
https://doi.org/10.1007/s10626-019-00297-7

Resource-aware networked control systems under
temporal logic specifications

Kazumune Hashimoto1 ·Dimos V. Dimarogonas2

Received: 18 June 2018 / Accepted: 3 October 2019 /
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Temporal logics for control of dynamical systems have the potential to automatically synthe-
size controllers under complex goals expressed by temporal logic formulas. In this paper, we
are interested in the situation, where a controller system that implements high and low level
controllers is connected to a plant over a communication network. In such control archi-
tecture, it is known that the limited nature of computation and communication resources
should be explicitly taken into account. In view of this, we jointly provide control and com-
munication strategies, such that the resulting state trajectories satisfy the desired temporal
logic formula, while at the same time the average communication rate is below a certain
threshold. The proposed strategies are illustrated through numerical simulation examples.

Keywords Event and Self-Triggered control · Temporal logic control

1 Introduction

Temporal logic motion/task planning and control of dynamical systems have been receiving
an increased attention in recent years (Kress-Gazit et al. 2018; Belta et al. 2007). In contrast
to the standard control tasks that are formulated by well-known stability concepts or point-
to-point navigations, temporal logics allow us to automatically synthesize controllers for
more complicated specifications involving temporal constraints, such as “Survey the region
A, B, C, D infinitely often, while making sure that the region E is always avoided until C is
visited”. The availability of treating such temporal constraints has led to a wide variety of
applications, including cooporative task planning of multi-robot systems (Guo et al. 2013;
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Guo and Dimarogonas 2015; Tumova and Dimarogonas 2016; Karimadini and Lin 2011),
manufacturing systems (Heddy et al. 2015; Antoniotti et al. 1995; He et al. 2015; Morel et al.
2001), robot manipulation (Chinchali et al. 2012; Verginis and Dimarogonas 2017), motion
planning of dynamic robots (Filippidis et al. 2016; Wongpiromsarn et al. 2012; Kloetzer and
Belta 2008; Livingston and Murray 2013; Fainekos et al. 2009; Kress-Gazit 2009; Gol et al.
2015; Kress-Gazit et al. 2007), to name a few. In the temporal logic control framework, such
temporal tasks are generally expressed by Linear Temporal Logic (LTL) orComputational Tree
Logic (CTL) formulas. The basic control synthesis algorithm is given in a hierarchicalmanner, as
briefly described below. First, we obtain a finite transition system that consists of symbolic states
and corresponding transitions, which represents an abstracted behavior of the control system.
The transition system may be obtained by decomposing the state-space into a finite number
of polytopes, and the reachability for each pair of polytopes among them is analysed (Kloet-
zer and Belta 2008; Fainekos et al. 2009; Coogan et al. 2016). Once the transition system is
obtained, a high level controller finds an accepting run to satisfy the desired specifications
through an implementation of, e.g., automata-based model checking algorithms (Baier and
Katoen 2008). If such accepting run is found, a low level controller implements a feedback
control strategy, such that the generated state trajectory satisfies the desired specification.

In this paper, we are interested in the situation, where the plant aims at achieving desired
goals expressed by temporal logic formulas, but the high and low level controllers need to
be implemented over a communication network. In general, control systems whose plants
and controllers are interacted over the communication network are referred to as Networked
Control Systems (NCSs) (Hespanha et al. 2007). Introducing the NCSs in temporal logics
are beneficial, especially when the plant has a limited capacity of memory and computa-
tional power, so that it needs to rely on the network to implement both high and low level
controllers. Moreover, such situation can be met in emerging system architectures that are
of great importance in current and future control technologies. Consider, for example, cloud
robotics (Kehoe et al. 2015), where autonomous robots such as manufacturing robots or
UAVs interact with the clouds for supporting various tasks involving their decision making
and learning. In temporal logics, the temporal specification may be obtained by interacting
with collaborators such as humans, robots, etc., as well as the remote operators that adminis-
trate the control system. The cloud computing can be responsible for implementing the high
level controller to obtain robot motion planning, and the low level controller to compute and
transmit control actions to operate the robot.

In NCSs, the increased popularity of integrating the communication network has brought
new control design and implementation challenges. For example, network delays and packet
losses are typically present while transmitting control signals or sensor data over a communi-
cation channel. In view of this, various results have been proposed to analyze the relation among
network uncertainties, control performance, and stability (see e.g., Zhang et al. (2001) and
Zhang et al. (2005)). Moreover, some approaches to obtain symbolic models for NCSs under
shared communication resources, communication delays or packet dropouts have been provided
in recent years (see, e.g., Borri et al. (2018), Pola et al. (2018), and Mazo et al. (2010)).

Another main challenge lies in the fact that NCSs are subject to a limited range of
computation and communication resources, which will be the main focus of this paper.
For example, in sensor networks, sensor and relay nodes are typically battery driven and
are equipped with a frugal battery capacity. Therefore, designing appropriate controllers
to save the energy consumption is a crucial problem that needs to be solved. Moreover,
NCSs are typically dealing with resource-limited embedded micro processors, which means
that the number of tasks that can be executed in real-time is limited. Hence, reducing the
amount of communication tasks allows to assign other network tasks that are necessary to be
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executed in real time. Based on the above motivations, two resource-aware control schemes
have been proposed in recent years, namely, event-triggered control and self-triggered con-
trol (Heemels et al. 2012). In both strategies, the objective is to reduce the communication
frequency between the plant and the controller. Specifically, sensor data and control inputs
are exchanged over a communication network only when they are needed based on the pre-
scribed control performances, such as L2/L∞-gain stability (Wang and Lemmon 2009), so
that communication is given aperiodically. Such aperiodic scheme can potentially lead to
energy savings of battery powered devices, since the communication over the network is
known to be one of the main energy consumers.

The main contribution of this paper is to provide novel control and communica-
tion strategies under temporal logic specifications, which is in particular inspired by the
resource-aware control paradigm as described above. Specifically, given that the plant is
described by a linear discrete-time system with additive disturbances, we jointly design con-
trol and communication strategies, such that: (i) the resulting state trajectory satisfies the
LTL specification, and (ii) the average communication rate, which represents how often
control packets are transmitted over the communication network, is below a given threshold.
The latter requirement is useful in practical implementation, since it allows us to examine
how much energy consumption is necessary for satisfying the LTL specifications. More-
over, it allows to examine the possibility to assign additional network tasks if necessary to
be executed in real time. To achieve the goal of this paper, our control and communica-
tion synthesis framework has in particular the following technical contributions. First, we
provide a reachability analysis based on Rapidly-Exploring Random Trees (RRT), which is
adapted such that all state trajectories satisfy the requirements to achieve reachability (in the
sense of satisfaction relation of the “trace” definition of the LTL formula), as well as that
the corresponding communication strategy can be designed. To design the communication
strategy, we revise the original RRT as follows: first, for each iterative step we draw a ran-
dom sample in the free state-space and pick the closest node to the sample in the tree. Then,
we pick the optimal pair of the control input and the inter-communication time steps, such
that the corresponding state becomes the closest to the sample. As we will see later, such
optimal node will be found by considering local reachability from the dynamics of the plant
with different selections of inter-communication time steps. To deal with uncertainties due
to initial states and disturbances, we also expand a tree of uncertainties together with states,
which will be incorporated to check feasibility (collision avoidance to the obstacles). The
approach proceeds by constructing a transition system based on the result of reachability
analysis, and implementing both high and low level controllers. In particular, in the high-level
controller part we generate a plan such that the LTL formula can be achieved and the aver-
age communication rate is below a given threshold. As will be seen later, this is achieved by
assigning suitable (communication) costs for each edge of the transition system, and finding
an accepting run such that certain conditions on the assigned weights are satisfied.

Related works So far, a wide variety of controller synthesis algorithms under temporal
logic specifications have been proposed; in particular, our approach is related to Livingston
et al. (2015), Bhatia et al. (2010), Karaman and Frazzoli (2011a), and Karaman (2012), since
the reachabiliy analysis is based on sampling-based techniques. For example, Livingston
et al. (2015) proposed probabilistic sampling schemes to generate optimal state trajecto-
ries subject to LTL specifications. Moreover, Karaman (2012) proposed sampling-based
algorithms under deterministic μ-calculus specifications for nonlinear control systems with
the integration of RRT* algorithms. When limiting our scope to the reachability analysis,
various sampling-based algorithms have been proposed; in particular, the approach is related
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to Luders et al. (2010), Pepy et al. (2009), Tedrake et al. (2010), Majumdar and Tedrake
(2017), and Agha-mohammadi et al. (2014), in the sense that they handle uncertainties of
the plant dynamics for the reachability analysis. For example, Tedrake et al. (2010) proposed
a sampling-based motion planning scheme by designing both a local LQR feedback control
law and level sets that guarantee the reachability towards the goal region. The main novelty of
our approach with respect to the above previous results is that, we design not only a control
strategy but also a communication strategy during the reachability analysis. As previously
mentioned, this is achieved by extending the RRT algorithm, in which a tree of states
is expanded with different selections of inter-communication time steps. Moreover, the
approach is also novel in the sense that we provide a framework to design a communication
strategy such that the average communication rate is guaranteed to be below a threshold.

The approach presented in this paper builds upon our previous work in Hashimoto et al.
(2018). The approach presented in this paper is advantageous over this previous result in the
following sense. In the previous approach, the communication strategy was designed in the
low-level controller, which dynamically assigns the communication time steps during the
online implementation. However, such approach makes it difficult to analyze the commu-
nication load; since the number of communication time steps is unknown apriori, it is also
unknown how often control packets should be transmitted to satisfy the LTL specifications.
On the other hand, the proposed approach in this paper preliminarily assigns the communi-
cation time steps during the reachability analysis (before the implementation). Thus, we can
evaluate how much communication frequency is needed to satisfy the LTL specifications.
As will be seen later, this allows us to design a communication strategy such that the average
communication rate is below a threshold during high level controller implementation. The sec-
ond drawback of the previous result is that the low-level controller needs to solve a finite hori-
zon optimization (feasibility) problem and transmit a (potentially large) sequence of control inputs
per each communication time. This formulation may not be suitable, since network delays
as well as network congestions may arise due to the load of computing and transmitting
control inputs to operate the plant. On the other hand, the proposed approach in this paper
considers a simple stabilizing control law that does not rely on any optimization problem, and
only one control sample is necessary to be transmitted for each communication time step.

The rest of the paper is organized as follows. We describe some preliminaries and the
problem formulation in Sections 2 and 3, respectively. In Section 4, reachability analysis
and an algorithm to obtain a finite transition system are given. In Section 5, we propose
the implementation algorithm involving both high and low level strategies. In Section 6,
a simulation example is given to validate the effectiveness of the proposed approach. We
finally conclude in Section 7.

Notations Let R, R+, N, N+, Na:b be the non-negative real, positive real, non-negative
integers, positive integers, and the set of integers in the interval [a, b], respectively. For given
two setsX ⊂ R

n, Y ⊂ R
n, denote byX ⊕Y the Minkowski sum:X ⊕Y = {z ∈ R

n | ∃x ∈
X , y ∈ Y : z = x + y}. Given A ∈ R

n×n and X ⊂ R
n, let AX = {Ax ∈ R

n | x ∈ X }.
Given x ∈ R

n, we denote by ‖x‖ and ‖x‖∞ the Euclidean norm and the infinity norm of
x, respectively. For simplicity, we denote the collection of N sets X1, . . . ,XN ⊂ R

n as
X1:N = {X1, . . . ,XN }.

2 Preliminaries

In this section, we review several useful notions and established results for transition
systems, Linear Temporal Logic (LTL) formula, and Büchi Automaton.
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Transition System A transition system is a tuple T = (S, sinit, δ, �, g,W), where S is
a set of states, sinit ∈ S is an initial state, δ ⊆ S × S is a transition relation, � is a
set of atomic propositions, g : S → � is a labeling function, and W : δ → R is a
weight function. A run of T is defined as an infinite sequence of states sseq = s0s1 · · ·
such that s0 = sinit, (si , si+1) ∈ δ, ∀i ∈ N. We denote by Run(T ) the set of all runs of
T : Run(T ) = {

sseq | sseq is a run of T
}
. A trace of a run sseq = s0s1s2 · · · is given by

trace(sseq) = g(s0)g(s1)g(s2) · · · . Trace(T ) is defined as a set of all traces generated by
the runs of T ; Trace(T ) = {trace(sseq) | sseq ∈ Run(T )}.
(Linear Temporal Logic Formula): Throughout the paper, we consider that the specification

φ is described by an LTL formula (see e.g., Chapter 5 in Baier and Katoen (2008)) over a
set of atomic propositions �. LTL formulas are constructed according to the following
grammars:

φ ::= true | π | φ1 ∧ φ2 | ¬φ | φ1Uφ2, (1)

where π ∈ � is the atomic proposition, ∧ (conjunction), ¬ (negation) are Boolean
connectives, and U (until) is the temporal operator. Other useful temporal operators such
as � (always), ♦ (eventually), R (release) can be expressed by combining the operators
in (1) and how they are derived is omitted for brevity. Note that in contrast to standard
LTL formulas, the operator © (next) is not defined in (1) and will not be used to express
the specification φ in this paper. Such formulas are often called LTLX formulas (see, e.g.,
Kloetzer and Belta (2008)). The semantics of LTL formula is inductively defined over
an infinite sequence of sets of atomic propositions πseq = π0π1 · · · ∈ (2�)ω. Roughly
speaking, an atomic proposition π ∈ � is satisfied if π holds true at π0. The formula
φ1 ∧ φ2 is satisfied if both φ1 and φ2 hold true. The formula φ1Uφ2 is satisfied if φ1 is
satisfied until φ2 is satisfied. For a given πseq = π0π1 · · · ∈ (2�)ω and an LTL formula
φ, we denote by πseq |= φ if πseq satisfies the formula φ. We further denote by Words(φ)

the set of all words that satisfy the formula φ. That is,

Words(φ) = {πseq ∈ (2�)ω | πseq |= φ}. (2)

(Büchi Automaton): A Büchi Automaton is a tuple B = (Q,Qinit, �, δB, F ), where Q

is a set of states; Qinit ⊆ Q is a set of initial states; � is an input alphabet; δB ⊆
Q × � × Q is a non-deterministic transition relation; F is an acceptance set. A word
is defined as σseq = σ0σ1 · · · , with σi ∈ �, ∀i ∈ N. A run of B over a word σseq is
defined as an infinite sequence of states qseq = q0q1 · · · generated such that q0 ∈ Qinit
and (qi, σi, qi+1) ∈ δB , ∀i ∈ N. A run qseq is called accepting if there exists a word σseq
such that F is intersected infinitely often. A word σseq is accepted by B if there exists
an accepting run for σseq. A language Lang(B) is defined as a set of all words accepted
by B. It is known that any LTL formula φ can be translated into the corresponding Büchi
Automaton B with � = 2�, such that Words(φ) = Lang(B). Many off-the-shelf tools
for this translation algorithm have been proposed and can be found online, e.g., LTL2BA
(Oddoux and Gastin 2001).

3 Problem formulation

3.1 Plant dynamics

We consider a Networked Control System illustrated in Fig. 1, where the plant and the con-
troller are connected over a communication network. The controller system is responsible
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Fig. 1 Networked control system

for both implementing a high level controller that generates symbolic and communication
plans for a given LTL specification φ, and a low level controller that generates (low level)
control inputs to operate the plant. How these controllers are designed will be formally
given later in this paper. Throughout the paper, we assume that the communication network
is ideal; it induces neither packet dropouts nor any network delays. The dynamics of the
plant is given by the following Linear-Time-Invariant (LTI) systems:

xk+1 = Axk + Buk + wk, (3)

for k ∈ N, where xk ∈ R
n is the state, uk ∈ R

m is the control input, and wk ∈ R
n

is the additive disturbance. We assume that the pair (A,B) is controllable, and that the
disturbance is constrained aswk ∈ W , ∀k ∈ N, whereW is a given polytopic set. Regarding
the state, we assume xk ∈ X , ∀k ∈ N, where X is a polygonal set that can be either a
convex or non-convex region. The set X represents the free space, in which the state is
allowed to move. Inside X , we assume that there exist in total NI number of polytopic
regionsR1,R2, . . . ,RNI

⊂ X , which represent the regions of interest inX . These regions
are assumed to be disjoint, i.e., Ri ∩ Rj = ∅, ∀i, j ∈ N1:NI

with i �= j . Moreover, let
xcent,i ∈ Ri , i ∈ N1:NI

denote the Chebyshev center (Borrelli et al. 2017) of the polytope
Ri . The Chebyshev center is the center of the maximum ball that is included in Ri and is
obtained by solving a linear program (for details, see Section 5.4.5 in Borrelli et al. (2017)).
In addition, the initial state is assumed to be given and is inside one of the regions of interest,
i.e., x0 ∈ Rinit whereRinit ∈ R1:NI

.
Let πi , i ∈ N1:NI

be the atomic proposition assigned to the region Ri . Namely, πi

holds true if and only if x ∈ Ri . Also, denote by π0 an atomic proposition associated
to the regions of non-interest, i.e., π0 holds true if and only if x ∈ X \(∪NI

i=1Ri ). The
atomic proposition π0 represents a dummy symbol, which will not be used to describe the
specification. Let � = {π1, π2, . . . , πNI

} and hX : Rn → � be the mapping from the state
to the corresponding atomic proposition, i.e.,

where X\R = X \(∪NI

i=1Ri ).
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3.2 Satisfaction relation over the state trajectory

Denote by mathx = x0x1x2 · · · a state trajectory in accordance to (3), with xk ∈ X ,
uk ∈ R

m, wk ∈ W , ∀k ∈ N. We next define the satisfaction relation of the formula φ by the
state trajectory mathx. Let us first define the trajectory of interest as follows:

Definition 1 Given a state trajectory mathx = x0x1x2 · · · , the trajectory of interest
mathxI corresponding to mathx is defined as mathxI = x	0x	1x	2 · · · with 	0 = 0,
	j < 	j+1, ∀j ∈ N, such that: hX(x	j

) ∈ �, ∀j ∈ N, and hX(xk) = π0, ∀k ∈ (	j , 	j+1),
∀j ∈ N. �

Stated in words, the trajectory of interest is given by eliminating all states that belong
to the regions of non-interest. The trace of the state trajectory is generated based on the
trajectory of interest as defined next:

Definition 2 Given a state trajectory mathx = x0x1 · · · , the trace of mathx is given by
trace(mathx) = ρ0ρ1 · · · , which is generated over the corresponding trajectory of interest
mathxI = x	0x	1x	2 · · · , satisfying the following rules for all L ∈ N, i ∈ N:

(i) ρ0 = hX(x	0);
(ii) If ρL = hX(x	i

) and there exists j > i such that hX(x	i
) = hX(x	i+1) = · · · =

hX(x	j
), hX(x	j

) �= hX(x	j+1), then ρL+1 = hX(x	j+1);
(iii) If ρL = hX(x	i

), and hX(x	j
) = hX(x	i

), ∀j ≥ i, then ρm = ρL, ∀m ≥ L.

For example, assume that xk ∈ R1 for k = 0, 1, 2, xk ∈ X\R for k = 4, 5 and xk ∈ R2
for k = 6, 7, 8 · · · . This means that the state initially starts from R1, leave R1 for entering
R2, and remains there for all the time afterwards. The trajectory of interest is given by
x0x1x2x6x7x8 · · · . The trace of the trajectory according to Definition 2 is ρ = ρ0ρ1ρ2 · · ·
with ρ0 = hX(x0) = π1 and ρL = π2, ∀L ≥ 1.

Definition 3 Given a state trajectory mathx = x0x1x2 · · · , we say that mathx satisfies the
formula φ if and only if the corresponding trace according to Definition 2 satisfies φ, i.e.,
πseq = trace(mathx) |= φ.

3.3 Communication strategy

To satisfy the formula φ, the plant interacts with the low level controller over the commu-
nication network for obtaining control inputs in real time. To indicate the communication
times, let km,m ∈ N with km+1 > km,∀m ∈ N be the communication time steps between
the plant and the controller. That is, for each km, m ∈ N the plant transmits the current state
information xkm to the controller, and the controller computes a suitable control input to
be applied and transmit it back to the plant. We assume that the control input is given in a
sample-and-hold implementation, i.e., ukm+	 = ukm , ∀	 ∈ N1:km+1−km−1, ∀m ∈ N. In what
follows, we introduce the notion of average communication rate:

Definition 4 Given km, m ∈ N, the average communication rate ρave ∈ [0, 1] is given by

ρave = lim
m→∞

m

km

(6)
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Intuitively, the average communication rate is an asymptotic ratio between the number
of communication time steps and the time steps. As we will see below, the communication
time steps km,m ∈ N are designed, such that the state trajectory satisfies the LTL formula,
as well as that a certain communication constraint on ρave is satisfied.

Remark 1 Note that the actual number of communication time steps until km is m + 1,
instead of m. However, since km → ∞ as m → ∞, we have limm→∞(m + 1)/km =
limm→∞ m/km. Hence, the lack of “plus one” term does not affect our result provided in
this paper.

3.4 Problem formulation

We now describe the main problem to be solved in this paper:

Problem 1 Given x0 ∈ Rinit ∈ R1:NI
, φ and ρ̄ ∈ (0, 1], design both control and

communication strategies in a sample-and-hold implementation (see Section 3.3), such that:

(A.1) the resulting state trajectory satisfies φ;
(A.2) the average communication rate is below ρ̄, i.e., ρave < ρ̄.

That is, the goal of this paper is to design control and communication strategies, such
that the resulting state trajectory satisfies the desired LTL formula φ, and the corresponding
average communication rate is below a given threshold ρ̄. In practice, ρ̄ can be provided in
terms of the limited communication resources that are present in NCSs, such as the lifetime
of the battery powered devices, the number of network tasks that can be executed in real
time, and so on. For example, if the relationship between the frequency of communication
and the lifetime of the battery powered devices is known, we may select ρ̄ in order to ensure
that the battery powered devices can stay alive longer than the desired period. As another
example, suppose that the embedded micro-processor is able to execute only one task for
each k (i.e., there exists only one time slot that the micro-processor can assign the task for
each k), and that in addition to the communication task, another network task should be
executed within 60% of the total number of executions. In this case, we may select ρ̄ as
ρ̄ = 1 − 0.6 = 0.4, so that the rate of executing the communication task is below 40%.

4 Constructing transition system

As a first step to solve Problem 1, we construct a finite transition system that represents an
abstracted model to describe the behavior of the control systems in (3). Specifically, we aim
at obtaining T = (S, sinit, δ, �, g,W1,W2), where S = {s1, . . . , sNI

} is a set of symbolic
states, sinit ∈ S is an initial state, δ ⊆ S × S is a transition relation, � = {π1, . . . , πNI

} is
a set of atomic propositions, g : S → � is a labeling function, and W1,W2 : δ → N are
weight functions. Roughly speaking, each symbol si ∈ S indicates the region of interestRi

(i.e., the region having the same index i). To relate each symbol to the corresponding region
of interest, let � : S → R1:NI

be the mapping given by

�(si) = Ri , ∀i ∈ N1:NI
. (7)

Conversely, let �−1 : R1:NI
→ S be the mapping from each region of interest to the

corresponding symbolic state. The symbol sinit ∈ S represents the symbolic state associated
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with Rinit, i.e., sinit = �−1(Rinit). The labeling function g outputs the atomic proposition
assigned toRi , i.e., g(si) = πi . The weight functionsW1,W2 are defined to output, as we
will see later, the number of communication time steps and the total number of time steps
for each transition in δ, respectively. The transition relation (si , sj ) ∈ δ indicates that every
x ∈ Ri can be steered toRj in finite time. A more formal definition of δ is provided in the
next subsection.

4.1 Definition of reachability

To characterize δ in the transition system, we next introduce the notion of reachability
among the regions of interest. To this end, consider a pair (Ri ,Rj ) ∈ R1:NI

× R1:NI
with

i �= j . For notational simplicity, let Xij ⊂ X be given by

Xij = X \
⋃

n∈N\ij
Rn, (8)

where N\ij = {1, . . . , NI }\{i, j}. That is, Xij represents the free space that we exclude
all regions of interest other than Ri and Rj . Note that Xij is a polygonal set that can be
a non-convex region. Whether the transition is allowed in T , from si = �−1(Ri ) to sj =
�−1(Rj ) (i.e., (si , sj ) ∈ δ), is determined according to the following notion of reachability:

Definition 5 (Reachability) We say that the reachability holds from Ri to Rj (i �= j ),
which we denote by (si , sj ) ∈ δ, if there exists kF ∈ N+ such that the following
holds: for any x0 ∈ Ri and the disturbance sequence w0, w1, . . . , wkF −1 ∈ W , there
exist u0, u1, . . . , ukF −1 ∈ R

m such that the resulting state trajectory x0, x1, . . . , xkF
in

accordance with (3) satisfies

(C.1) xkF
∈ Rj ,

(C.2) xk ∈ Xij , ∀k ∈ N0:kF
,

(C.3) If xk′ ∈ Rj for some k′ ∈ N1:kF
, then xk /∈ Ri , ∀k ∈ Nk′:kF

.

Based on Definition 5, reachability holds fromRi toRj if there exists a controller such
that any state in Ri can be steered to Rj in finite time. Moreover, we require by (C.2)
that the state needs to avoid any other region of interest apart from Ri and Rj . Also, (C.3)
implies that once the state entersRj it must not enterRi afterwards. The conditions (C.2),
(C.3) are essentially required to guarantee that the trace of the state trajectory satisfies the
following property:

Proposition 1 For every x0 ∈ Ri , the trace of the state trajectory x0, x1, . . ., xkF
satisfying

(C.1)–(C.3) is πiπj .

Proposition 1 implies that the trace of the state trajectory satisfying (C.1)–(C.3), which is
generated according to the rules in Definition 2, is consistent with the trace for the transition
from si to sj (i.e., g(si)g(sj )). As will be seen later, this leads to that the trace of T that
satisfies φ implies that the corresponding trace of the actual state trajectory also satisfies φ.

4.2 Reachability analysis fromRi toRj

This section provides a way to analyze reachability fromRi toRj . The reachability analysis
presented in this paper is based on the RRT algorithm (LaValle 2006), which is adapted such
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that the state trajectories satisfy all requirements to achieve reachability (i.e., the conditions
(C.1)–(C.3)), as well as that the corresponding communication strategy can be designed.
The overall algorithm is illustrated in Algorithm 1 and the details are described below.
As the inputs to the algorithm, we give Nmax ∈ N+ and Lmax ∈ N+ as the user-defined
parameters, which represent the total number of iterations for building a tree and the maxi-
mum inter-communication time steps, respectively. Moreover, we give a matrix K ∈ R

m×n,
where A + BK is stable, which will be used to obtain (state feedback) control inputs and
uncertainty propagations around the nominal state trajectory. The algorithm starts by initial-
izing the set of nodes V and edges E as empty sets. In addition, we initialize the mapping
I : X ×X → N+, which will be used to stack the inter-communication time steps required
to steer the states inX . As shown in the algorithm (Line 3), we stack the pair (xcent,i ,Ri ) in
V as the initial node. Intuitively, the set Ri represents the uncertainty of the (actual) initial
state, which is also stacked together with xcent,i in V .
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The algorithm proceeds by expanding a tree of states (Line 4–Line 22). First,
Sample(Xij ) draws a state randomly chosen from Xij . For given V and xsamp ∈ Xij ,
FindNearest(V, xsamp) finds the closest node in V to xsamp, i.e.,

FindNearest(V, xsamp) = argmin
(x,X )∈V

‖x − xsamp‖. (9)

The function Steer(xnearest, xsamp, L) finds a control input and the corresponding state
by solving the following problem:

min
u∈Rm

∥∥∥∥∥
ALxnearest +

L∑

	=1

A	−1Bu − xsamp

∥∥∥∥∥
. (10)

In (10), the term ALxnearest + ∑L
	=1 A	−1Bu represents the nominal state from xnearest by

applying u constantly for L time steps. Namely, the function finds an L-step constant con-
trol input such that the corresponding state is close to xsamp as much as possible from xnearest.
Since the control input is applied constantly for L time steps, we will utilize L as the inter-
communication time steps to steer the state from xnearest. Let û be an optimal control input
by solving (10) and let x̂L = ALxnearest+∑L

	=1 A	−1Bû. Then, Steer returns x̂L and û, i.e.,

Steer(xnearest, xsamp, L) = {
x̂L, û

}
. (11)

The function IfClose(x̂L, x̂opt, xsamp) :

IfClose(x̂L, x̂opt, xsamp) =
⎧
⎨

⎩

True, if ‖x̂L − xsamp‖ < ‖x̂opt − xsamp‖
or ‖x̂L − xsamp‖ < ε,

False, otherwise,
(12)

where ε > 0 is a given threshold. That is, it examines if xsamp is closer to x̂L than to x̂opt
or it is close enough to xsamp. If IfClose(x̂L, x̂opt, xsamp) = True, then x̂opt is replaced by x̂L

(Line 11). Note that if ‖x̂L −xsamp‖ < ε is satisfied for several values of L, then x̂L with the
largest L is chosen (since the algorithm computes IfClose starting withL = 1). The function
GenTraj(xnearest, ûopt, Lopt) is executed to obtain the nominal state trajectory by applying the
optimal control input:GenTraj(xnearest, ûopt, Lopt) = x̂0:Lopt , where x̂0 = xnearest and x̂	+1 =
Ax̂	+Bûopt, ∀	 ∈ N0:Lopt−1. Then, the functionUncertainSets(x̂0:Lopt , ûopt) (Line 16) yields
a sequence of polytopic sets as follows:

UncertainSets(x̂0:Lopt , ûopt) = {X0, . . . ,XLopt}, (13)

where (x̂0,X0) ∈ V and X1, . . . ,XLopt are given by

X	 = x̂	 ⊕
(

A	 +
	∑

	′=1

A	′−1BK

)
(−x̂0 ⊕ X0

) ⊕
	−1∑

	′=0

A	′W, (14)

for all 	 ∈ N1:Lopt . Intuitively, and as will be clearer later in this section (see in particular
Lemma 1), the sets X0, . . . ,XLopt represent uncertainty propagations of the actual state
trajectory around the nominal one x̂0, . . . , x̂Lopt , starting from any initial state from X0 by
applying a suitable control strategy. The function IfFeasible(X0:Lopt) (Line 17) examines if
all X0, . . . ,XLopt are inside Xij , i.e.,

Discrete Event Dynamic Systems (2019) 29:473–499 483



If the feasibility holds, the pair (x̂Lopt ,XLopt), and the triple ((x̂0, X0), ûopt, (x̂Lopt ,XLopt))

are stored in V and E , respectively. Moreover, we assign the corresponding inter-
communication time steps to the mapping I (Line 18–Line 22).

Once a set of nodes and edges (V, E) are obtained, the function FindTraj is executed to
find nominal states, inputs and the corresponding uncertain sets from Ri to Rj in the fol-
lowing way: if there existM ∈ N+ and x̃0:M, ũ0:M−1, X̃0:M , where (x̃0, X̃0) = (xcent,i ,Ri ),
and

((x̃m, X̃m), ũm, (x̃m+1, X̃m+1)) ∈ E, ∀m ∈ N0:M−1, (17)

X̃M ⊆ Rj , (18)

then we set FindTraj(V, E) = {x̃0:M, ũ0:M−1, X̃0:M }. The illustration of the trajectory x̃0:M
is shown in Fig. 2a. Roughly speaking, the condition in (18) indicates that the uncertainty
around the terminal state (i.e., X̃M ) is small enough such that the actual state trajectory is
guaranteed to enterRj . The above sequences can be found by implementing a graph search
from the initial node (xcent,i ,Ri ) to some node in V , whose state and the set are both inside
Rj . If multiple feasible sequences satisfying (17) and (18) are found, we select the one with
the minimum value of the communication rate M/kM . Note that to steer the state from x̃m

to x̃m+1 (m ∈ N0:M−1), ũm needs to be applied constantly for I(x̃m, x̃m+1) time steps, i.e.,
x̃m+1 = ALmx̃m + ∑Lm

	=1 A	−1Bũm, where Lm = I(x̃m, x̃m+1).
The function UpdateTimes (Line 24) is defined as follows: UpdateTimes(x̃0:M , I) =

{k0, k1, . . . , kM }, where k0 = 0 and

km = km−1 + I(x̃m−1, x̃m), ∀m ∈ N1:M . (19)

Intuitively, k0, k1, . . . , kM−1 indicate the time steps when control inputs are updated, which,
as will be seen below, represent the communication time steps between the plant and the

Fig. 2 Illustration of x̃0, . . . , x̃M from (17) and (18) and x̂0, . . . , x̂kM
from (22)
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controller. In addition, kM indicates the terminal time step when the state trajectory enters
Xj . The function GenAllTraj is defined to generate all nominal states, inputs and the cor-
responding uncertain sets including the ones during the inter-communication time steps:
GenAllTraj(x̃0:M, ũ0:M−1, X̃0:M, k0:M) = {û0:kM−1, x̂0:kM

,X0:kM
}, where

ûkm = ũm, ∀m ∈ N0:M−1, (20)

ûkm+	 = ûkm, ∀	 ∈ N1:km+1−km−1,∀m ∈ N0:M−1, (21)

and

x̂k+1 = Ax̂k + Bûk, ∀k ∈ N0:kM−1. (22)

An example of the trajectory x̂0, . . . , x̂kM
is illustrated in Fig. 2b. Note that from (20), (21)

and (22), it follows that x̂km = x̃m, ∀m ∈ N0:M . The sequence X0:kM
is given as follows:

X0 = X̃0(= Ri ) and

Xkm+	 = x̂km+	 ⊕
(

A	 +
	∑

	′=1

A	′−1BK

)

(−x̂km ⊕ Xkm) ⊕
	−1∑

	′=0

A	′W, (23)

for all 	 ∈ N1:km+1−km,m ∈ N0:M−1. Note that from (23) and (14), it follows that Xkm =
X̃m, ∀m ∈ N0:M . Finally, the function IfReachable examines if the reachability holds from
Ri toRj in the following way: IfReachable(X0:kM

) = True if the following holds:

Xk′ ∩ Rj �= ∅, k′ ∈ N0:kM
=⇒ Xk ∩ Ri = ∅, ∀k ∈ Nk′:kM

, (24)

and IfReachable(X0:kM
) = False otherwise. The condition in (24) indicates that once some

uncertain set intersects Rj , it does not intersect Ri afterwards, which aims at fulfilling the
condition (C.3) in Definition 5. Finally, if IfReachable returns True, the algorithm returns
the sequences k0:M , x̂0:kM

, û0:kM−1, X0:kM
.

The fact that the reachability holds based on the above is validated by the following
result:

Lemma 1 Suppose that IfReachable(X0:kM
) = True and Algorithm 1 returns

k0:M, x̂0:kM
, û0:kM−1,X0:kM

. Then, it follows that the reachability holds fromRi toRj . �

Proof : Suppose that IfReachable(X0:kM
) = True and Algorithm 1 returns

k0:M, x̂0:kM
, û0:kM−1,X0:kM

. For any x0 ∈ Ri , let xk , k ∈ N0:kM
be the actual state trajectory

by applying uk , k ∈ N0:kM−1, i.e., xk+1 = Axk + Buk + wk , ∀k ∈ N0:kM−1, where

uk = K(xk − x̂k) + ûk, if k = km, m ∈ N0:M−1 (25)

uk = uk−1, otherwise. (26)

That is, the state feedback controller is utilized for the update times km,m ∈ N0:M−1, and
the constant controller is utilized for all the other time steps. In the following, we first show
by induction that xk ∈ Xk , ∀k ∈ N0:kM

. For the initial time step k = k0 = 0, we have
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x0 ∈ Ri = X0. Assume that xkm ∈ Xkm for somem ∈ N0:M−1. Then the difference between
the actual state and the nominal one for km + 	, 	 ∈ N1:km+1−km is given by

xkm+	 − x̂km+	 = A	xkm +
	∑

	′=1

A	′−1B
(
K(xkm − x̂km) + ûkm

)

+
	∑

	′=1

A	′−1wkm+	′ −
(

A	x̂km +
	∑

	′=1

A	′−1Bûkm

)

=
(

A	 +
	∑

	′=1

A	′−1BK

)

(xkm − x̂km) +
	−1∑

	′=0

A	′
wkm+	′ ,

for all 	 ∈ N1:km+1−km . Thus, from (23), it follows that xkm+	 ∈ Xkm+	, ∀	 ∈ N1:km+1−km .
Therefore, we have xkm ∈ Xkm =⇒ xkm+	 ∈ Xkm+	,∀	 ∈ N1:km+1−km , and it is inductively
shown that xk ∈ Xk , ∀k ∈ N0:kM

. Moreover, from the feasibility condition in (15), it follows
that Xk ⊆ Xij , ∀k ∈ N0:kM

. Thus, we obtain xk ∈ Xij , ∀k ∈ N0:kM
and the condition

(C.2) in Definition 5 holds. Moreover, from (18), it follows that xkM
∈ XkM

= X̃M ⊆ Xj .
Hence, the condition (C.1) in Definition 5 holds. Finally, from the definition of IfReachable,
it follows that

xk′ ∈ Rj , k′ ∈ N1:kM
=⇒ xk /∈ Ri , ∀k ∈ Nk′:kM

, (27)

which directly shows that the condition (C.3) in Definition 5 holds. Therefore, it is shown
that the reachability holds fromRi toRj .

From Lemma 1, if IfReachable returns True there exists a control strategy, as shown in
(25) and (26), such that the reachability holds from Ri to Rj . Moreover, from (25) and
(26), each ukm , m ∈ N0:M−1 is applied constantly for all [km, km+1), which means that
the control inputs are updated at k0, k1, . . . , kM−1. In other words, the communication time
steps when the plant needs to transmit the current state information to the controller are
given by k0, k1, . . . , kM−1. For the notational use in the next section, let Lx0,Lx , Lu, LI

be the mappings given by

Lx0(Ri ,Rj ) = x̂0:kM
, Lx(Ri ,Rj ) = x̂1:kM

, (28)

Lu(Ri ,Rj ) = û0:kM−1, LI (Ri ,Rj ) = L0:M−1, (29)

where Lm = km+1−km, ∀m ∈ N0:M−1. That is, the above mappings yield the nominal state
and control trajectories, and the inter-communication time steps to achieve the reachability
fromRi toRj .

Some remarks on Algorithm 1 are in order as follows:

Remark 2 (On achieving the minimum communication frequency): In this paper, we employ
an extended version of the RRT algorithm, so that the communication strategy can be
designed while ensuring reachability. Note that the algorithm is not guaranteed to provide
the optimal communication strategy, which means the resulting communication scheduling
may not provide the minimum communication frequency. The minimum number of com-
munication times may be achieved by solving an appropriate optimal control problem for
the steering function and by employing the RRT* algorithm (Karaman 2011b) that inte-
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grates the rewiring procedure. Since we aim at reducing the number of control updates, one
might attempt to solve the following optimization problem for the steering function:

argmin
x̂0:N ,u0:N−1,N

N−1∑

	=0
‖u	+1 − u	‖0,

s.t. x̂	+1 = Ax̂	 + Bu	, ∀	 ∈ N0:N−1

x0 = xnearest

xN = xsample,

where ‖ · ‖0 denotes the 	0-norm that represents the number of non-zero components. In
other words, we aim to find control inputs and the time step such that the number of con-
trol updates is minimized. Using the above problem for the steering function and by the
rewiring procedure as in Karaman (2011b), one may obtain the reachable trajectory that
minimizes the number of control updates (i.e., the communication frequency). However, the
above optimization problem is a computationally expensive problem, as it involves the 	0-
norm cost function. Since the steering function would be utilized for both generating a new
sample and the rewiring procedure, using the above problem is clearly unrealistic. Although
one may relax the problem by using the 	1-norm cost function, there is no guarantee how
such relaxation results in reducing the number of control updates. Therefore, while Algo-
rithm 1 may not minimize the communication frequency, it is more suitable for practical
implementations than the above approach in terms of the computation load. �

Remark 3 (On the computational complexity of Algorithm 1) : The computational complex-
ity of Algorithm 1 can be analyzed by looking at some primitive procedures in Algorithm 1.
The complexity of drawing a sample (Sample) is constant. The complexity of finding
the nearest neighbor FindNearest is O(N) (N denotes the iteration number as in Algo-
rithm 1) by using a naive brute-force search, while other efficient but approximate solutions
exist (see, e.g., Karaman (2011b)). The steering procedure (Steering) requires to solve a
quadratic programming, in which the computational complexity is polynomial with the size
of the variables (see, e.g., Monteiro and Adler (1989)), which is m in this case, i.e., the
dimension of the control input. To analyze the complexity of IfFeasible(X0:L), suppose that
X = X \O1 ∪ · · · ∪ ONo , where X ⊂ R

n denotes a polytopic set, O1, . . .ONo are the
polytopic obstacles to be avoided in X̃ , and No is the number of the obstacles. For given
inter-communitation time steps L ∈ N1:Lmax , IfFeasible examines if L polytopic sets are all
inside Xij , which can be done as follows: (i) compute the intersections between each X	,
	 ∈ N1:L and each obstacle and check if these are all empty; (ii) compute the intersections
between each X	, 	 ∈ N1:L and each region of interest except Ri , Rj , and check if these
are all empty. The complexity of computing the intersection between each pair (X	,On),
(	, n) ∈ N1:L × N1:No (or each pair (X	,Rn), (	, n) ∈ N1:L × N\ij ) is O(Nver logNver),
where Nver denotes the sum of the number of verticies of X	 and On (or X	 and Rn), see,
e.g., Monteiro and Adler (1989). Hence, the computational complexity of IfFeasible depends
on the workspace environment, such as the number of obstacles in the state-space. �

4.3 Construction ofT

Let us now go back to the beginning of Section 4 and consider constructing the transition
system T . Suppose that reachability holds fromRi toRj (i.e., IfReachable(X0:kM

) = True)
and Algorithm 1 returns k0:M, x̂0:kM

, û0:kM−1, X0:kM
. Then, to construct the transition sys-
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tem T , we set (si , sj ) ∈ δ and assign the values for the weight functions W1,W2 as
follows:

W1(si , sj ) = M, W2(si , sj ) = kM . (30)

That is, we assign for W1(si , sj ) and W2(si , sj ) the number of communication time steps
and the total number of time steps to achieve reachability fromRi toRj , respectively. The
weight functionsW1 andW2 will be utilized to obtain the accepting run of T , such that the
corresponding average communication rate is below the threshold ρ̄. Based on the above,
by applying Algorithm 1 for every pair of the regions of interest, we can characterize both
the transition relation δ and the functionsW1,W2. As a consequence, the transition system
T can be constructed as an abstraction of the control system (3).

5 Implementation

Based on the transition system T given in the previous section, we now present our control
and communication strategies as a solution to Problem 1. Following the hierarchical-based
approach, the proposed algorithm consists of high and low level controllers. The details of
each implementation is described below.

5.1 High level controller

In the high level controller part, the controller produces an infinite sequence of the regions
of interest that the state should follow to satisfy the formula φ, as well as that the average
communication rate is below ρ̄. Since the reachability among the regions of interest can be
captured by the transition system T , this can be done by finding a run sseq = s0s1 · · · of
T , such that trace(sseq) |= φ holds. Although there exist several methodologies to achieve
this, this paper adopts an automata-based model checking algorithm; we only describe the
overview of the approach here and refer the reader to Chapter 5 in Baier and Katoen (2008)
for a more detailed explanation. The approach relies on the idea that checking the existence
of a run to satisfy φ is equivalent to checking the non-emptiness of Trace(T ) ∩ Words(φ).
Since Words(φ) = Lang(Bφ), where Bφ = (Q,Q0, 2�, δB, F ) denotes the Büchi Automa-
ton corresponding to the LTL formula φ, the above problem is also equivalent to checking
the non-emptiness of Trace(T ) ∩ Lang(Bφ), i.e., a language of the product automaton
between T and Bφ , which is defined below:

Definition 6 (Product Automaton) A product automaton between T =
(S, sinit, δ, �, g,W1,W2), and Bφ = (Q,Qinit, δB, 2�,F ) is defined as a tuple
Bp = T ⊗ Bφ = (Qp,Qinit,p, δp,�p, Fp), where

– Qp = Q × S is a set of states;
– Qinit,p = Qinit × sinit ⊆ Qp is a set of initial states;
– δp ⊆ Qp × Qp is a transition relation, where ((q, s), (q ′, s′)) ∈ δp iff (s, s′) ∈ δ and

(q, g(s′), q ′) ∈ δB ;
– �p = 2� is an input alphabet;
– Fp = F × S is a set of accepting states.

For a given word σseq = σ0σ1 · · · with σi ∈ �p, ∀i ∈ N, a run of Bp over σseq is defined
as an infinite sequence of states: (qseq, sseq) = (q0, s0) (q1, s1) · · · , such that (q0, s0) ∈
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Qinit,p (i.e., s0 = sinit, q0 ∈ Qinit) and ((qi, si), (qi+1, si+1)) ∈ δB , ∀i ∈ N. A run of Bp is
called accepting if there exists a word σseq = σ0σ1 · · · such that Fp is intersected infinitely
often. Let

(qseq, sseq) = (q0, s0) (q1, s1) (q2, s2) · · · (31)

be one of the accepting runs of Bp . It is known that any accepting run can be represented
by a prefix-suffix structure, i.e., there exist n1, n2 ∈ N, such that

(qseq , sseq)

= (q0, s0) · · · (qn1−1, sn1−1)︸ ︷︷ ︸
prefix part

[(qn1 , sn1) · · · (qn1+n2−1, sn1+n2−1
)

︸ ︷︷ ︸
suffix part

]ω. (32)

As shown in (32), n1, n2 represent the length of the prefix and the suffix part, respectively.
Based on (32) and the weight functions defined in (30), denote byA(sseq) the ratio between
the total number of time steps and the communication time steps required for the suffix part
of sseq, i.e.,

A(sseq) =

n1+n2−1∑

n=n1+1

W1(sn−1, sn)

n1+n2−1∑

n=n1+1

W2(sn−1, sn)

. (33)

Based on the above definitions, in this paper the high level controller finds an appropriate
run of Bp in the following way. First, it finds a set of accepting runs:

Qp,seq = {(qseq, sseq) | (qseq, sseq) is an accepting run of Bp}, (34)

which can be obtained by finding strongly connected components through depth-search
methods (see, e.g., Baier and Katoen (2008)). Then, we select the accepting run such that
the average communication time step for the suffix part is minimized, i.e.,

(q∗
seq, s

∗
seq) = argmin

(qseq,sseq)∈Qp,seq

A(sseq). (35)

Since q∗
p,seq = (q∗

seq, s
∗
seq) is an accepting run of Bp , it is shown that trace(s∗

seq) |= φ (see,
e.g., Baier and Katoen (2008)) and we can obtain the corresponding sequence of regions of
interest that is projected from s∗

seq, i.e.,

R∗
seq = R∗

0R
∗
1R

∗
2 · · · (36)

where we denote s∗
seq = s∗

0 s
∗
1 · · · and R∗

i = �(s∗
i ), ∀i ∈ N. Note that since s∗

0 = sinit, we
haveR∗

0 = Rinit. Namely, the sequenceR∗
seq represents the infinite sequence of the regions

of interest that the state trajectory should traverse to satisfy φ.

Remark 4 (On selecting the accepting run) As shown in (35), in this paper we select the
accepting run such that the average communication rate is minimized. However, we could
consider several other criteria in order to select the accepting run. For example, one could
select the accepting run according to the following:

(q∗
seq, s

∗
seq) = argmin

(qseq,sseq)∈Qp,seq

n1+n2−1∑

n=n1+1

W2(sn−1, sn)

s.t.A(sseq) < ρ̄. (37)
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That is, among all accepting runs such that the average communication rate for the suffix
is below ρ̄, we select the one that minimizes the total time steps (in order to satisfy the
formula φ “as soon as possible”). Here, the constraint A(sseq) < ρ̄ is enforced in order to
deduce that the average communication rate is indeed below the threshold ρ̄; for details, see
Theorem 1.

5.2 Low level controller

Based on the obtained sequence as in (36), the low-level controller iteratively imple-
ments the control and communication strategies, such that the resulting state trajectory
satisfies φ as well as that the average communication rate is below ρ̄. To this end, let
x̂∗
0 x̂

∗
1 x̂

∗
2 , · · · , û∗

0û
∗
1û

∗
2 · · · , L∗

0L
∗
1L

∗
2 · · · be an infinite sequence of nominal states, inputs, and

inter-communication time steps that are generated based onR∗
seq :

Lx0(R∗
0,R∗

1)︸ ︷︷ ︸
x̂∗
0 ··· x̂∗

kM1

Lx(R∗
1,R∗

2)︸ ︷︷ ︸
x̂∗
kM1

+1 ··· x̂∗
kM2

Lx(R∗
2,R∗

3)︸ ︷︷ ︸
x̂∗
kM2

+1 ··· x̂∗
kM3

· · · , (38)

Lu(R∗
0,R∗

1)︸ ︷︷ ︸
û∗
0 ··· û∗

kM1
−1

Lu(R∗
1,R∗

2)︸ ︷︷ ︸
û∗

kM1
··· û∗

kM2
−1

Lu(R∗
2,R∗

3)︸ ︷︷ ︸
û∗

kM2
··· û∗

kM3
−1

· · · , (39)

LI (R∗
0,R∗

1)︸ ︷︷ ︸
L∗
0 ··· L∗

M1−1

LI (R∗
1,R∗

2)︸ ︷︷ ︸
L∗

M1
··· L∗

M2−1

LI (R∗
2,R∗

3)︸ ︷︷ ︸
L∗

M2
··· L∗

M3−1

· · · , (40)

where for the notational simplicity we let Lx0(R∗
0,R∗

1) = x̂∗
0 · · · x̂∗

kM1
and

Lx(R∗
i ,R∗

i+1) = x̂∗
kMi

+1 · · · x̂∗
kMi+1

, (41)

Lu(R∗
i ,R∗

i+1) = û∗
kMi

· · · û∗
kMi+1−1, (42)

LI (R∗
i ,R∗

i+1) = L∗
Mi

· · · L∗
Mi+1−1, (43)

with Mi ∈ N, i ∈ N+ appropriately chosen to line up the sequences:

x̂∗
0 x̂

∗
1 x̂

∗
2 x̂

∗
3 · · · , û∗

0û
∗
1û

∗
2û

∗
3 · · · , L∗

0L
∗
1L

∗
2L

∗
3 · · · . (44)

Moreover, let k∗
m, m ∈ N be given by

k∗
0 = 0, k∗

m+1 = k∗
m + L∗

m, ∀m ∈ N, (45)

i.e., k∗
m,m ∈ N are the communication time steps between the plant and the controller. Based

on the above, a complete algorithm of the low-level implementation is summarized in Algo-
rithm 2. As shown in the algorithm, for each communication time step k∗

m the plant transmits
the current state information to the controller, based on which the controller updates the
control input according to (25) and (26), and transmits it back to the plant. The main result
of this paper is now given as a solution to Problem 1.
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Theorem 1 Suppose that for given x0 ∈ Rinit, φ and ρ̄ ∈ (0, 1], the high level controller
finds an accepting run q∗

p,seq = (q∗
seq, s

∗
seq) according to (35) and that we haveA(s∗

seq) < ρ̄.
Moreover, suppose that the low level controller (Algorithm 2) is implemented. Then, the
resulting state trajectory satisfies φ for any wk ∈ W , ∀k ∈ N. Moreover, the average
communication rate is below ρ̄, i.e., ρave < ρ̄.

Proof : For a given i ∈ N, suppose that xkMi
∈ R∗

i , where kMi
is defined in (38). Since the

reachability holds fromR∗
i toR∗

i+1 and from the proof of Lemma 1, it follows that the state
trajectory entersR∗

i+1 (i.e., xkMi+1
∈ R∗

i+1) by applying a control strategy according to (25)
and (26), and this holds for any disturbance sequence wk ∈ W , k ∈ NkMi

:kMi+1−1 . Hence,
starting from x0 ∈ R∗

0 = Rinit, it is inductively shown that the state trajectory traverses all
regions of interest R∗

seq = R∗
0R∗

1 · · · by applying Algorithm 2. Moreover, from the proof
of Lemma 1 the state trajectory from R∗

i to R∗
i+1 for each i ∈ N satisfies (C.1)–(C.3) in

Definition 5. That is, the trace of the state trajectory while moving from R∗
i to R∗

i+1 is
g(s∗

i )g(s∗
i+1) for all i ∈ N (see Proposition 1), which leads to the fact that the trace of the

overall state trajectory is given by trace(mathx) = g(s∗
0 )g(s∗

1 )g(s∗
2 ) · · · . Thus, we obtain

trace(mathx) = trace(s∗
seq) |= φ and so the satisfaction of φ is achieved.

Now, it remains to show that the communication rate is below ρ̄. From Section 5.1, the
sequences s∗

seq andR∗
seq can be expressed by the following prefix-suffix structure:

s∗
seq = s∗

0 s
∗
1 · · · s∗

n∗
1−1

(
s∗
n∗
1
· · · s∗

n∗
1+n∗

2−1

)ω

, (47)

R∗
seq = R∗

0R∗
1 · · ·R∗

n∗
1−1

(
R∗

n∗
1
· · ·R∗

n∗
1+n∗

2−1

)ω

, (48)
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where n∗
1, n

∗
2 denote the length of the prefix and the suffix parts, respectively. Note that we

haveA(s∗
seq) < ρ̄. Let M∗

pref,M
∗
suf, K

∗
pref,K

∗
suf ∈ N+ be given by

M∗
pref =

n∗
1−1∑

n=1

W1(s
∗
n−1, s

∗
n), M∗

suf =
n∗
1+n∗

2−1∑

n=n∗
1+1

W1(s
∗
n−1, s

∗
n), (49)

K∗
pref =

n∗
1−1∑

n=1

W2(s
∗
n−1, s

∗
n), K∗

suf =
n∗
1+n∗

2−1∑

n=n∗
1+1

W2(s
∗
n−1, s

∗
n). (50)

That is, M∗
pref and M∗

suf represent the number of communication time steps for the prefix
and the suffix parts, respectively, and K∗

pref and K∗
suf represent the total number of time

steps for the prefix and the suffix parts, respectively. Hence, the total number of time steps
when the state trajectory traverses the prefix part (i.e., R∗

0R∗
1 · · ·R∗

n∗
1−1) and p-cycles of

the suffix part (i.e., the p repetitions ofR∗
n∗
1
· · ·R∗

n∗
1+n∗

2−1) is given by K∗
pref + pK∗

suf. Sim-

ilarly, the total number of communication time steps when the state trajectory traverses the
prefix part and p-cycles of the suffix part is given by M∗

pref + pM∗
suf . Hence, the average

communication rate is given by

ρave = lim
p→∞

M∗
pref + pM∗

suf

K∗
pref + pK∗

suf

= lim
p→∞

(
M∗

pref

K∗
pref + pK∗

suf
+ pM∗

suf

K∗
pref + pK∗

suf

)

= M∗
suf

K∗
suf

. (51)

Thus, it follows that ρave < ρ̄ since A(s∗
seq) = M∗

suf/K
∗
suf < ρ̄. Thus, the average

communication rate is below ρ̄.

6 Illustrative examples

In this section we illustrate the effectiveness of the proposed approach. As a simula-
tion example, we consider the motion planning problem of a vehicle moving in a given
free space. Let x = [xpos; xvel] ∈ R

4 denote the state of the vehicle, where xpos =
[xpos1; xpos2] ∈ R

2 and xvel = [xvel1; xvel2] ∈ R
2 are the position and the velocity of

the vehicle, respectively. The dynamics of the vehicle is given by the following double
integrator:

ẋ =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ x +

⎡

⎢⎢
⎣

0 0
0 0
1 0
0 1

⎤

⎥⎥
⎦ u + w, (52)

where u ∈ R
2 is the control input and w ∈ R

4 is the disturbance. To obtain the discrete-time
model, we discretize the system in (52) under zero-order hold controller with 0.5 sampling
time interval. The disturbance set is given by W = {w ∈ R

4 : ‖w‖∞ ≤ 0.1}. The posi-
tion space of the vehicle, denoted as Xpos ⊂ R

2 is shown in Fig. 3a. In the figure, the
white regions represent Xpos in which the state (vehicle) can move freely, and the black
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Fig. 3 Illustration of the position
space Xpos and the results by
applying Algorithm 1 for
(R1,R3)
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regions represent obstacles to be avoided. As shown in Fig. 3a there exist 4 regions of inter-
estR1,R2,R3,R4, which are all 1×1 squares. The velocity space, denoted asXvel ⊂ R

2,
is given by Xvel = {xvel ∈ R

2 : ‖xvel‖∞ ≤ 2.0}. The (free) state space is thus given by
X = Xpos×Xvel. Based on the above setting, we implement Algorithm 1 for each pair of the
regions of interest. While implementing Algorithm 1, we assume Lmax = 20, Nmax = 500
and the matrix K is given by

K =
[
0.004 0 0.139 0
0 0.004 0 0.139

]
(53)

so that the matrix A + BK is stable. Figure 3b illustrates the nominal state trajectory x̂0:kM

obtained by implementing Algorithm 1 for the pair (R1,R3). In the figure, the red cir-
cles represent the instants when the communication is given (i.e., x̂k0 , x̂k1 , . . . x̂kM−1 ). The
total number of communication time steps and the total number of time steps are given by
M = 10 and kM = 78, respectively. From the figure, it is shown that the nominal state tra-
jectory reaches R3, while avoiding all the obstacles. Moreover, Fig. 3c illustrates 100 state
trajectories by applying the control strategies in (25) and (26), starting from different initial
states randomly selected fromR1. It can be shown from the figure that all state trajectories
satisfy (C.1)–(C.3) in Definition 5. Similarly, we analyze reachability for all the other pairs
of the regions of interest and construct the transition system. The resulting transition sys-
tem T contains 4 symbolic states and 16 transitions. The total time to construct T is 4398s
on Windows 10, Intel(R) Core(TM) 2.40GHz, 8GB RAM. To compare with the previous
result in Hashimoto et al. (2018), we illustrate in Table 1 the average execution time to com-
pute a control input per each communication time step by employing the approach in this
paper (i.e., (46)) and the one presented in our previous work (i.e., Eq.(24) and Eq.(25) in
(Hashimoto et al. 2018)). The table shows that, the approach presented in this paper results
in a significant reduction of the computation load, since it does not need to solve an optimal
control problem. On the other hand, the table shows that the approach in this paper requires
longer time steps than Hashimoto et al. (2018) to achieve the reachability, which may be
due to the fact that only one control action can be applied during the inter-communication
time steps (while different control actions can be used in the previous approach).

To illustrate the proposal, we consider the following specification: φ = (♦π1 ∧ ♦π2 ∧
♦π3 ∧♦π4)∧{(�♦π1 ∧�♦π2)∨ (�♦π1 ∧�♦π2 ∧�♦π3)}. The specification means that,
the vehicle should visit all regions of interest at least once, and visit R1, R2 or R1, R2,
R3 infinitely often. Moreover, we assume that the threshold of the average communication
rate is given by ρ̄ = 0.1. Based on the above problem setup, we implemented both high
and low level controllers. Figure 4a illustrates the resulting state trajectory by implementing
the low level controller (Algorithm 2) with x0 = [8.3; −8.4; 0; 0] ∈ R4. The figure
shows that the state trajectories visit all the regions of interest, as well as that they visit
R1, R2 infinitely often. Hence, the state trajectories are shown to satisfy the formula φ. In
addition, Fig. 4b illustrates the corresponding sequence m/km, m = 1, 2, . . .. The figure

Table 1 The average execution time to compute a control input per each communication time step and the
total number of time steps to achieve reachability fromR1 toR3

This paper Hashimoto et al. 2018

Execution time [s] 5.0 × 10−4 0.25

The num. time steps 78 64
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Fig. 4 Resulting state trajectory by implementing the low level controller (Algorithm 2) and the correspond-
ing sequence of m/km, m = 1, 2, . . .

shows that the sequence m/km converges below ρ̄ = 0.1, which shows that that the average
communication rate is indeed below ρ̄.

Note that the state trajectory could satisfy φ if the high level controller would select the
run of T such that the state trajectory traverses R1, R2, R3 (instead of R1, R2) infinitely
often. Figure 5 illustrates the sequence m/km, m = 1, 2, . . . for the case when the state tra-
jectory traverses R1, R2, R3 infinitely often. The figure illustrates that, the corresponding
average communication rate cannot be below ρ̄ = 0.1. This means that, if the high level
controller would select a run such that the state trajectory traverses R1, R2, R3, it would
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Fig. 5 The sequence of m/km,
m = 1, 2, . . . if the state
trajectory would traverse
R1,R2,R3 infinitely often

then violate the specification of the average communication rate (i.e., ρave > ρ̄). Hence, it
is shown that the high level controller appropriately selected the accepting run, such that the
average communication rate is below ρ̄.

Finally, it is worth analyzing the execution time with respect to the number of regions
of interest NI as well as the state dimension n. Figure 6 plots of the execution time for
constructing T (i.e., the total execution time of Algorithm 1 for all pairs of the regions of
interest) against the state dimension n ≥ 5, with different selections of NI = 2, 4, 6. Here,
we fix the input dimension as m = 5 and the matrices A and B are randomly generated over
the reals in the interval [0, 1]. The state space is given by X = {x ∈ R

n : ‖x‖∞ ≤ 15}, and
we assume that the regions of interest are the full dimensional polytopes with n+1 vertices,
which are randomly generated from X . The figure shows that, for fixed NI , the execution
time increases as n increases. This is due to some primitive procedures in Algorithm 1,
such as IfFeasible, some vertex operations in (14), etc. In addition, for fixed n the execution
time also increases as NI increases. This is mainly due to the fact that the total number of
combinations to select the pair of the regions of interest is NI (NI − 1)/2, implying that the
execution time increases quadratically with NI . Note that, thanks to the implementation of
the sampling-based algorithm, the algorithm is tractable even for high-dimensional systems
(e.g., n = 20), if the number of the regions of interest is small enough. This point may
be an advantage over the previous discretization based approaches (e.g., Wongpiromsarn et
al. 2012; Nilsson et al. 2012), in which the algorithm becomes intractable even with much
lower state dimensions.

Fig. 6 Execution time against the
state dimension n and NI
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7 Conclusions and future work

In this paper, we propose control and communication strategies, such that the state trajec-
tories satisfy the LTL specification and the average communication rate is below a given
threshold. We start by providing RRT-based reachability analysis, which is adapted such
that the state trajectories satisfy the reachability specifications, as well as that the commu-
nication strategy can be designed. Then, we provide a high level controller that aims to find
an accepting run of the transition system, and then provide a low level controller that aims
to steer the state trajectories satisfying the desired specifications. Finally, we illustrate the
benefits of the proposed approach through numerical simulations.

As previously stated in Remark 2, the reachability algorithm is not guaranteed to provide
a communication strategy that minimizes the number of communication frequency. Hence,
future work involves investigating the reachability algorithm that improves the optimality of
the communication strategy. Moreover, the control synthesis that handles delays and packet
dropouts explicitly for NCSs will be considered for our future work.
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