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Abstract
Opacity is an information flow property characterizing whether a system reveals its secret
to a passive observer. Several notions of opacity have been introduced in the literature.
We study the notions of language-based opacity, current-state opacity, initial-state opac-
ity, initial-and-final-state opacity, K-step opacity, and infinite-step opacity. Comparing
the notions is a natural question that has been investigated and summarized by Wu and
Lafortune, who provided transformations among current-state opacity, initial-and-final-
state opacity, and language-based opacity, and, for prefix-closed languages, also between
language-based opacity and initial-state opacity. We extend these results by showing that all
the discussed notions of opacity are transformable to each other. Besides a deeper insight
into the differences among the notions, the transformations have applications in complexity
results. In particular, the transformations are computable in polynomial time and preserve
the number of observable events and determinism, and hence the computational complex-
ities of the verification of the notions coincide. We provide a complete and improved
complexity picture of the verification of the discussed notions of opacity, and improve
the algorithmic complexity of deciding language-based opacity, infinite-step opacity, and
K-step opacity.
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1 Introduction

Applications often require to keep some information about the behavior of a system
secret. Properties that guarantee such requirements include anonymity (Schneider and
Sidiropoulos 1996), noninterference (Hadj-Alouane et al. 2005), secrecy (Alur et al. 2006),
security (Focardi and Gorrieri 1994), and opacity (Mazarė 2004).

In this paper, we are interested in opacity for discrete-event systems (DESs) modeled by
finite automata. Opacity is a state-estimation property that asks whether a system prevents
an intruder from revealing the secret. The intruder is modeled as a passive observer with the
complete knowledge of the structure of the system, but with only limited observation of the
behavior of the system. Based on the observation, the intruder estimates the behavior of the
system, and the system is opaque if the intruder never reveals the secret. In other words, for
any secret behavior of the system, there is a non-secret behavior of the system that looks the
same to the intruder.

If the secret is modeled as a set of states, the opacity is referred to as state-based. Bryans
et al. (2005) introduced state-based opacity for systems modeled by Petri nets, Saboori and
Hadjicostis (2007) adapted it to (stochastic) automata, and Bryans et al. (2008) generalized
it to transition systems. If the secret is modeled as a set of behaviors, the opacity is referred
to as language-based. Language-based opacity was introduced by Badouel et al. (2007) and
Dubreil et al. (2008). For more details, we refer the reader to the overview by Jacob et al.
(2016).

Several notions of opacity have been introduced in the literature. In this paper, we are
interested in the notions of current-state opacity (CSO), initial-state opacity (ISO), initial-
and-final-state opacity (IFO), language-based opacity (LBO), K-step opacity (K-SO), and
infinite-step opacity (INSO). Current-state opacity is the property that the intruder can never
decide whether the system is currently in a secret state. Initial-state opacity is the property
that the intruder can never reveal whether the computation started in a secret state. Initial-
and-final-state opacity of Wu and Lafortune (2013) is a generalization of both, where the
secret is represented as a pair of an initial and a marked state. Consequently, initial-state
opacity is a special case of initial-and-final-state opacity where the marked states do not
play a role, and current-state opacity is a special case where the initial states do not play a
role.

While initial-state opacity prevents the intruder from revealing, at any time during the
computation, whether the system started in a secret state, current-state opacity prevents
the intruder only from revealing whether the current state of the system is a secret state.
However, it may happen that the intruder realizes in the future that the system was in a
secret state at some former point of the computation. For instance, if the intruder estimates
that the system is in one of two possible states and, in the next step, the system proceeds by
an observable event that is possible only from one of the states, then the intruder reveals the
state in which the system was one step ago.

This issue has been considered in the literature and led to the notions of K-step opac-
ity (K-SO) and infinite-step opacity (INSO) introduced by Saboori and Hadjicostis (2007,
2012). While K-step opacity requires that the intruder cannot ascertain the secret in the
current and K subsequent states, infinite-step opacity requires that the intruder can never
ascertain that the system was in a secret state. Notice that 0-step opacity coincides with
current-state opacity by definition, and that an n-state automaton is infinite-step opaque if
and only if it is (2n − 2)-step opaque (Yin and Lafortune 2017).
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Comparing different notions of opacity for automata models, Saboori and Hadji-
costis (Saboori and Hadjicostis 2008) provided a language-based definition of initial-state
opacity, Cassez et al. (2012) transformed language-based opacity to current-state opacity,
and Wu and Lafortune showed that current-state opacity, initial-and-final-state opacity, and
language-based opacity can be transformed to each other. They further provided transforma-
tions of initial-state opacity to language-based opacity and to initial-and-final-state opacity,
and, for prefix-closed languages, a transformation of language-based opacity to initial-state
opacity.

In this paper, we extend these results by showing that, for automata models, all the
discussed notions of opacity are transformable to each other. As well as the existing transfor-
mations, our transformations are computable in polynomial time and preserve the number
of observable events and determinism (whenever it is meaningful). In more detail, the trans-
formations of Wu and Lafortune (2013) preserve the determinism of transitions, but result
in automata with a set of initial states. This issue can, however, be easily fixed by adding a
new initial state, connecting it to the original initial states by new unobservable events, and
making the original initial states non-initial. We summarize our results, together with the
existing results, in Fig. 1.

There are two immediate applications of the transformations. First, the transformations
provide a deeper understanding of the differences among the opacity notions from the struc-
tural point of view. For instance, the reader may deduce from the transformations that,
for prefix-closed languages, the notions of language-based opacity, initial-state opacity,
and current-state opacity coincide, or that to transform current-state opacity to infinite-step
opacity means to add only a single state and a few transitions.

Second, the transformations provide a tool to obtain the complexity results for all the
discussed opacity notions by studying just one of the notions. For an illustration, consider,
for instance, our recent result showing that deciding current-state opacity for systems mod-
eled by DFAs with three events, one of which is unobservable, is PSPACE-complete (Balun
and Masopust 2020). Since we can transform the problems of deciding current-state opacity
and of deciding infinite-step opacity to each other in polynomial time, preserving deter-
minism and the number of observable events, we obtain that deciding infinite-step opacity
for systems modeled by DFAs with three events, one of which is unobservable, is PSPACE-
complete as well. In particular, combining the transformations with known results (Balun
and Masopust 2020; Jacob et al. 2016), we obtain a complete complexity picture of the
verification of the discussed notions of opacity as summarized in Table 1.

Fig. 1 Overview of the transformations among the notions of opacity for automata models
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Table 1 Complexity of verifying the notions of opacity for DESs with �o being the set of observable events
following from the transformations and known results; n stands for the number of states of the input automa-
ton, � for the number of observable events of the input automaton, and m ≤ �n2 for the number of transitions
in the projected automaton of the input automaton

Opacity notion |�o| = 1 |�o| ≥ 2 Order

CSO CONP-
complete (Balun
and Masopust
2020)

PSPACE-
complete (Balun
and Masopust
2020)

O(�2n) (Saboori 2011)

LBO CONP-complete PSPACE-complete O((n + m�)2n) (Thm 3)

ISO NL-complete (Thm 2) PSPACE-complete O(�2n) (Wu and Lafortune 2013)

IFO CONP-complete PSPACE-complete O(�22n) (Wu and Lafortune 2013)

K-SO CONP-complete PSPACE-complete O((K + 1)2n(n + m�2)) (Section 4.3.4)

INSO CONP-complete PSPACE-complete O((n + m�)2n) (Section 4.2.4)

The fact that checking opacity for DESs is PSPACE-complete was known for some of the
considered notions (Jacob et al. 2016). In particular, deciding current-state opacity, initial-
state opacity, and language-based opacity were known to be PSPACE-complete, deciding
K-step opacity was known to be NP-hard, and deciding infinite-step opacity was known to
be PSPACE-hard.

Complexity theory tells us that any two PSPACE-complete problems can be transformed
to each other in polynomial time. In other words, it gives the existence of polynomial trans-
formations between the notions of opacity for which the verification is PSPACE-complete.
However, the theory and the PSPACE-hardness proofs presented in the literature do not give
a clue how to obtain these transformations. Therefore, from the complexity point of view,
our contribution is not the existence of the transformations, but the construction of specific
transformations. Since the presented transformations preserve determinism and the num-
ber of observable events, they allow us to present stronger results than those known in the
literature (Jacob et al. 2016) that we summarize in Table 1.

The transformations further allow us to improve the algorithmic complexity of deciding
language-based opacity, infinite-step opacity, and K-step opacity, although we do not use the
transformations themselves, but rather the deeper insight into the problems they provide. For
language-based opacity, Lin (2011) suggested an algorithm with complexity O(22n), where
n is the number of states of the input automaton. In this paper, we improve this complexity
to O((n + m�)2n), where � = |�o| is the number of observable events and m ≤ �n2 is the
number of transitions in the projected automaton of the input automaton. For infinite-step
opacity and K-step opacity, the latest results are by Yin and Lafortune (2017) who designed
an algorithm for checking infinite-step opacity with complexity O(�22n), and an algorithm
for checking K-step opacity with complexity O(min{�22n, �K+12n}). In this paper, we sug-
gest a new algorithm for deciding infinite-step opacity with complexity O((n + m�)2n),
and a new algorithm for checking K-step opacity with complexity O((K +1)2n(n+m�2)).
Notice that K is bounded by 2n − 2, since an n-state automaton is infinite-step opaque if
and only if it is (2n − 2)-step opaque (Yin and Lafortune 2017). Consequently, our algo-
rithm improves the complexity if K is either very large (larger than 2n − 2) or polynomial
with respect to n; otherwise, the two-way observer technique of Yin and Lafortune (2017)
is more efficient, and it is a challenging open problem whether its complexity can be further
improved. All our results are summarized in Table 1.
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2 Preliminaries

We assume that the reader is familiar with the basic notions of automata theory (Cassandras
and Lafortune 2008). For a set S, |S| denotes the cardinality of S, and 2S the power set of
S. Let N denote the set of all non-negative integers. An alphabet � is a finite nonempty set
of events. A string over � is a sequence of events from �. Let �∗ denote the set of all finite
strings over �; the empty string is denoted by ε. A language L over � is a subset of �∗.
The set of all prefixes of strings of L is the set L = {u | there is v ∈ �∗ such that uv ∈ L}.
For a string u ∈ �∗, |u| denotes the length of u, and u denotes the set of all prefixes
of u.

A nondeterministic finite automaton (NFA) over an alphabet � is a structure G =
(Q, �, δ, I, F ), where Q is a finite set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a
set of marked states, and δ : Q × � → 2Q is a transition function that can be extended to
the domain 2Q × �∗ by induction. To simplify our proofs, we use the notation δ(Q, S) =
∪s∈S δ(Q, s), where S ⊆ �∗. For a set of states Q0 ⊆ Q, the language marked by G from
the states of Q0 is the set Lm(G,Q0) = {w ∈ �∗ | δ(Q0, w) ∩ F 
= ∅}, and the language
generated by G from the states of Q0 is the set L(G, Q0) = {w ∈ �∗ | δ(Q0, w) 
= ∅}.
The language marked by G is then Lm(G) = Lm(G, I ), and the language generated by G is
L(G) = L(G, I ). The NFA G is deterministic (DFA) if |I | = 1 and |δ(q, a)| ≤ 1 for every
q ∈ Q and a ∈ �. An automaton G is non-blocking if Lm(G) = L(G).

A discrete-event system (DES) G over � is an NFA together with the partition of the
alphabet � into two disjoint subsets �o and �uo = � \�o of observable and unobservable
events, respectively. In the case where all states of the automaton are marked, we simply
write G = (Q, �, δ, I ) without specifying the set of marked states.

When discussing the state estimation properties, the literature often studies determin-
istic systems with a set of initial states. Such systems are known as deterministic DES
and defined as a DFA with several initial states; namely, a deterministic DES is an NFA
G = (Q, �, δ, I, F ), where |δ(q, a)| ≤ 1 for every q ∈ Q and a ∈ �.

The opacity property is based on partial observations of events described by projection
P : �∗ → �∗

o . The projection is a morphism defined by P(a) = ε for a ∈ �uo, and
P(a) = a for a ∈ �o. The action of P on a string σ1σ2 · · · σn, with σi ∈ � for 1 ≤ i ≤ n, is
to erase all events that do not belong to�o, that is, P(σ1σ2 · · · σn) = P(σ1)P (σ2) · · · P(σn).
The definition can be readily extended to languages.

Let G be a NFA over �, and let P : �∗ → �∗
o be a projection. By the projected automa-

ton of G, we mean the automaton P(G) obtained from G by replacing every transition
(p, a, q) by the transition (p, P (a), q), and by eliminating the ε-transitions. In particular,
if δ is the transition function of G, then the transition function γ of the automaton P(G) is
defined as γ (q, a) = δ̂(q, a), where δ̂ : Q × �∗ → 2Q is the extension of δ to the domain
Q × �∗, that is, δ̂(q, ε) = {q} and δ̂(q, wa) = ⋃

p∈δ̂(q,w)
δ(p, a). Then P(G) is an NFA

over �o, with the same set of states as G, that recognizes the language P(Lm(G)) and can
be constructed in polynomial time (Hopcroft and Ullman 1979). The DFA constructed from
P(G) by the subset construction is called an observer (Cassandras and Lafortune 2008). In
the worst case, the observer has exponentially many states compared with the automaton
G (Jirȧskovȧ and Masopust 2012; Wong 1998).

A decision problem is a yes-no question. A decision problem is decidable if there is
an algorithm that solves it. Complexity theory classifies decidable problems into classes
based on the time or space an algorithm needs to solve the problem. The complexity classes
we consider are L, NL, P, NP, and PSPACE denoting the classes of problems solvable
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by a deterministic logarithmic-space, nondeterministic logarithmic-space, deterministic
polynomial-time, nondeterministic polynomial-time, and deterministic polynomial-space
algorithm, respectively. The hierarchy of classes is L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Which
of the inclusions are strict is an open problem. The widely accepted conjecture is that all
are strict. A decision problem is NL-complete (resp. NP-complete, PSPACE-complete) if (i)
it belongs to NL (resp. NP, PSPACE) and (ii) every problem from NL (resp. NP, PSPACE)
can be reduced to it by a deterministic logarithmic-space (resp. polynomial-time) algorithm.
Condition (i) is called membership and condition (ii) hardness.

3 Notions of opacity

In this section, we recall the definitions of the notions of opacity we discuss. The notion of
initial-and-final-state opacity is recalled to make the paper self-contained.

Current-state opacity asks whether the intruder cannot decide, at any instance of time,
whether the system is currently in a secret state.

Definition 1 (Current-state opacity (CSO)) Given a DES G = (Q, �, δ, I ), a projection
P : �∗ → �∗

o , a set of secret states QS ⊆ Q, and a set of non-secret states QNS ⊆ Q.
System G is current-state opaque if for every string w such that δ(I, w) ∩ QS 
= ∅, there
exists a string w′ such that P(w) = P(w′) and δ(I,w′) ∩ QNS 
= ∅.

The definition of current-state opacity can be reformulated as a language inclusion as
shown in the following lemma. This result is similar to that of Wu and Lafortune (2013)
used to transform current-state opacity to language-based opacity. We use this alternative
definition to simplify proofs.

Lemma 1 Balun and Masopust (2020) Let G = (Q, �, δ, I ) be a DES, P : �∗ → �∗
o a

projection, and QS, QNS ⊆ Q sets of secret and non-secret states, respectively. Let GS =
(Q, �, δ, I, QS) and GNS = (Q, �, δ, I, QNS), then G is current-state opaque if and only
if Lm(P (GS)) ⊆ Lm(P (GNS)).

The second notion of opacity under consideration is language-based opacity. Intuitively,
a system is language-based opaque if for any string w in the secret language, there exists
a string w′ in the non-secret language with the same observation P(w) = P(w′). In this
case, the intruder cannot conclude whether the secret string w or the non-secret string w′
has occurred. We recall the most general definition by Lin (2011).

Definition 2 (Language-based opacity (LBO)) Given a DESG = (Q, �, δ, I ), a projection
P : �∗ → �∗

o , a secret language LS ⊆ L(G), and a non-secret language LNS ⊆ L(G).
System G is language-based opaque if LS ⊆ P −1P(LNS).

It is worth mentioning that the secret and non-secret languages are often considered to
be regular; and we consider it as well. The reason is that, for non-regular languages, the
inclusion problem is undecidable; see Asveld and Nijholt (2000) for more details.

The third notion is the notion of initial-state opacity. Initial-state opacity asks whether
the intruder can never reveal whether the computation started in a secret state.
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Definition 3 (Initial-state opacity (ISO)) Given a DES G = (Q, �, δ, I ), a projection
P : �∗ → �∗

o , a set of secret initial states QS ⊆ I , and a set of non-secret initial states
QNS ⊆ I . System G is initial-state opaque with respect to QS , QNS and P if for every
w ∈ L(G,QS), there exists w′ ∈ L(G,QNS) such that P(w) = P(w′).

The fourth notion is the notion of initial-and-final-state opacity of Wu and Lafortune
(2013). Initial-and-final-state opacity is a generalization of both current-state opacity and
initial-state opacity, where the secret is represented as a pair of an initial and a marked state.
Consequently, initial-state opacity is a special case of initial-and-final-state opacity where
the marked states do not play a role, and current-state opacity is a special case where the
initial states do not play a role.

Definition 4 (Initial-and-final-state opacity (IFO)) Given a DES G = (Q, �, δ, I ), a pro-
jection P : �∗ → �∗

o , a set of secret state pairs QS ⊆ I × Q, and a set of non-secret
state pairs QNS ⊆ I × Q. System G is initial-and-final-state opaque with respect to QS ,
QNS and P if for every secret pair (q0, qf ) ∈ QS and every w ∈ L(G, q0) such that
qf ∈ δ(q0, w), there exists (q ′

0, q
′
f ) ∈ QNS and w′ ∈ L(G, q ′

0) such that q ′
f ∈ δ(q ′

0, w
′)

and P(w) = P(w′).

The fifth notion is the notion of K-step opacity. K-step opacity is a generalization of
current-state opacity requiring that the intruder cannot reveal the secret in the current and
K subsequent states. By definition, current-state opacity is equivalent to 0-step opacity.

We slightly generalize and reformulate the definition of Saboori and Hadjicostis (2012).

Definition 5 (K-step opacity (K-SO)) Given a system G = (Q, �, δ, I ), a projection
P : �∗ → �∗

o , a set of secret states QS ⊆ Q, a set of non-secret states QNS ⊆ Q, and a
non-negative integer K ∈ N. System G is K-step opaque with respect to QS , QNS , and P

if for every string st ∈ L(G) such that |P(t)| ≤ K and δ(δ(I, s) ∩ QS, t) 
= ∅, there exists
a string s′t ′ ∈ L(G) such that P(s) = P(s′), P(t) = P(t ′), and δ(δ(I, s′) ∩ QNS, t ′) 
= ∅.

Finally, the last notion we consider is the notion of infinite-step opacity. Infinite-step
opacity is a further generalization of K-step opacity by setting K being infinity. Actually,
Yin and Lafortune (2017) have shown that an n-state automaton is infinite-step opaque if
and only if it is (2n − 2)-step opaque. Again, we slightly generalize and reformulate the
definition of Saboori and Hadjicostis (Saboori and Hadjicostis 2011).

Definition 6 (Infinite-step opacity (INSO)) Given a system G = (Q,�, δ, I ), a projection
P : �∗ → �∗

o , a set of secret states QS ⊆ Q, and a set of non-secret states QNS ⊆
Q. System G is infinite-step opaque with respect to QS , QNS and P if for every string
st ∈ L(G) such that δ(δ(I, s) ∩ QS, t) 
= ∅, there exists a string s′t ′ ∈ L(G) such that
P(s) = P(s′), P(t) = P(t ′), and δ(δ(I, s′) ∩ QNS, t ′) 
= ∅.

4 Transformations

Although some of the transformations were previously known in the literature, Wu and
Lafortune (2013) were first who studied the transformations systematically. In particular,
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they provided polynomial-time transformations among current-state opacity, language-
based opacity, initial-state opacity, and initial-and-final-state opacity, see Fig. 1. Inspecting
the reductions, it can be seen that after eliminating the unnecessary Trim operations, the
transformations use only logarithmic space, preserve the number of observable events, and
determinism (whenever it is meaningful). As we already pointed out, the transformations of
Wu and Lafortune (2013) preserve the determinism of transitions, but they admit a set of
initial states. This issue can, however, be easily eliminated by adding a new initial state, con-
necting it to the original initial states by new unobservable events, and making the original
initial states non-initial.

However, their transformation from language-based opacity to initial-state opacity is
restricted only to the case where the secret and non-secret languages of the language-
based opacity problem are prefix closed. We complete the polynomial-time transformations
among all the discussed notions of opacity. In particular, we provide a general transforma-
tion from language-based opacity to initial-state opacity in Section 4.1.1, transformations
between infinite-step opacity and current-state opacity in Section 4.2, and transformations
between K-step opacity and current-state opacity in Section 4.3. All the transformations
preserve the number of observable events and determinism. Except for a few exceptions,
the transformations need only logarithmic space. Our results are summarized in Fig. 1 with
references to the corresponding sections.

The following auxiliary lemma states that we can reduce the number of observable events
in DESs with at least three observable events without affecting current-state opacity and
initial-state opacity of the DES. We make use of this lemma to preserve the number of
observable events in cases where we introduce new observable events in our reductions,
namely in Sections 4.1.1, 4.2.2, and 4.3.2.

Lemma 2 Let G = (Q, �, δ, I, F ) be an NFA, and let �o ⊆ �o contain at least three
events. Let G′ = (Q′, (� − �o) ∪ {0, 1}, δ′, I, F ) be an NFA obtained from G as follows.
Let k = log2(|�o|)�, and let e : �o → {0, 1}k be a binary encoding of the events of �o. We
replace every transition (p, a, q) with a ∈ �o by k transitions

(p, b1, pb1), (pb1 , b2, pb1b2), . . . , (pb1···bk−1 , bk, q)

where e(a) = b1b2 · · · bk ∈ {0, 1}k , and pb1 , . . . , pb1···bk−1 are states that are added to the
state set ofG′. Notice that these states are neither secret nor non-secret and that, to preserve
determinism, they are newly created when they are needed for the first time, and reused
when they are needed later during the replacements, cf. Figure 2 illustrating a replacement
of three observable events {a1, a2, a3} with the encoding e(a1) = 00, e(a2) = 01, and
e(a3) = 10.

Fig. 2 The replacement of three observable events {a1, a2, a3} with the encoding e(a1) = 00, e(a2) = 01,
and e(a3) = 10, and new states p0 and p1
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Then G is current-state (initial-state) opaque with respect to QS , QNS , and P : �∗ →
�∗

o if and only if G′ is current-state (initial-state) opaque with respect to QS , QNS , and
P ′ : [(� − �o) ∪ {0, 1}]∗ → [(�o − �o) ∪ {0, 1}]∗.

Proof To show that G is current-state opaque if and only if G′ is current-state opaque,
we define the languages LS = Lm(Q, �, δ, I, QS), LNS = Lm(Q, �, δ, I, QNS), L′

S =
Lm(Q′, (� − �o) ∪ {0, 1}, δ′, I,QS), and L′

NS = Lm(Q′, (� − �o) ∪ {0, 1}, δ′, I, QNS).
Using Lemma 1, we now need to show that P(LS) ⊆ P(LNS) if and only if P ′(L′

S) ⊆
P ′(L′

NS). To this end, we define a morphism f : �∗ → ((� − �o) ∪ {0, 1})∗ so that
f (a) = e(a) for a ∈ �o, and f (a) = a for a ∈ � − �o. By the definition of e and the
construction of G′, for any string w, we have that w ∈ L(G) if and only if f (w) ∈ L(G′).
In particular, P(w) ∈ P(LS) if and only if P ′(f (w)) ∈ P ′(L′

S), and P(w) ∈ P(LNS) if
and only if P ′(f (w)) ∈ P ′(L′

NS), which completes this part of the proof.
To show that G is initial-state opaque if and only if G′ is initial-state opaque, we define

the languages LS = L(Q,�, δ,QS), LNS = L(Q,�, δ,QNS), L′
S = L(Q′, (� − �o) ∪

{0, 1}, δ′,QS), and L′
NS = L(Q′, (� −�o)∪{0, 1}, δ′, QNS). Since this transforms initial-

state opacity to language-based opacity (Wu and Lafortune 2013), it is sufficient to show
that P(LS) ⊆ P(LNS) if and only if P ′(L′

S) ⊆ P ′(L′
NS). However, this can be shown

analogously as above.

Notice that this binary encoding can be done in polynomial time, and that it preserves
determinism.

4.1 Transformations between LBO and ISO

In this section, we discuss the transformations between language-based opacity and initial-
state opacity. The transformation from initial-state opacity to language-based opacity has
been provided by Wu and Lafortune (2013), as well as the transformation from language-
based opacity to initial-state opacity for the case where both the secret and the non-secret
language of the language-based opacity problem are prefix closed. We now extend the
transformation from language-based opacity to initial-state opacity to the general case.

4.1.1 Transforming LBO to ISO

The language-based opacity problem consists of a DES GLBO over �, a projection
P : �∗ → �∗

o , a secret language LS ⊆ L(G), and a non-secret language LNS ⊆ L(G). We
transform it to a DES GISO in such a way that GLBO is language-based opaque if and only
if GISO is initial-state opaque.

Assume that the languages LS and LNS are represented by the non-blocking automata
AS = (QS, �S, δS, IS, FS) andANS = (QNS,�NS, δNS, INS, FNS), respectively. Without
loss of generality, we may assume that their sets of states are disjoint, that is,QS∩QNS = ∅.

Our transformation proceeds in two steps:

1. We construct a DES GISO with one additional observable event @.
2. We use Lemma 2 to reduce the number of observable events of GISO by one.

Since the second step follows from Lemma 2, we only describe the first step, that is, the
construction of GISO over � ∪{@}, and the specification of the sets of secret states Q′

S and
non-secret states Q′

NS .
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Fig. 3 Transforming LBO to ISO

From the automata AS and ANS , we construct the automata GS = (QS ∪
{xS}, �S, δS, IS, QS ∪ {xS}) and GNS = (QNS ∪ {xNS}, �NS, δNS, INS, QNS ∪ {xNS}) by
adding two new states xS and xNS , and the following transitions, see Fig. 3 for an illustration
of the construction:

– for every state q ∈ FS , we add a new transition (q,@, xS) to δS ;
– for every state q ∈ FNS , we add a new transition (q,@, xNS) to δNS .

Let Q′
S = IS denote the set of secret initial states of GISO , and let Q′

NS = INS denote
the set of non-secret initial states of GISO . We extend projection P to P ′ : (� ∪ {@})∗ →
(�o ∪ {@})∗. Finally, let GISO denote the automata GS and GNS considered as a single
NFA. Before we show that GLBO is language-based opaque if and only if GISO is initial-
state opaque, notice that the transformation can be done in polynomial time and that it
preserves determinism.

Theorem 1 The DES GLBO is language-based opaque with respect to LS , LNS , and P if
and only if the DES GISO is initial-state opaque with respect to Q′

S , Q
′
NS , and P ′.

Proof We need to show that P(LS) ⊆ P(LNS) if and only if P ′(L(GS)) ⊆ P ′(L(GNS)).
However, by construction, L(GS) = LS ∪ LS@ and L(GNS) = LNS ∪ LNS@, and

hence P(LS) ⊆ P(LNS) if and only if P ′(L(GS)) ⊆ P ′(L(GNS)), which is if and only if
GISO is initial-state opaque.

We now provide an illustrative example.

Example 1 Let G1 over � = {a, b, c} depicted in Fig. 4 (left) be the instance of the LBO
problem with the secret language LS = abb∗ and the non-secret language LNS = acb∗.
Our transformation of LBO to ISO then results in the DES G′

1 depicted in Fig. 4 (right)
with a new observable event @, a single secret initial state 1, and a single non-secret initial
state 4. We distinguish two cases depending on whether event c is observable or not.

In the first case, we assume that event c is unobservable. In this case, G1 is language-
based opaque, because P(LS) ⊆ P(LNS), and the reader can see that P(L(G′

1, 1)) =
abb∗@ ⊆ ab∗@ = P(L(G′

1, 4)). Therefore, G
′
1 is initial-state opaque.
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Fig. 4 An example of the transformation of the LBO problem (left) to the ISO problem (right)

In the second case, we assume that event c is observable. In this case, G1 is not language-
based opaque, because ab ∈ P(LS) whereas ab 
∈ P(LNS), and we can see that ab ∈
L(G′

1, 1) and ab 
∈ L(G′
1, 4). Therefore, G

′
1 is not initial-state opaque.

4.1.2 The case of a single observable event

The second step of our construction, Lemma 2, requires that GISO has at least three observ-
able events or, equivalently, that GLBO has at least two observable events. Consequently,
our transformation does not preserve the number of observable events if GLBO has a single
observable event. In fact, we show that there does not exist such a transformation unless P =
NP, which is a longstanding open problem of computer science. Deciding language-based
opacity for systems with a single observable event is CONP-complete (Holzer and Kutrib
2011; Stockmeyer and Meyer 1973). We show that deciding initial-state opacity for systems
with a single observable event is NL-complete, and hence efficiently solvable on a parallel
computer (Arora and Barak 2009). In particular, the problem can be solved in polynomial
time.

Theorem 2 Deciding initial-state opacity for DESs with a single observable event is NL-
complete.

Proof Deciding initial-state opacity is equivalent to checking the inclusion of two prefix-
closed languages. Namely, a DES G with �o = {a} is initial-state opaque with respect
to secret states QS and non-secret states QNS if and only if KS ⊆ KNS for KS =
P(L(G,QS)) and KNS = P(L(G,QNS)). Since the languages KS and KNS are prefix-
closed, they are either finite, consisting of at most |Q| strings, or equal to {a}∗.

To show that the problem belongs to NL, we show how to verify KS 
⊆ KNS in nondeter-
ministic logarithmic space. Then, since NL is closed under complement (Immerman 1988;
Szelepcsėnyi 1988), KS ⊆ KNS belongs to NL. Thus, to check that KS 
⊆ KNS in nonde-
terministic logarithmic space, we guess k ∈ {0, . . . , |Q|} in binary, store it in logarithmic
space, and verify that ak ∈ KS and ak /∈ KNS . To verify ak ∈ KS , we guess a path in G step
by step, storing only the current state, and counting the number of steps by decreasing k by
one in each step; logarithmic space is sufficient for this. Since ak /∈ KNS belongs to the
complement of NL, which coincides with NL, we can check ak /∈ KNS in nondeterministic
logarithmic space as well.

To show that deciding initial-state opacity for DESs with a single observable event is
NL-hard, we reduce the DAG reachability problem (Jones 1975): given a DAG G = (V ,E)

and nodes s, t ∈ V , the problem asks whether t is reachable from s.
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From G, we construct a DES A = (V ∪ {i}, {a}, δ, {s, i}), where i is a new initial state
and a is an observable event, as follows. With each node of G, we associate a state in A.
Whenever there is an edge from j to k in G, we add an a-transition from j to k toA. We add
a self-loop labeled by a to state t and to state i. The set of secret initial states is QS = {i}
and the set of non-secret initial states QNS = {s}. Then,A is initial-state opaque if and only
if there is a path from s to t in G. Indeed, L(A, i) = {a}∗ is included in L(A, s) if and only
if L(A, s) = {a}∗, which is if and only if t is reachable from s.

4.1.3 Algorithmic complexity of deciding LBO

The algorithmic complexity of deciding whether a given DES is language-based opaque
with respect to given secret and non-secret languages has been investigated in the literature.
Lin (2011) suggested an algorithm with the complexity O(22n), where n is the order of the
state spaces of the automata representing the secret and non-secret languages. The same
complexity has been achieved by Wu and Lafortune (2013) using the transformation to
current-state opacity. We improve this complexity.

Theorem 3 The time complexity of deciding whether a DES G is language-based opaque
with respect to a projection P , a secret language LS ⊆ L(G), and a non-secret language
LNS ⊆ L(G) is O(m�2n2 + n12n2), where n1 is the number of states of the automaton
recognizing LS , n2 is the number of states recognizing LNS , m ≤ �n21 is the number of
transitions of an NFA recognizing P(LS), and � is the number of observable events.

Proof Let GS and GNS be automata recognizing LS and LNS with n1 and n2 states, respec-
tively. Then P(LS) ⊆ P(LNS) if and only if P(LS) ∩ co-P(LNS) = ∅, where co-P(LNS)

stands for �∗ − P(LNS). We represent P(LS) by the projected automaton P(GS) with
m transitions and at most n1 states, and co-P(LNS) by the complement of the observer of
GNS , denoted by co-Gobs

NS , which has at most 2n2 states and �2n2 transitions. The problem
is now equivalent to checking whether the language of P(GS) ∩ co-Gobs

NS is empty, which
means to search the structure for a reachable marked state. Since P(GS) has at most n1
states and m ≤ �n21 transitions, the structure has O(m�2n2 + n12n2) transitions and states,
which completes the proof.

4.2 Transformations between CSO and INSO

In this section, we provide the transformations between current-state opacity and infinite-
step opacity. To the best of our knowledge, no transformations between current-state opacity
and infinite-step opacity have been discussed in the literature so far.

4.2.1 Transforming CSO to INSO

We first focus on the transformation from current-state opacity to infinite-step opacity. The
problem of deciding current-state opacity consists of a DESGCSO = (Q, �, δ, I ), a projec-
tion P : �∗ → �∗

o , a set of secret states QS ⊆ Q, and a set of non-secret states QNS ⊆ Q.
From GCSO , we construct a DES GINSO over the alphabet � ∪{u}, where u is a new unob-
servable event. Specifically, we construct GINSO = (Q ∪ {q	}, � ∪ {u}, δ′, I ) from GCSO
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Fig. 5 Transforming CSO to INSO

by adding a new state q	 that is neither secret nor non-secret, and by defining δ′ as follows,
see Fig. 5 for an illustration:

1. δ′ = δ, that is, δ′ is initialized as δ and further extended as follows;
2. for each state q ∈ QNS , we add a transition (q, u, q	) to δ′;
3. for each a ∈ �, we add a self-loop (q	, a, q	) to δ′.

We extend the projection P to the projection P ′ : (� ∪ {u})∗ → �∗
o . The sets QS and QNS

remain unchanged.
Notice that the transformation preserves the number of observable events and deter-

minism, and that it requires only logarithmic space. It remains to show that GCSO is
current-state opaque if and only if GINSO is infinite-step opaque.

Theorem 4 The DES GCSO is current-state opaque with respect to QS , QNS , and P if and
only if the DES GINSO is infinite-step opaque with respect to QS , QNS , and P ′.

Proof Assume first that GCSO is not current-state opaque. Since the new state q	 is neither
secret nor non-secret, we have that GINSO is not current-state opaque either. Consequently,
GINSO is not infinite-step opaque.

On the other hand, assume that GCSO is current-state opaque. Since the new state q	

is neither secret nor non-secret, we have that GINSO is current-state opaque as well. Let
st ∈ L(GINSO) be such that δ′(δ′(I, s)∩QS, t) 
= ∅; in particular, δ′(I, s)∩QS 
= ∅. Then,
since GINSO is current-state opaque, there exists s′ ∈ L(GINSO) such that P ′(s′) = P ′(s)
and δ′(I, s′) ∩ QNS 
= ∅. By construction, s′ can be extended by the string ut using the
transitions to state q	 followed by self-loops in state q	. Therefore, δ′(δ′(I, s′)∩QNS, ut) 
=
∅ and P ′(st) = P ′(sut), which shows that GINSO is infinite-step opaque.

We now illustrate the construction in the following example.

Example 2 Let G2 over � = {a, b, c} depicted in Fig. 6 (left) be the instance of the CSO
problem with the set of secret states QS = {2} and the set of non-secret states QNS = {5}.
Our transformation of CSO to INSO then results in the DES G′

2 depicted in Fig. 6 (right)
with a new state q	 and a new unobservable event u. We distinguish two cases depending
on whether event c is observable or not.

If event c is unobservable, then G2 is current-state opaque, because the only string lead-
ing to a secret state, state 2, is the string a, for which the string ac leading to the non-secret
state, state 5, satisfies that P(a) = P(ac). Then, the reader can see that G′

2 is infinite-step
opaque, because the only possible extensions of the string a from the secret state 2 are of
the form bk , for k ∈ N, and for every such extension there is an extension ubk of the string
ac from the non-secret state 5 such that P(abk) = P(acubk).
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Fig. 6 An example of the transformation of the CSO problem (left) to the INSO problem (right)

If event c is observable, then G2 is not current-state opaque, because the only string
leading to a non-secret state, string ac, has a different observation then the string a leading
to the secret state, that is, P(ac) 
= P(a). Consequently, the reader can verify that G′

2 is not
current-state opaque, and hence neither infinite-step opaque.

4.2.2 Transforming INSO to CSO

Transforming infinite-step opacity to current-state opacity is technically more involved.
The problem of deciding infinite-step opacity consists of a DES GINSO = (Q, �, δ, I ),
a projection P : �∗ → �∗

o , a set of secret states QS ⊆ Q, and a set of non-secret states
QNS ⊆ Q. From GINSO , we construct a DES GCSO in the following two steps:

1. We construct a DESGCSO such thatGCSO is current-state opaque if and only ifGINSO

is infinite-step opaque. In this step of the construction, GCSO has one observable event
more than GINSO .

2. To reduce the number of observable events by one, we apply Lemma 2. Consequently,
the resulting DES has the same number of observable events asGINSO , ifGINSO has at
least two observable events, is deterministic if and only if GCSO is, and is current-state
opaque if and only if GCSO is.

We now describe the construction of GCSO = (Q ∪ Q+ ∪ Q−, � ∪ {@}, δ′, I ), where
Q+ = {q+ | q ∈ Q}, Q− = {q− | q ∈ Q}, and @ is a new observable event. To this end,
we first make two disjoint copies ofGINSO , denoted byGS andGNS , where the set of states
of GS is denoted by Q′

S = Q+ and the set of states of GNS is denoted by Q′
NS = Q−. The

DES GCSO is taken as the disjoint union of the automata GINSO , GS , and GNS , see Fig. 7
for an illustration. Furthermore, for every state q ∈ QS , we add the transition (q,@, q+)

and, for every state q ∈ QNS , we add the transition (q,@, q−). The set of secret states of
GCSO is Q′

S and the set of non-secret states of GCSO is Q′
NS . We extend projection P to

P ′ : (� ∪ {@})∗ → (�o ∪ {@})∗.
Notice that GCSO is deterministic if and only if GINSO is, and that logarithmic space is

sufficient for the construction of GCSO . As already pointed out, however, the construction
does not preserve the number of observable events, which requires the second step of the
construction using Lemma 2 as described above.

We now show that GINSO is infinite-step opaque if and only if GCSO is current-state
opaque.

566 Discrete Event Dynamic Systems (2021) 31:553–582



Fig. 7 Transforming INSO to CSO

Theorem 5 The DES GINSO is infinite-step opaque with respect to QS , QNS , and P if
and only if the DES GCSO is current-state opaque with respect to Q′

S , Q
′
NS , and P ′ : (� ∪

{@})∗ → (�o ∪ {@})∗.

Proof Assume that GINSO is infinite-step opaque. We show that GCSO is current-state
opaque. To this end, consider a string w such that δ′(I, w) ∩ Q′

S 
= ∅. We want to show
that there exists w′ such that P ′(w) = P ′(w′) and δ′(I, w′) ∩ Q′

NS 
= ∅. However, since
Q′

S = Q+, w is of the form w1@w2. Then, by the construction, δ(I, w1) contains a secret
state of GINSO , say q ∈ δ(I, w1)∩QS , such that state q+ is a copy of state q reached under
@ from state q in GCSO , and w2 is read from state q+ in the copy GS of GINSO . That is,
w2 can be read from state q in GINSO , and hence δ(I, w1w2) 
= ∅. Altogether, δ(δ(I, w1)∩
QS,w2) 
= ∅ and the fact that GINSO is infinite-step opaque imply that there exists a
string w′

1w
′
2 ∈ L(GINSO) such that P(w1) = P(w′

1), P(w2) = P(w′
2), and δ(δ(I,w′

1) ∩
QNS,w′

2) 
= ∅. Let w′ = w′
1@w′

2. Then P ′(w) = P ′(w′) and, by the construction, ∅ 
=
δ′(δ′(I, w′

1@) ∩ Q′
NS,w′

2) ⊆ Q′
NS , which completes the proof.

On the other hand, assume that GINSO is not infinite-step opaque, that is, there exists
a string st ∈ L(GINSO) such that δ(δ(I, s) ∩ QS, t) 
= ∅ and for every s′t ′ ∈ L(GINSO)

with P(s) = P(s′) and P(t) = P(t ′), δ(δ(I, s′) ∩ QNS, t ′) = ∅. But then for s@t ∈
L(GCSO), we have that ∅ 
= δ′(δ′(I, s@) ∩ Q′

S, t) = δ′(I, s@t) ⊆ Q′
S and, for every

s′@t ′ ∈ L(GCSO) such that P ′(s@t) = P ′(s′@t ′), we have that δ′(I, s′@t ′) ∩ Q′
NS =

δ′(δ′(I, s′@) ∩ Q′
NS, t ′) = ∅, which shows that GCSO is not current-state opaque.

We now illustrate the construction.

Example 3 Let G3 over � = {a, b, c} depicted in Fig. 8 (left) be the instance of the INSO
problem with the set of secret states QS = {2} and the set of non-secret states QNS = {4}.
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Fig. 8 An example of the transformation of the INSO problem (left) to the CSO problem (right)

Our transformation of INSO to CSO then results in the DES G′
3 depicted in Fig. 8 (right)

with a new observable event @, the set of secret states Q′
S , and the set of non-secret states

Q′
NS . We again consider two cases based on the observability status of event c.
If event c is unobservable, then G3 is infinite-step opaque. Indeed, the only string leading

to the single secret state, state 2, is the string a. The same string leads to the single non-secret
state, state 4. Then, any possible extension of the string a from the unique secret state 2 is
the string bk , for k ∈ N, which reaches state 3. However, for any such extension, there is the
extension cbk from the non-secret state 4 with P(abk) = P(acbk). The reader can further
see that G′

3 is current-state opaque, because it can enter a secret state only after generating
a string of the form a@bk , k ∈ N, in which case δ′(1, P −1(a@)) = {2+, 4−, 5−} and
δ′(1, P −1(a@bk)) = {3+, 5−} for k ≥ 1.

If event c is observable, then G3 is not infinite-step opaque, because after generating
string ab, the intruder can deduce that the system was in the secret state 2. Similarly, after
generating string a@b, system G′

3 ends up in the only state 3+, which is a secret state, and
hence G′

3 is not current-state opaque.

4.2.3 The case of a single observable event

To preserve the number of observable events, our transformation of infinite-step opacity to
current state opacity relies on Lemma 2. This lemma requires at least two observable events
in GINSO , and hence it is not applicable to systems with a single observable event. For
these systems, we provide a different transformation that requires to add at most a quadratic
number of new states.
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Fig. 9 Transforming INSO to CSO for systems with a single observable event

The problem of deciding infinite-step opacity for systems with a single observable event
consists of a DES GINSO = (Q, �, δ, I ) with �o = {a}, a set of secret states QS ⊆ Q, a
set of non-secret states QNS ⊆ Q, and a projection P : �∗ → {a}∗.

We denote the number of states ofGINSO by n, and define a function ϕ : Q →{0, . . . , n}
that assigns, to every state q, the maximal number k ∈ {0, . . . , n} of observable steps that
are possible from state q; formally, ϕ(q) = max

{
k ∈ {0, . . . , n} | δ(q, P −1(ak)) 
= ∅}

.
From GINSO , we construct a DES GCSO = (Q′, �, δ′, I ) as illustrated in Fig. 9, where

δ′ is initialized as δ and modified as follows. For every state p ∈ Q with ϕ(p) > 0, we
add n new states p1, . . . , pn to Q′ and n new transitions (p, a, p1) and (pi, a, pi+1), for
i = 1, . . . , n − 1, to δ′. Finally, we replace every transition (p, a, r) in δ′ by the transition
(pn, a, r). Notice that the transformation requires to add at most n2 states, and hence it can
be done in polynomial time. Let Q′

S = QS and Q′
NS = QNS . For every state p ∈ QS

with ϕ(p) = k > 0, we add the corresponding states p1, . . . , pk to Q′
S . Analogously, for

p ∈ QNS with ϕ(p) = k > 0, we add p1, . . . , pk to Q′
NS .

Notice that the transformation can be done in polynomial time, preserves the number
of observable events, and determinism. However, whether the transformation can be done
in logarithmic space is open. Even if the DES had no unobservable event, to determine
whether ϕ(·) = n is equivalent to the detection of a cycle. The detection of a cycle is NL-
hard: We can reduce the DAG reachability problem as follows. Given a DAG G and two
nodes s and t , we construct a DES G by associating a state with every node of G and an
a-transition with every edge of G. Finally, we add an a-transition from t to s. Then t is
reachable from s in G if and only if G contains a cycle. Since it is an open problem whether
L = NL, it is an open problem whether ϕ can be computed in deterministic logarithmic
space.

We show that GINSO is infinite-step opaque if and only if GCSO is current-state opaque.

Theorem 6 The DES GINSO with a single observable event is infinite-step opaque with
respect toQS ,QNS , and P if and only if the DESGCSO is current-state opaque with respect
to Q′

S , Q
′
NS , and P .

Proof Assume that GINSO is not infinite-step opaque. Then, there exists st ∈ L(GINSO)

with δ(δ(I, s) ∩ QS, t) 
= ∅ such that δ(δ(I, P −1P(s)) ∩ QNS, P −1P(t)) = ∅. Let
f : �∗ → �∗ be a morphism such that f (a) = an+1 and f (b) = b, for a 
= b ∈
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�. Then, by construction, δ(I, s) = δ′(I, f (s)), and hence δ′(I, f (s)) ∩ Q′
S 
= ∅. If

δ(I, P −1P(s)) ∩ QNS = ∅, then δ(I, f (P −1P(s))) ∩ Q′
NS = ∅ because δ(I, s′) =

δ′(I, f (s′)) for any s′ ∈ P −1P(s), and GCSO is not current-state opaque. Otherwise, we
denote by qs ∈ δ(I, s)∩QS and qns ∈ δ(I, P −1P(s))∩QNS the states with maximal ϕ(qs)

and ϕ(qns). Since GINSO is not infinite-step opaque, ϕ(qs) > ϕ(qns). Then, in GCSO , qs

has exactly one outgoing observable transition and is followed by ϕ(qs) = k secret states,
while qns is followed by ϕ(qns) < k non-secret states. Therefore, δ′(I, f (s)ak) ∩ Q′

S 
= ∅
and δ′(I, f (s′)ak) ∩ Q′

NS = ∅ for any s′ ∈ P −1P(s), and hence GCSO is not current-state
opaque.

On the other hand, assume that GINSO is infinite-step opaque, and that δ′(I, w)∩Q′
S 
=

∅. We show that δ′(I, P −1P(w)) ∩ QNS 
= ∅. Consider a state qs ∈ δ′(I, w) ∩ Q′
S and a

path π in GCSO leading to qs under w. Denote by p the last state of π that corresponds to
a state of GINSO ; that is, p is not a new state added by the construction of GCSO . Since
qs ∈ Q′

S , we have, by construction, that p ∈ QS . Then the choice of p partitions w = uv,
where u, read along the path π , leads to state p, and v = a� is a suffix of length � ≤ n. Let
u′ be a string such that f (u′) = u. Then p ∈ δ(I, u′) ∩ QS . Since ϕ(p) ≥ �, there exists
t such that P(t) = a� and δ(δ(I, u′) ∩ QS, t) 
= ∅ in GINSO . Then infinite-step opacity
of GINSO implies that there exists u′′ and t ′ such that P(u′) = P(u′′), P(t) = P(t ′),
and δ(δ(I, u′′) ∩ QNS, t ′) 
= ∅. In particular, there is a state qns ∈ δ(I, u′′) ∩ QNS with
ϕ(qns) ≥ �, and δ′(I, f (u′′)) ∩ Q′

NS 
= ∅. Therefore, δ′(I, f (u′′)a�) ∩ Q′
NS 
= ∅ and

P(f (u′′)a�) = P(uv) = P(w), which completes the proof.

We now illustrate the construction.

Example 4 Let G4 over � = {a, u} depicted in Fig. 10 (left) be the instance of the INSO
problem with a single observable event �o = {a}, the set of secret states QS = {1}, and
the set of non-secret states QNS = {3}. Then, ϕ(1) = ϕ(3) = 3, and our transformation of
INSO to CSO results in the DES G′

4 depicted in Fig. 10 (right) with the set of secret states
Q′

S and the set of non-secret states Q′
NS . We consider two cases based on the presence of

the unobservable transition (1, u, 3) in G4.
We first assume that the transition (1, u, 3) exists inG4. Then,G4 is infinite-step opaque,

because any string ak leading from the secret state 1 is indistinguishable from the string
uak that leads the system to the non-secret state 3. The reader can see that G′

4 is current-
state opaque, because a secret state is reachable only under a string of the form ak , for
k ∈ {0, 1, 2, 3}, and for any such string there is an indistinguishable string uak reaching a
non-secret state.

Fig. 10 An example of the transformation of the INSO problem with a single observable event (left) to the
CSO problem (right)
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If the transition (1, u, 3) does not exist inG4, thenG4 is not infinite-step opaque, because
it is neither current-state opaque and, obviously, neither G′

4 is current-state opaque.

4.2.4 Improving the algorithmic complexity of deciding infinite-step opacity

Let G = (Q, �, δ, I, F ) be a DES. We design an algorithm deciding infinite-step opacity
in time O((n+m�)2n), where � = |�o| is the number of observable events, n is the number
of states of G, and m is the number of transitions of P(G), m ≤ �n2.

To decide whether G is infinite-step opaque with respect to QS,QNS ⊆ Q, and
P : �∗ → �∗

o , we proceed as follows:

1. We compute the observer Gobs of G in time O(�2n) (Cassandras and Lafortune 2008);
2. We compute the projected automaton P(G) of G in time O(m + n) (Hopcroft and

Ullman 1979);
3. We compute the product automaton C = P(G) × Gobs in time O((m + n) ·

�2n) (Domaratzki and Salomaa 2007); – states of C are of the form Q × 2Q;
4. For every reachable state X of Gobs , we compute XS = X∩QS and XNS = X∩QNS ;

(a) If XS 
= ∅ and XNS = ∅, then G is not infinite-step opaque; this is, actually, the
standard check whether G is current-state opaque;

(b) Otherwise, for every state x ∈ XS , we add a transition from X under @ to state
(x,XNS) of C, and we add the state (x,XNS) to set Y ;

5. If C contains a state of the form (q,∅) reachable from Y , then G is not infinite-step
opaque; otherwise, G is infinite-step opaque.

Informally, we first make use of the standard check in the observer of G whether G

is current-state opaque. If it is not, then it is neither infinite-step opaque. Otherwise, for
every state X of the observer of G that contains both secret and non-secret states, we add
a transition under the new event @ to a pair of a secret state x ∈ X and the set of all non-
secret states XNS of X. If a state of the form (q,∅) is reachable from (x,XNS), then G

is not infinite-step opaque. Otherwise, G is infinite-step opaque. We now formally prove
correctness.

Lemma 3 The DES G is infinite-step opaque if and only if G is current-state opaque and
no state of the form (q,∅) is reachable in C from the set Y .

Proof Assume that G is not infinite-step opaque. Then, there exists st ∈ L(G) such that
δ(δ(I, s) ∩ QS, t) 
= ∅ and δ(δ(I, P −1P(s)) ∩ QNS, P −1P(t)) = ∅. There are two cases:

(i) either δ(I, P −1P(s))∩QNS = ∅, in which case G is not current-state opaque, neither
infinite-step opaque, and the algorithm detects this situation in the observer of G on
line 4(a),

(ii) or δ(I, P −1P(s)) ∩ QNS = Z 
= ∅. In this case, P(s)@ leads from the observer of G

to the pairs (δ(I, P −1P(s))∩QS)×{Z} of the NFA C. Since δ(I, st) 
= ∅, there exists
(z, Z) ∈ (δ(I, P −1P(s)) ∩ QS) × {Z} such that P(t) leads the projected automaton
P(G) from state z to a state q. However, δ(Z, P −1P(t)) = ∅ implies that P(t) leads
the observer of G from state Z to state ∅, and hence the pair (q,∅) is reachable in C
from a state of Y .

On the other hand, if G is infinite-step opaque, then it is current-state opaque, and we
show that no state of the form (q,∅) is reachable in C from a state of Y . For the sake of
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Fig. 11 The relevant part of the observer of G3 (left), the corresponding part of the automaton C (right), and
the @-transition (dashed) added by the algorithm

contradiction, assume that a state of the form (q,∅) is reachable in C from a state of Y .
Then, there must be a string s such that P(s) reaches a state X in the observer of G such
that XS = X∩QS contains a state z, X∩QNS = Z 
= ∅, there is a transition under @ from
X to the pair (z, Z) of C, and the NFA C reaches state (q,∅) from (z, Z) under a string w.
In particular, there must be a string t ∈ P −1(w) that moves G from state z to state q. But
then δ(δ(I, s)∩QS, t) 
= ∅, and δ(δ(I, P −1P(s))∩QNS, P −1(w)) = ∅, which means that
G is not infinite-step opaque – a contradiction.

Since our algorithm constructs and searches the NFA C that has O(n2n) states and
O(m�2n) transitions, the overall time complexity of our algorithm is O((n + m�)2n).

We now illustrate the procedure in the following example.

Example 5 We consider system G3 of Example 3 as depicted in Fig. 8 with all the events
a, b, c observable, the set of secret states QS = {2}, and the set of non-secret states QNS =
{4}. Then G3 is current-state opaque, but not infinite-step opaque. To show that G3 is not
infinite-step opaque, our algorithm works as follows. First, notice that P(G3) coincides with
G3, since there are no unobservable transitions in G3. A relevant part of the observer of G3
is depicted in Fig. 11 (left), and a relevant part of the automaton C, i.e., of the product of
P(G3) with the observer of G3, is depicted in Fig. 11 (right). The only reachable state of the
observer that has a nonempty intersection with QS = {2} is state X = {2, 4}, resulting in
XS = {2} and XNS = {4}. The algorithm then creates an @-transition from state X = {2, 4}
of the observer to state (2, {4}) of the product automatonC (the dashed transition in Fig. 11).
Since state (3, ∅) is reachable from state (2, {4}) inC, systemG3 is not infinite-step opaque;
indeed, observing ab in G3, the intruder knows for sure that the system was in a secret
state.

Fig. 12 Projected automaton
P(G̃3)
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Fig. 13 The relevant part of the observer of G̃3 (left), the corresponding part of the automaton C (right), and
the @-transition (dashed) added by the algorithm

On the other hand, we now assume that c is unobservable. To avoid confusion, we denote
G3 with a and b observable, c unobservable, the set of secret states QS = {2}, and the set
of non-secret states QNS = {4} as G̃3. Then G̃3 is infinite-step opaque, and our algorithm
works as follows. First, we construct P(G̃3) as shown in Fig. 12. Relevant parts of the
observer of G̃3 and of the product of P(G̃3) with the observer, automaton C, is depicted in
Fig. 13.

The only reachable state of the observer of G̃3 with a nonempty intersection with QS =
{2} is state X = {2, 4, 5}, resulting in XS = {2} and XNS = {4}. The algorithm creates
an @-transition from state X = {2, 4, 5} of the observer to state (2, {4}) of the product
automaton C (the dashed transition in Fig. 13). Since no state of the form (q,∅) is reachable
from state (2, {4}), G̃3 is infinite-step opaque.

4.3 Transformations between CSO and K-SO

In this section, we describe the transformations between current-state opacity and K-step
opacity. To the best of our knowledge, no such transformations have been considered in the
literature so far.

4.3.1 Transforming CSO to K-SO

The transformation from current state opacity to K-step opacity is analogous to the trans-
formation from current state opacity to infinite-step opacity of Section 4.2.1. Intuitively, the
modification is that we need to make only K observable steps from any non-secret state
instead of infinitely many such steps.

The problem of deciding current-state opacity consists of a DES GCSO = (Q, �, δ, I ),
a projection P : �∗ → �∗

o , a set of secret states QS ⊆ Q, and a set of non-secret states
QNS ⊆ Q.

For a given K ∈ N, from GCSO , we construct a DES GK-SO= (Q ∪ Q	,� ∪ {u}, δ′, I ),
where u is a new unobservable event, by adding K + 1 new states Q	 = {q	

0 , . . . , q
	
K }
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Fig. 14 Transforming CSO to K-SO

that are neither secret nor non-secret, and by defining δ′ as follows, see Fig. 14 for an
illustration:

1. δ′ = δ, that is, δ′ is initialized as δ and further extended as follows;
2. for every state q ∈ QNS , we add the transition (q, u, q	

0) to δ′;
3. for i = 0, . . . , K − 1 and every a ∈ �o, we add the transition (q	

i , a, q	
i+1) to δ′.

We extend the projection P to the projection P ′ : (� ∪ {u})∗ → �∗
o . The sets QS and QNS

remain unchanged.

Theorem 7 The DES GCSO is current-state opaque with respect to QS , QNS , and P if and
only if the DES GK-SO is K-step opaque with respect to QS , QNS , P ′, and K .

Proof Assume first that GCSO is not current-state opaque. Since the new states q	
0 , . . . , q

	
K

are neither secret nor non-secret, GK-SO is not current-state opaque either, and hence
GK-SO is not K-step opaque.

On the other hand, assume that GCSO is current-state opaque. Since the new states
q	
0 , . . . , q

	
K are neither secret nor non-secret, GK-SO is current-state opaque as well. Let

st ∈ L(GK-SO) be such that |P(t)| ≤ K and δ′(δ′(I, s)∩QS, t) 
= ∅. Then, since GK-SO is
current-state opaque, there is s′ ∈ P −1P(s) such that δ′(I, s′)∩QNS 
= ∅. By construction,
we can extend s′ by the string uP (t) using the transitions through the new states q	

0 , . . . , q
	
K ,

that is, δ′(δ′(I, s′) ∩ QNS, uP (t)) 
= ∅, and hence GK-SO is K-step opaque.

We now illustrate the construction.

Example 6 Let G2 over � = {a, b, c} depicted in Fig. 15 (left) be the instance of the CSO
problem from Example 2 with the set of secret states QS = {2} and the set of non-secret
states QNS = {5}. Our transformation of CSO to K-SO then results in the DES G′′

2 depicted
in Fig. 15 (right) with K = 2, a new unobservable event u, and three new states q	

0 , q
	
1 , and

q	
2 . We again distinguish two cases depending on whether event c is observable or not.
If c is unobservable, G2 is current-state opaque as shown in Example 2. The reader can

see that G′′
2 is then 2-step opaque, because the only possible extensions of the string a from

the secret state 2 are of the form bk , for k ∈ N, and for those extensions where k ≤ 2, there is
an extension ubk of the string ac from the non-secret state 5 such that P(abk) = P(acubk).

If c is observable, then G2 is not current-state opaque as shown in Example 2. Conse-
quently, the reader can verify that G′′

2 is not current-state opaque, and hence neither 2-step
opaque.
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Fig. 15 An example of the transformation of the CSO problem (left) to the K-SO problem (right)

4.3.2 Transforming K-SO to CSO

Transforming K-step opacity to current-state opacity is again similar to the transformation
of infinite-step opacity to current-state opacity. Again, we only need to check K subsequent
steps instead of all the subsequent steps. The problem of deciding K-step opacity consists
of a DES GK-SO = (Q, �, δ, I ), a projection P : �∗ → �∗

o , a set of secret states QS ⊆ Q,
and a set of non-secret states QNS ⊆ Q. From GK-SO, we construct a DES GCSO in the
following two steps:

1. We construct a DES GCSO such that GCSO is current-state opaque if and only if GK-SO
is K-step opaque. In this step of the construction, GCSO has one observable event more
than GK-SO.

2. To reduce the number of observable events by one, we apply Lemma 2. Consequently,
the resulting DES has the same number of observable events as GK-SO, if GK-SO has at
least two observable events, is deterministic if and only if GCSO is, and is current-state
opaque if and only if GCSO is.

We now describe the construction of GCSO = (Q ∪ Q+ ∪ Q− ∪ Q	, � ∪ {u,@}, δ′, I ),
where Q+ = {q+ | q ∈ Q}, Q− = {q− | q ∈ Q}, Q	 = {q	

0 , . . . , q
	
K+1}, @ is a

new observable event, and u is a new unobservable event. To this end, we first make two
disjoint copies of GK-SO, denoted by G+ and G−, where the set of states of G+ is denoted
by Q+ and the set of states of G− is denoted by Q−. The DES GCSO is now taken as
the disjoint union of the automata GK-SO, G+, and G−, see Fig. 16 for an illustration. We
now add K+2 new states q	

0 , . . . , q
	
K+1 to GCSO and the following transitions. For every

state q ∈ QS , we add the transition (q,@, q+), for every state q ∈ QNS , we add the
transition (q,@, q−), for every q− ∈ Q−, we add the transition (q−, u, q	

0), for every
a ∈ �o and i = 0, . . . , K , we add the transition (q	

i , a, q	
i+1), and, finally, we add the self-

loop (q	
K+1, a, q	

K+1) for every a ∈ �o. The set of secret states of GCSO is the Q′
S = Q+

and the set of non-secret states of GCSO is the set Q′
NS = {q	

0 , q
	
K+1}. We extend projection

P to P ′ : (� ∪ {@, u})∗ → (�o ∪ {@})∗.
Notice that GCSO is deterministic if and only if GK-SO is, and that logarithmic space is

sufficient for the construction of GCSO . However, as already pointed out, the construction
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Fig. 16 Transforming K-SO to CSO

does not preserve the number of observable events, which requires the second step of the
construction using Lemma 2.

We now show that GK-SO is K-step opaque if and only if GCSO is current-state opaque.

Theorem 8 The DESGK-SO is K-step opaque with respect toQS ,QNS , and P if and only if
the DES GCSO is current-state opaque with respect to Q′

S , Q
′
NS , and P ′ : (�∪{@, u})∗ →

(�o ∪ {@})∗.

Proof Assume that GK-SO is K-step opaque. We show that GCSO is current-state opaque.
To this end, consider a string w such that δ′(I, w) ∩ Q′

S 
= ∅. We want to show that there
exists w′ ∈ P ′−1P ′(w) such that δ′(I, w′) ∩ Q′

NS 
= ∅. However, since Q′
S = Q+, w

is of the form w1@w2 and, by the construction, δ(I,w1) contains a secret state of GK-SO.
Since G is K-step opaque, there exists a string w′

1 ∈ P −1P(w1) such that δ(I, w′
1) ∩

QNS 
= ∅. Then, because w2 can be read in the copy of GK-SO from a state q+ for a state
q ∈ δ(I,w1) ∩ QS , we further have that δ(δ(I, w1) ∩ QS, w2) 
= ∅. If |P(w2)| ≤ K ,
then K-step opacity of GK-SO implies that there exists a string w′′

1w
′′
2 ∈ L(GK-SO) such that

P(w′′
1 ) = P(w1), P(w′′

2 ) = P(w2), and δ(δ(I, w′′
1 ) ∩ QNS,w′′

2 ) 
= ∅. By construction,
q	
0 ∈ δ′(δ′(I, w′′

1@) ∩ QNS, w′′
2u), and hence GCSO is current-state opaque. If |P(w2)| >

K , then q	
K+1 ∈ δ′(δ′(I, w′′

1@) ∩ QNS, uP (w′′
2 )), and hence GCSO is current-state opaque.

On the other hand, assume that GK-SO is not K-step opaque, that is, there exists a string
st ∈ L(GK-SO) such that |P(t)| ≤ K , δ(δ(I, s) ∩ QS, t) 
= ∅ and, for every s′ ∈ P −1P(s)

and t ′ ∈ P −1P(t), δ(δ(I, s′) ∩ QNS, t ′) = ∅. But then, for s@t ∈ L(GCSO), we have that
δ′(δ′(I, s@) ∩ Q′

S, t) ∩ Q′
S 
= ∅ and, for every s′@t ′ ∈ L(GCSO) such that P ′(s@t) =

P ′(s′@t ′), we have two cases:

(i) If δ(I, s′)∩QNS = ∅, then δ′(I, s′@t ′)∩Q′
NS = δ′(δ′(I, s′@)∩Q−, t ′) = δ′(∅, t ′) =

∅, which shows that GCSO is not current-state opaque.
(ii) If δ(I, s′)∩QNS 
= ∅, then δ′(I, s′@t ′)∩Q′

NS = δ′(δ′(I, s′@)∩Q−, t ′) = ∅, because
inserting u to any strict prefix of t ′ may reach q	

0 but has to leave it when the rest of t ′
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is read, and the rest (neither P(t ′)) is not long enough to reach state q	
K+1. Therefore,

GCSO is not current-state opaque.

We now illustrate the construction.

Example 7 Let G3 over � = {a, b, c} depicted in Fig. 17 (left) be the instance of the K-SO
problem from Example 3 with K = 2, the set of secret states QS = {2}, and the set of non-
secret states QNS = {4}. Our transformation of K-SO to CSO then results in the DES G′′

3
depicted in Fig. 17 (right) with a new observable event @, a new unobservable event u, the
set of secret states Q′

S , and the set of non-secret states Q′
NS . We consider two cases based

on the observability status of event c.
If c is unobservable, then G3 is 2-step opaque, because it is infinite-step opaque as

shown in Example 3. The reader can further see that G′′
3 is current-state opaque, because

it can enter a secret state only after generating a string of the form a@bk , for k ∈ N, in
which case we have that δ′(1, P −1(a@)) = {2+, 4−, 5−, q	

0} and δ′(1, P −1(a@bk)) =
{3+, 5−, q	

0 , . . . , q
	
i } for k ≥ 1, where i = min{k, 3}.

If c is observable, then G3 is not 2-step opaque, because after generating string ab, the
intruder can deduce that the system was in the secret state 2. Similarly, after generating
string a@b, system G′′

3 ends up in the only state 3+, which is a secret state, and hence G′′
3

is not current-state opaque.

Fig. 17 An example of the transformation of the K-SO problem (left) to the CSO problem (right)
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4.3.3 The case of a single observable event

To preserve the number of observable events, our transformation of K-step opacity to cur-
rent state opacity relies on Lemma 2. This lemma requires at least two observable events
in GK-SO, and hence it is not applicable to systems with a single observable event. For
these systems, we provide a different transformation that requires to add at most a quadratic
number of new states.

The problem of deciding K-step opacity for systems with a single observable event con-
sists of a DES GK-SO = (Q, �, δ, I ) with �o = {a}, a set of secret states QS ⊆ Q, a set
of non-secret states QNS ⊆ Q, and a projection P : �∗ → {a}∗. We denote the number of
states of GK-SO by n, and define a function ϕ : Q → {0, . . . , K} that assigns, to every state
q, the maximal number k ∈ {0, . . . , K} of observable steps that are possible from state q;
formally, ϕ(q) = max

{
k ∈ {0, . . . , K} | δ(q, P −1(ak)) 
= ∅}

. Notice that if K > n − 1,
then a system with a single observable event is K-step opaque if and only if it is infinite-step
opaque. Therefore, we may consider only K ≤ n − 1.

From GK-SO, we construct a DES GCSO = (Q′, �, δ′, I ) as illustrated in Fig. 18, where
δ′ is initialized as δ and modified as follows. For every state p ∈ Q with ϕ(p) > 0, we
add K new states p1, . . . , pK to Q′ and K new transitions (p, a, p1) and (pi, a, pi+1), for
i = 1, . . . , K − 1, to δ′. Finally, we replace every transition (p, a, r) in δ′ by the transition
(pK, a, r). Notice that the transformation requires to add at most n2 states, and hence it can
be done in polynomial time. Let Q′

S = QS and Q′
NS = QNS . For every state p ∈ QS with

ϕ(p) = k > 0, we add the corresponding states p1, . . . , pk to Q′
S and, for every p ∈ QNS

with ϕ(p) = k > 0, we add p1, . . . , pk to Q′
NS .

Notice that the transformation can be done in polynomial time, preserves the number of
observable events, and determinism. However, whether the transformation can be done in
logarithmic space is open.

We show that GK-SO is K-step opaque if and only if GCSO is current-state opaque.

Theorem 9 The DES GK-SO with a single observable event is K-step opaque with respect
to QS , QNS , and P if and only if the DES GCSO is current-state opaque with respect to
Q′

S , Q
′
NS , and P .

Fig. 18 Transforming K-SO to CSO for systems with a single observable event
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Proof Assume that GK-SO is not K-step opaque, that is, there is st ∈ L(GK-SO) with
|P(t)| ≤ K such that δ(δ(I, s) ∩ QS, t) 
= ∅ and δ(δ(I, P −1P(s)) ∩ QNS, P −1P(t)) = ∅.
Let f : �∗ → �∗ be a morphism such that f (a) = aK+1 and f (b) = b, for a 
=
b ∈ �. Then, by construction, δ(I, s) = δ′(I, f (s)), and hence δ′(I, f (s)) ∩ Q′

S 
= ∅.
If δ(I, P −1P(s)) ∩ QNS = ∅, then δ′(I, f (P −1P(s))) ∩ Q′

NS = ∅ because δ(I, s′) =
δ′(I, f (s′)) for any s′ ∈ P −1P(s), and GCSO is not current-state opaque. Otherwise, we
denote by qs ∈ δ(I, s) ∩ QS and qns ∈ δ(I, P −1P(s)) ∩ QNS the states with maximal
ϕ(qs) and ϕ(qns). Since GK-SO is not K-step opaque, ϕ(qs) > ϕ(qns). Then, in GCSO , qs

has exactly one outgoing observable transition and is followed by ϕ(qs) = k secret states,
while qns is followed by ϕ(qns) < k non-secret states. Therefore, δ′(I, f (s)ak) ∩ Q′

S 
= ∅
and δ′(I, f (s′)ak) ∩ Q′

NS = ∅ for any s′ ∈ P −1P(s), and hence GCSO is not current-state
opaque.

On the other hand, assume that GK-SO is K-step opaque, and that δ′(I, w) ∩ Q′
S 
= ∅.

We show that δ′(I, P −1P(w)) ∩ QNS 
= ∅. Consider a state qs ∈ δ′(I, w) ∩ Q′
S and a

path π in GCSO leading to qs under w. Denote by p the last state of π that corresponds
to a state of GK-SO; that is, p is not a new state added by the construction of GCSO . Since
qs ∈ Q′

S , we have, by construction, that p ∈ QS . Then the choice of p partitions w = uv,
where u, read along the path π , leads to state p, and v = a� is a suffix of length � ≤ K .
Let u′ be a string such that f (u′) = u. Then p ∈ δ(I, u′) ∩ QS . Since ϕ(p) ≥ �, there
exists t such that P(t) = a� and δ(δ(I, u′) ∩ QS, t) 
= ∅ in GK-SO. Then K-step opacity
of GK-SO implies that there exists u′′ and t ′ such that P(u′) = P(u′′), P(t) = P(t ′),
and δ(δ(I, u′′) ∩ QNS, t ′) 
= ∅. In particular, there is a state qns ∈ δ(I, u′′) ∩ QNS with
ϕ(qns) ≥ �, and δ′(I, f (u′′)) ∩ Q′

NS 
= ∅. Therefore, δ′(I, f (u′′)a�) ∩ Q′
NS 
= ∅ and

P(f (u′′)a�) = P(uv) = P(w), which completes the proof.

We now illustrate the construction.

Example 8 Let G4 over � = {a, u} depicted in Fig. 19 (left) be the instance of the K-SO
problem from Example 4 with K = 2, a single observable event �o = {a}, the set of secret
states QS = {1}, and the set of non-secret states QNS = {3}. Then, ϕ(1) = ϕ(3) = 2, and
our transformation of K-SO to CSO results in the DES G′′

4 depicted in Fig. 19 (right) with
the set of secret states Q′

S and the set of non-secret states Q′
NS . Analogously to Example 4,

we consider two cases based on the presence of the unobservable transition (1, u, 3) in G4.

Fig. 19 An example of the transformation of the K-SO problem with a single observable event (left) to the
CSO problem (right)
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If the transition (1, u, 3) exists in G4, then G4 is 2-step opaque, since it is infinite-step
opaque as shown in Example 4. The reader can see that G′′

4 is current-state opaque, because
a secret state is reachable only under a string of the form ak for k ∈ {0, 1, 2}, and for any
such string there is an indistinguishable string uak reaching a non-secret state.

If the transition (1, u, 3) does not exist in G4, then G4 is not 2-step opaque, because it is
neither current-state opaque and, obviously, neither G′′

4 is current-state opaque.

4.3.4 Improving the algorithmic complexity of deciding K-step opacity

Let G = (Q, �, δ, I, F ) be a DES. We design an algorithm deciding K-step opacity in
time O((K + 1)2n(n + �2m)), where � = |�o| is the number of observable events, n is the
number of states of G, and m is the number of transitions of P(G), m ≤ �n2.

To decide whether G is K-step opaque with respect to QS, QNS ⊆ Q, and P : �∗ →
�∗

o , we proceed as follows:

1. We compute the observer Gobs of G in time O(�2n);
2. We compute the projected automaton P(G) of G in polynomial time O(m + n);
3. We compute a DFA D accepting the language �K

o ; then D has K + 1 states and is
constructed in time O(�(K + 1));

4. We compute the product automaton C = P(G) × Gobs in time O((m + n) · �2n); –
states of C are of the form Q × 2Q;

5. For every reachable state X of Gobs , we compute XS = X∩QS and XNS = X∩QNS ;

(a) If XS 
= ∅ and XNS = ∅, then G is not K-step opaque;
(b) Otherwise, for every state x ∈ XS , we add a transition from X under @ to state

(x,XNS) of C, and we add the state (x,XNS) to set Y ;

6. We set Y to be the set of initial states of C, and compute G = C × D;

(a) If G contains a reachable state of the form (q,∅, d), then G is not K-step opaque;
otherwise, G is K-step opaque.

Informally, we make use of the algorithm designed for deciding infinite-step opacity of
Section 4.2.4 with the modification that we take an intersection of C with the automaton
recognizing �K

o . This modification ensures that any computation of C ends after K steps,
and hence we check at most K subsequent steps.

Lemma 4 The DES G is K-step opaque if and only if G is current-state opaque and no
state of the form (q,∅, d) is reachable in G.

Proof The algorithm works as that deciding infinite-step opacity. The only modification is
that we intersect C with D, recognizing �K

o . This modification ensures that the algorithm
checking infinite-step opacity is blocked after K subsequent steps, and hence it decides
K-step opacity.

Since our algorithm constructs and searches the NFA G with O((K + 1)n2n) states and
O((K + 1)�m2n�) transitions, the time complexity of our algorithm is O((K + 1)2n(n +
�2m)).
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5 Conclusions

We studied the transformations among the notions of language-based opacity, current-state
opacity, initial-state opacity, initial-and-final-state opacity, K-step opacity, and infinite-step
opacity. In particular, we provided a general transformation from language-based opacity
to initial-state opacity, and constructed transformations between infinite-step opacity and
current-state opacity, and between K-step opacity and current-state opacity. Together with
the transformations of Wu and Lafortune (2013), we have a complete list of transformations
between the discussed notions of opacity. The transformations are computable in polyno-
mial time, preserve the number of observable events, and determinism. We further applied
the transformations to improve the algorithmic complexity of deciding language-based
opacity, infinite-step opacity, and K-step opacity, and to obtain the precise computational
complexity of deciding the discussed notions of opacity.
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