implementation. But they do not consider the
conflict problem, nor the quantitative time representation. Furthermore, their semantics is
also simplified by the hypothesis of safe PN (no reachable marking can contain more than
one token in any place).

The last formalisms that we must study are the generalized and extended extensions of
Petri nets, which are quite common tools used to increase the expressive power of modeling.
The theoretical definition of generalized Petri nets (i.e. it is possible to have several tokens
in one place and weight on arcs) is well-known, but ultimately not often effectively used for
the programming of logical controllers, where the assumption of safe Petri nets is currently
made. In the same idea, the extension of Petri nets with test (or read) arcs and inhibitor arcs
is common, even if they could limit the analysis possibilities (Busi 2002; Berthomieu et al.
2007a; Ivanov et al. 2014). But these extensions have only been developed for asynchronous
PN.

To resume, none of the existing Petri nets-based formalisms includes all the character-
istics necessary to finely represent the reality of the hardware implementation we use. So
we have to define a new formalism allowing all together the expression of interpretation,
synchronous and parallel execution, quantitative time and expressiveness facilities.

1.4 Goal of this article

This article tries to answer to an industrial and concrete need: the modeling, analysis and
synthesis of digital architectures for critical real-time embedded systems. For this purpose,
we define a new extension of Petri nets, we named Generalized Extended Interpreted Syn-
chronous Priority Time Petri Nets: GEISPrT PN. This formalism includes all the desired
characteristics coming from our applicative context: expressiveness (generalized PN, with
inhibitor and test arcs), interpretation (with the consideration of the duration of the signals
and variables evolution as non-zero), deterministic synchronous execution (synchronized
on clock edges, with simultaneous transitions firing and deterministic conflict management
thanks to priorities), and quantitative time (representation of time constraints). This article
presents in details the formal definition and semantics of the GEISPrT PN. It also presents
some model transformation rules which allow to guarantee that the behavior of this formal-
ism is included into the behavior of more classical (asynchronous) Petri nets, classically
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named TPN and more precisely in this article named GET PN (Generalized Extended Time
Petri Nets). Thanks to that, some properties of a GEISPrT PN model could be verified with
existing TPN analysis tools.

This article completes earlier works: a first definition of the formalism and the seman-
tics of GEISPrT PN has been given in Leroux et al. (2013) and Leroux et al. (2015),1 but
these definitions have been refined with the consideration of the clock falling and rising
edge events (expressing the synchronous aspect), with the explicit management of the inter-
pretation, and have been extended considering simultaneous firing of groups of transitions.
This semantics is therefore more precise, which was necessary to perform the formal proof
and to guarantee the semantics behavior preservation. One novelty of this article is indeed
the formal proof of the inclusion of the GEISPrT PN behavior into the GET PN one (i.e.
the “classical” Petri nets), which is the necessary condition to be confident in the validation
results obtained with existing analysis tools.

To simplify the explanation, the article is composed iteratively, first dealing with GEIS
PN without conflict nor time, then introducing the conflict management and finally adding
time intervals. Section 2 introduces the basis of our formalism: the Generalized Extended
Interpreted Synchronous Petri Nets, first supposing that they are without conflict. We
address the problematic of the analysis of this formalism in Sections 3 and 4. The manage-
ment of simultaneous firable transitions which are in conflict is added in Section 5 both into
the semantics and the analysis. And we finally study the addition of the quantitative time in
Section 6.

2 Generalized extended interpreted synchronous Petri nets

As presented in introduction, our context leads us to enhance the basic Petri Nets formalism
with many characteristics that have to be considered for modeling but also for implementa-
tion and analysis purposes. It is then necessary to formally precise definition and semantics
of such a formalism. For now, we only consider in this section interpretation and syn-
chronous execution, without quantitative time consideration into the designed model. We
also make the hypothesis in this section that our model does not have effective conflict:2 the
firing of one transition cannot prevent the firing of a simultaneous firable one. We integrate
as a basis of our formalism specific characteristics on the arcs: weight could be associated
to arcs, and test and inhibitor arcs are allowed. We think that these elements are essential
to increase the modeling opportunities for industrial designers, and they are yet included in
existing analysis tools. The definitions presented here are an extension of those proposed in
our previous work (Leroux et al. 2013) mainly on two points: we added in the semantics the
explicit management of all the interpretation elements (including the action functions A and
F ), and the fine representation of the synchronous execution with the two falling and rising
state transitions that represent the two clock edges as it is performed on the target electronic
circuit.

1In these articles the GEISPrT PN formalism has been named IPrTPN.
2Structural conflicts are not a problem for synchronous execution, unless they become effective, which leads
to the problem shown in Fig. 4.
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2.1 Formal definition of GEIS PN

Definition 1 (GEIS PN) Let C the set of conditions, F the set of impulsive actions and A
the set of continuous actions. A Generalized Extended Interpreted Synchronous Petri Net
(GEIS PN) without conflict is a tuple < P, T , P re, P ret , P rei, P ost, m0, C, F, A, clk >

where:

– < P, T , P re, P ret , P rei, P ost, m0 > is a generalized extended Petri net (David and
Alla 2010). P is the set of places, T the set of transitions and m0 is the initial mark-
ing. Pre, P ret , P rei, P ost : T → P → N are respectively the precondition, test,
inhibition and postcondition functions.3

– C : T → C → {−1, 0, 1} is the condition function. ∀t ∈ T , ∀c ∈ C , C(t)(c) = 1
means that condition c is associated to t ; C(t)(c) = −1 means that the negation of the
condition c is associated to t ; and C(t)(c) = 0 means that condition c is not associated
to t .

– F : T → F → B is the impulsive action function. ∀t ∈ T ,∀f ∈ F , F (t)(f ) = 1
means that function f is associated to t , otherwise F(t)(f ) = 0.

– A : P → A → B is the continuous action function. It is defined on the same principle
as F .

– clk ∈ Clk is the clock signal that synchronizes the PN. The set of clock events is
Clk = {↑ clk, ↓ clk}, with ↑ clk the rising edge and ↓ clk the falling edge of the
system clock.

Definition 2 (GEIS marking, state, enabled and firable) The marking of the GEIS PN is
defined by the function m : P → N such that ∀p ∈ P, m(p) is the number of tokens in the
place p. The definition of a transition enabled by a marking m, noted t ∈ en(m), is:

t ∈ en(m) ⇔ (m ≥ Pre(t) + Pret (t)) ∧ (m < Prei(t))

The instantaneous value of a condition (i.e. its real value at each instant) is defined with
the function val : C → B. The value used to manage the system evolution (i.e. the one
used on the following edge) is an image of this instantaneous value at the moment we read
it, defined with the function cond : C → B. The execution of the impulsive or continuous
actions is defined with the function ex : F ∪ A → B. Thus, the state of a GEIS PN is
defined with s = (m, cond, ex).

In GEIS PN, the definition of a firable transition t from the state s = (m, cond, ex),
noted t ∈ f irableGEIS(s), is:

t ∈ f irableGEIS(s) ⇔ t ∈ en(m)

∧ (∀c ∈ C | C(t)(c) = 1, cond(c) = 1
)

∧ (∀c ∈ C | C(t)(c) = −1, cond(c) = 0
)
.

The explicit representation of the association of the negation of a condition to a transi-
tion leads to a quite complex representation of the firable expression. It seams useless at
this point, as the negation could be directly integrated in the logic expression itself. But
this information could be interesting for conflict resolution (see Section 5). Nevertheless,

3For simplification, when the context does not lead to confusion, we will simplify the notation Pre(t)(p)

into Pre(t), and respectively for the functions Pret , Prei and Post .
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when this information is not essential, we assume that we always have conditions such as
C(t)(c) = 1.

2.2 Semantics of GEIS PN

Based on these definitions for GEIS PN with the hypothesis of no conflict, we can now
formally define their semantics.

Definition 3 (GEIS semantics) The semantics of a GEIS PN without conflict < P, T , P re,

P ret , P rei, P ost, m0, C, F, A, clk > is the transition system < S, s0, −→> where:

– S is the set of states.
– s0 = (m0, o, o) is the initial state where o is the zero function. At the initial state, we

have ↓ clk = 1.
– −→⊆ S × (Clk × T ∗

ε ) × S is the state transition relation, with T ∗ the set of finite sets
of transitions on T and T ∗

ε = T ∗ ∪ ε. This relation is defined as follows:

– Falling transition: we have s = (m, cond, ex)
↓clk,ε−→ s′ = (m, cond ′, ex′) iff

↓ clk = 1 and:

1. ∀a ∈ A , ∃p ∈ P | A(p)(a) = 1 ∧ m(p) �= 0 ⇒ ex′(a) = 1, otherwise
ex′(a) = 0 (update of the execution function for continuous actions)

2. ∀c ∈ C , cond ′(c) = val(c) (update of conditions values)

Let f ired(s′) ⊆ T ∗ be the set of transitions that will be fired from s′. At
this point we can determine f ired(s′) depending on f irableGEIS(s′):

1. ∀t ∈ f irableGEIS(s′), t ∈ f ired(s′) (firable transitions will impera-
tively be fired)

2. ∀t /∈ f irableGEIS(s′), t /∈ f ired(s′) (transitions not firable are not
fired)

– Rising transition: we have s s′, with s = (m, cond, ex) and s′ =
(m′, cond, ex′), iff ↑ clk = 1 and:

1. m′ = m − ∑

t∈f ired(s)

P re(t) + ∑

t∈f ired(s)

P ost (t) (update of markings)

2. ∀f ∈ F , ∃t ∈ f ired(s) | F(t)(f ) = 1 ⇒ ex′(f ) = 1, otherwise
ex′(f ) = 0 (update of the execution function for impulsive actions)

Example 1 (GEIS PN execution) We illustrate in Fig. 5 the evolution of the GEIS PN of
Fig. 3. At the initial state e0, the initial marking is m0 = p0p2 and the values of all the
conditions and the continuous or impulsive actions are nil (resp.Ci ,Ai and Fi). At the initial
state we also have ↑ clk = 1, so the next state transition is a falling transition leading to state
e00. The falling transition sets the continuous actions values depending on the marking: p0
and p2 are marked thus ex(A0) = ex(A2) = 1. It also set the conditions values, reading the
external value of the signals: for this example, we suppose that both conditions C0 and C1
are true. For that reason, transitions t0 and t1 are firable in e00, and then will be fired during
the next rising transition: we have ↑ clk = 1∧ f ired(e00) = f irableGEIS(e00) = {t0, t1}.
This transition leads to state e1, and the update of the marking is: m1 = p1p3. There
is also an update of the impulsive action values: as the fired transitions are t0 and t1, so
ex(F0) = ex(F1) = 1.
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Fig. 5 Evolution of the GEIS PN of Fig. 3

Now the semantics of the formalism of GEIS PN without conflict is known, and it pre-
cisely respects the implementation constraints of our hardware target. But we also have to
translate this formalism into an analyzable one to allow the verification of properties in a
formal way.

3 Analysability of GEIS PN

3.1 State of the art

The analysability of the GEIS PN could be considered with three problems to solve: the
analysis method must consider the extension for expressiveness (weights, inhibitor and test
arcs), the synchronous behavior, and the interpretation influence. The first point is not a
problem as many validation methods and tools allow formal analysis of generalized and
extended Petri nets (Berthomieu et al. 2004; Gardey et al. 2005).

The second point is more complex, as there is no tool allowing to analyze Petri nets
with our synchronous evolution. A classical synchronous evolution could eventually be rep-
resented into a discrete semantics, as in Popova (1991) and David and Alla (2010). The
analysis of discrete time Petri nets has been studied several times, and methods have been
proposed for computing the state space and for verifying logical properties (Popova 1991;
Magnin et al. (2008, 2009); Janowska et al. 2013). There is no deep study on the equivalence
of the analysis results between discrete and synchronous behaviors. But we have seen that
some specific behaviors are not considered in discrete time, as for example the simultaneous
firing of transitions. Furthermore, discrete time TPN analysis methods still have combina-
tory explosion problem, and there are more optimization methods and efficient tools for the
dense time TPN (Gardey et al. 2005; Berthomieu et al. 2004).

Another track to follow is the analysis of synchronized PN. The reachability set of a
synchronized PN model can easily be computed supposing some simplifying hypotheses:
the model is supposed to be safe and/or deterministic (without effective transition conflicts),
as in Devillers and Van Begin (2006), Chen et al. (2013), and Pocci et al. (2016). In that
case, the reachability set and the language - the set of feasible transition firing sequences
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- are included into the ones of the underlying ordinary PN (Chen et al. 2013). But we
do not accept this simplification. Moreover, synchronized PN make the hypothesis of the
instantaneous propagation of the interpretation signals, which could be a problem depending
on the calculation time performances of the hardware target. We illustrate this problem on
an example Fig. 1.

Finally, about the third problem, it is well-known that interpretation could not be ana-
lyzed on a model as the value of interpretation variables could not be known a priori. To
be exhaustive in the property verification process (for the validation of safety properties for
example), the only solution is to consider all the possible values of the interpretation and
then to over-estimate the real reachable state set. For example if an input variable is a binary
one, we could not know a priori if its value will be equal to 0 or 1 at the execution moment.
We thus must consider both the values into the analysis process, to verify all the possible
real behaviors.

To conclude, there is no analysis method nor analysis tool which are perfectly suitable
to our needs. Thus we choose to use the well-known analysis possibilities of the more clas-
sical time Petri nets, and we propose a method to take into account the interpretation and
the synchronous characteristics into the analysis process thanks to specific time intervals on
transitions. We then describe transformation rules from GEIS PN to GET PN (Generalized
Extended Time Petri Nets), which is a formalism that could be analyzed with existing anal-
ysis tools (Berthomieu et al. 2004; Gardey et al. 2005). We also prove that these analysis
results are useful and safe: the real implemented behaviors are included into the analyzed
behaviors.

3.2 Formal definition and semantics of GET PN

The formal definition of the GET PN formalism is well-known and could be find in the lit-
erature (for example Berthomieu et al. 2007b; Boyer and Roux 2008; Reynier and Sangnier
2009). We just give here the basic definitions to fix the notation used in the rest of the article.

Let I+ be the set of non empty real intervals with non negative integer endpoints. ∀i ∈ I
+,

↓ i is its lower bound and ↑ i its upper bound (could be +∞). To simplify notations, we
define that for any i ∈ I

+, θ ∈ R
+, i − θ corresponds to [↓ i − θ, ↑ i − θ ].

Definition 4 (GET PN) A generalized extended time Petri net (GET PN) is a tuple
< P, T , P re, P ret , P rei, P ost, m0, I s > where :

– < P, T , P re, P ret , P rei, P ost,m0 > is a GE PN with P the places, T the transitions,
m0 the initial marking and Pre, P ret , P rei, P ost : T → P → N

+ the precondition,
test, inhibition and postcondition functions.

– Is : T → I
+ is the static interval function.

Definition 5 (GET marking, state, enabled, newly enabled and firable) The marking and
enabled definitions are the same as for the GEIS PN. A state of a GET PN is a pair s =
(m, I) in which m is the marking and I is the interval function defined as I : T → I

+. It
associates a time interval with every transition enabled at m.

It is also necessary to define the set of newly enabled transitions: a transition k is said
to be newly enabled by the firing of the transition t (t �= k) from the marking m, noted
k ∈ ↑ en(m, t), iff k is enabled by the new marking m − Pre(t) + Post (t) but was not
by m − Pre(t). The marking m − Pre(t) is considered because the tokens consumed by
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the firing of t could temporarily disable a transition before adding the tokens of Post (t). t
could also be newly enabled itself if it is still enabled by the new marking. We have:

k ∈ ↑ en(m, t) ⇔ k ∈ en(m − Pre(t) + Post (t))

∧ [(k = t) ∨ (k /∈ en(m − Pre(t)))]

Finally, in GET PN, a transition is firable if it is enabled since enough time to respect its
time interval:

t ∈ f irableGET (s) ⇔ t ∈ en(m) ∧ ↓ I (t) = 0

Definition 6 (GET semantics) The semantics of a GET PN < P, T , P re, P ret , P rei,

P ost, m0, I s > is the timed transition system < S, s0,−→> where:

– S is the set of states.
– s0 = (m0, I0) is the initial state where m0 is the initial marking and I0 is the static

interval function Is, restricted to the transitions enabled at m0.
– −→⊆ S × (T ∪ R

+) × S is the state transition relation defined as follows:

– Discrete transition: we have (m, I)
t−→ (m′, I ′) iff t ∈ T and:

1. t ∈ f irableGET (m)

2. m′ = m − Pre(t) + Post (t)

3. ∀k ∈ T , if k ∈ ↑ en(m), I ′(k) = Is(k), else I ′(k) = I (k).

– Continuous transition: we have (m, I)
θ−→ (m, I ′) iff θ ∈ R

+ and:

1. ∀t ∈ T , t ∈ en(m) ⇒ θ ≤ ↑ I (t)

2. ∀t ∈ T , t ∈ en(m) ⇒ I ′(t) = I (t) − θ

All the necessary definitions of the GEIS and GET PN formalisms have now been given,
we can now specify the transformation rules to represent a GEIS PN model into a GET PN
one.

3.3 Transformation rules from GEIS to GET PN

The aim is to translate a GEIS PNN =< P, T , P re, P ret , P rei, P ost, m0, C, F, A, clk >

into a GET PN N ′ =< P ′, T ′, P re′, P re′
t , P re′

i , P ost ′,m′
0, I s′ >. We detail here the

transformation rules presented in Leroux et al. (2014a), adding the management of the non-
temporal but conditional transitions.

– First the PN structure is kept, thus: P ′ = P , T ′ = T , Pre′ = Pre, Pre′
t = Pret ,

Pre′
i = Prei , Post ′ = Post and m′

0 = m0.
– Then Is′ is defined to reflect the synchronous constraints and the interpretation pos-

sibilities. We establish that 1tu represents a whole clock period. The synchronous
implementation requires that transitions can not be fired in less than 1tu thus: ∀t ∈
T ′,↓ Is′(t) = 1. In the other hand, interpretation could indefinitely prevent the firing
of a transition, if its associated condition remains false. Thus if a transition in N does
not has condition it will be fired in 1tu, else it can be fired at any time, possibly never:

– ∀t ∈ T , ∀c ∈ C , C(t)(c) = 0 ⇒ ↑ Is′(t) = 1
– ∀t ∈ T , ∃c ∈ C | C(t)(c) �= 0 ⇒ ↑ Is′(t) = +∞

These basic transformations are illustrated in Fig. 6.
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Fig. 6 Transformation rules from GEIS PN to GET PN

– Continuous and impulsive actions of the interpretation are not considered here because
they do not directly influence the system execution. They indirectly modify the condi-
tion values, then they are ever considered as we have included all the possible conditions
values in the GET PN model.

These transformation rules allow to obtain, from a GEIS PN which represents the imple-
mented behavior, a corresponding GET PN. Nowwemust show that the analysis of this GET
PN provides pertinent (guaranteed) and interesting (sufficient, useful) validation results.

4 Analysis results relevance

4.1 Discussion on analysis results

It is of course not possible to precisely describe the behavior of a GEIS PN into a GET
PN. First, the interpretation could only be verified considering all the possible values of the
interpretation variables, which is a superset of the execution scenarios. Indeed, as the vari-
ables could depend on each other, some of the configurations are not realistic. For example,
if a = b − 5, and if a and b are independently associated to the conditions of two different
transitions, the scenario with a = 12 and b = 0 is not possible in the real world, but will be
analyzed. As a result of the interpretation, the analyzed behaviors are therefore a superset
of the state space of the implemented real behaviors (see Fig. 7).

Second, we could guarantee that the synchronous behavior is included into the asyn-
chronous one, but they are not equivalent. Figures 8 gives in 8a an example of a Petri net,

Fig. 7 Inclusion of the real implemented behaviors into the analyzed ones
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Fig. 8 Synchronous vs. asynchronous state space

then its state graphs for an asynchronous execution in Fig. 8b, and for a synchronous one
in Fig. 8c.4 In this example, transitions t0 and t1 are concurrent: they are both firable from
the initial marking p0p1. With synchronous execution, they are simultaneously fired and
then the next marking is p1p2. But with asynchronous execution, the transitions must be
fired one after the other: either t0 is fired first then t1, or the contrary. Thus it exists two
intermediate markings 2p1 and p0p2 which do not exist in the synchronous state space.

This example clearly shows that the asynchronous hypothesis produces a larger state
graph than the synchronous one. The question now is: does this graph cover all the reachable
states of the synchronous model? We will prove in the following that this inclusion is true,
thus proving the relations given in Fig. 7. This inclusion may seem trivial in examples like
the one of Fig. 8, but it is no longer trivial if we consider trickier situations related to the
consideration of time intervals and priorities, such as the problem in Fig. 16 explained in
Section 6.1.1. The formal proof is therefore an essential step to guarantee the results of the
analysis.

The inclusion of the real behaviors (with the GEIS PN semantics) into the analyzed ones
(from the GET PN model) has several consequences on the analysis possibilities, depending
on the properties we want to verify (Baier and Katoen 2008). For example, invariance5 or
safety6 properties could be guaranteed: if they are satisfied by all the GET PN reachable
states, so they are verified by the GEIS PN ones. However, if such a property is not satisfied
on the GET PN states, it can still be in the GEIS PN ones, but we can not verify it. On the
contrary, the verification results for liveness7 or reachable8 properties are irrelevant for the
GEIS PN if the answer is “yes”, as the state satisfying the property could be one of the over-
estimated - so unreal - states. However, if these properties are never verified in the GET PN
state space, they will not either in the GEIS PN one.

Our goal is to automatically translate the designed model (GEIS PN) into an analyzable
model (GET PN) while ensuring the behavior inclusion. But our goal is also to minimize the

4These graphs are not complete: only the relevant marking information have been represented. The
continuous GET transitions, as well as the rising GEIS ones, have not been detailed.
5Invariance property: holds for all reachable states
6Safety property: something bad never happens
7Liveness: a good thing will happen in the future
8Reachability: one specific state could be reach
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unrealistic analyzed scenarios, i.e. all parts in Fig. 7 that are not included in the grey-hatched
zone. Indeed, the closer are the analyzed and implemented models, the more interesting are
the validation results. The translation method given in Section 3.3 respects these two aims.
In the domain of formal analysis, model transformations are usual, for example to reduce
the verification complexity by the refinement of a complex model with an abstracted one.
Refinement relations such as language inclusion, timed strong or weak simulation or bisim-
ulation are useful to prove trace inclusion, conservation of behaviors and preservation of
properties. In the following sections, we prove the inclusion of the GEIS PN behaviors into
the GET PN ones thanks to our transformation rules, using the timed simulation equivalence
relation.

4.2 Formal definition

Timed simulations (either weak or strong) are powerful relations leading to several interest-
ing conclusions on analysis results. These methods have been used to prove the behaviors
conservation of refinements with Timed Automata (Frehse 2006; Fares et al. 2013) and to
make a comparison of the expressiveness between several semantics of Time Petri Nets
(Bérard et al. 2005; 2013) and Timed Automata (Berthomieu et al. 2006; Balaguer et al.
2012). We can also note that the weak timed simulation implies the language inclusion:
S1 �W S2 =⇒ L (S1) ⊆ L (S2) (Baier and Katoen 2008; Bérard et al. 2013). It also has
been introduced as a sufficient condition for trace inclusion (Fares et al. 2013; Frehse 2006).

We remind here useful definitions adapted from the above mentioned articles:

Definition 7 (Weak Timed Simulation) Let S1 = (Q1, q
1
0 ,Σε,−→1) and S2 =

(Q2, q
2
0 ,Σε,−→2) be two transition systems over the alphabet Σ and � be a binary rela-

tion over Q1 × Q2. Σε = Σ ∪ ε with ε the silent letter and the empty word. Let −→i,ε

⊆ Q1 × (Σε ∪ R
+) × Q2 be the weak timed transition relation allowing ε-transition over

−→i , i ∈ {1, 2}. The relation � is a weak timed simulation relation of S1 by S2 iff:

– q1
0 � q2

0 ;
– if q1

a−→1,ε q ′
1 with a ∈ Σε ∪ R

+ and q1 � q2 then ∃q2
a−→2,ε q ′

2 such that q
′
1 � q ′

2;

A transition system S2 weakly simulates S1 if there is a weak timed simulation relation
of S1 by S2. We write S1 �W S2 in this case.

Definition 8 (GEIS PN run) The synchronous implementation (see Section 1.2.2) imposes
that a falling transition is necessarily followed by a rising one, thus a GEIS PN run is at
least composed of one couple {f, r}. Therefore, the ↓ clk and ↑ clk signals are the repre-
sentation of the evolution of the time, and the total duration of one falling (f ) followed by
one rising (r) transitions represents one time unit. We will note Duration({f, r}) = 1. The
implementation also imposes that no more than 1tu can flow by. Indeed, if the conditions
associated with all the enabled transitions are false, no transition is firable, but the values of
the conditions will be re-evaluated each time unit. In that case, an empty rising transition is
fired with no transition fired.

Thus, a run ρ of length n in the GEIS PN semantics is a finite sequence of alternating
rising (r) then falling (f ) transitions such as:

ρ = s0
f0−→ s′

0
r0−→ s1 . . . sn−1

fn−1−→ s′
n−1

rn−1−→ sn
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We also write . We define Untimed(ρ) ∈ T ∗ as the concatenation of
the transitions fired in the falling transitions of ρ, andDuration(ρ) ∈ N

∗ the representation
of the time elapsed during this run. Thus for the run ρ we have:

Untimed(ρ) = f ired(s′
0)f ired(s′

1) . . . f ired(s′
n−1)

and

Duration(ρ) =
n−1∑

i=0

Duration({fi, ri}) = n

The set of the GEIS PN runs is noted RunGEIS .

Definition 9 (GET PN run) A run ρ of length n in the GET PN semantics is a finite
sequence of alternating continuous (θi ∈ R) and discrete (ti ∈ T ) transitions such as:

ρ = s0
θ0−→ s′

0
t0−→ s1 . . . sn−1

θn−1−→ s′
n−1

tn−1−→ sn

We also write . The word Untimed(ρ) ∈ T ∗ is obtained by the
concatenation t0 t1 . . . tn−1 of the transitions ti ∈ T fired during the discrete transitions,
and we have Duration(ρ) = ∑

i

|θi | with |θi | the duration of the continuous transition θi .

Unlike GEIS PN runs, a GET PN run can consist of a single transition. The set of GET PN
runs is noted RunGET .

Definition 10 (Equivalence of runs) Two runs are equivalent if their respective Untimed

and Duration values are the same: the same transitions are fired during the same amount
of time. We formally note: ∀ρs ∈ RunGEIS , ∀ρa ∈ RunGET :

ρs ≈run ρa ⇐⇒ Untimed(ρs) = Untimed(ρa) ∧ Duration(ρs) = Duration(ρa)

Definition 11 (Equivalence of states) Let Ns the synchronous GEIS PN semantics and Na

the asynchronous GET PN semantics. We consider the equivalence relation ≈ over states
ss = (ms, cond, ex) of Ns and sa = (ma, I ) of Na such that: ss and sa are two equivalent
states (ss ≈ sa) iff :

– ma = ms : they have the same markings;
– the interval function I of sa uses the values of the static interval function which were

generated from ss respecting the translation rules given in Section 3.3.

4.3 Inclusion proof: GEIS PN ⊂ GET PN

To well understand this section, it is very important to distinguish transitions from models
than transitions from semantics. For that, we remind that semantics transitions are either
named continuous and discrete transitions for the asynchronous semantics, or rising and
falling transitions for the synchronous one.

Proposition 1 For any Petri net Ns =< P, T , P re, P ret , P rei, P ost, m0, C, F, A, clk >

with the GEIS PN semantics SemGEIS = (Ss, ss0,−→s), it exists a Petri net Na =<

Pa, Ta, P rea, P reta, P reia, P osta,m0a, I s > with the GET PN semantics SemGET =
(Sa, sa0,−→a) which weakly timed simulates Ns . Hence the GET PN semantics weakly
simulates the GEIS PN semantics: SemGEIS �w SemGET .
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Definition 12 To make the inclusion proof of the GEIS PN semantics in the GET PN one,
we define the weak time simulation relation � over two states ss ∈ Ss and Sa ∈ Na by
(ss � sa ⇐⇒ ss ≈ sa), and the weak timed transition relation −→i,ε by: if we have

ss
ρs−→s,ε s′

s a run in Ns and sa
ρa−→a,ε s′

a a run in Na , ρs and ρa are considered to be the
same if ρs ≈run ρa .

We can represent this weak timed simulation relation in Fig. 9. Thus the GET PN
semantics weakly simulates the GEIS PN semantics if for all existing runs in SemGEIS

(in black), it exists in SemGET an equivalent run leading to an equivalent final state
(in grey).

Proposition 1 We consider that Na was generated from Ns respecting the transformation
rules of Section 3.3. By definition of these rules, the structure of the Petri net, as well as the
initial marking, are conserved thus Na =< P, T , P re, P ret , P rei, P ost, m0, I s >.

The initial states of the two semantics respect the conditions of Definition 11 so they
are equivalent: sa0 ≈ ss0. Then we can consider that it exists ss = (ms, cond, ex)

a state of SemGEIS and sa = (ma, I ) a state of SemGET which are equivalent:
ss ≈ sa . The weak timed similarity of the semantics will be established if ss ≈ sa

and for any ss
ρs−→s ss then it exists sa

ρa−→a sa with ρs ≈run ρa and ss ≈
sa . We have to prove this equivalence for all the three possible types of GEIS PN
runs: (1) no transition is fired, (2) only one transition is fired and (3) several transi-
tions are fired. For each case, we will prove that it exists in the GET PN semantics
an equivalent run, and we will prove that this run leads to a final state equivalent to
the final one of the GEIS PN semantics. So, the inclusion SemGEIS ⊂ SemGET will
be proved, with the hypothesis established in this section that the Petri nets have no
conflict.

(1) No transition fired: Let consider a GEIS PN run ρs0 such as: ss
ρs0−→s ss , with

Untimed(ρs0) = ∅ and Duration(ρs0) = n ∈ N
∗. We have ρs0 = ss

f0−→s s′
s

r0−→s

ss1 . . . ssn−1
fn−1−→s s′

sn−1
rn−1−→s ss with ri = (↑ clk,∅) ∀i. This run can has any duration

n ∈ N
∗, indeed it could be possible to infinitely repeat an alternation of fi and ri without

firing a transition.

Fig. 9 Weak timed simulation relation for the GEIS PN and GET PN semantics
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Fig. 10 Example of a GEIS PN and its corresponding GET PN

Existence of an equivalent run ρa0 The run ρs0 corresponds to states for which all
the enabled transitions are not firable.9 According to Definition 2, this corresponds to
transitions associated to conditions whose values prevent the firing. Thus, as all these
enabled transitions are associated to a condition in Ns , the translation rules impose that
these transitions have the following time interval in Na : ∀ti ∈ en(ma), I s(ti) = [1, +∞[
(as in the right of Fig. 6). As the upper bound is infinite, there is no obligation to fire
these transitions: it exists a run where time could elapsed without firing any transition.
Hence a continuous transition θ is possible from sa with any duration, including all the

values of N∗: sa
θ−→a sa . Thus we have proved, for any GEIS PN run with no transition

fired, the existence of an equivalent GET PN run:

∀ρs0 ∈ RunGEIS | Untimed(ρs0) = ∅, ∃ρa0 ∈ RunGET | ρa0 ≈run ρs0

Equivalenceof thefinal states ss ≈ sa According to the GEIS PN semantics, the falling
transitions fi do not change the marking. Furthermore, for all the rising transitions ri of
the run ρs0 no transition is fired, so there is no marking change either. Therefore we have
ms = msi = m′

si = ms ∀i. We also remind that ss ≈ sa thus we have ms = ma . Let
consider now ρa0 a GET PN run equivalent to ρs0. As ρa0 consists of only one continuous
transition, there is no marking change and ma = ma . By hypothesis, we consider that Na

was generated from Ns respecting the desired transformation rules. So the equivalence
of markings is sufficient to establish the equivalence of states. Thus, we have ss ≈ sa .

(2) Only one transition fired: Let consider a run ρs1 such as: ss
ρs1−→s ss , with t1 ∈ T ,

Untimed(ρs1) = {t1} and Duration(ρs1) = 1. We have ρs1 = ss
f−→s s′

s

r−→s

ss with r = (↑ clk, t1). This case corresponds to a transition which is enabled and
firable in s′

s : t1 ∈ f irableGEIS(s′
s). Thus t1 is either without condition or associated to

a condition which is true in ss , as in the example of Fig. 10a. Furthermore, the firing
of only one transition means that (for a PN without conflict) either only this transition
is enabled, or the other enabled transitions are not firable because of their conditions:
∀ti ∈ en(m′

s) | ti �= t1 ⇒ ti �∈ f irableGEIS(s′
s). An example of such a run is given in

Fig. 11, if the condition C is false so only t1 is fired.

9We do not detailed the case where no transition is enabled, because it represents a blocking state without
discrete possible evolution, but the proof is also relevant in this case.
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Fig. 11 Run ρs1 of the GEIS PN of Fig. 10a if C is false

Existence of an equivalent run ρa1 Following the transformation rules, the transitions
of Ns are transformed in Na in temporal transitions: Is(t1) = [1, 1], t1 being without
condition in Ns , and Is(t2) = [1, +∞[, t2 being associated to a condition in Ns . Thus,

from sa , it is necessary to first execute a continuous transition θ with |θ | = 1: sa
θ−→a s′

a .
According to the GET PN semantics, we then have ↓ I ′

a(t) = ↓ Ia(t) − |θ | = 0, ∀t ∈
en(ma). Then all the transitions enabled by ma become firable in s′

a , including t1: it is
now possible to execute a discrete transition corresponding to the firing of t1. Therefore it

exists a run ρa1 = sa
θ−→a s′

a

t1−→a sa in the GET PN semantics with Duration(ρa1) =
1 and Untimed(ρa1) = {t1}, which is equivalent to ρs1. Such a run is given in Fig. 12.

Fig. 12 One run ρa1 of the GET PN of Fig. 10b

46 Discrete Event Dynamic Systems (2022) 32:27–64



Equivalence of the final states ss ≈ sa In the GEIS PN semantics, the firing of the
falling transition f does not change the marking: m′

s = ms . The only marking modifica-
tion of the run ρs1 is done during the rising transition r which corresponds to the firing of
t1. Thus the final marking of ρs1 is:ms = ms−Pre(t1)+Post (t1). According to the GET
PN semantics, the continuous transition θ does not modify the marking: m′

a = ma . On
the contrary, the discrete transition t1 set the marking to ma = ma −Pre(t1)+Post (t1).
As ms = ma , the markings ms and ma are the same and we have ss ≈ sa .

This proof has been done when the fired transition (t1) has no associated condition.
But the same proof can be done with one associated condition, for example in Fig. 10,
firing t2 if C is true and t1 not firable (p1 not marked).

(3) Several transitions fired: This proof will be done by induction: first for the firing of
two transitions, then we discuss on the general case of n transitions.

Let consider a run ρs2 such as: , with Untimed(ρs2) = {t1, t2} and

Duration(ρs2) = 1. We have ρs2 = ss
f−→s s′

s

r−→s ss with f = (↓ clk, ε) and
r = (↑ clk, {t1, t2}). This corresponds to the case where transitions t1, t2 are enabled,
and they are the only firable ones: either they do not have condition, or their conditions
have true values in ss , and all others enabled transitions are not firable. This could be the
case in Fig. 10 if C is true: both t1 and t2 are firable, and then fired in the same rising
transition. This run is shown in Fig. 13a, and its equivalent GET PN run ρa2 in Fig. 13b.

Fig. 13 Equivalent runs with two simultaneously fired transitions
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Existence of an equivalent run ρa2 To respect the synchronous behavior, all the tran-
sitions of Ns have been transformed in Na in temporal transitions with ↓ Is(t) = 1.
Thus, no transition is immediately firable. So it is necessary to first execute from sa

(sa ≈ ss) a continuous transition θ1 with |θ1| = 1: sa
θ1−→a s′

a . The marking is modi-
fied but the time intervals is decremented: ∀t ∈ en(m′

a), ↓ I ′(t) = 1 − |θ1| = 0. Then
all the enabled transitions become firable, included t1 and t2. Thus we can execute a dis-

crete state transition corresponding to the firing of the transition t1: s′
a

t1−→a sa1. First,
according to the GET PN semantics, we know that there is no new firable transition: the
time intervals are not modified by a discrete transition, excepted for the transitions newly
enabled in sa1. But in that case we would have: ∀k ∈ ↑ en(ma1, t1), ↓ Ia1(k) = 1 thus
k /∈ f irableGET (sa1). Second, as we supposed that Ns is without conflict, the firing
of t1 does not prevent the firing of the other firable transitions. In particular, t2 is still
firable. As a GET PN run is an alternation of continuous and discrete transitions, it is
now necessary to fired a continuous transition, which can be instantaneous (|θ2| = 0):

sa1
θ2−→a s′

a1. This transition does not change either the label or the firing intervals, so

we can fire a discrete transition with t2: s′
a1

t2−→a sa . We finally have the complete run

ρa2 = sa
θ1−→a s′

a

t1−→a sa1
θ2−→a s′

a1
t2−→a sa with Duration(ρa2) = |θ1| + |θ2| = 1

and Untimed(ρa2) = {t1, t2}. Thus we have ρa2 ≈run ρs2.

Equivalenceof thefinal states ss ≈ sa In ρs2, f does not change the marking:ms = m′
s

and r changes the marking respecting the GEIS PN semantics: ms = ms − Pre(t1) −
Pre(t2) + Post (t1) + Post (t2). In ρa2, the continuous transitions does not modify the
marking:m′

a = ma andm′
a1 = ma1. For the discrete transition corresponding to the firing

of t1, we havema1 = m′
a−Pre(t1)+Post (t1). Likewise, we havema = m′

a1−Pre(t2)+
Post (t2). Then we finally have ma = ma − Pre(t1) + Post (t1) − Pre(t2) + Post (t2),
which is equal to ms as ma = ms . Thus, the final states are equivalent: sa ≈ ss .

Generalization to n fired transitions If more than two transitions are firable in the
GEIS PN semantics without conflict, they are all fired in the same time unit. We just
proved that for the simultaneous firing of two transitions in synchronous semantics, the
firing of the same two transitions is done during the same time unit in the corresponding
asynchronous model. This is done adding an instantaneous continuous transition which
allows to fire in the same time unit all the transitions initially firable. Then this proof
could easily be extended to n fired transitions: in GEIS PN, all the firable transitions
are fired in one time unit. In GET PN, only one transition is fired at a time, but we can
fire several transitions successively adding instantaneous continuous transitions between
them.

All the other possibilities of GEIS PN runs could be proved combining the runs consid-
ered above. At the end, it is always possible to find an equivalent GET PN run. And we also
prove that equivalent runs lead to equivalent states. This formally proves the Proposition
1, meaning our translation rules guarantee the inclusion of the behavior of the initial GEIS
PN into the one of the generated GET PN, if the models are without conflicts. This proves
that for any Petri net with the GEIS PN semantics, it exists a Petri net with the GET PN
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semantics which weakly timed simulates it. Hence GET PN semantics weakly simulates
GEIS PN semantics:10

∀N ∈ SemGEIS, ∃N ′ ∈ SemGET | N �W N ′ ⇒ SemGEIS �W SemGET

It is now necessary to verify that this remains true while adding the management of
conflicts in GEIS PN models.

5 Conflicts resolution : GEIS PNwith priorities

We previously made the hypothesis, as most of the methods dealing with synchronous or
synchronized PN in the literature, that the GEIS PN are without effective conflict. However,
we think that it is necessary to remove this hypothesis, as the expression of conflicts are
interesting in a modeling point of view, offering more possibilities and simplicity for the
designer. So the conflict problem must be considered, and a method of conflict resolution
must be provided to manage conflict problems when needed. Conflict resolution can be
done with probabilities, alternated firing, or priorities (David and Alla 2010).

In Leroux et al. (2014b) we propose a solution based on priorities, describing the conflict
problematic, how to detect them, and how to manage conflicts in our synchronous VHDL
implementation context. In the current article, we focus more on the formal part of our con-
flict management method: we formally define the conflict concept for GEIS PN, then we
present the extension of our GEIS PN semantics including this solution. A first formal def-
inition of the priority management in the GEIS PN has been given in Leroux et al. (2013).
Here, we further detail the formal definitions, and we extend them to consider the simulta-
neous firing of groups of transitions in conflict management. Thus, we have modified the
definition of effective conflicts, the construction of the set of transitions to be fired taking
into account the priorities, and the definition of enabled transitions. Then we have integrated
these modifications in the semantics.

This new formalism will be called GEISPr PN (Generalized Extended Interpreted Syn-
chronous Priority Petri Nets). Finally, we show that the conflict resolution does not change
the verification possibilities by means of GET PN analysis.

5.1 Conflict definitions

Definition 13 (Structural conflict) A structural conflict in PN traditionally “corresponds to
the existence of a place which has at least two output transitions” (David and Alla 2010;
Chen et al. 2013).

Definition 14 (Effective conflict) But a structural conflict does not necessarily lead to a
problematic situation: the real problem is when the concurrent transitions could actually
not be fired at the same time. We call it an effective conflict. A simple definition of an
effective conflict could be define as in Girault and Valk (2013): “there is a conflict when
two transitions are enabled and the occurrence of one disable the other”. For classical
generalized PN, this definition only implies the consideration of the actual marking: a set
of transition Tc sharing an upstream place p are in an effective conflict if they are enabled

10The opposite is not true, as some GET PN models can not be simulated by GEIS PN ones: we do not have
equivalence of the semantics.
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by a marking m and if the number of tokens in p for m is less than the sum of the weights
of the entering arcs of all the transitions of Tc (David and Alla 2010).

In our context, these definitions have to be extended considering all the characteristics of
our specific GEIS PN formalism:

Generalized The consideration of non-binary Petri nets has already been considered in
the previous definition thanks to weight on arcs.

Extended We consider several types of arcs, as inhibitor and test ones, which do not con-
sumed tokens when the associated transition is fired. In that cases, the firing of these
transitions does not influence the firing of the others in structural conflict. But deal-
ing with inhibitor arcs, we have a first difference between the asynchronous and the
synchronous Petri nets definitions of effective conflicts. For example in Fig. 14a: in asyn-
chronous semantics, the firing of t8 prevents the firing of t7, while in the synchronous
semantics they could be fired in the same time as they do not used the same tokens.

Interpreted In our context, because of the interpretation, the set of firable transitions is
different than the set of enabled ones, taking into account the condition values. It is thus
necessary when we verify if a condition prevents the firing of another, to consider that
the transition remains firable (and not only enabled).

Synchronous This is also the case considering the synchronous execution constraint,
which imposes that the firing of a transition must be in at least 1tu. Thereby, even if
a transition marks again its input places (thus remaining enabled), all the concurrent
downstream transitions of this place do not remain firable because of the 1tu minimal
time of firing. An example of such a case is given in Fig. 14b. In that case, in asyn-
chronous semantics t9 does not prevent the firing of t10 at the same time moment, while
in synchronous semantics t10 will be fired 1tu later.

Thus the definition of effective conflicts must be adapted, not considering the final
marking after the firing of ti , but considering the intermediate marking m − Pre(ti). For
that, we use the concept of newly enabled transitions defined for the GET PN semantics
(Definition 5).

Fig. 14 Examples of conflict situations
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Definition 15 (Effective conflict in GEIS PN) For a state s = (m, cond, ex) of a GEIS
PN model, we define Tc(ti , s) ⊆ T the set of transitions in effective conflict with ti ∈
f irableGEIS(s) and with , as the following:

tj ∈ Tc(ti , s) ⇐⇒
⎧
⎨

⎩

tj �= ti
∧ tj ∈ f irableGEIS(s)

∧ [
tj ∈ ↑ en(m, ti)) ∨ tj /∈ f irableGEIS(s′)

]

And we define Tc(s) ⊆ T the set of all the transitions implicated in at least one effective
conflict for the state s as:

Tc(s) = {ti ∈ T | ti ∈ f irableGEIS(s) ∧ Tc(ti , s) �= ∅}

5.2 Method of conflict resolution

Our method of conflict resolution is based on a deterministic resolution of effective con-
flicts. A static priority is defined between every transition of each structural conflicts. Then,
during the execution of the PN, it is checked if the conflict is effective or not in the current
state, in order to dynamically determine which transitions must be fired.

Time Petri nets with priority have already been defined in the literature for asynchronous
PN (Berthomieu et al. 2006; 2007b). In summary, if two transitions t1, t2 are concurrent
and if t1 has priority over t2, noted t1 � t2,11 so t1 will be fired before t2. But, because of
the synchronous implementation, the priority principle we need is slightly different from
this one. Indeed in our case the priority is used only when the transitions are in an effective
conflict. If two transitions are firable but not in an effective conflict, even if there is a priority
between them, both must be fired. The principle is just to add, on the falling transition, the
consideration of the existence of effective conflicts between transitions. Only in this case
the priority are considered, to select all the most priority concurrent transitions which could
be fired instantaneously.

Figure 15a gives an example of GEISPr PN with 3 transitions in effective conflict at the
initial state (supposing that C4 is true): Tc(s0) = {t2, t3, t4}. t1 is not included in this set
because its firing does not influence the firability of the others. The resolution of this conflict
is done with the following priorities: t2 � t3, t2 � t4 and t4 � t3. They are represented in the
figure with dotted arcs between transitions. Figure 15b shows the synchronous state graph
of this model, only showing the significant states (falling transitions and their intermediate
states are not represented). In s0, if C4 is true, all the transitions are firable: t1 will be
fired, but it is necessary to use the method of conflict resolution to choose the actually fired
transitions of the set Tc(s0). The marking of s0 allows to fire the two priority transitions t2
and t4, but not t3. Then f ired(s0) = {t1, t2, t4}, which leads to a state s1 from which there
is again a conflict resolution, with the same firable transitions but not the same marking in
p0. Then 1tu later, f ired(s1) = {t1, t2} from s1, leading to the final state s2. If C4 is true
in s0, t3 will never be fired. Now if we consider that C4 is false in s0, there is no effective
conflict so all the firable transitions {t1, t2, t3} are fired from s0, leading to a final state with
m = p1p2p3.

The advantage of our method is that it is a dynamic but also deterministic one: the con-
flict resolution does not suppress a priori the conflicts in a structural way (as for example

11Graphically, this is represented with an arrow from t1 to t2.
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Fig. 15 Example of effective conflict resolution

alternative firing methods), but it is done in a dynamic way only when the conflicts are effec-
tive. Our method is a deterministic one, as when an effective conflict occurs, it is always
resolved in the same way.

5.3 Definition and semantics of the GEISPr PN

Definition 16 (GEISPr PN definition) The GEIS PN semantics presented Section 2.2 must
be adapted with the priority management. First we must add the priority concept into the
GEIS PN definition: < P, T , P re, P ret , P rei, P ost, m0, C, F, A, clk, �> with � the
irreflexive, asymmetric and transitive priority relation.

Let Pr(t) be the set of transitions which has priority over t ∈ T :

Pr(t) = {ti ∈ T | ti � t}

Definition 17 (GEISPr PN semantics) The enabled and firable functions are the same as for
the GEIS PN. The priorities are considered for the calculation of the f ired() set of the rising
transition, adapting the GEIS PN semantics (Definition 3) with the priority management as
follow:

– we can determine f ired(s′) depending on f irableGEIS(s′):

1. ∀t ∈ f irableGEIS(s′), if ∀ti ∈ Pr(t), ti /∈ f irableGEIS(s′) =⇒ t ∈ f ired(s′)
(firable transitions without firable priority transitions will be fired)

2. ∀t ∈ f irableGEIS(s′), if [∀ti ∈ Pr(t) ∧ ti ∈ f irableGEIS(s′)], m > Pre(t) +∑

ti

P re(ti) =⇒ t ∈ f ired(s′) (the marking is sufficient to fire t and all the more

priority firable transitions in effective conflict with t)
3. else t /∈ f ired(s′) (in other cases, the transition is not fired)

5.4 Analysis of GEIS with conflict

The existence of priority between two transitions could leads to two different behaviors
depending on the existence and the value of conditions on these transitions. For example in
Fig. 4, supposing t1 � t0: if t1 is firable, i.e. not associated to a condition or if its condition
is true, it is fired and t0 can not be. On the contrary, if t1 is associated to a false condition,
and if t0 is firable, t0 is fired. These two different behaviors come from the same model, the
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only difference is the value of the conditions, which depends on the instantaneous values of
the system variables. As we ever said, these values could not be known a priori, therefore
both the behaviors must be analyzed. That’s why we do not used priority in the analyzed
model, as the priority in GET PN could prevent the firing of t0. Thus, we do not need to add
anything to the translation rules described Section 3.3.

This guaranty that the real behaviors (GEISPr PN) are included into the analyzed ones
(GET PN). The proof of the behaviors inclusion (not detailed here) is just an adaptation of
the proof of Section 4.3, taking into account runs with effective conflicts. As informally
explained in the preceding paragraph, for all the possible runs in an effective conflict situa-
tion of GEISPr PN, it exists an equivalent run in the GET PN (the same transitions are fired
in the same duration), which keeps the proof of the inclusion.

We now have to add the last element to our formalism: the management of quantitative
time, to finally have the complete formalism dealing with all the constraints of our context.

6 Temporal extension: GEISPr Time PN

Adding the time management into the GEISPr PN formalism leads to the formalism we
name GEISPrT PN. This is the final formalism, which includes all the constraints implied
by our implementation context.

6.1 Problematic of time

6.1.1 Resetting of counters

In a synchronous semantics, to deal with concurrency, it is necessary to finely manage the
resetting of the time counter caused by the transient states. An example is given in Fig. 17,
in which t0 and t1 are concurrent, i.e. simultaneously firable but not in effective conflict. In
synchronous execution they will be simultaneously fired and then the marking of place p1
remains equal to 1 token, even if a transient nil marking exists. Now the problem resides in
the consideration of the inhibitor and the test arcs of the transitions t2 and t3: is it necessary
to reset the time counters of these transitions, and how?12 This problem is closed to the
firing semantics problem for TPN developed in Bérard et al. (2005), in which the authors
proved that the three proposed firing semantics are equivalent for upper-closed intervals.
But in synchronous semantics, it is more intricated.

For the analysis purpose, it is necessary that GEISPrT PN behaviors are included into
the GET PN ones. Yet, for analysis, the execution will be asynchronous (states in dark, in
Fig. 16b): either t0 is fired first, then t1 (run ρa1, at the left of the graph), either the contrary
(run ρa2, at the right of the graph). When t0 is fired first, the marking of p1 becomes equal
to 2, disabling t3. Then t1 is fired making t3 enabled again, but with its firing interval which
has been reset. In the case t1 is fired first, the new marking is only 1 token in p0, disabling
t2. Then the firing of t0 makes t2 enabled again, but with its firing interval which has been
reset. Then the two runs ρa1 and ρa2, even if they lead to the same marking p1, do not
lead to the same state because of the firing interval function: ρa1 leads to state s′

a1 with
I ′
a1(t2) = [2, 2] and I ′

a1(t3) = [3, 3], whereas ρa2 leads to state s′
a2 with I ′

a2(t2) = [3, 3]
and I ′

a2(t3) = [2, 2].

12The same question could be asked when a transition is newly enabled.
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Fig. 16 Management of the time counters resetting

In asynchronous execution, it is not possible to observe the resetting of both counters,
nor any resetting at all. If we want to guarantee the inclusion of the semantics, the resulting
state of the synchronous execution (simultaneous firing of t2 and t3) must correspond to one
of the asynchronous resulting states. Thus it is necessary to define the management of the
counter resetting in the GEISPrT PN semantics following one of the two asynchronous sit-
uations (either the resetting of the test arcs, or the inhibitor arcs). The choice we made is the
following: in synchronous execution, the transient marking is always calculated considering
first the withdrawal of the tokens. If a transition is disable by this transient marking, its time
counter is reset. In the case illustrated Fig. 16a, the simultaneous firing of {t0, t1} leads to
the transient marking m0 −Pre(t0)−Pre(t1) = 0, which disable t2 as in the asynchronous
run ρa2. This also allows to deal with the resetting of a transition which re-enables itself.

In the implementation point of view, the resetting of the counters will be done in two
steps. First on the rising edge, the calculation of the new marking is done, allowing to deter-
minate the newly enabled transitions, and then the ones which must be reset. We manage
this by means of a specific reset signal associated to each transition. Second, on the falling
edge, the time counters values of the firing interval are calculated, including the ones that
must be reset.

6.1.2 Firing semantics

Two semantics are conventionally used with regard to the firing of transitions in TPN: strong
semantics and weak semantics (Boyer and Roux 2008; Reynier and Sangnier 2009). Strong
semantics defines that if a transition is enabled it is necessarily fired before, or at worst
when, the upper bound of its firing interval is reached. Whereas in the weak semantics, no
transition is forced to be fired: if its time interval is exceeded, the transition is “disabled” and
will become firable again when it will be enabled again. The strong semantics is the most
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Fig. 17 Example of a potential blocking situation

used to describe real-time systems as it allows to model the urgency of events. This is also
the semantics used in the TPN analysis tools, and the one used in the GET PN formalism
we have presented Section 3.2.

Therefore we use the strong semantics, but with a more strict firing rule: a firable tem-
poral transition is immediately and imperatively fired. This is consistent with the behavior
of the real system, and with our need for determinism. But we have to slightly modify this
semantics to take into account the blocking situations.

6.1.3 Blocking situation

The strong semantics forces the firing of a transition when its upper bound is reached. Yet,
in case of the association of a condition and a firing interval on the same transition, it could
be possible that the upper bound is reached whereas the condition always remains false,13

preventing the firing and provoking a blocking situation. An example is given in Fig. 17: if
c2 remains false during all the duration of [a, b], the transition t2 must, but can not, be
fired when b is reached.

To manage this problem, we adapt the strong semantics introducing the weak semantics
concept: in this specific case of blocking, the transition time counter can overlap its upper
bound but the transition could not be fired anymore until being newly enabled. In our exam-
ple of Fig. 17, if t2 is blocked, the firing of t1 could empty p1, disabling and then unblocking
t2. If such an alternative path does not exist, then the blocked transition remains indefinitely
blocked.

6.2 Formal definitions and semantics of GEISPrT PN

The basic definitions for the GEISPrT PN semantics are based on the ones given in the
Sections 2.1 and 5.3. We give here the additions or the changes we have introduce for the
quantitative time management in our synchronous semantics.

13The time counter is incremented as soon as the transition is enable, independently of the condition value.
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6.2.1 Definitions for GEISPrT PN

Definition 18 (GEISPrT PN) First we must add the firing interval concept into the GEISPr
PN definition (Definition 16). As in our context no transition could have less than 1tu, then
we restrict the firing intervals to non zero values. Let I+∗ be the set I+ but with non negative
nor zero integer endpoints. This leads to the GEISPrT PN < P, T , P re, P ret , P rei, P ost,

m0, C, F, A, clk, Is, �> with Is : T → I
+∗ ∪ {∅} the static firing interval function. We

suppose that Is(t) = ∅ only for untimed transitions (transitions not concerned by time
interval).14

Definition 19 (Reset, State, Firable in GEISPrT PN) Let reset : T → B be the resetting
function, that must be considered into the states. The value of the counter of firing intervals
must also be considered, with I : T → I

+∗ ∪{�} the dynamical firing function which asso-
ciates a time interval to every transition enabled at m. We chose to represent the blocking of
a transition through its firing interval: I (t) = � means that t is blocked.15 Thus the state of
a GEISPrT PN is defined with s = (m, cond, ex, I, reset).

The firable definition must integrate the firing interval management: we add to the def-
inition given in Definition 2 that a transition t is firable, in addition to being enabled and
having its associated condition true, iff the lower bound of its firing interval is reached:
0 ∈ I (t). We note t ∈ f irableGEISP rT (s).

Definition 20 (Newly enabled function) We have seen that the notion of newly enabling is
important in GEISPrT PN both for the counters resetting and the management of the blocked
transitions. A transition k ∈ T is newly enabled by the firing of a set of transitions TF ⊂ T

from the marking m, noted k ∈ ↑ en(m, TF ), iff k is enabled by the new marking m′, and
either k ∈ TF or k /∈ TF and k was disabled by the transient marking m − ∑

t∈TF

P re(t).

Formally we have, with m′ = m − ∑

t∈TF

P re(t) + ∑

t∈TF

Post (t) :

k ∈ ↑ en(m, TF )

⇔
[
k ∈ en(m′)

] ∧
[

(k ∈ TF ) ∨
(

k /∈ TF ∧ k /∈ en(m − ∑

t∈TF

P re(t))

) ]

6.2.2 Semantics of GEISPrT PN

We can now formally define the semantics of our complete formalism, including all the
desired characteristics : the Generalized Extended Interpreted Synchronous Time Petri nets
Priority (GEISPrT PN).

14We could have defined a default interval Is(t) = [1, 1], as in both cases this transition will be fired in 1tu,
but in the implementation point of view there is a difference because untimed transitions are more efficiently
implemented regarding energy consumption and silicon footprint.
15Note that � is different than the empty interval [0, 0] and than no interval at all Is(t) = ∅.
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Definition 21 (Semantics of GEISPrT PN) The semantics of a GEISPrT PN N = <

P, T , P re, P ret , P rei, P ost, m0, C, F,A, clock, Is,� > is the timed transition system
< S, s0, −→ > where:

– S is the set of states (m, cond, ex, I, reset) ofN .
– s0 = (m0, o, o, I0, o) is the initial state where o is the zero function and I0 is the

restriction of IS to the transitions enabled by m0.
– −→⊆ S × Clk × S is the state transition relation, noted s −→ s′, defined as follows:

Let f ired(s) ⊆ T the set of transitions fired from state s.

– Falling transition: we have s = (m, cond, ex, I, reset)
↓clk,ε−→ s′ = (m,

cond ′, ex′, I ′, reset) iff ↓ clk = 1 and:

1. Updating the execution function for continuous actions is the same as for
GEIS PN.

2. Updating condition values is the same as for GEIS PN.
3. ∀t ∈ en(m), (reset (t) = 0 ∧ I (t) �= �) ⇒ I ′(t) = I (t) − 1 (normal

evolution)
4. ∀t ∈ en(m), reset (t) = 1 ⇒ I ′(t) = Is(t) − 1 (reset of the firing

interval16 while unblocking the transition if it was blocked)
5. ∀t ∈ T , (reset (t) = 0 ∧ I (t) = � ⇒ I ′(t) = I (t) (a blocked transition

remains blocked if it was not newly enabled)

– The calculation of f ired(s′) is the same as for the GEISPr PN formalism
(Definition 17), but using f irableGEISP rT (s′) (Definition 19) instead of
f irableGEIS(s′).

– Rising transition: we have , with s = (m, cond, ex, I,

reset) and s′ = (m′, cond, ex′, I ′, reset ′), iff ↑ clk = 1 and:

1. The marking is updated as for GEIS PN.
2. As well as the execution function for impulsive actions.
3. ∀t ∈ T , t ∈ ↑ en(m, f ired(s)) ⇒ reset ′(t) = 1 else reset ′(t) = 0 (all

the newly enabled transitions will be reset in the next falling transition)
4. ∀t ∈ T , (t /∈ f ired(s) ∧ ↑ I (t) = 0) ⇒ I ′(t) = �, else I ′(t) = I (t)

(blocking of transitions not fired when their upper bound are reached)

6.3 Analysis of GEISPrT PN

6.3.1 Transformation rules

The three characteristics we add into our semantics for the time management (resetting the
counters, the “as soon as possible” firing semantics and the blocking semantics) must of
course be analyzed. We therefore have to study their inclusion into the GET PN behav-
iors, and modify the transformation rules presented Section 3.3 to translate a GEISPrT PN
N =< P, T , P re, P ret , P rei, P ost,m0, C, F, A, clk, Is, �> into an analyzable GET
PN N ′ =< P ′, T ′, P re′, P re′

t , P re′
i , P ost ′,m′

0, I s′ > which respects the execution
constraints.

16This reset is the consequence of the transitions fired on the previous rising transition, done in the previous
time unit. Then we reset and subtract 1 to the static interval to be consistent.
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As illustrated Section 6.1.1, the resetting of the counters is not a problem, as the chosen
semantics leads to an already existing GET behavior. Finally, the blocking situation can
not be entirely translated with firing intervals in the GET PN formalism. The initial firing
interval must be kept, as the condition could become true anytime during it. But it is also
necessary to explicitly add a specific structure (described in the next section) to represent
the blocking of the transition.

– ∀t ∈ T ,
(∀c ∈ C , C(t)(c) = 0 ∧ Is(t) = ∅) ⇒ ↓ I ′

s(t) = ↑ I ′
s(t) = 1 (transitions

without condition nor firing interval are fired in 1tu)
– ∀t ∈ T ,

(∃c ∈ C | C(t)(c) �= 0 ∧ Is(t) = ∅) ⇒ ↓ Is′(t) = 1, I s′(t) = +∞
(transitions with a condition but no firing interval can be fired at any time)

– ∀t ∈ T ,
(∀c ∈ C , C(t)(c) = 0 ∧ Is(t) �= ∅) ⇒ ↓ I ′

s(t) = ↑ I ′
s(t) =↓ Is(t) (transitions

with a firing interval but no condition is fired at the lower bound)
– ∀t ∈ T ,

(∃c ∈ C | C(t)(c) �= 0 ∧ Is(t) �= ∅) ⇒ ↓ Is′(t) =↓ Is(t),↑ Is′(t) =↑ Is(t)

(transitions with condition and firing interval can be blocked: the firing interval is kept
and a blocking structure will be added)

6.3.2 Blocking structure

A specific blocking semantics does not exist in the analysis tools of classical Petri nets. We
then have to define a specific structure to explicitly represent the blocking management into
the analyzable model. An example is given in Fig. 18 for the blocking management of the t

transition, with the initial GEIS PN model in Fig. 18a and its transformation in analyzable
GET PN in Fig. 18b.

First we add elements allowing the modeling of the blocking (in light grey in Fig. 18b) of
the targeted transition t : (i) a blocking transition t block t which has a time interval [b, b]
and the same enabling conditions than t : we copy the same input arcs than the ones of t ,
only switching normal arcs into test ones; and (ii) a place p block t which prevents the
firing of t (after the firing of the blocking transition) thanks to an inhibitor arc. Note that the
firing of t block t does not change the marking of the input places of t which is p0p1p2.
Then we add the unblocking mechanism (in dark grey, to the right of Fig. 18b): (iii) for
each input place pi of t , we add a specific unblocking transition t unblock pi with inverse
enabling conditions; if one of the input places pi does not satisfy the enabling conditions
of t anymore (if its marking changes), then t will be immediately unblock, firing the related

Fig. 18 Blocking structure for analysis
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unblocking transitions thus consuming the token of p block t . For place and simplicity
reasons, we do not give the formal definition of this transformation.

6.3.3 Behaviors inclusion

The addition of time intervals does not change the proof of the behaviors inclusion in the
general case, except in the case of the blocking semantics. Indeed, the added blocking
structure modifies the structure of the Petri nets, adding places and transitions. To prove
the inclusion of the behaviors, we must show that the inclusion still exists despite of the
blocking structure. Thus we have to modify the equivalence relations defined Section 4.2.

Let N be a GEISPrT PN, and N ′ be the GET PN generated with the transformation
rules defined in Section 6.3.1. Let Pblock and Tblock respectively be the sets of places and
transitions added to the GET PN model for the modeling of the blocking of transitions. We
have T ′ = T ∪ Tblock and P ′ = P ∪ Pblock .

Definition 22 (Equivalence of runs) For a run in a GET PN, let UntimedNB be the
restriction of Untimed on the initial “non blocking” set of transitions, i.e. on T .

A GET run and a GEISPrT PN run are equivalent if their Duration values are the same,
and if their Untimed values contains the same non-blocking transitions of T in the same
order of execution. The only difference is the possible interleaving of transitions of TBlock

in the GEISPrT PN run. We formally note:17 ∀ρs ∈ RunGEIS , ∀ρa ∈ RunGET :

ρs ≈run ρa ⇐⇒ Duration(ρs) = Duration(ρa)

∧ Untimed(ρs) = UntimedNB(ρa)

Definition 23 (Equivalence of states) For a markingm in a GET PN, letmNB the restriction
of m on the “non blocking” set of places, i.e. on P .

Let Ns the synchronous GEISPrT PN semantics and Na the asynchronous GET PN
semantics. We consider the equivalence relation ≈ over states as: the states ss of Ns and sa
of Na are equivalent if the restriction of their markings to the non-blocking places are the
same:

ss ≈ sa ⇔
(
ms = mNB

a

)

Proof (SemGEISP rT �w SemGET ) We do not give here the details of the proof, we just
give the outlines. The weak timed simulation relation � remains the same as the one used
in Section 4.3, except that the equivalence relations used become those of Definitions 22
and 23.

Then the proof is quite similar as the one of Section 4.3 for all the “usual” behaviors
(runs). But the blocking semantics adds 3 possible behaviors in case of a potentially block-
able transition that we have to finely consider: (1) either the transition is fired inside its
firing interval, and then not blocked; (2) or its upper bound is reached but the transition is
still not firable, then it is blocked, and there is no unblocking possibility: the transition will
be blocked forever; (3) or it is blocked but will be unblocked later. Also, to complete the
proof of the whole representation of time in GEISPrT PN (and not only the blocking struc-
ture), we must add a fourth behavior which corresponds to the “as soon as possible” firing
semantics of a temporal transition without associated condition.

17The definition of GEIS runs is still valid for GEISPrT PN runs.
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The first and fourth of these behaviors are quite easy to prove, as the continuous con-
sideration of time in GET PN semantics naturally include all the discrete firing instants
(Popova 1991; Magnin et al. 2009). For the blocking situations, it is also quite easy to show
that the equivalence of the states and of the runs are kept, as (i) the marking of none of the
places of P is affected by the firing of the transitions of Tblock ; (ii) the enabling function
is only affected by the new blocking place; (iii) the blocking and unblocking transitions in
the GET PN are enabled at the same time than the blocking conditions in the GEISPrT PN
semantics, leading to the same action.

7 Conclusion

This paper presents a solution to formally design digital architecture (e.g. controllers) for
synchronously-executed embedded critical systems. The typical targeted applications are
active implantable medical devices (AIMD) implanted into human body to perform FES
(Functional Electrical Stimulation). In our context, the digital part of the controller of the
AIMD is implemented into a FPGA execution target in a synchronous way. But these works
could be used for the design of any critical systems that need high level of dependability
guarantee.

The goal of our work is to finely consider at the formal level all the executive constraints
imposed by the hardware target and the implementation strategy. The very critical aspect
of our system imposes that these constraints must be integrated from the very beginning of
the design process, within the analysis step, to guarantee that the verification results remain
consistent in all possible cases.

This article first presents our context, focusing on the two scientific key points: express-
ing and analyzing the interpretation (i.e. the link between the system and the real world) and
the synchronous implementation. We present in detail all the execution constraints implied
by our context, and explain how these constraints must be considered into the modeling
and the analysis purposes. Then Sections 2, 3 and 4 present the bases of our work: the
GEIS PN (Generalized Extended Interpreted Synchronous Petri Nets) semantics, which is
our basic execution semantics; then how to express it into a more classical PN (the GET
PN, better known as TPN) semantics; and finally the proof of the inclusion of the GEIS
PN semantics into the GET PN one. This inclusion offers the possibility to obtain consis-
tent verification results on our system using existing Petri nets analysis tools. The detailed
formal definition of the semantics, as well as this formal proof, are essential to guaran-
tee a high level of confidence in the final system, i.e. the generated on-chip real-time
controller.

In Sections 5 and 6, in an iterative way, we make our approach more complex to finally
integrate all our execution constraints in the final GEISPrT PN semantics, and prove that it
is still included into the GET one.

The work presented in this paper has two main results: an operational one, and a theo-
retical one. First, thanks to these works, we can use the HILECOP methodology to design
more critical controllers, with harder safety or real time constraints. We will be sure that
the model we designed respects the execution constraints of our hardware target and imple-
mentation strategy. HILECOP is currently used to the design of concrete and industrial
systems in the medical domain, mainly through the NEURINNOV start-up. Second, this
work broadens the scope of expressivity and analyzability of Petri nets extensions. Until
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then, none managed in the same formalism, both for modeling and analysis, all the charac-
teristics we have considered (weights on arcs, specific test and inhibitor arcs, interpretation
and time intervals, including the management of effective conflicts and the blocking of
transitions).

Perspectives As a result of this work, we want to go deeper into the analysis problem-
atic. For now, we propose to translate our model in the well-known (GE)TPN formalism,
thus using an over-estimated state space of the real one. This implies that many of the ana-
lyzed behaviors are unrealistic ones, as shown Fig. 7. This is a limitation in the properties
we want to verify. Liveness and reachability properties are often very useful properties,
which could not be guaranteed for now in our analysis solution. It could be interesting
to work on the semantics of a specific state space graph for the GEISPrT PN. We thus
could adapt existing analysis algorithms to this graph to obtain more pertinent verification
results.

Another element to work on is to go further than the modeling step, including the exe-
cution language semantics itself. For now, the execution constraints are expressed in the
Petri nets semantics GEISPrT PN. Then the model is automatically translated into a spe-
cific implementation in VHDL language, assuming that the execution constraints have been
well represented in the model, and that they are well preserved by the translation in VHDL.
To increase the reliability of the whole methodology, a PhD thesis is ongoing to formally
prove that this translation preserves the behaviors and the properties. The aim is so to prove
the equivalence between the GEISPrT PN specification and the VHDL code, using a COQ
based approach.

Glossary

AIMD Active Implantable Medical Device
Devices implanted into human body to perform FES solutions.

FES Functional Electrical Stimulation
Application of small electrical charges to nerves and muscles to artificially generate move-
ments. These solutions are useful in an increasing number of applications, including
pacemakers, deep brain stimulation, pain control and hearing restoration

FPGA Field-Programmable Gate Arrays
Specific execution target with real parallelism.

GETPN Generalized Extended Time Petri Nets
Petri nets extension with weight on arcs, test and inhibitor arcs, and time intervals on transi-
tions. This formalism is rarely explicitly named, and is often included in the more simple name
TPN.

GEIS PN Generalized Extended Interpreted Synchronous Petri Nets
Petri nets extension with weight on arcs, test and inhibitor arcs, with explicit interpretation
elements, and synchronously executed.

IPN Interpreted Petri Nets
Petri nets extension in which some elements of the model are linked with the real world
through interpretation elements (events and actions).

PN Petri Nets
Classical formalism for modeling of discrete event systems.

TPN Time Petri Nets
Petri nets extension with time intervals on transitions.

VHDL Generalized Extended Interpreted Synchronous Petri Nets
Programming language adapted to FPGA execution targets.

HILECOP High-Level Hardware Component Programming
Methodology designed in the INRIA team DEMAR/CAMIN to assist in the development of
safe AIMD.
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