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Abstract
A set of non-negative integral vectors is said to be right-closed if the presence of a vector
in the set implies all term-wise larger vectors also belong to the set. A set of markings is
control invariant with respect to a Petri Net (PN) structure if the firing of any uncontrol-
lable transition at any marking in this set results in a new marking that is also in the set.
Every right-closed set of markings has a unique supremal control invariant subset, which
is the largest subset that is control invariant with respect to the PN structure. This subset is
not necessarily right-closed. In this paper, we present an algorithm that computes the supre-
mal right-closed control invariant subset of a right-closed of markings with respect to an
arbitrary PN structure. This set plays a critical role in the synthesis of Liveness Enforcing
Supervisory Policies (LESPs) for a class of PN structures, and consequently, the proposed
algorithm plays a key role in the synthesis of LESPs for this class of PN structures.

Keywords Supervisory Control · Petri Nets · Control Invariance · Right-closed sets

1 Introduction

In this paper we consider Petri Net (PN) structures that model Discrete Event Dynamic
Systems (DEDS). The PN structure consists of a finite set of places, transitions, and arcs that
have weights associated with them. The PN structure is initialized by placing a non-negative
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number of tokens in each of its places, known as the initial marking, represented as a non-
negative integral vector. If the number of tokens in each input place of a transition is no less
than the weight associated with the arc from the input place to transition, the transition is
said to be enabled. An enabled transition can fire, which results in a different set of tokens
associated with each place; that is, the firing of the transition can result in a new marking.
This process can be repeated as often as necessary. Each marking of a PN structure is an
integral vector whose dimension is the same as the number of places of the PN.

It is of interest to control the behavior of a PN model by supervision such that the mark-
ings of the supervised-PN never leaves a desired set. To this end, the set of transitions is
partitioned into controllable- and uncontrollable subsets. A supervisory policy can (resp.
cannot) prevent the firing of a controllable (resp. uncontrollable) transition that is enabled
at a marking of the PN.

A set of integral vectors, which represents different markings of a PN structure, is said
to be control invariant with respect to the PN structure if the firing of any uncontrollable
transition at any marking that belongs to this set results in a new marking that also belongs
to the same set. Stated differently, only the firing of a controllable transition at a marking
belonging to a control invariant set of markings will result in a new marking that does not
belong to the set. There is a supervisory policy that ensures the markings of a supervised-
PN stays within a set of integral vectors if and only if the desired set is control invariant
with respect to the PN structure (Ramadge and Wonham 1987).

Every set of integral vectors, corresponding to the markings of a PN, has a unique, largest
subset that is control invariant with respect to a given PN structure, identified as its supre-
mal control invariant subset. This follows from the fact that the union of two sets of control
invariant markings is also control invariant with respect to the PN structure (Ramadge and
Wonham 1987). The supervisory policy of permitting a (controllable) transition at a mark-
ing that belongs to the supremal control invariant subset only if its firing results in a new
marking that also belongs to the same set, is the minimally restrictive policy that ensures the
marking of the PN remains in the original set of markings.

A set of integral vectors is said to be right-closed if the presence of a vector in the set
implies all integral vectors that are term-wise larger also belong to the same set (Valk and
Jantzen 1985). The empty-set is right-closed by definition. Any vector of a right-closed set
which is not term-wise larger than other vectors of the set is known as a minimal element of
the right-closed set. Consequently, a non-empty right-closed set is uniquely identified by its
finite set of minimal elements.

The supremal control invariant subset of a right-closed set of markings is not necessarily
right-closed for a PN structure. However, it always contains a right-closed subset that is
control invariant with respect to the PN structure. This follows from the observations that
(i) the empty-set is right-closed by definition, (ii) the union of two sets of markings that are
control invariant with respect to a PN structure is also control invariant with respect to the
PN structure, and (iii) the union of two right-closed sets of markings is also right-closed.

Section 1.1 highlights an important application of supervisory control where it is of inter-
est to identify the supremal right-closed control invariant subset of a right-closed set of
markings. In this paper, we present the formal details of an algorithm for computation of the
supremal right-closed control invariant subset of a right-closed desirable set with respect to
an arbitrary PN structure. Our proposed algorithm, discussed in detail in Section 3, follows
an exhaustive search approach based on the Depth-First-Search (DFS) strategy on a deci-
sion tree. The results of this paper present the formal treatment of a critical component of a
software tool developed for the application reviewed below (Chandrasekaran et al. 2015).
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1.1 Motivation

A Discrete Event System is live if, irrespective of the past, all its events can be executed in
the future (Alpern and Schneider 1985). Equivalently, a PN is said to be live if all its tran-
sitions can be fired, although not immediately, from every reachable marking. A Liveness
Enforcing Supervisory Policy (LESP) determines the set of controllable transitions that can
be permitted to fire at a marking such that the supervised-PN is live. For any PN structure,
the set of initial markings for which there is an LESP is control invariant with respect to its
structure. The minimally restrictive LESP effectively prevents the firing of a controllable
transition at a marking if its firing would result in a new marking for which no LESP exists.
The existence of an LESP for an arbitrary PN structure is undecidable (Sreenivas 1997,
2012). However, there are families of PN structures for which the existence of an LESP is
decidable, and for each of these families the above mentioned set of initial markings is right
closed, and control invariant with respect to the PN structure (cf. Sreenivas 2012; Salimi
et al. 2015; Chen et al. 2020). The synthesis of an LESP for any member of these families of
PN structures requires the computation of the supremal right-closed control invariant subset
of a right-closed set of markings. This paper presents the formal treatment of the algorithm
for this important step, which has been used, without formal proof, in the algorithms for
LESP-synthesis in reference (Chandrasekaran et al. 2015). Regarding the practical applica-
tion of our proposed methodology, reference (Khaleghi et al. 2019) provides an example of
LESP-synthesis, which necessitates computation of control invariant subset of a right-closed
set, in a manufacturing setting. The example in reference (Khaleghi et al. 2019) describes a
simplified Petri Net model of an automated system that paints automobile bodies using two
paint-booths, and two robots. A more detailed discussion of this practical example is pre-
sented in Section 4.3. It should be noted that the LESP-synthesis, as discussed in Khaleghi
et al. (2019), involves additional work than just computing the largest right-closed control
invariant subset of a given right-closed set.

Prior work that is relevant to the algorithm in this paper is reviewed in the next
subsection.

1.2 Prior work

Ramadge and Wonham (1987) considered the synthesis of a supervisory policy that ensures
the set of states reachable under supervision is a desired subset of the set of all possible
states for a given Discrete Event System (DES). The desired supervisory policy exists if and
only if the desired subset is control invariant with respect to the set of states of the DES; that
is, if the occurrence of an uncontrollable event at any state within the desired subset results
in a new state that is also within the desired subset as well.

There can be instances of supervisory control of DES where the objective of supervisory
control is to avoid a set of undesirable states. Kumar and Garg (2005) considered PNmodels
of DES where the undesirable set of states (i.e. markings) are right-closed. That is, if a
marking is undesirable, then all term-wise larger markings are undesirable, as well. The goal
of supervisory control for this class of problems is to ensure the marking of the PN structure
stay within a desired set of markings, which is the complement of the right-closed set of
forbidden markings. Kumar and Garg showed that the existence of a supervisory policy for
this class of problems is decidable. To illustrate the fact that this class of supervisory control
problems are different from the problem considered in this paper, we note that the supremal
control invariant subset of desired markings for this class of problems is also a complement
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of a right-closed set of markings (cf. Lemma 2, Section IV, Kumar and Garg 2005). This is
not the case for the class of problems considered in this paper, in that the supremal control
invariant subset of the desirable set of right-closed markings is not necessarily right-closed.

There is a large volume of literature on liveness enforcement in PN models of DES sys-
tems that do not invoke Ramadge and Wonham’s Theory of Supervisory Control (Ramadge
and Wonham 1987). Most of these approaches augment the existing PN structure with addi-
tional structure, using concepts from the theory of PNs (Murata 1989; Peterson 1981), to
arrive at a new PN structure that satisfies the desired property. These approaches involve the
use of linear constraints, place-invariants, and other artefacts from PN theory to arrive at
the required structural modifications. References (Moody and Antsaklis 1998; Iordache and
Ansaklis 2006) consider situations where linear inequalities, if known in advance to enforce
liveness, can be enforced by the use of monitor-places. To synthesize minimally restrictive,
closed-loop liveness for a class of Marked Graph Petri Nets, Basile et al. (2009) provided
sufficient conditions enforced by Generalized Mutual Exclusion Constraints (GMECs).
Proposing a constraint transformation/constrain reduction approach, Luo and Nonami (Luo
and Nonami 2011) investigated the problem of eliminating redundant constraints in syn-
thesis of supervisory policies, which can result in reduction of the number of monitors in
invariant-based supervisors. Dideban and Alla (2008) introduced a set of linear constraints
that prevents reachability of specific states. They presented the concept of over-state in order
to build the simplest constraints, which forbid a greater number of states and which reduces
the number of monitors in an invariant-based controller for safe PNs. Reference (Dideban
and Zeraatkar 2018) employs the place-invariant property of Petri Nets for synthesis of con-
trollers for large-scale systems by breaking down the original Petri Net model into smaller
models. Their proposed algorithm addresses the problem of forbidden states that results
either from deadlocks or from presence of uncontrollable transitions. To design maximally
permissive liveness enforcing supervisors, which avoid deadlocks in flexible manufactur-
ing systems, reference (Chen et al. 2011) proposed a computationally efficient approach to
design optimal control places. The reachability graph is computed by using a combination
of a vector covering approach and binary decision diagrams. In general, not all liveness
enforcement problems involving PNs can be represented as the requirement that the mark-
ings satisfy a (finite) set of linear constraints (cf. figure 1, Salimi et al. 2015), and oftentimes
there is no choice but to use a supervisory policy to prevent the firing of a controllable tran-
sition, as opposed to using the augmented-PN structure to do the same. When applicable,
the additional structural enhancements to the original PN can be implicitly interpreted as a
supervisory policy. That said, these methods do not explicitly deal with the notion of control
invariance, which is the main focus of the algorithm presented in this paper.

The paper is organized as follows: Section 2 introduces the definitions and notations.
Section 3 presents the preliminary results and introduces a Depth-First-Search based algo-
rithm for finding the supremal right-closed control invariant subset of a right-closed set.
Section 4 contains three PN examples which illustrate the algorithm introduced in Section 3.
Section 5 includes main results of this paper. We conclude with some discussion and future
research directions in Section 6.

2 Definitions and notations

We use Z (resp. Z+) to denote the set of non-negative (resp. positive) integers, and Z
n

denotes the set of n-dimensional integral vectors, where n ∈ Z
+. We use xi to denote the
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i-th component of a vector x ∈ Z
n. The set of n × m non-negative integral matrices is

represented by Z
n×m. For any A ∈ Z

n×m,Ai,j denotes the value of the i-th row and j -th
column of the n × m matrix A. Given two vectors x, y ∈ Z

n, we use the notation x ≥ y
if xi ≥ yi for all i ∈ {1, 2, . . . n}. We use the term max{x, y} to denote the term-wise
maximum of the two vectors in the argument. The cardinality of a set argument is denoted
by card(•).

2.1 Petri nets

A Petri Net structure N = (Π, T , IN,OUT) is a bipartite weighted directed graph, where
Π = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} denote two disjoint sets of vertices called
places and transitions, respectively. IN ∈ Z

n×m (resp. OUT ∈ Z
n×m) represents the adja-

cency relationship (Π × T ) (resp. (T × Π)). Specifically, INi,j = w (resp. OUTi,j = w)
denotes that there is a directed arc from pi to tj (resp. tj to pi) with weightw. The incidence
matrix C of the PN structure N is an n×m matrix, where C = OUT− IN. We use the nota-
tion INtj (OUTtj ) to denote the column of the input (resp. output) matrix corresponding
to transition tj . For purposes of supervisory control, the set of transitions are partitioned as
T = Tu ∪Tc, where Tu (resp. Tc) represents the subset of uncontrollable (reps. controllable)
transitions.

Each structure N has an initial marking m0 ∈ Z
n associated with it, where the place pi

is assigned m0
i -many tokens at initialization. We will use the term Petri net (PN) and the

symbol N (m0) to denote a PN structure N along with its initial markingm0.
In graphic representations of PN structures, controllable (resp. uncontrollable) transitions

are shown by filled (resp. unfilled) rectangles. Places are represented by circles, and tokens
are represented by smaller filled-circles that are inside the circles representing the places.
Arcs are represented by directed edges; for the sake of brevity, only non-unitary weights
are explicated in graphical representations of PN structures. Any given marking m can be
interpreted as an integral vector in Z

n which illustrates the distribution of tokens among
places at any instant. The supervisory policyP : Zn×T → {0, 1} is a function that assigns a
0 or 1 for each transition and each marking. Additionally, ∀m ∈ Z

n, ∀tu ∈ Tu,P(m, tu) = 1.
A transition tj ∈ T is said to be state-enabled (resp. control-enabled) at a marking

mk ∈ Z
n ifmk ≥ INtj (resp.P(mk, tj ) = 1). The set of state-enabled transitions at marking

mk is denoted by Te(N,mk). The set of uncontrollable transitions are control-enabled for
all markings. A transition tj ∈ T that is state and control-enabled can fire, which results in

a new marking mk+1 ∈ Z
n, where mk+1 = mk + Ctj . This is represented asm

k
tj−→ mk+1.

2.2 Right-closed set of markings

A set of markings M ⊆ Z
n is right-closed if ((m1 ∈ M) ∧ (m2 ≥ m1) ⇒ (m2 ∈ M)).

Every right-closed setM contains a finite set of minimal elements denoted by min(M) ⊆
M; the set of minimal elements,min(M), can be used to representM. The set of markings
{m̂k+1 ∈ Z

n | m̂k ≥ mk, m̂k ≥ INtj , m̂
k+1 = m̂k + Ctj } is right-closed, and is identified

by the minimal element max(mk, INtj ) + Ctj . The empty-set is right-closed by definition.

We use the notation mk
tj� mk+1 to denote the fact mk+1 = max(mk, INtj ) + Ctj . To

elaborate, this notation is used to denote that if transition tj ∈ T were enabled to fire at a
marking which is greater than or equal to mk , the marking that results from the firing of tj
will be greater than or equal to marking mk+1.
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2.3 Control invariance property

A set of marking M is said to be control invariant with respect to a PN structure N if
((m1 ∈ M) ∧ (tu ∈ Tu) ∧ (m1 ≥ INtu ) ∧ (m2 = m1 + Ctu ) ⇒ (m2 ∈ M)). That is, the
firing of any state-enabled, uncontrollable transition at a marking inM will result in a new
marking that is also in M. If M1,M2 ⊆ M are two control invariant subsets ofM, then
M1 ∪ M2 ⊆ M is also a control invariant subset of M. Consequently, there is a unique
largest (in terms of set-containment) subset of M, the supremal control invariant subset
M↑ ⊆ M, that is control invariant with respect to N (Section 7, Ramadge and Wonham
1987). We drop the reference to the PN structure N if its identity is unambiguous.

If M is right-closed, then M is control invariant if and only if ∀mi ∈ min(M), ∀tu ∈
Tu, ∃mj ∈ min(M) such that:

max{mi , INtu} + Ctu ≥ mj (Lemma 5.10, Sreenivas 2012). (1)

That is, (mi tu� m̂i ) ⇒ (m̂i ∈ M), where m̂i = max(mi , INtu ) + Ctu . This is the control
invariance (CI) condition, where minimal elementmi is covered by minimal elementmj for
transition tu ∈ Tu. For a PN structure N and a right-closed set of markingsM, the supremal
control invariant subset M↑ is not necessarily right-closed. However, there is a unique
supremal subset M⇑ ⊆ M↑ that is right-closed, and control invariant with respect to N .
This follows directly from the fact that (a) the empty-set is right-closed by definition, (b) the
union of two right-closed sets is also right-closed, and (c) the union of two control invariant
sets of markings is also control invariant with respect to N . The right-closed set M⇑ is

characterized by the property: ∀m1 ∈ min(M⇑), ∀tu ∈ Tu, (m1 tu� m̂1) ⇒ (m̂1 ∈ M⇑).
For the PN structure N1 shown in Fig. 1a, consider the right-closed set M0 identi-

fied by minimal elements min(M0) = {(1, 0)T , (0, 2)T }, where (1, 0)T (resp. (0, 2)T )
corresponds to transpose of (1, 0) (resp. (0, 2)). For M0, we have M↑

0 = M1 ∪
{(1, 0)T }, where M1 is the right-closed set identified by minimal elements min(M1) =
{(3, 0)T , (1, 1)T , (0, 2)T }. That is, M↑

0 is not right-closed, and M1(= M⇑
0 ) is the

supremal right-closed control invariant subset ofM0.
Our proposed algorithm for finding the supremal right-closed control invariant subset of

an initial right-closed set will require elevating the minimal elements of the current estimate
of the subset in various ways. We introduce some of the notations pertaining to the elevation
process in the next section using the example shown in Fig. 1.

3 Computing the supremal right-closed control invariant subset
of a right-closed set

The Control Invariance Graph (CI-graph) of the right-closed set M with respect to
the Petri Net structure N is defined as G(M, N) = (min(M), E) where min(M) =
{m1,m2, . . . ,mk} are the nodes of the graph and

E = {emi ,tu,mj | max{mi , INtu} + Ctu ≥ mj }.
That is, there is a directed arc from node mi to mj with a label tu ∈ Tu if mi is covered by
mj for tu ∈ Tu. The markings of the CI-graph may have self-loops since a marking such
as mi can be covered by itself upon firing of an uncontrollable transition such as tu. This
also implies thatmj can be the same asmi in Eq. 1. The set of minimal elements min(M)

can be partitioned into two sets – min(M) = Af ail ∪ Apass , where Af ail ∩ Apass = ∅.
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Fig. 1 The PN structure N1, the CI-graph of N1 for min(M0) = {(1 0)T , (0 2)T } and min(M1) =
{(3 0)T , (1 1)T , (0 2)T }. a N1 b G(M0, N1) c G(M1, N1)

For each mi ∈ Apass,∀tu ∈ Tu, ∃mj ∈ Apass where Eq. 1 is satisfied; and Af ail =
min(M) − Apass . Also, for each mi ∈ Af ail , the set of critical transitions, denoted by
CRT (mi ), contains all uncontrollable transitions for which mi fails the CI condition test;

i.e., for all tj ∈ CRT (mi ), (mi
tj� m̂i ) and (m̂i /∈ M). In graphical representation of

a CI-graph, we use red color-coding for mi if mi ∈ Af ail and CRT (mi ) �= ∅, yellow
color-coding if mi ∈ Af ail and CRT (mi ) = ∅, and green color-coding if mi ∈ Apass .

As an illustration, consider the PN structure N1 of Fig. 1a, and the right-closed set M0,
where min(M0) = {(1 0)T , (0 2)T }. For N1, both transitions are uncontrollable; conse-
quently, the supervisory policy cannot prevent the firing of transitions t1 or t2. Figure 1(b)
shows the CI-graph of M0 with respect to the PN structure N1. The nodes of this directed
graph are members of M0; each directed edge emi ,tu,mj originates from mi and terminates
onmj with label tu ∈ Tu. For brevity, if there are multiple parallel edges between two nodes
with different labels, we draw it as a single directed edge with multiple labels.

If we apply (1) to the minimal element (1 0)T for t1 ∈ Tu, the left-hand-side expression
evaluates to (0 1)T , which is not inM0. Consequently, there is no outgoing arc from (1 0)T

with a label t1 in G(M0, N1); and minimal element {(1 0)T } cannot be in Apass(M0).
When Eq. 1 is applied to (1 0)T for t2 ∈ Tu, we get the vector (4 0)T (≥ (1 0)T ), which
means (1 0)T is covered by itself for transition t2 and therefore, there is a self-loop from
(1 0)T to itself with label t2. For the minimal element (1 0)T , we have CRT ((1 0)T ) = {t1}
and we use red color-coding for this marking as it fails the CI test for at least one uncontrol-
lable transition, i.e. t1. When Eq. 1 is applied to the minimal element (0 2)T for t2 ∈ Tu, we
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get the vector (3 0)T (≥ (1 0)T /∈ Apass(M0)), therefore (0 2)T cannot be in Apass(M0)

either. However, in this case, we use yellow color-coding for this marking to signify the fact
that although CRT ((0 2)T ) = ∅, (0 2)T is still a member of Af ail(M0). From Fig. 1(b),
we infer Apass(M0) = ∅ and Af ail(M0) = {(1 0)T , (0 2)T }. The right-closed set M0
is not control invariant with respect to the PN structure N1. Figure 1c shows the CI-graph
of M1 where min(M1) = {(3 0)T , (1 1)T , (0 2)T } with respect to the PN structure N1.
From Fig. 1c, we can see thatAf ail(M0) = ∅ andApass(M0) = {(3 0)T , (1 1)T , (0 2)T }
and thus, all the markings are color-coded as green. Therefore, the right-closed set M1 is
control invariant with respect to the PN structure N1.

We note that there can be multiple outgoing arcs with the same label from a vertex in the
CI-graph. In general, if card(min(M)) = k and card(Tu) = l, then number of edges in
the CI-graph ofM with respect to the PN structure N is bounded by k2l.

For a right-closed set M, the observations introduced below follow directly from the
above discussion.

Observation 1 There is a non-empty (right-closed) control invariant subset of the right-
closed set M if Apass(M) �= ∅. This is indeed true because based on the definition of
Apass , all minimal elements of Apass(M) will always satisfy the CI test of equation 1,
which implies Apass(M), if not empty, will serve as a non-empty control invariant subset
forM.

Observation 2 M is control invariant if and only if Af ail(M) = ∅. Given the defini-
tion of Af ail , if Af ail(M) is empty, it implies that all minimal elements of M belong to
Apass(M) and therefore, no minimal element of M will ever violate the CI test of Eq. 1,
which means M is control invariant. Similarly, if M is control invariant, it implies that
none of its minimal element fail the CI test, resulting in an empty Apass(M).

Observation 3 Apass(M) ⊆ min(M⇑). This is due to the fact that minimal elements
of Apass(M) will always satisfy the CI test of equation 1 and therefore, members of
Apass(M) need not to be removed or replaced by a term-wise larger vector. So, minimal
elements ofApass(M) will be contained in the final supremal right-closed control invariant
subset, min(M⇑).

The elevation of selected members of Af ail(M) to term-wise larger vectors forms the
basis of the algorithm that computes min(M⇑). The procedural aspects to this operation
are described in detail in the remainder of this section.

3.1 Description of the elevation process

Let M0 be an initial, right-closed set of markings. Suppose Mi ⊂ M0 is the current
estimate of a control invariant subset of M0. Let m1 ∈ Af ail(Mi ), and tu ∈ Tu such that

m1 tu� m̂, and m̂ /∈ Mi . This implies that m1 is a minimal element that fails the CI test
for tu. Since we are looking for a right-closed subset ofMi , the next estimate will havem1

replaced by a set of minimal elements that are larger than m1 so they satisfy equation 1.

Consequently,m1 is to be elevated by the smallest vector x ∈ Z
n such that (m1 +x)

tu� m̂1,
and m̂1 ≥ m2, wherem2 ∈ (min(Mi )−{m1}). The p-th component of x, denoted by x(p),
if elevated, should be such that max{m1(p)+x(p), INtu (p)}+Ctu (p) = m2(p). Letm1 be
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the marking that results from elevating m1 with respect to m2. As a result of the elevation,
for the p-th component ofm1, we have:

m1(p) =
{

m2(p) − Ctu (p), if max{m1(p), INtu (p)} < m2(p) − Ctu (p)

m1(p), otherwise
(2)

If m1 is term-wise larger than some member of min(Mi ) − {m1}, the process of elevating
m1 with respect tom2 for tu is ignored (m1 is said to be dismissed). Ifm1 is not dismissed,
to complete the elevation process of m1, we also elevate m1 with respect to the new mini-
mal element m1 by the same process as in Equation 2. The process of elevation of m1 with
respect to the newly generated minimal elements continues till the generated minimal ele-
ment is dismissed by any of the existing minimal elements. We refer to this whole process
as the operation for elevating m1 for control invariance with respect to tu and m2, and it is
formally described in Algorithm 1, RAISE FOR CI(M1, M2, tu, N ) of the Appendix section.
We show that Algorithm 1 terminates in finite number of steps in Section 5.

Considering one iteration of Algorithm 1 where m1 is elevated by x with respect to m2

for transition tu, resulting in the new non-dismissed marking m1(= m1 + x), we introduce
the following notations/terminologies:

1. m1 is a (direct) child ofm2; likewise, m2 is a parent for m1.

2. The notation m1 tu=⇒ m2 is used to show child-parent relationship of markings m1 and
m2 through transition tu.

3. m1 is a descendant of m1. The set of all descendants of m1 for transition tu is denoted
by D(m1, tu). The set of all descendants of m1 raised with respect to m2 for transition
tu is denoted by D(m1,m2, tu); therefore, D(m1,m2, tu) ⊆ D(m1, tu).

4. In general, mi is a child of mk if there is a child-parent sequence of markings in

min(Mi ) and transitions in Tu through which mi is connected to mk; e.g. mi t1=⇒
mi+1 t2=⇒ ...

tl=⇒ mk−1 tu=⇒ mk . Note that in this given sequence, mk−1 is the only direct
child ofmk . The set of all children of a marking mk is denoted by C(mk).

5. The combination of all existing child-parent sequences of markings in min(Mi ) forms
the collection of child-parent trees of Mi with respect to N defined as T (Mi , N) =
(min(Mi ), E) where min(Mi ) = {m1,m2, . . . ,mk} are the nodes of the tree and

E = {emi ,tu,mj | mi is a direct child of mj }.
That is, there is a directed arc from node mi to mj with a label tu if mi is a direct

child ofmj for tu ∈ Tu.

Starting from a right-closed set Mi , Algorithm 1 elaborates the elevation process for
a marking such as m1 ∈ Af ail(Mi ) which fails to satisfy the CI condition of Eq. 1 for
transition tu. A valid question here is “what happens to the child(ren) of m1 given the fact
that C(m1) �= ∅?”.

So, to consider a more general case, for a given right-closed set Mi with minimal
elements min(Mi ) and child-parent tree collection T (Mi , N), Algorithm 2 outlines a
complete round of elevation process for a markingmp ∈ min(Mi )which fails to satisfy the
CI condition test for transition tu. This process consists of two main stages. The first stage
is the elevation ofmp for control invariance with respect to transition tu. In this stage,mp is
elevated with respect to allmk ∈ min(M)−{mp}− {C(mp)}, using Algorithm 1. The out-
put of this stage would be the descendant markings of mp for transition tu, D(mp, tu). The
second stage involves the process called as elevation for control invariance forced by the
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parent; for this, all children of mp (if any) needs to be raised with respect to all descendant
markings of mp in D(mp, tu), again using Algorithm 1. Clearly, the second stage is only
performed ifD(mp, tu) is non-empty. IfD(mp, tu) is empty,mp along with all its children,
C(mp), will be deleted from the current control invariant estimate. Throughout both stages
of the elevation process, T (Mi , N) will be updated to reflect all newly formed child-parent
relations. At the end of the elevation round, both min(Mi ) and T (Mi , N) will be checked
to remove any dismissed markings along with their children and to obtain the updated right-
closed subset Mi+1 ⊆ M0. The Pseudocode of Algorithm 2 is presented in the Appendix
section. The first illustrative example of Section 4 elaborates the implementation of the
elevation principles discussed in Algorithm 1 and Algorithm 2.

In the next subsection, we present a procedure to compute (the minimal elements of)
M⇑

0 using a Depth-First-Search (DFS) strategy on an appropriately defined tree-structure.

3.2 A Depth-First-Search strategy for finding the supremal right-closed control
invariant subset

For a right-closed set Mi ⊆ M0, if Mi is not a control invariant set, multiple mini-
mal elements of Mi may fail the CI condition test for multiple uncontrollable transitions.
This implies that at the start of each elevation round, there might be multiple elevation
choices to explore. In fact, at the start of an elevation round with card(min(Mi )) = k

and card(Tu) = l, the combination of all possible computational choices to explore will
be bounded by kl. In order to explore all possible computational choices, we introduce an
algorithm based on the Depth-First-Search (DFS) strategy for a decision tree. In this tree
structure, each node corresponds to a right-closed set represented by a finite set of minimal
elements, where the root node is min(M0). Considering the node for min(Mi ), for each
elevation process of a marking mk ∈ min(Mi ) with respect to an uncontrollable transi-
tion tu ∈ Tu, a branch with label (mk, tu,min(Mi ),T (Mi , N)) is created down the node
min(Mi ). Starting from any node and given the elevation labels for each branch, the algo-
rithm keeps exploring the path that originated from that node until a termination condition
is reached for the path. In fact, for each leaf node of the tree such as min(Mf ), we must
haveAf ail(Mf ) = ∅ as the termination condition.

So, given an initial right-closed set M0, the algorithm for creating the decision tree and
performing the DFS-based strategy for finding the supremal right-closed control invariant
subset of M0 with respect to PN structure N , denoted by M⇑

0 , is briefly described as
follows:

1. For the initial iteration, the root node of the decision tree represents the initial set
M0 and its minimal elements. The minimal elements of min(M0) are partitioned into
Apass(M0) andAf ail(M0):

(a) IfAf ail(M0) is empty,M0 is control invariant and the algorithm terminates with
Apass(M0) as the supremal right-closed control invariant subsetM⇑

0 .
(b) If Af ail(M0) is not empty, for each mk ∈ Af ail(M0) and for each tu ∈

CRT (mk), a new branch is created with label (mk, tu,min(M0),T (M0, N)). At
this point, by convention, the leftmost created branch is selected to be explored for
the next elevation round. Each elevation round is implemented by calling Algo-
rithm 2 with input (mk, tu,min(M0),T (M0, N)). Note that the output from
Algorithm 2 will be an updated right-closed set, resulting in creation of a new node
in the decision tree.
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2. For the nth iteration, suppose the algorithm picks a branch with label
(mk, tu,min(Mi ),T (Mi , N)). In this case, one round of elevation is performed,
using algorithm 2, to obtain updated min(Mn+1) and T (Mn+1, N):

(a) If min(Mn+1) is empty, the path terminates with the empty set as a control invari-
ant subset. At this point, the algorithm will backtrack to perform the next elevation
round on the last leftmost unexplored branch, if any.

(b) If min(Mn+1) is not empty, min(Mn+1) is partitioned into Apass(Mn+1) and
Af ail(Mn+1):

i If Af ail(Mn+1) is empty, Mn+1 is control invariant and the current
path terminates with Apass(Mn+1) as a control invariant subset and the
algorithm will backtrack to perform the next elevation round on the last
leftmost unexplored branch, if any.

ii If Af ail(Mn+1) is not empty, for each mk ∈ Af ail(Mn+1) and
for each tu ∈ CRT (mk), a new branch is created with label
(mk, tu, min(Mn+1),T (Mn+1, N)). At this point, the leftmost created
branch is selected to be explored for the next elevation round.

Once no unexplored branches are left in the decision tree and all paths reach a termination
condition, the algorithm will output the union of all right-closed control invariant subsets
found at the termination-point of each path as M⇑

0 . This DFS-based elevation process is
formally described in Algorithm 3 of the Appendix section. The second PN example of
Section 4 illustrates the application of algorithms 3.

4 Illustrative examples

In this section we present a set of examples that illustrate the algorithms introduced in
the previous section. The first example illustrates the finite-termination of the elevation
process, resulting in a right-closed control invariant subset of the original right-closed set.
The right-closed control invariant subset that results from this procedure is dependent on
the choices made in due course of the algorithm. While the end-result is right-closed and
control invariant (with respect to a PN structure), it is not guaranteed to be the supremal
right-closed control invariant subset of the initial right-closed set – for this, one would need
to record the control invariant subset arising from each possible choice of the elevation
procedure, and present their union as the supremal right-closed control invariant subset. This
is effectively done by the DFS-based procedure of Algorithm 3, illustrated in the second
example. Regarding the practical application of the proposed algorithm, the third example
presents a PN structure in a simplified manufacturing setting and highlights the importance
of computation of the largest right-closed control invariant subset of an initial right-closed
set, as a prerequisite and necessary step, for the procedure of design and synthesis of LESPs
for PN models.

4.1 Example 1: Illustration of the elevation process

Consider the PN structure N2 of Fig. 2a, and the right-closed set min(M0) = {(1 0 0 0 0)T ,
(0 2 0 0 6)T , (0 0 1 0 0)T , (0 0 0 6 6)T }. In the PN structure N2 of Fig. 2a, all tran-
sitions except t1 and t6 are uncontrollable. Figure 2(b) shows the CI-graph G(M0, N2);
Apass(M0) = {(1 0 0 0 0)T , (0 0 0 6 6)T }. Also, note that there are no outgoing arcs labeled
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Fig. 2 The PN structure N2, the CI-graph of M0 with respect to N2, and the child-parent tree structure of
M0, where min(M0) = {(1 0 0 0 0)T , (0 2 0 0 6)T , (0 0 1 0 0)T , (0 0 0 6 6)T }, and Apass (M0) =
{(1 0 0 0 0)T , (0 0 0 6 6)T }. a N2 b G(M0, N2) c T (M0, N2)

with t4 and t5 for minimal elements (0 2 0 0 6)T and (0 0 1 0 0)T ; therefore, (0 2 0 0 6)T and
(0 0 1 0 0)T fail the CI test for transitions t4 and t5, respectively. Figure 2c shows the ini-
tial child-parent tree collection/structure T (M0, N2), where all markings of min(M0) are
considered as root vertices and the tree has no arcs since no child-parent relation is formed
yet.

The elevation process can start with either one of the minimal elements that failed
the CI test (viz. (0 2 0 0 6)T or (0 0 1 0 0)T ), and this elevation can be done with
respect to either one of the uncontrollable transitions in the set {t4, t5}. Suppose we start
by elevating the minimal element (0 0 1 0 0)T for transition t5 with respect to all mem-
bers of (min(M0) − {(0 0 1 0 0)T } = {(1 0 0 0 0)T , (0 2 0 0 6)T , (0 0 0 6 6)T }).
If we perform the elevation process once, we will get the new markings (descendants),
ε0 = {(1 0 1 0 0)T , (0 0 1 6 0)T , (0 2 1 0 0)T }; it is clear that marking (1 0 1 0 0)T is
term-wise larger than minimal element (1 0 0 0 0)T and, therefore, it can be discarded.
So, we update ε0 to ε0 = {(0 0 1 6 0)T , (0 2 1 0 0)T }. Now, to complete the eleva-
tion process, (0 0 1 0 0)T needs to be elevated with respect to members of ε0, resulting
in ε1 = {(0 0 4 6 0)T , (0 2 4 0 0)T }; all members of ε1 are dismissed by members
of ε0. Therefore, the first round of elevation will terminate, and the updated estimate is
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Fig. 3 The CI-graph and the child-parent tree structure of ̂M1, where min( ̂M1) =
{(1 0 0 0 0)T , (0 2 0 0 6)T , (0 0 0 6 6)T , (0 2 1 0 0)T , (0 0 1 6 0)T }, and Apass ( ̂M1) =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }. a ( ̂M1, N2) b T ( ̂M1, N2)

min( ̂M1) = {(1 0 0 0 0)T , (0 2 0 0 6)T , (0 0 0 6 6)T , (0 2 1 0 0)T , (0 0 1 6 0)T }. The CI-
graph G( ̂M1, N2) and the child-parent tree structure T ( ̂M1, N2) are shown in Fig. 3. Note
that the thick blue arrows of Fig. 3b shows the existing child-parent relations.

From Fig. 3a, it is clear that both markings {(0 2 1 0 0)T , (0 2 0 0 6)T } fail the CI test
for transition t3 and t4, as there is no outgoing arcs for either of these two markings which
is labeled with t3 and t4. Our proposed algorithm dictates two rules; based on the first rule,
(0 2 0 0 6)T should not be elevated with respect to its children that is, (0 2 0 0 6)T is not ele-
vated with respect to (0 2 1 0 0)T . The second rule states that each time a parent marking is
elevated and replaced by some non-dismissed descendants, all children of that parent should
also be elevated accordingly with respect to the new descendants. However, if the descen-
dants of the parent marking are all dismissed and therefore, deleted, the children should be
deleted, as well. We apply the two mentioned guidelines to this example. Let’s assume we
decide to elevate the parent marking (0 2 0 0 6)T for transition t4; in fact, (0 2 0 0 6)T needs
to be raised with respect to the members of (min( ̂M1) − {(0 2 0 0 6)T , (0 2 1 0 0)T } =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }). If we perform the elevation process once, we
will get the new markings (descendants), ε0 = {(1 2 0 0 6)T , (0 2 0 3 6)T , (0 2 1 3 6)T };
it is clear that markings (1 2 0 0 6)T and (0 2 1 3 6)T are term-wise larger than mini-
mal elements (1 0 0 0 0)T and (0 2 0 3 6)T respectively; therefore, we remove these two
minimal elements to update ε0 to ε0 = {(0 2 0 3 6)T }. Now, to complete the elevation
process, (0 2 0 0 6)T needs to be elevated with respect to members of ε0, resulting in
ε1 = {(0 4 0 0 6)T }. We repeat the elevation process once more to raise (0 2 0 0 6)T with
respect to members of ε1 to get ε2 = {(0 6 0 0 6)T }. As we can see the only marking of ε2
is term-wise larger than the only marking of ε1. So, the final set of descendants for mark-
ing (0 2 0 0 6)T will be {(0 2 0 3 6)T , (0 4 0 0 6)T }. Now, in the next step, we need to
raise the child(ren) of (0 2 0 0 6)T with respect to the set of new descendants. As shown in
Fig. 3b, (0 2 1 0 0)T is the only child of (0 2 0 0 6)T connected through transition t5. There-
fore, (0 2 1 0 0)T needs to be checked and elevated (if necessary) with respect to members
of {(0 2 0 3 6)T , (0 4 0 0 6)T } for t5. This process will result in the set of new markings
ε01 = {(0 2 1 3 0)T , (0 4 1 0 0)T }. Next, to complete the elevation process, (0 2 1 0 0)T

is elevated with respect to members of ε01, resulting in ε11 = {(0 2 4 3 0)T , (0 4 4 0 0)T };
all members of ε11 are dismissed by members of ε01, and are discarded. Therefore, the
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Fig. 4 The CI-graph and the child-parent tree structure of ̂M2, where min( ̂M2) =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T , (0 2 0 3 6)T , (0 4 0 0 6)T , (0 2 1 3 0)T , (0 4 1 0 0)T }, and
Apass ( ̂M2) = {(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }. a G( ̂M2, N2) b T ( ̂M2, N2)

second round of elevation will terminate, and the updated estimate will be min( ̂M2) =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T , (0 2 0 3 6)T , (0 4 0 0 6)T , (0 2 1 3 0)T , (0 4 1 0 0)T }.
The CI-graph G( ̂M2, N2) and the child-parent tree structure T ( ̂M2, N2) are shown in
Fig. 4.

Based on Fig. 4a, markings {(0 2 0 3 6)T , (0 4 0 0 6)T , (0 2 1 3 0)T , (0 4 1 0 0)T }
fails the CI test for transitions t3. Suppose we decide to elevate (0 2 0 3 6)T for transi-
tion t3. Given the rules of the algorithm, (0 2 0 3 6)T should be raised with respect to
members of (min( ̂M2) − {(0 2 0 3 6)T , (0 2 1 3 0)T , (0 4 0 0 6)T , (0 4 1 0 0)T } =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }). This process will result in the genera-
tion of the set ε0 = {(1 2 0 3 6)T , (0 2 0 6 6)T , (0 2 0 6 6)T }, all being term-wise
larger than members of (min( ̂M2) − {(0 2 0 3 6)T , (0 2 1 3 0)T , (0 4 0 0 6)T ,
(0 4 1 0 0)T }. At this point, since (0 2 0 3 6)T has no non-dismissed descendants, we need
to remove it from the current estimate; upon removal of (0 2 0 3 6)T , all its children, i.e.
{(0 2 1 3 0)T , (0 4 0 0 6)T , (0 4 1 0 0)T }, will also get removed based on the discipline
dictated by the algorithm. Therefore, the third round of elevation will terminate, and the
updated estimate will be min( ̂M3) = {(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }. The CI-
graph G( ̂M3, N2) and the child-parent tree collection T ( ̂M3, N2) are shown in Fig. 5. Note
that ̂M3 is control invariant with respect to PN structure N2 as we haveAf ail( ̂M3) = ∅.

For this example, the process of elevation resulted in a right-closed set ̂M3 ⊂ M0 that
is control invariant (with respect to the PN structure N2) that is also the supremal right-
closed control invariant subset M⇑

0 . In general, the control invariant set that results from
this process of repeated elevation is not guaranteed to be the supremal right-closed control
invariant subset. The example in the next subsection illustrates the need for the DFS-based
procedure of Algorithm 3.

4.2 Example 2: DFS-based approach for computing the supremal right-closed
control invariant subset

Consider the PN structure N3 of Fig. 6a, and the right-closed set min(M0) = {(1 0 0 0 0)T ,
(0 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T }. In the PN structure N3 of Fig. 6a, all transitions are
uncontrollable. Figure 6(b) shows the CI-graph G(M0, N3); as we can see from the graph,
Apass(M0) is empty. Figure 6(c) shows the initial child-parent tree structure T (M0, N3),
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Fig. 5 The CI-graph and the child-parent tree structure of ̂M3, where min( ̂M3) =
{(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }, and Apass ( ̂M3) = {(1 0 0 0 0)T , (0 0 0 6 6)T , (0 0 1 6 0)T }. a
G( ̂M3, N2) b T ( ̂M3, N2)

where all markings of min(M0) are considered as root vertices and the tree has no arcs
since no child-parent relation is formed yet.

As we can see from Fig. 6b, markings (1 0 0 0 0)T and (0 1 0 0 0)T fail the CI test
for transitions t1 and t3, respectively. So, there will be two elevation choices to start from.
The first one is labeled as ((1 0 0 0 0)T , t1,min(M0),T (M0, N3)), which corresponds

Fig. 6 The PN structure N3, the CI-graph of M0 with respect to N3, and the child-parent tree structure of
M0, where min(M0) = {(1 0 0 0 0)T , (0 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T }, andApass (M0) = ∅. a N3
b G(M0, N3) c T (M0, N3)
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Fig. 7 Summary of different elevation choices starting from M0, where min(M0) =
{(1 0 0 0 0)T , (0 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T }

to elevation of (1 0 0 0 0)T with respect to t1 given min(M0) and T (M0, N3) . The
second one is labeled as ((0 1 0 0 0)T , t3,min(M0),T (M0, N3)), which corresponds to
elevation of (0 1 0 0 0)T with respect to t3 given min(M0) and T (M0, N3). Figure 7 pro-
vides a schematic decision tree showing the initial elevation choices for the given example,
where each edge label corresponds to a specific elevation choice. This decision tree will get
updated as we go through different elevation rounds of the algorithm.

Starting from ((1 0 0 0 0)T , t1,min(M0)),T (M0, N3)), first we elevate (1 0 0 0 0)T

for t1 with respect to (0 1 0 0 0)T to get (1 1 0 0 0)T , which is term-wise larger than
(0 1 0 0 0)T ; so, it will get deleted. Next, we raise (1 0 0 0 0)T for t1 with respect to
(0 0 1 0 0)T to get (1 0 1 0 0)T , which is term-wise larger than (0 0 1 0 0)T and gets
deleted. Finally, (1 0 0 0 0)T is elevated for t1 with respect to (0 0 0 1 1)T resulting in
(1 0 0 0 1)T , which is not term-wise larger than (0 0 0 1 1)T ; so, (1 0 0 0 1)T is a child
of the parent marking (0 0 0 1 1)T . At this point, we also need to raise (1 0 0 0 0)T for
t1 with respect to the newly generated marking, (1 0 0 0 1)T ; this results in generation of
the marking (2 0 0 0 1)T which is term-wise larger than (1 0 0 0 1)T and is therefore,
deleted. So, at the end of this elevation round, we get the updated estimate min( ̂M1) =
{(0 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T , (1 0 0 0 1)T }. The CI-graph G( ̂M1, N3) and the
child-parent tree structure T ( ̂M1, N3) is shown in Fig. 8, where Apass( ̂M1) = ∅. Note
that the thick blue arrows of Fig. 8b shows the existing child-parent relations.

As we can see from Fig. 8a, marking (0 1 0 0 0)T fails the CI test for transitions t3.
So, at this point, there will be only one elevation choice to perform, which is labeled as
((0 1 0 0 0)T , t3,min( ̂M1),T ( ̂M1, N3)). If (0 1 0 0 0)T is elevated for t3 with respect
to (0 0 1 0 0)T , the resulting marking will be (0 1 1 0 0)T , which is term-wise larger
than (0 0 1 0 0)T ; so, it will be discarded. Next, we would raise (0 1 0 0 0)T for t3
with respect to (0 0 0 1 1)T to get (0 1 0 1 0)T , which is not term-wise larger than
(0 0 0 1 1)T ; so, (0 1 0 1 0)T is a child of the parent marking (0 0 0 1 1)T . Since we
have a new non-dismissed minimal element, we also need to elevate (0 1 0 0 0)T with
respect to (0 1 0 1 0)T for t3, resulting in (0 2 0 1 0)T which is term-wise larger than
(0 1 0 1 0)T and is therefore, discarded. Finally, (0 1 0 0 0)T is raised with respect to
(1 0 0 0 1)T for t3; it results in generation of (1 1 0 0 0)T , which is not term-wise larger
than (1 0 0 0 1)T ; so, (1 1 0 0 0)T is a child of the parent marking (1 0 0 0 1)T . Again,
(0 1 0 0 0)T needs to be raised with respect to the newly generated marking, (1 1 0 0 0)T ;
the resulting marking will be (1 2 0 0 0)T which is term-wise larger than (1 1 0 0 0)T

and is therefore, deleted. At the end of this elevation round, we get the updated estimate
min( ̂M2) = {(0 0 1 0 0)T , (0 0 0 1 1)T , (1 0 0 0 1)T , (0 1 0 1 0)T , (1 1 0 0 0)T }. The CI-
graph G( ̂M2, N3) and the child-parent tree structure T ( ̂M2, N3) is shown in Fig. 9, where
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Fig. 8 The CI-graph and the child-parent tree structure of ̂M1, where min( ̂M1) =
{(0 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T , (1 0 0 0 1)T }, and Apass ( ̂M1) = ∅. a G( ̂M1, N3) b T ( ̂M1, N3)

c Current Decision Tree of the DFS algorithm

Af ail( ̂M2) = ∅, implying that ̂M2 is control invariant. Therefore, this path terminates
with ̂M2 as the first control invariant subset found forM0.

Now, we go back to the last unexplored elevation choice; as shown in Fig. 9c, this
choice is labeled as ((0 1 0 0 0)T , t3,min(M0),T (M0, N3)), corresponding to elevation
of (0 1 0 0 0)T with respect to t3 given min(M0) and T (M0, N3) as shown in Fig. 6. If
(0 1 0 0 0)T is elevated for transition t3 with respect to (1 0 0 0 0)T , we get (1 1 0 0 0)T ,
which is term-wise larger than (1 0 0 0 0)T ; so, it will get deleted. Next, we would raise
(0 1 0 0 0)T for t3 with respect to (0 0 1 0 0)T to get (0 1 1 0 0)T , which is term-
wise larger than (0 0 1 0 0)T and gets deleted. Finally, (0 1 0 0 0)T is raised for t3 with
respect to (0 0 0 1 1)T , resulting in (0 1 0 1 0)T , which is not dismissed by (0 0 0 1 1)T ;
so, (0 1 0 1 0)T is a child of the parent marking (0 0 0 1 1)T . At this point, we also
need to elevate (0 1 0 0 0)T for transition t3 with respect to the newly generated mark-
ing (0 1 0 1 0)T , which results in (0 2 0 1 0)T and this marking is term-wise larger than
(0 1 0 1 0)T and is therefore, discarded. At the end of this elevation round, we get the
updated estimate min( ̂M3) = {(1 0 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T , (0 1 0 1 0)T }. The
CI-graph G( ̂M3, N3) and the child-parent tree structure T ( ̂M3, N3) is shown in Fig. 10,
whereApass( ̂M3) = ∅.
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Fig. 9 The CI-graph and the child-parent tree structure of ̂M2, where min( ̂M2) =
{(0 0 1 0 0)T , (0 0 0 1 1)T , (1 0 0 0 1)T , (0 1 0 1 0)T , (1 1 0 0 0)T }, and Af ail ( ̂M2) = ∅. a G( ̂M2, N3) b
T ( ̂M2, N3) c Current Decision Tree of the DFS algorithm

As we can see from Fig. 10a, marking (1 0 0 0 0)T fails the CI test for transitions t1.
So, at this point, there will be only one elevation choice to perform, which is labeled as
((1 0 0 0 0)T , t1,min( ̂M3)),T ( ̂M3, N3)). If (1 0 0 0 0)T is elevated for transition t1 with
respect to (0 0 1 0 0)T , it results in the marking (1 0 1 0 0)T , which is term-wise larger
than (0 0 1 0 0)T ; so, it will get deleted. Next, (1 0 0 0 0)T is elevated for transition t1
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Fig. 10 The CI-graph and the child-parent tree structure of ̂M3, where min( ̂M3) =
{(1 0 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 1)T , (0 1 0 1 0)T }, and Apass ( ̂M3) = ∅. a G( ̂M3, N3) b T ( ̂M3, N3)

c Current Decision Tree of the DFS algorithm

with respect to (0 0 0 1 1)T to get (1 0 0 0 1)T ; this marking is not term-wise larger than
(0 0 0 1 1)T ; so, (1 0 0 0 1)T is a child of the parent marking (0 0 0 1 1)T . At this point,
(1 0 0 0 0)T needs to be elevated for transition t1 with respect to the newly generated
marking (1 0 0 0 1)T , resulting in (2 0 0 0 1)T which is term-wise larger than (1 0 0 0 1)T

and is therefore, discarded. Finally, we raise (1 0 0 0 0)T for t1 with respect to (0 1 0 1 0)T to
get (1 1 0 0 0)T , which is not term-wise larger than (0 1 0 1 0)T ; so, (1 1 0 0 0)T is a child of
the parent marking (0 1 0 1 0)T . If (1 0 0 0 0)T is raised with respect to the newly generated
marking (1 1 0 0 0)T , the resulting marking (2 1 0 0 0)T will be dismissed by (1 1 0 0 0)T

and is therefore, deleted. At the end of this elevation round, we get the updated estimate
min( ̂M4) = {(0 0 1 0 0)T , (0 0 0 1 1)T , (0 1 0 1 0)T , (1 0 0 0 1)T , (1 1 0 0 0)T }. The CI-
graph G( ̂M4, N3) and the child-parent tree structure T ( ̂M4, N3) is shown in Fig. 11, where
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Fig. 11 The CI-graph and the child-parent tree structure of ̂M4, where min( ̂M4) =
{(0 0 1 0 0)T , (0 0 0 1 1)T , (0 1 0 1 0)T , (1 0 0 0 1)T , (1 1 0 0 0)T }, and Af ail ( ̂M4) = ∅. a G( ̂M4, N3) b
T ( ̂M4, N3) c Current Decision Tree of the DFS algorithm

Af ail( ̂M4) = ∅, implying that ̂M4 is control invariant. Therefore, this path terminates
with ̂M4 as the second control invariant subset found forM0.

As shown in Fig. 11c, ̂M4 = ̂M2, since there are no other elevation choices to be
explored, the algorithm will terminate and will return M⇑

0 = ̂M4 ∪ ̂M2 = ̂M2; and,

min(M⇑
0 ) = {(0 0 1 0 0)T , (0 0 0 1 1)T , (0 1 0 1 0)T , (1 0 0 0 1)T , (1 1 0 0 0)T }. In

the Section 5 we formally consolidate the various observations and results introduced via
illustrative examples in this section.
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Fig. 12 The PN structures representing task flows for Robot 1 and Robot 2. a PN N4a representing the task
ow for Robot 1. b PN N4b representing the task flow for Robot 2

4.3 Example 3: A practical example on control invariance property
and its implication in LESP-synthesis

In this section, a practical PN example is presented to illustrate the importance of con-
trol invariance property in synthesizing LESPs for Discrete Event Systems (Khaleghi et al.
2019). Computation of the minimally restrictive LESP for PN models requires computation
of the supremal right-closed control invariant subset of a right-closed set of markings.

Let us consider an automated system that paints automobile bodies using Booth 1 and
Booth 2 and Robot 1 and Robot 2, where Robot 1 and Robot 2 are used for transportation
tasks and painting tasks, respectively. A base-coat is applied to an unfinished body in Booth
1, following this it is transferred to Booth 2, where a coat of clear resin is applied. After
sufficient time has elapsed for the solvents to evaporate, the finished automobile frame is
transported out of Booth 2, and a new unfinished frame is placed in Booth 1 for painting. The
base-coat operation can commence only after Robot 1 has placed an unfinished automobile
body in Booth 1, and the base-coat paint nozzle is affixed to Robot 2. After the completion
of this task, the automobile body with the base-coat is ready to be transported to Booth 2
by Robot 1. At this stage, Robot 2 can either be directed to do another base-coat operation
in Booth 1; or, it can be commissioned to commence a clear-coat operation in Booth 2. The
clear-coat operation can start only after Robot 1 has placed the body with the base-coat in
Booth 2, and the clear-coat nozzle is affixed to Robot 2. After this task is completed, the
finished automobile body is ready to be transported out of Booth 2 by Robot 1, which then
places a new unfinished automobile body in Booth 1 for its base-coat.

Figure 12 shows the PN model representing the task sequence for Robot 1 and Robot 2.
For N4a representing the task flow of Robot 1, transition t1 corresponds to the operation of
putting the base-coat in Booth 1. Transition t2 represents the operation of putting the clear
coat in Booth 2. Transition t3 denotes the operation of removing the painted automobile
body from Booth 2, along with the process of placing a new, unfinished body on the fixture
in Booth 1. The presence of a token in place p1 (resp. p2) denotes the resource state fact
that an automobile body is on the fixture in Booth 1 (resp. Booth 2). A token in place p3
denotes the resource state that a finished automobile body is at the fixture in Booth 2 to be
removed. For N4b representing the task sequence for Robot 2, similar to N4a , transitions t1
and t2 corresponds to the operations of putting the base-coat and the clear-coat in Booth 1
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Fig. 13 The PN structure N4, the CI-graph of N4 for min(M0) =
{(1 0 0 0 0 1)T , (0 0 1 0 0 0)T , (0 1 0 0 1 0)T , (1 0 0 1 0 0)T , (0 1 0 1 0 0)T } and
min(M1) = {(1 0 0 0 0 1)T , (0 0 1 0 0 1)T , (0 0 1 1 0 0)T , (0 1 0 0 1 0)T , (1 0 0 1 0 0)T , (0 1 0 1 0 0)T }. a
N4 b G(M0, N4) c G(M1, N4)

and Booth 2, respectively. Transition t4 (resp. t5) represents the operation where Robot 2 is
commissioned to the clear-coat (resp. base-coat) paint-operation. The presence of a token
in place p4 indicates Robot 2 is ready to be commissioned for any of the two paint tasks.
The presence of a token in place p5 (resp. place p6) indicates Robot 2 is ready to apply the
clear-coat (resp. the base-coat) in Booth 2 (resp. Booth 1).

Figure 13a shows the PN structure N4 that results from merging the two PNs of Fig. 12.
PN N4 belongs to the family of PNs for which the liveness property can be enforced by a
proper right-closed set of minimal elements (cf. (Sreenivas 2012; Salimi et al. 2015; Chen
et al. 2020)); as long as N4 operates within the boundary defined by this proper right-closed
set, the liveness property is guaranteed to be satisfied. Consequently, to synthesis a liveness
policy for N4, computation of the control invariant subset of its corresponding proper right-
closed set is required in order to ensure that firing of no uncontrollable transition would
result in a marking which is outside the boundary of the proper right-closed set. For N4,
transitions t4 and t5 are controllable, in that the decisions about how Robot 2 is commis-
sioned is to be made by the supervisory policy which enforces the liveness property. On the
other hand, all the transportation tasks assigned to Robot 1, represented by transitions t1,
t2, and t3, are uncontrollable; this means that as soon as a body part becomes available in
any of the places p1, p2, or p3, the transportation task can be started by Robot 1, without
any restrictions from the liveness enforcing supervisory policy. Therefore, to reflect the fact
that the supervisory policy has no control over the commencement of uncontrollable transi-
tions, the proper right-closed set which enforces the liveness policy is required to satisfy the
control invariance property, or, otherwise, commencement of transportation tasks by Robot
1 (i.e. firing of any of the transitions t1, t2, or t3) may result in a state which violates the
liveness property.
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The LESP-synthesis, as discussed in (Khaleghi et al. 2019; Chandrasekaran et al. 2015),
requires additional work than computing the largest right-closed control invariant subset
of a given right-closed set. Without getting into the details of LESP-synthesis procedure,
which is beyond the scope of this paper, let us assume, for N4, the right-closed set M0,
where min(M0) = {(1 0 0 0 0 1)T , (0 0 1 0 0 0)T , (0 1 0 0 1 0)T , (1 0 0 1 0 0)T ,

(0 1 0 1 0 0)T } denotes the candidate right-closed set for enforcing the liveness property.
Figure 13b shows the CI-graph of M0 with respect to the PN structure N4. If we apply
Eq. 1 to the minimal element (0 0 1 0 0 0)T for t3, the left-hand-side expression eval-
uates to (1 0 0 0 0 0)T , which is not in M0. This means that if a finished automobile
body is at the fixture in Booth 2 (i.e. (0 0 1 0 0 0)T ), Robot 1 can start the transporta-
tion task to remove it from Booth 2 and then, put an unfinished body in the fixture of
Booth 1 (i.e. (1 0 0 0 0 0)T ). As a result of this operation, the net will get trapped in state
(1 0 0 0 0 0)T , which is outside the boundary of the set defined by min(M0), and where
no other operations can take place (deadlock state). This implies that the right-closed set
M0 is not control invariant with respect to the PN structure N4. Following the procedure
dictated by the proposed algorithm for computing the supremal control invariant subset of
a right-closed set, marking (0 0 1 0 0 0)T will be replaced by two new minimal elements
{(0 0 1 0 0 1)T , (0 0 1 1 0 0)T }, resulting in the right-closed set M1, where min(M1) =
{(1 0 0 0 0 1)T , (0 0 1 0 0 1)T , (0 0 1 1 0 0)T , (0 1 0 0 1 0)T , (1 0 0 1 0 0)T , (0 1 0 1 0 0)T }.
Figure 13b shows the CI-graph of M1(= M⇑

0 ), the largest right-closed control invariant
subset of M0 with respect to the PN structure N4. In fact, M1 represents the largest con-
trollable right-closed set which enforces the minimally restrictive liveness policy for the
manufacturing system represented by PN N4 (Khaleghi et al. 2019).

5 Main results

Observation 4 follows directly from the elevation process and Algorithm1, and is stated
without proof. Theorem 1 establishes the fact that any elevation process terminates in finite
time.

Observation 4 m1, as obtained from Eq. 1 and algorithm 1, is the smallest marking (term-

wise) greater than or equal to m1 such thatm1 tu=⇒ m2.

Theorem 1 Algorithm 1, RAISE FOR CI(m1, m2, tu, N ), will terminate in finite time.

Proof : Following the notation of algorithm 1, let m1(p) be the marking that results from
elevation ofm1(p)with respect tom2(p) for transition tu. If ∀p ∈ Π ,m1(p) ≥ m2(p), then
m1(p) is dismissed by m2 and the algorithm terminates. If this is not the case, m1 will be
elevated with respect to m1. Letm1

1 be the marking that results from this elevation process.
Let us divide the vector Ctu into three partitions for p ∈ Π and consider the following three
cases:

1. Ctu (p) = 0: using the following two scenarios, we show that for this case m1
1(p) =

m1(p):
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1.1. If m1(p) = m1(p) , which implies max{m1(p), INtu (p)} ≥ m2(p) − Ctu (p).
Now, if m2(p) is replaced by m1(p) = m1(p) on the right-hand side and given
the fact that Ctu (p) = 0, we get max{m1(p), INtu (p)} ≥ m1(p) − 0 = m1(p).
Therefore, we will have m1

1(p) = m1(p).
1.2. If m1(p) = m2(p) − Ctu (p), which implies max{m1(p), INtu (p)} < m2(p) −

Ctu (p). Now, if m2(p) is replaced by m1(p) = m2(p) − Ctu (p) on the right-
hand side and given the fact that Ctu (p) = 0, we get max{m1(p), INtu (p)} <

m2(p) − 2Ctu (p) = m2(p) − 2 ∗ 0 = m2(p). Therefore, we will havem1
1(p) =

m1(p).

2. Ctu (p) < 0: using the following two scenarios, we show that for this case m1
1(p) ≥

m1(p):

2.1. m1(p) = m1(p) , which impliesmax{m1(p), INtu (p)} ≥ m2(p)−Ctu (p). Now,
if m2(p) is replaced by m1(p) = m1(p) on the right-hand side and given the
fact that Ctu (p) < 0, m1

1(p) will either be equal to m1(p) or m1(p) − Ctu (p).
Therefore, we will have m1

1(p) ≥ m1(p).
2.2. m1(p) = m2(p) − Ctu (p), which implies max{m1(p), INtu (p)} < m2(p) −

Ctu (p). Now, ifm2(p) is replaced bym1(p) = m2(p)−Ctu (p) on the right-hand
side and given the fact thatCtu (p) < 0, we getmax{m1(p), INtu (p)} < m2(p)−
2Ctu (p). Therefore, m1

1(p) = m2(p) − 2Ctu (p) > m1(p) = m2(p) − Ctu (p).

3. Ctu (p) > 0:

3.1. m1(p) = m1(p) , which implies max{m1(p), INtu (p)} ≥ m2(p) − Ctu (p). Now,
if m2(p) is replaced by m1(p) = m1(p) on the right-hand side and given the fact
that Ctu (p) > 0, we get max{m1(p), INt (p)} > m1(p) − Ct (p). Therefore, we
will havem1

1(p) = m1(p).
3.2. m1(p) = m2(p) − Ctu (p), which implies max{m1(p), INtu (p)} < m2(p) −

Ctu (p). Now, if m2(p) is replaced by m1(p) = m2(p) − Ctu (p), m1
1(p)

will either be equal to m2(p) − 2Ctu (p) or m1(p). Also, note that since
max{m1(p), INtu (p)} < m2(p) − Ctu (p), we can conclude m1(p) < m2(p) −
Ctu (p). Therefore, we will havem1

1(p) ≤ m1(p).

The three cases explained above can be generalized to when m1(p) is to be raised
with respect to m1

k(p) in the kth iteration of the algorithm. However note that for the
first two cases, we will always have m1

k(p) ≥ m1
k−1(p). For the third case, if scenario

[3.1] happens, then it is clear that m1
k(p) = m1

k−1(p) = m1(p) and the algorithm will
terminate asm1

k−1(p) will dismissm1
k(p). Regarding scenario [3.2], we might observe

a non-increasing trend/token load from m1
k−1(p) to m1

k(p). However, this trend will
turn into a constant non-decreasing one in finite number of iterations. For the kth iter-
ation of algorithm ??, the right-hand side of step 7 will be equal to m2(p) − kCtu (p).
If m2(p) − kCtu (p) turns out to be a negative value, the value of m1

k(p) for the
current and subsequent iterations will be fixed at m1(p); that is due to the fact that
max{m1(p), INtu (p)} ≥ 0. Therefore, as soon as the fixed value of m1(p) is obtained
for all p ∈ Π where Ctu (p) > 0, the algorithm will terminate. Consequently, the

number of iterations of the Algorithm 1 will be bounded by max
Ctu (p)≥0

� m2(p)
Ctu (p)

�.
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The directives listed below play an important role in establishing the correctness of
Algorithm 3 and its constituent components.

Directive 1 If during an iteration of Algorithm 3, a parent marking such as mk fails the
CI test for some uncontrollable transition such as tu, no member of C(mk) (where C(mk)

denotes the set of children of mk) should be used to elevate mk for tu.

Directive 2 If during an iteration of Algorithm 3, a parent marking such as mk fails the
CI test for some uncontrollable transition and is replaced by the descendant set D(mk) as
the result of the elevation process, then all its children, C(mk), might have to be elevated
accordingly. This process is referred to as “elevation for control invariance forced by the

parent” and it seeks to maintain the existing child-parent relations. In the simplem1 tu=⇒ m2

example, ifm2 fails the CI test for some uncontrollable transition and is replaced byD(m2),
we need to perform RAISE FOR CI(m1,D(m2), tu, N ) as dictated by Algorithm 1.

Directive 3 If during an iteration of Algorithm 3, as mk fails the CI test for some uncon-
trollable transition and when elevated, D(mk) turns out to be empty (i.e. all descendants of
mk are dismissed), as mk gets removed from the current control invariant estimate, so do
all children of mk , C(mk). The reasoning behind this policy is explained in more details in
Theorem 2.

Theorem 2 Suppose ̂M is an estimate of the right-closed control invariant subset of the
initial set. Also, let’s assume we have m1

2,m
2 ∈ min( ̂M) and m1

2 ∈ D(m1, t1) such that

m1
2

t1=⇒ m2, which impliesm1
2 is a child ofm

2. Let there exists a transition t2 ∈ Tu such that

m2 t2� m̂2 and m̂2 /∈ ̂M. Next, suppose that ifm2 is elevated for t2, �m2 ∈ D(m2, t2) such

that (a) m2
� mi for any mi ∈ min( ̂M) − {m2}; and, (b) m2 t2� m2, m2 ≥ mi for some

mi ∈ min( ̂M) − {m2}; i.e. D(m2, t2) = ∅. We seek to prove that once the parent marking
m2 is dropped without having any descendants, there is no need to keep its child, and m1

2
can also be removed from the current control invariant estimate that is, �m1

2 ∈ D(m1
2) such

that:(a)m1
2 � mi for anymi ∈ min( ̂M)−{m2}−{m1

2}; and, (b)m1
2

t1� m1
2 andm

1
2

t2� m1
2

such that m2,m1
2

≥ mi for somemi ∈ min( ̂M) − {m2} − {m1
2}.

Proof . Since m2 is the only parent of m1
2 for t1, if we re-write m1

2 as m
1 + x for a vector

x ≥ 0, we used to have max{m1 + x, INt1} + Ct1 ≥ m2. It is clear that upon removal of
m2 from ̂M,m1

2 will fail the requirement of CI test for transition t1. Now, let’s supposem1
2

is to be raised for t1 with respect to a marking m3 ∈ min( ̂M) − {m2}. In other words, we
seek to find vector z ≥ 0 such that: max{m1

2 + z, INt1} + Ct1 ≥ m3; let’s call this newly

formed markingm1
2
↑
(wherem1

2
↑ = m1 + x+ z). We will have either of the two following

scenarios:

1. ∃m1
3 ∈ min( ̂M)−{m2} andm1

3 ∈ D(m1, t1) such thatm1
3

t1=⇒ m3, which impliesm1
3 is

a child of m3. In other words, if we re-write m1
3 as m

1 + y for a vector y ≥ 0, we have
max{m1+y, INt1}+Ct1 ≥ m3. It is not hard to show that x(p)+z(p) ≥ y(p),∀p ∈ Π ,

viz. m1
2
↑ = m1 + x + z ≥ m1

3 = m1 + y. Therefore, m1
3 will dismiss m1

2
↑
(as m1

2
↑

is term-wise larger than m1
3) and there is no need to elevate m1

2 with respect to m3 for
transition t1.
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2. �m1
3 ∈ min( ̂M) − {m2} andm1

3 ∈ D(m1, t1) such thatm1
3

t1=⇒ m3. The primary reason
for non-existence of m1

3 could be that during a previous iteration of the algorithm, m1
3

got dismissed by a marking such asm4:

(a) Ifm4 ∈ min( ̂M)−{m2}, it means thatm4 is still a minimal element of the current
control invariant subset estimate. In this case, sincem1

3 ≥ m4 and from scenario 1,

m1
2
↑ ≥ m1

3, then we can conclude m1
2
↑ ≥ m4, which implies that m4 will dismiss

m1
2
↑
and there is no need to elevatem1

2 with respect to m3 for transition t1.
(b) If m4 /∈ min( ̂M) − {m2}, it means that m4 is no longer a minimal element of the

current control invariant subset. In other words, during a previous iteration of the
algorithm with estimate Mcurrent , m4 must have failed in some transition such as
t3 and when elevated for transition t3, �m4 ∈ D(m4, t3) such that: (a) m4

� mi

for any mi ∈ min(Mcurrent ) − {m4}); and, (b) m4 t3� m4 and m4 ≥ mi for
some mi ∈ min(Mcurrent ) − {m4}. We know that m1

3 ≥ m4 and from scenario 1,

m1
2
↑ ≥ m1

3; So, we getm
1
2
↑ ≥ m4. Note that here,m1

2
↑
may or may not fail the CI

test for transition t3. In the latter case, it will get dismissed by the same marking

which covers m1
2
↑
for t3 (or the same marking that dismissed the elevated version

ofm4 for t3). In the former case,m1
2
↑
does not satisfy the requirement of CI test for

transition t3 and there cannot exist any non-dismissed descendant for m1
2
↑
which

satisfies the CI test for t3 (i.e. D(m1
2
↑
, t3) = ∅); or otherwise, ∃m4 ∈ D(m4, t3)

such that m4 t3� m4 and m4 ≥ mi for some mi ∈ min(Mcurrent ), which is a
contradiction. So, there is no need to elevatem1

2 with respect tom
3 for transition t1.

The following Theorem notes that Algorithm 3 will raise a minimal element at most
once with respect to an uncontrollable transitions. In fact, repeated elevation of a minimal
element can only occur via Directive 2.

Theorem 3 Algorithm 3 ensures that each marking (and its descendants) is at most elevated
once with respect to the same transition, unless through Directive 2.

Proof . Suppose ̂M is an estimate of the right-closed control invariant subset of the initial
set. Also, let’s assume we have mi ∈ min( ̂M). First it should be noted that if mi is not the
child of any other minimal element of min( ̂M), then it means it has never been elevated
before with respect to any transitions. Now, let us assume there exist mj ∈ min( ̂M) such

that mi tu=⇒ mj , which implies mi is a child of mj through transition tu.

1. Ifmj ∈ Apass( ̂M), it implies that the parent marking formi will never get dropped or
elevated/updated:

(a) If mi ∈ Apass( ̂M), then mi tu=⇒ mj will hold for the remaining elevation rounds
of the algorithm (if any).

(b) Ifmi ∈ Af ail( ̂M), then it meansmi fails/might fail in at least one more transition
except tu; consider one such transition tl :

(i) . If D(mi , tl) �= ∅ ,then mi will be replaced by some larger descendants

such asmi and, therefore, mi tu=⇒ mj will still hold.
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(ii) IfD(mi , tl) = ∅ ,thenmi will be removed and no future elevation formi

with respect to tu is ever needed.

2. Ifmj ∈ Af ail( ̂M), it implies thatmj fails/might fail in at least one transition; consider
one such transition ts :

(a) If D(mj , ts) = ∅, then by Theorem 2, as mj gets removed, so does mi and no
future elevation for mi with respect to tu is ever needed.

(b) If D(mj , ts) �= ∅, then mi will be replaced by some larger descendants such as

mi resulting from Directive 2. Therefore, mi tu=⇒ mj will still hold, where mj ∈
D(mj , ts).

The following observation identifies conditions under which Algorithm 3 terminates, and
follows directly from its constituent procedures.

Observation 5 At the point of termination for each of the computational paths of the DFS-
tree structure of Algorithm 3, either of the following termination conditions is reached for
the corresponding leaf node denoted by min(Mi ): (1) min(Mi ) = ∅; (2)Af ail(Mi ) = ∅.

Theorem 4 notes that Algorithm 3 terminates in finite-time, a sketch of the proof of this
claim in presented below, as well.

Theorem 4 Algorithm 3 will terminate in finite time.

Proof (Sketch). This Theorem can be inferred based on the following results: (1) Theorem
1 which proves each elevation round will eventually converge; (2) Theorem 3 which implies
no marking is elevated more than once for the same uncontrollable transition; (3) Number
of uncontrollable transitions of the PN structure N being finite; (4) Number of descendants
generated at each elevation round for a marking which fails the test for CI condition being
finite.

As the culmination of the various observations and Theorem in this section, the following
observation notes that the union of the control invariant subsets obtained at the conclusion
of each branch of the DFS-based approach is the supremal right-closed control invariant
subset of the original right-closed set.

Observation 6 Algorithm 3 returns the largest right-closed control invariant subset of the
initial set M0. This result can be argued using Observation 4 and the brute-force approach
implemented by the DFS-based strategy which checks all possible computational paths for
the elevation process exhaustively.

6 Discussion

The supremal right-closed control invariant subset of a right-closed set M ⊆ Z
n (with

respect to a PN structure N ), denoted by M⇑ (M⇑ ⊆ M↑ ⊆ M), satisfies the require-
ment – ∀m1 ∈ min(M⇑), ∃m2 ∈ min(M) such that m1 ≥ m2. In addition, ∀m1 ∈
min(M⇑), ∀tu ∈ Tu, (m1 tu� m̂1) ⇒ (m̂1 ∈ M⇑).
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If a right-closed set M ⊆ Z
n is not control invariant with respect to a PN structure N ,

then ∃m1 ∈ min(M), ∃tu ∈ Tu, such that m1 tu� m̂1, and m̂1 /∈ M. The process of com-
puting the minimal elements ofM⇑ is about developing a systematic approach to elevating
m1 with respect to the other minimal elements, for each tu ∈ Tu where the CI-test (cf.
Equation 1) has been violated. At any given stage, there are many decision choices involved
in this elevation process (i) the choice of the other minimal element, and (ii) the choice
of the uncontrollable transition that featured in the violation of Eq. 1. Using a DFS-based
approach, the algorithm outlined in this paper explores all such choices. At its termination
point, each computational path of this DFS-based approach computes a right-closed control
invariant subset of the original right-closed set, and the termination is shown to happen in
finite-time. The set M⇑ is the union of the control invariant right-closed sets generated at
the termination of each path of the DFS-based tree. Reference (Chandrasekaran et al. 2015)
contains an implementation of a single-branch of the DFS-based procedure outlined in this
paper.

The H-class of PN structures is identified by the following structural properties: (1) for
each place, the weights associated with the outgoing arcs that terminate on uncontrollable
transitions must be the smallest of all outgoing arc-weights; (2) the set of input places to
each uncontrollable transition is no larger than the set of input places of any transition
which shares a common input place with it (cf. Salimi et al. 2015; Chen et al. 2020). All
PN examples in this paper belong to theH-class of PN structures. In all our experiments of
PN structures from this class, we have found that each branch of the DFS-based procedure
outputs the same control invariant subset. As an illustration, min( ̂M2) = min( ̂M4) in
the example shown in Fig. 11c. This leads us to hypothesize that for the H-class of PN
structures, the supremal right-closed control invariant subset can be identified as soon as a
single branch of the DFS-procedure terminates. We suggest formal investigations into this
hypothesis as a future research topic.

In terms of running time, the total number of nodes of the DFS-tree is a measure of
the upper-bound of execution time of the proposed algorithm, which depends on the depth-
bound (α) and the breadth-bound (β) of the DFS-structure (which in turn depends on the
minimal elements ofM0 and the PN structure N ). As a consequence of Directive 1, Direc-
tive 2 and Theorem 3, we have α ≤ O(|min(M0)||Tu|. For a given node, min(Mi ), the
max number of branches that originates from this node at the breadth level is bounded by
|min(Mi )||Tu|. Consequently, β ≤ maxi O(|min(Mi )||Tu|), and the (conservative) upper-
bound of the execution-time isO(αβ), which is the conservative estimate of the total number
of nodes in the aforementioned DFS-structure. We hypothesize that if the PN structure
belongs to the H-class, then all branches of the DFS-structure yield the same right-closed
set, if this hypothesis is true, then the upper-bound of the execution-time is O(α).

7 Conclusion

In context of District Event Systems modeled by Petri Net structures, a Liveness Enforcing
Supervisory Policy (LESP) enforces the liveness property by disabling controllable events
which result in states which are not live. Therefore, the set of initial markings for which an
LESP exists needs to be control invariant with respect to its corresponding PN structure. The
control invariance property ensures that firing of no uncontrollable transition would result
in a state that violates the liveness property, which is intended to be enforced by the LESP.
As a prerequisite step in synthesis of an LESP for certain classes of PN structures, this
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paper presented a formal algorithm to compute the largest (aka the supremal) right-closed
control invariant subset of a right-closed set with respect to its corresponding PN structure.
The supremal property is, in particular, necessary for computation of minimally restric-
tive LESPs. The proposed algorithm works based on a step-by-step elevation framework
performed on the minimal elements of the initial right-closed set which fail to satisfy the
control invariance property. During each elevation iteration of the algorithm, a target mark-
ing which fails the control invariance property for at least one uncontrollable transition is
investigated, resulting in either its removal from the current control invariant estimate or its
replacement by a set of elevated descendants. To obtain the supremal property, a tree-based
Depth-First-Search (DFS) strategy is implemented which ensures for each pair of minimal
elements and transitions of a given right-closed set, all necessary elevation procedures are
tested exhaustively. The termination point of each path of the DFS tree corresponds to a
right-closed control invariant subset of the initial right-closed set. Once, all paths of the
DFS tree reach the termination condition, the algorithm returns the union of all right-closed
control invariant subsets found at each leaf node as the final supremal right-closed control
invariant subset of the initial right-closed set. The elevation process is designed in such a
way that the algorithm is guaranteed to terminate in finite number of iterations. The paper
presented several PN examples to illustrate the fundamental elevation process which lies at
the heart of the DFS strategy. All illustrative examples of this paper belong to H-class of
PN structures, where the output of each leaf node of the DFS tree outputs the same control
invariant subset. For future work, we suggest a deeper investigation into the hypothesis that
for the H-class of PN structures, as soon as a single path of the DFS tree terminates, the
supremal right-closed control invariant subset of the initial right-closed set can be obtained.

Appendix
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