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Abstract
This paper considers the finite-horizon risk-sensitive optimality for continuous-time
Markov decision processes, and focuses on the more general case that the transition rates
are unbounded, cost/reward rates are allowed to be unbounded from below and from above,
the policies can be history-dependent, and the state and action spaces are Borel ones. Under
mild conditions imposed on the decision process’s primitive data, we establish the existence
of a solution to the corresponding optimality equation (OE) by a so called approximation
technique. Then, using the OE and the extension of Dynkin’s formula developed here, we
prove the existence of an optimal Markov policy, and verify that the value function is the
unique solution to the OE. Finally, we give an example to illustrate the difference between
our conditions and those in the previous literature.

Keywords Continuous-time Markov decision process · Finite horizon risk-sensitive
criterion · History-dependent policy · Unbounded transition/cost rates · Optimal policy

1 Introduction

Continuous-time Markov decision processes (CTMDPs) are an important class of stochastic
optimality control problems and have been widely studied; see, for instance, the mono-
graphs (Guo and Hernández-Lerma 2009; Prieto-Rumeau and Hernández-Lerma 2012)
and the extensive references therein. In most existing literature on CTMDPs, the infinite-
horizon expected discounted criterion (Guo 2007; Guo and Hernández-Lerma 2009; Guo
and Song 2011; Guo and Piunovskiy 2011; Piunovskiy and Zhang 2011; Prieto-Rumeau
and Hernández-Lerma 2012), the long-run expected average criterion (Guo and Hernández-
Lerma 2009; Guo et al. 2012; Prieto-Rumeau and Hernández-Lerma 2012; Wei and Chen
2017; Xia 2014), and the finite-horizon expected criterion (Guo et al. 2015b; Yushkevich
1977), are the commonly used optimality criteria. All these expected criteria are risk-neutral
and cannot reflect the attitude of a decision-maker to the risk. Since many decision-makers
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in the real-world applications may be either risk-seeking or risk-averse, in order to take
the risk-sensitivity of a decision-maker into an optimality criterion, the risk-sensitive cri-
teria have been employed and studied in CTMDPs. In this paper, we will further study a
risk-sensitive criterion in CTMDPs and focus on the finite horizon case. Thus we shall pin-
point neither the main results in the earlier literature on the infinite-horizon risk-sensitive
discounted criterion and the long-run risk-sensitive average criterion in Ghosh and Saha
(2014), Huo et al. (2017), Kumar and Chandan (2013), and Zhang (2017) and Ghosh
and Saha (2014), Kumar and Chandan (2015), and Kumar and Chandan (2013) respec-
tively for CTMDPs, nor those on the risk-sensitive discrete-time Markov decision processes
(Anantharam and Borkar 2017; Baüerle and Rieder 2014; Cavazos-Cadena and Hernndez-
Hernndez 2011; Jaskiewicz 2007; Xia 2018) as well as on zero-sum risk-sensitive stochastic
games (Basu and Ghosh 2014; Baüerle and Rieder 2017). Our concern is on the finite hori-
zon risk-sensitive criterion for CTMDPs (Ghosh and Saha 2014; Wei 2016), which leads to
that the value function also depends on both time and states, while the value functions for
the infinite-horizon risk-sensitive discounted and average criteria in Ghosh and Saha (2014),
Kumar and Chandan (2015), Kumar and Chandan (2013), and Zhang (2017) are indepen-
dent of time. Therefore, the optimality equation for the finite horizon case (Ghosh and Saha
2014; Wei 2016) is rather different from that for the infinite horizon cases (Ghosh and Saha
2014; Kumar and Chandan 2013; Zhang 2017).

To the best of our knowledge, the finite horizon risk-sensitive criterion for CTMDPs is
addressed only in Ghosh and Saha (2014), Huang (2018), and Wei (2016). Precisely, Ghosh
and Saha (2014) uses the exponential utility function to characterize the risk-sensitivity
of a decision-maker and obtains the existence of optimal Markov policies for the case of
denumerable states, uniformly bounded transition rates, bounded cost rates, and the class
of Markov policies. Wei (2016) extends the main results in Ghosh and Saha (2014) to the
case of unbounded transition rates, establishes the existence of a solution to the correspond-
ing optimality equation (OE) by the approximation technique in Guo et al. (2015b), and
gives the corresponding error estimations of the approximations. However, the arguments
in Ghosh and Saha (2014) and Wei (2016) need the assumptions of bounded cost rates
and denumerable states, and the policies in Ghosh and Saha (2014) and Wei (2016) are
independent of histories.

Huang (2018) also studies the finite horizon CTMDPs with the Borel state and action
spaces and unbounded reward functions and transition rates. But the optimization criteria
in Huang (2018) are very different from ours. The optimization criteria in Huang (2018)
are firstly mean maximization, then for fixed mean, variance minimization. This is suitable
for a risk-averse decision maker. The optimization criterion in this paper is risk-sensitivity,
which is maximization of the exponential utility function. From Eq. 2.7 in Section 2, we
can see that the exponential utility function is related to the mean and variance. Since the
coefficient of variance is positive, our optimization criterion is suitable to a risk-seeking
decision maker.

As indicated above, the finite horizon risk-sensitive criterion of for CTMDPs with
unbounded cost/transition rates, Borel state and action spaces as well as randomized history-
dependent policies, has not been studied yet, and it will be considered in this paper.
Precisely, we study the CTMDPs having the following features: (1) the transition rates can
be unbounded; (2) the cost rates are allowed to be unbounded from below and from above.
(As the cost rates are allowed to take positive and negative values, they can be interpreted
as reward rates rather than “cost rates” only); (3) the state and action spaces are Borel ones;
(4) the policies can be randomized and history-dependent; and (5) the optimality criterion
is finite horizon risk-sensitive.
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First, we give a suitable condition, under which we establish the finiteness of the finite-
horizon risk-sensitive criterion with unbounded cost rates using the Jensen inequality. This
condition is new and satisfied for the bounded costs in Ghosh and Saha (2014) and Wei
(2016); see Lemma 3.1.

Second, under the conditions slightly weaker than those in Guo and Hernández-Lerma
(2009), Guo et al. (2012), Guo and Piunovskiy (2011), Piunovskiy and Zhang (2011), and
Prieto-Rumeau and Hernández-Lerma (2012) on infinite horizon risk-neutral CTMDPs, we
derive an extension of Dynkin’s formula, which is a generalization of the analog of Ito-
Dynkin’s formula recently developed in Guo et al. (2015b) for the underlying state process
{xt , t ≥ 0} induced by the transition rates and randomized history-dependent policies (see
Theorem 3.1 below). This result is also a natural extension of the Feynman-Kac formula
in Wei (2016) for the continuous-time jump Markov process to the case of continuous-time
jump “non-Markov” processes and a more larger class of functions ϕ(ω, t, x) of samples ω,
time t and states x. On the one hand, since the analog of Ito-Dynkin’s formula in Guo et al.
(2015b) is designed for the forms of functions ϕ(t, x) of time t and states x, it is not suitable
for the more general forms of ϕ(ω, t, x) with an additional sample variable ω such as the

function e
∫ t
0

∫
A c(xs (ω),a)π(da|ω,s)dsϕ(t, x) of (ω, t, x), which need to be considered for our

case of history-dependent policies π(da|ω, s) and the cost rates c(x, a) in the risk-sensitive
CTMDPs; on the other hand, the Feynman-Kac formula in Wei (2016) is for Markov pro-
cesses, and thus it is not applicable to the case that the underlying processes {xt } here may
not be Markovian. Since our optimality problem is on the risk-sensitive criterion over the
class of history-dependent policies, the two facts just mentioned above motivate our study
on the extension of the Dynkin’s formula.

Third, under suitable conditions as in Ghosh and Saha (2014), Guo and Hernández-
Lerma (2009), Guo et al. (2012), Guo and Piunovskiy (2011), Piunovskiy and Zhang (2011),
and Prieto-Rumeau and Hernández-Lerma (2012) on risk-neutral CTMDPs with infinite
horizon, we prove the existence and uniqueness of a solution to the OE as well as the exis-
tence of an optimal Markov policy for the finite horizon risk-sensitive CTMDPs in three
steps. The first step is to consider the simple case of bounded transition rates and bounded
cost rates, and establishes the existence of a solution to the OE by the Banach’s fixed point
theorem, and also proves the existence of an optimal Markov policy; see Proposition 4.2.
The second step is to deal with the case of unbounded transition rates and nonnegative cost
rates. By constructing a sequence of the models of CTMDPs with bounded transition rates
and bounded cost rates, using the results in the first step and some new properties of the
value function of the finite horizon risk-sensitive CTMDPs, we prove that the limit of the
sequence of the value functions of models of CTMDPs is a solution to the OE for the case of
unbounded transition rates and nonnegative cost rates; see Proposition 4.3. In the third step,
by designing a technique of approximations from nonnegative but unbounded cost rates to
a more general case of cost rates being unbounded from above and from below, we further
show the existence of a solution to the OE for the most general case of unbounded transition
and cost rates; see Theorem 4.1. It should be mentioned that our approximation technique
here is rather different from the approximation in Guo et al. (2015b) and Wei (2016) for
denumerable states.

Fourth, using the existence of a solution to the OE and the extension of the Dynkin’s
formula developed here, we prove the existence of an optimal Markov policy, and also show
that the value function is the unique solution to the optimality equation; see Theorem 4.1.
All arguments here are direct and closed.

Finally, our conditions in this paper are an generalization of those in Ghosh and Saha
(2014) and Wei (2016) on the finite horizon risk-sensitive CTMDPs. In order to further
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illustrate our main results and show the difference between the conditions in this paper and
those in Ghosh and Saha (2014) and Wei (2016), we present an applied example, in which
our conditions are satisfied, in which the transition and cost rates are both unbounded,
in which the state and action spaces are non-denumerable, and for which some of the
conditions in Ghosh and Saha (2014) and Wei (2016) fail to hold.

The rest of the paper is organized as follows. In Section 2 we introduce the optimality
problem for the risk-sensitive CTMDPs. The main results are presented in Section 4 after
giving technical preliminaries in Section 3, and are illustrated with an example in Section 5.

2 The optimal control problems

Notation For any Borel space X endowed with the Borel σ -algebra B(X), we will denote
by Ec := X \ E the complement of a subset E of X, by IE the indicator function
on any set E, by δz(dx) the Dirac measure at point z ∈ X (i.e., δz(D) = ID(z) for
all D ∈ B(X)), by B1(X) the set of all bounded Borel measurable functions ϕ on X

with the norm ‖ϕ‖ := supx∈X |ϕ(x)|, and by U(X) the universal σ -algebra on X, that
is, U(X) := ∩p∈P(X)Bp(X), where P(X) represents the set of all probability measures
on B(X), and Bp(X) is the completion of B(X) with respect to p ∈ P(X). To discern
the “measurability”, we will say “Borel measurable” or “universally measurable” in the
following.

The model of CTMDPs is a five-tuple

M := {S,A, (A(x), x ∈ S), c(x, a), q(dy|x, a)}, (2.1)

consisting of the following elements:

(a) a Borel space S, called the state space, whose elements are referred to as states of a
system.

(b) a Borel space A, called the action space, whose elements are referred to as actions (or
decisions) of a decision-maker (or controller);

(c) a family {A(x), x ∈ S} of nonempty subsets A(x) of A, where A(x) denotes the set of
actions available to a controller when the system is in state x ∈ S, and it is assumed to
be Borel-measurable, that is, A(x) ∈ B(A) for every x ∈ S;

(d) a Borel measurable function c(x, a) on K , called the cost rates, where K :=
{(x, a)|x ∈ S, a ∈ A(x)} denotes the set of all feasible state-action pairs and is
assumed in B(S × A); (As c(x, a) is allowed to take positive and negative values, it
can be interpreted as rewards rather than “costs” only.)

(e) transition rates q(dy|x, a), a universally measurable signed kernel on S given K . That
is, q(·|x, a) satisfies countable additivity; q(D|x, a) ≥ 0 for all D ∈ B(S) with
(x, a) ∈ K and x �∈ D, being conservative in the sense of q(S|x, a) ≡ 0, and stable in
that of

q∗(x) := sup
a∈A(x)

q(x, a) < ∞ ∀ x ∈ S, (2.2)

where q(x, a) := −q({x}|x, a) ≥ 0 for all (x, a) ∈ K .

Next, we give an informal description of the evolution of CTMDPs with model (2.1).
Roughly speaking, CTMDPs evolve as follows: A controller observes states of a sys-

tem continuously in time. If the system is at state xt at time t , he/she chooses an action
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at ∈ A(xt ) according to a given policy, as a consequence of which, the following
happen:

(i) An immediate cost takes place at the rate c(xt , at ).
(ii) After a random sojourn time (i.e., the holding time at state xt ), the system jumps

to a set D (xt �∈ D) of states with the transition probability q(D|xt ,at )
q(xt ,at )

determined
by the transition rates q(dy|xt , at ). The distribution function of the sojourn time is

(1 − e−∫ t+x
t q(xs ,as )ds).

To formalize what is described above, below we describe the construction of CTMDPs
under possibly randomized history-dependent policies.

To construct the underlying CTMDPs, we introduce some notation: Let �0 := (S ×
(0,∞))∞, �k := (S × (0,∞))k × S × ({∞} × {�})∞ for k ≥ 1 and some � �∈ S, � :=
∪∞

k=0�k . F is the Borel σ -algebra on the Borel space �. Then we obtain the measurable
space (�,F). For some k ≥ 1, and sample ω := (x0, θ1, x1, . . . , θk, xk,∞,�) ∈ �, define

Tk(ω) := θ1 + θ2 + . . . + θk, T∞(ω) := lim
k→∞ Tk(ω), and Xk(ω) := xk . (2.3)

In what follows, the argument ω is always omitted except some special informational
statements. Then, we define the state process {xt (ω), t ≥ 0} on (�,F) by

xt (ω) :=
∑

k≥0

I{Tk≤t<Tk+1}Xk(ω) + I{t≥T∞}�, for t ≥ 0, (with T0 := 0). (2.4)

Obviously, xt (ω) is right-continuous on [0,∞). We denote xt−(ω) := lims→t− xs(ω). Here
we have used the convenience that 0z =: 0 and 0 + z =: z for all z ∈ S� := S ∪ {�}.

For each fixed ω := (x0, θ1, x1, . . . , θk, xk, . . .) ∈ �, from Eq. 2.4, we see that Tk(ω)

(k ≥ 1) denotes the k-th jump moment of {xt , t ≥ 0}, Xk−1(ω) = xk−1 is the state of the
process on [Tk−1(ω), Tk(ω)), θk = Tk(ω) − Tk−1(ω) plays the role of sojourn time at state
xk−1, and the sample path {xt (ω), t ≥ 0} has at most denumerable states xk(k = 0, 1, . . .).
We do not intend to consider the controlled process {xt , t ≥ 0} after moment T∞, and
thus view it to be absorbed in the cemetery state �. Hence, we write A� := A ∪ {a�},
A(�) := {a�}, q(·|�, a�) :≡ 0, c(�, a�) :≡ 0, where a� is an isolated point.

To precisely define the optimality criterion, we need to introduce the concept of a policy
in Guo et al. (2012), Guo and Piunovskiy (2011), Kitaev and Rykov (1995), and Piunovskiy
and Zhang (2011). To do so, we recall some notation. Take the right-continuous family
of σ -algebras {Ft }t≥0 with Ft := σ({Tk ≤ s,Xk ∈ D} : D ∈ B(S), s ≤ t, k ≥ 0).
As in Guo and Song (2011), Guo and Piunovskiy (2011), Kitaev and Rykov (1995), and
Piunovskiy and Zhang (2011), let P be the σ -algebra of predictable sets on � × [0,∞)

related to {Ft }t≥0, that is, P := σ(B × [0, ∞), C × (s,∞) : B ∈ F0, C ∈ Fs−, s > 0)
with Fs− := ∨

t<s Ft := σ(Ft , t < s). A real-valued function on � × [0,∞) is called
predictable if it is measurable with respect to P .

Definition 2.1 A transition probability π(da|ω, t) from (�×[0,∞),P) onto (A�,B(A�))

such that π(A(xt−(ω))|ω, t) ≡ 1 is called a (randomized history-dependent) policy. A
policy π(da|ω, t) is called randomized Markovian if π(da|ω, t) ≡ π(da|xt−(ω), t). We
will denote such a Markov policy by πt (da|·) for informational implication. A randomized
Markov policy πt (da|·) is called deterministic Markovian whenever there exists a A-valued
universally measurable function f (t, x) on [0,∞) × S such that πt (da|x) is the Dirac
measure at point f (t, x) ∈ A(x) for all t ≥ 0 and x ∈ S. Such a Markov policy will be
denoted by f for simplicity.
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We denote by 
 the set of all randomized history-dependent policies, by 
r
m the set of

all randomized Markov policies, and by 
d
m the set of all (deterministic) Markov policies.

For any initial distribution γ on S and policy π ∈ 
, as showing in Guo et al. (2012), Guo
and Song (2011), Guo and Piunovskiy (2011), Kitaev and Rykov (1995), and Piunovskiy
and Zhang (2011) but using the extension of the Ionescu Tulcea theorem (e.g., Proposition
7.45 in Bertsekas and Shreve 1996); we see that there exists a unique probability measure
P

π
γ (depending on γ and π ) on (�,F). Let Eπ

γ be the corresponding expectation operator.
In particular, Eπ

γ and P
π
γ will be respectively written as Eπ

x and P
π
x when γ is the Dirac

measure at a state x in S.
Fix any finite horizon T > 0. For each policy π ∈ 
 and state x ∈ S, we define the

T -horizon risk-sensitive criterion J (π, 0, x) of CTMDPs by

J (π, 0, x) := E
π
x

[
eδ

∫ T
0

∫
A c(xt ,a)π(da|ω,t)dt

]
, (2.5)

provided that the integral is well defined, where δ is a constant called the risk-sensitive
parameter. In the following arguments, we assume that δ > 0. For the other case of δ < 0,
the corresponding arguments are similar, and thus omitted.

Note that the process {xt , t ≥ 0} on (�,F ,Pπ
γ )may not be Markovian since the policy π

can depend on histories (x0, θ1, x1, . . . , θk, xk). However, for each π := πt (da|·) ∈ 
r
m, it

is well known (e.g. Feinberg et al. 2014) that {xt , t ≥ 0} is a Markov process on (�,F ,Pπ
γ ),

and thus for each x ∈ S and t ∈ [0, T ], the following expression

J (π, t, x) := E
π
γ

[
eδ

∫ T
t

∫
A c(xs ,a)πs (da|xs )ds |xt = x

]
,

is well defined (when the integral exists), and it is called the risk-sensitive value of π from
the horizon t to T .

For each x ∈ S, let

J∗(t, x) := inf
π∈
r

m

J (π, t, x) for t ∈ [0, T ]. (2.6)

The function J∗(t, x) on [0, T ] × S is called the value function of the CTMDPs with the
T -horizon risk-sensitive criterion.

Definition 2.2 A policy π∗ ∈ 
 is said to be optimal if J (π∗, 0, x) ≤ J (π, 0, x) for all
π ∈ 
 and x ∈ S.

The main goal of this paper is to give conditions for the existence of optimal Markov
policies.

At this end, we give some remarks about the difference between the T -horizon risk-
sensitive criterion J (π, 0, x) and the risk-neutral one in Guo et al. (2015b) and Yushkevich
(1977), which is defined by

V (π, 0, x) := E
π
x

[∫ T

0

∫

A

c(xt , a)π(da|ω, t)dt

]

=: Eπ
x Y, with Y :=

∫ T

0

∫

A

c(xt , a)π(da|ω, t)dt,

where c(x, a) is assumed to be bounded positive on K . Then, by the Jensen’s inequality
and the monotonicity of the log function, we have ln J (π, 0, x) ≥ δV (π, 0, x). More, by
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Taylor’s expansion of eδY at the point z := E
π
x Y , we have

eδY = eδz + δeδz(Y − z) + 1

2
δ2eδz(Y − z)2

+1

6
δ3eδξ (Y − z)3 ( with ξ being between Y and z),

which also implies that ξ is a random variable on (�,F ,Pπ
γ ). Therefore, we have

ln J (π, 0, x) = ln

[

eδz + 1

2
eδzδ2var(Y ) + 1

6
δ3Eπ

x eδξ (Y − z)3
]

= δV (π, 0, x) + ln

[

1 + 1

2
δ2var(Y ) + 1

6
δ3Eπ

x eδ(ξ−z)(Y − z)3
]

= δV (π, 0, x) + ln[1 + 1

2
δ2var(Y )] + o(δ2), (2.7)

where var(Y ) := E
π
x (Y − E

π
x Y )2 denoting the variance of Y , and the corresponding term

ln[1+ 1
2δ

2var(Y )] is called a risk premium. Thus, the difference between ln J (π, 0, x) and
δV (π, 0, x) is the summation of the risk premium plus the other small order term. Therefore,
the risk-sensitive criterion is more risk-sensitive than the risk-neutral one because of its
inclusion of the risk premium.

From Eq. 2.7 we see that limδ→0
ln J (π,0,x)

δ
= V (π, 0, x). On the other hand, for any

fixed δ > 0, since infπ∈
 ln J (π, 0, x) = ln J (π∗, 0, x) if and only if infπ∈
 J(π, 0, x) =
J (π∗, 0, x), we will consider J (π, 0, x), instead of ln J (π, 0, x).

3 Preliminaries

This section provides some preliminary facts for our arguments below.
Since the rates q(dy|x, a) and costs c(x, a) are allowed to be unbounded, we next give

conditions for the non-explosion of {xt , t ≥ 0} and finiteness of J (π, t, x).

Assumption 3.1 There exist a real-valued Borel measurable function V0 ≥ 1 on S and
constants ρ0, b0 ≥ 0, M ′

0, M0 ≥ 1, such that

(i)
∫
S

V0(y)q(dy|x, a) ≤ ρ0V0(x) + b0, for all (x, a) ∈ K;
(ii) q∗(x) ≤ M ′

0V0(x) for all x ∈ S, where q∗(x) is as in Eq. 2.2;
(iii) e2T δ|c(x,a)| ≤ M0V0(x) for all (x, a) ∈ K , with T and δ as in Eq. 2.5.

Remark 3.1 (a) Assumptions 3.1(i,ii) are used and verified with examples in Guo and
Hernández-Lerma (2009), Guo and Piunovskiy (2011), Piunovskiy and Zhang (2011),
and Prieto-Rumeau and Hernández-Lerma (2012) for the risk-neutral CTMDPs. When
the transition rates are bounded (i.e., ‖q∗‖ < ∞) (Ghosh and Saha 2014; Kitaev and
Rykov 1995; Kumar and Chandan 2013, 2015; Yushkevich 1977), Assumptions 3.1(i-
ii) are satisfied by taking V0(x) ≡ 1.

(b) Assumption 3.1(iii) is for the finiteness of the value function J∗(t, x), and it is new
and satisfied when c(x, a) is bounded (i.e., ‖c‖ := sup(x,a)∈K |c(x, a)| < ∞) (Ghosh
and Saha 2014; Kumar and Chandan 2013, 2015; Wei 2016; Yushkevich 1977).
Moreover, if δ|c(x, a)| ≤ √

lnV0(x) + L for all (x, a) ∈ K and some constant
L ≥ 0, then Assumption 3.1(iii) holds: Indeed, since δ|c(x, a)| ≤ √

lnV0(x) + L ≤

Discrete Event Dynamic Systems (2019) 29:445–471 451



t
2 + lnV0(x)

2t +L for all (x, a) ∈ K and t > 0, we have e2T δ|c(x,a)| ≤ eT 2+lnV0(x)+2T L =
eT 2+2T LV0(x), which implies Assumption 3.1(iii) with M0 := eT 2+2T L.

(c) If the number ρ0 in Assumption 3.1(i) is not positive, then Assumption 3.1(i) still
holds when ρ0 is replaced with the positive number “1 + |ρ0|”. Thus, it is just for
convenience to assume that the constant ρ0 > 0 throughout the following. However,
the corresponding number is assumed to be negative in Guo and Hernández-Lerma
(2009), Guo et al. (2012), and Prieto-Rumeau and Hernández-Lerma (2012) or less
than the discount factor in Guo and Hernández-Lerma (2009) and Guo and Piunovskiy
(2011).

Lemma 3.1 Under Assumption 3.1, for each π ∈ 
, the following assertions hold.

(a) P
π
x (xt ∈ S) = 1, Pπ

x (T∞ = ∞) = 1, and Pπ
x (x0 = x) = 1 for each t ≥ 0 and x ∈ S;

(b) E
π
x [V0(xt )] ≤ eρ0t [V0(x) + b0

ρ0
], for each t ≥ 0, x ∈ S and π ∈ 
;

(c) E
π
γ [V0(xt )|xs = x] ≤ eρ0(t−s)[V0(x) + b0

ρ0
], for each t ≥ s ≥ 0, x ∈ S and π ∈ 
r

m.
(d) If, in addition, Assumption 3.1 (iii) is satisfied, then

(d1) e−LV0(x) ≤ J (π, 0, x) ≤ LV0(x) for x ∈ S and π ∈ 
, where L :=
M0e

ρ0T [1 + b0
ρ0

];
(d2) e−LV0(x) ≤ J (π, t, x) ≤ LV0(x) for (t, x) ∈ [0, T ] × S and π ∈ 
r

m.

Proof Parts (a) and (b) follow from Guo et al. (2012) and Guo and Piunovskiy (2011) (or
Piunovskiy and Zhang 2011); while part (c) is from Theorem 3.1 in Guo (2007). We next
prove part (d). For almost surely (a.s.) ω := (x0, θ1, x1, . . . , θk, xk, . . .) ∈ � (with respect to
P

π
x ), let k (depending on ω) be determined by Tk(ω) ≤ T < Tk+1(ω). Then, it follows from

(a) and Eq. 2.4 that k is finite, and {xt (ω), t ∈ [0, T ]} = {X0(ω), . . . , Xk(ω)}. Thus, since
|c(x, a)| ≤ 1

T δ
ln

√
M0V0(x) (by Assumption 3.1(iii)) and θi+1 = Ti+1(ω) − Ti(ω)(i =

0, . . . , k − 1), we have
∫ T

0

∫

A

|c(xt , a)|π(da|ω, t)dt

≤
∑k−1

i=0 θi+1 ln
√

M0V0(Xi(ω)) + (T − Tk(ω)) ln
√

M0V0(Xk(ω))

T δ
,

which implies that
∫ s

0

∫
A

c(xt , a)π(da|ω, t)dt is real-valued Borel measurable in s ∈ [0, T ]
(for the given ω). Thus, by the Jensen inequality with respect to the probability measure dt

T

on B([0, T ]), we have

e
∫ T
0 δ

∫
A c(xt ,a)π(da|ω,t)dt ≤ 1

T

∫ T

0
eT δ

∫
A |c(xt ,a)|π(da|ω,t)dt, a.s. − P

π
x .

Therefore (by (b)),

E
π
x

[
e
∫ T
0 δ

∫
A c(xt ,a)π(da|ω,t)dt

]
≤ E

π
x

[
1

T

∫ T

0
eT δ

∫
A |c(xt ,a)|π(da|ω,t)dt

]

≤ 1

T
M0

∫ T

0
E

π
x [V0(xt )] dt ≤ M0e

ρ0T [V0(x) + b0

ρ0
].
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Hence, by Eq. 2.5, we have

J (π, 0, x) ≤ M0e
ρ0T

[

1 + b0

ρ0V0(x)

]

V0(x) ≤ LV0(x). (3.1)

On the other hand, since T δ|c(x, a)| ≤ e2T δ|c(x,a)| ≤ M0V0(x), we have

J (π, 0, x) = E
π
x

[
eδ

∫ T
0

∫
A c(xt ,a)π(da|ω,t)dt

]
≥ e

δEπ
x

[∫ T
0

∫
A c(xt ,a)π(da|ω,t)dt

]

≥ e
− 1

T
E

π
x

[∫ T
0

∫
A M0V0(xt )π(da|ω,t)dt

]

= e
− 1

T
E

π
x

[∫ T
0 M0V0(xt )dt

]

≥ e− M0
T

∫ T
0 E

π
x [V0(xt )]dt

≥ e
− M0

T

∫ T
0 eρ0T [V0(x)+ b0

ρ0
]dt = e

−M0e
ρ0T [V0(x)+ b0

ρ0
] ≥ e−LV0(x),

which, together with Eq. 3.1, implies (d1). Similarly, we see that (d2) is also true.

Lemma 3.1 gives conditions for the finiteness of J (π, t, x) as well as the non-explosion
of {xt , t ≥ 0}. In order to deal with the optimality for history-dependent policies, we need
the following facts, which extend both the analog of Ito-Dynkin’s formula in Guo et al.
(2015b) and Feynman-Kac formula in Wei (2016) to a more general case of possible non-
Markov processes {xt , t ≥ 0} and functions ϕ(ω, t, x) with an additional element ω ∈
�.

Denote by mL the Lebesgue’s measure on [0, T ], and by BP (� × [0, T ] × S) the set
of real-valued and P × B(S)-measurable functions ϕ(ω, t, x) with the following features:
Given any x ∈ S, π ∈ 
, and a.s. ω ∈ � with respect to P

π
x , there exists a Borel subset

E(ϕ,ω,x,π) (depending on the ϕ, ω, x, π ) of [0, T ] such that the partial derivative ϕ′(ω, t, x)

(with respect to t) exists for every t ∈ E(ϕ,ω,x,π) and mL(Ec
(ϕ,ω,x,π)) = 0. Obviously, if a

function ϕ(ω, t, x) in BP (� × [0, T ] × S) is independent of ω (written as ϕ(t, x)), and so
is the corresponding E(ϕ,ω,x,π), which will be denoted by E(ϕ,x).

For any ϕ(ω, t, x) ∈ BP (� × [0, T ] × S), when the partial derivative does not exist for
some (ω, t, x) ∈ � × [0, T ]×S, for simplicity of arguments, we take ϕ′(ω, t, x) to be any
real number, and so ϕ′ is defined on �×[0, T ]×S. We will see that such a modification of

ϕ′ loses nothing. For example, Eπ
x

[∫ T

0 |ϕ′(ω, t, xt )|dt
]
and

∫ T

0 |ϕ′(ω, t, xt )|dt are defined

well for each (x, π) ∈ S × 
 and a.s. ω ∈ � with respect to P
π
x , respectively. Indeed,

for each x ∈ S, π ∈ 
, and s ∈ [0, T ], Lemma 3.1(a) together with Eq. 2.4 gives the
existence of a Boreal measurable subset �̂ of � such that: 1) Pπ

x (�̂c) = 0, and 2) for each
given ω ∈ �̂, xt (ω) = xi for Ti(ω) ≤ t < Ti+1(ω)(0 ≤ i ≤ k) for some a finite k,
where k and xi ∈ S depend on ω, and k is determined by Tk(ω) ≤ T < Tk+1(ω). Let
ĩ := min{l : s < Tl} (depending on ω and s). Then, since mL(∪k

i=0E
c
(ϕ,ω,xi ,π)) = 0, for

each ω ∈ �̂,

∫ T

s

|ϕ′(ω, t, xt )|dt =
∫ T

ĩ

s

|ϕ′(ω, t, x
ĩ−1)|dt+

k−1∑

l=ĩ

∫ Tl+1

Tl

|ϕ′(ω, t, xl)|dt+
∫ T

Tk

|ϕ′(ω, t, xk)|dt

is well defined. Therefore (by P
π
x (�̂c) = 0), Eπ

x

[∫ T

0 |ϕ′(ω, t, xt )|dt
]
is also well defined.
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Lemma 3.2 Under Assumption 3.1, the following assertions hold.

(a) For any given π ∈ 
, x ∈ S, if a function ϕ ∈ BP (� × [0, T ] × S) satisfies that

E
π
x

[∫ T

0

∫

A

∫

S

|ϕ(ω, t, y)||q|(dy|xt , a)π(da|ω, t)dt

]

+E
π
x

[∫ T

0
|ϕ′(ω, t, xt )|dt

]

< ∞, (3.2)

where |q|(dy|x, a) := ∫
q(dy\{x})|x, a)−q({x}|x, a)δx(dy) for all (x, a) ∈ K , then

E
π
x

[∫ T

0

(

ϕ′(ω, t, xt ) +
∫

A

∫

S

ϕ(ω, t, y)q(dy|xt , a)π(da|ω, t)

)

dt

]

= E
π
x ϕ(ω, T , xT ) − E

π
x ϕ(ω, 0, x).

(b) For any π = πt (da|·)∈ 
r
m and a Borel measurable function φ ∈ BP ([0, T ] × S),

such that the corresponding function ϕ(ω, t, x) := e
∫ t
s δc(xv(ω),πv)dvφ(t, x) satisfying

(3.2), then

E
π
γ

[∫ T

s

((
e
∫ t
s δc(xv,πv)dvφ(t, xt )

)′ +
∫

S

e
∫ t
s δc(xv,πv)dvφ(t, y)q(dy|xt , πt )

)

dt |xs = x

]

= E
π
γ

[
e
∫ T
s

∫
A δc(xv,a)πv(da|xv)dvφ(T , xT )|xs = x

]
− φ(s, x),

where c(x, πt ) := ∫
A(x)

c(x, a)πt (da|x) and q(dy|x, πt ) :=
∫
A(x)

q(dy|x, a)πt (da|x).
(c) If the functions c(x, a) and φ(t, x) in (b) above are both bounded and |φ′(t, x)| ≤

CV0(x) for all (t, x) ∈ [0, T ] × S with some constant C > 0, then

E
π
γ

[∫ T

s

((
e
∫ t
s δc(xv,πv)dvφ(t, xt )

)′ +
∫

S

e
∫ t
s δc(xv,πv)dvφ(t, y)q(dy|xt , πt )

)

dt |xs = x

]

=
⎧
⎨

⎩

E
π
x

(
e
∫ T
s

∫
A δc(xv,a)πv(da|xv)dvφ(T , xT )

)
− φ(0, x), for s = 0, π ∈ 


E
π
γ

[
e
∫ T
s

∫
A δc(xv,a)πv(da|xv)dvφ(T , xT )|xs = x

]
− φ(s, x), for s ∈ [0, T ], π ∈ 
r

m.

Proof (a) Lemma 3.1(a) together with Eq. 2.4 gives the existence of a Boreal measurable
subset �̂ of � such that Pπ

x (�̂c) = 0. For each ω ∈ �̂, for 0 ≤ t ≤ T , from definitions
(2.3) and (2.4), denote kt (ω) := max{k|Tk(ω) ≤ t}. Since xt (ω) is right-continuous
on [0, ∞), we have xt = xTkt

when Tkt ≤ t < Tkt+1. Since
∫ T

s
ϕ′(ω, t, xt )dt is well

defined (just proved), for 0 ≤ s ≤ T and ω ∈ �̂, we have

ϕ(ω, T , xT )=ϕ(ω, s, xs)+
∫ T

s

ϕ′(ω, t, xt )dt+
kT∑

n=ks+1

∫

(s,T ]
�ϕ(ω, t, xt )δTn (dt) P

π
x −a.s. (3.3)

Discrete Event Dynamic Systems (2019) 29:445–471454



Denote �ϕ(ω, t, xt ) := ϕ(ω, t, xt (ω)) − ϕ(ω, t, xt−(ω)), and recall that xt−(ω) =
lims→t− xs(ω). Equation 3.3 is proved as follows.

ϕ(ω, T , xT )

= ϕ(ω, s, xs) + ϕ(ω, Tks+1, xTks+1−) − ϕ(ω, s, xs)

+
kT∑

n=ks+1

[
ϕ(ω, Tn, xTn ) − ϕ(ω, Tn, xTn−)

] +
kT −1∑

n=ks+1

[
ϕ(ω, Tn+1, xTn+1−) − ϕ(ω, Tn, xTn )

]

+ϕ(ω, T , xT −) − ϕ(ω, TkT
, xTkT

) + ϕ(ω, T , xT ) − ϕ(ω, T , xT −)

= ϕ(ω, s, xs) + ϕ(ω, Tks+1, xs ) − ϕ(ω, s, xs)

+
kT∑

n=ks+1

[
ϕ(ω, Tn, xTn ) − ϕ(ω, Tn, xTn−)

] +
kT −1∑

n=ks+1

[
ϕ(ω, Tn+1, xTn ) − ϕ(ω, Tn, xTn )

]

+ϕ(ω, T , xTkT
) − ϕ(ω, TkT

, xTkT
) + ϕ(ω, T , xT ) − ϕ(ω, T , xT −)

= ϕ(ω, s, xs) + ϕ(ω, Tks+1, xs ) − ϕ(ω, s, xs) +
kT −1∑

n=ks+1

[
ϕ(ω, Tn+1, xTn ) − ϕ(ω, Tn, xTn )

]

+ϕ(ω, T , xTkT
) − ϕ(ω, TkT

, xTkT
)

+
kT∑

n=ks+1

[
ϕ(ω, Tn, xTn ) − ϕ(ω, Tn, xTn−)

] + ϕ(ω, T , xT ) − ϕ(ω, T , xT −)

= ϕ(ω, s, xs) +
∫

[s,Tks+1)

ϕ′(ω, t, xs)dt +
kT −1∑

n=ks+1

∫

[Tn,Tn+1)

ϕ′(ω, t, xTn )dt

+
∫

[TkT
,T )

ϕ′(ω, t, xTkT
)dt +

kT∑

n=ks+1

�ϕ(ω, Tn, xTn ) + �ϕ(ω, T , xT )

= ϕ(ω, s, xs) +
∫

[s,Tks+1)

ϕ′(ω, t, xt )dt +
kT −1∑

n=ks+1

∫

[Tn,Tn+1)

ϕ′(ω, t, xt )dt

+
∫

[TkT
,T )

ϕ′(ω, t, xt )dt +
kT∑

n=ks+1

∫

(s,T ]
�ϕ(ω, t, xt )δTn (dt)

= ϕ(ω, s, xs) +
∫ T

s

ϕ′(ω, t, xt )dt +
kT∑

n=ks+1

∫

(s,T ]
�ϕ(ω, t, xt )δTn (dt) P

π
x − a.s.

Then, Lemma 4.28 in Kitaev and Rykov (1995) shows that the random measure mπ

defined by

mπ(B|ω, t)dt :=
∫

A

q(B|xt−, a)π(da|ω, t)I{xt− /∈B}dt, B ∈ B(S) (3.4)

is the dual predictable projection of the random measure
∑

n≥1 δ(Tn,Xn−1)(dt, dx) on
B((0,∞) × S) under Pπ

x . Thus, by the definition of a dual predictable projection in (4.5) in
Kitaev and Rykov (1995), we have

E
π
x

⎡

⎣
∑

n≥1

∫

(0,T ]
�ϕ(ω, t, xt )δTn(dt)

⎤

⎦

= E
π
x

[∫

S

∫

(0,T ]
(ϕ(ω, s, y) − ϕ(ω, s, xs−))mπ(dy|ω, s)ds

]
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which, together with Eq. 3.4 and the expectation of both sides of Eq. 3.3 with s = 0, gives

E
π
x [ϕ(ω, T , xT )]

= E
π
x ϕ(ω, 0, x) + E

π
x

[∫ T

0
ϕ′(ω, t, xt )dt

]

+ E
π
x

⎡

⎣
∑

n≥1

∫

(0,T ]
�ϕ(ω, t, xt )δTn (dt)

⎤

⎦

= E
π
x ϕ(ω, 0, x) + E

π
x

[∫ T

0
ϕ′(ω, t, xt )dt

]

+ E
π
x

[∫

(0,T ]

∫

S

[ϕ(ω, s, y) − ϕ(ω, s, xs−)]mπ(dy|ω, s)ds

]

= E
π
x ϕ(ω, 0, x) + E

π
x

[∫ T

0
ϕ′(ω, t, xt )dt

]

+ E
π
x

[∫

(0,T ]

∫

S

∫

A

ϕ(ω, t, y)q(dy|xt−, a)π(da|ω, t)dt

]

.

Here, integrability results such as Eq. 3.2 validate all the involved operations. Moreover,
since xt−(ω) = xt (ω) on (0, T ] except finite time points t , part (a) follows.

(b) In lieu of ϕ(ω, t, xt ) with e
∫ t
s

∫
A δc(v,xv,a)πv(da|xv)dvφ(t, xt ), taking the conditional

expectation E
π
γ [·|xs = x] in both sides of Eq. 3.3 and using the Markov property of

{xt , t ≥ 0}, as the proof of (a), we see that (b) is also true.
(c) Under the condition in (c), the function ϕ(ω, t, x) in (b) is bounded on �×[0, T ]×S,

and thus the first part of Eq. 3.2 is finite (by Lemma 3.1(b) and Assumptions 3.1(i,ii)).
Moreover, since
(
e
∫ t
s

∫
A |δc(xv,a)|πv(da|xv)dvφ(t, xt )

)′ = δ|c(xt , πt )|e
∫ t
s

∫
A |δc(xv,a)|πv(da|xv)dvφ(t, xt )

+e
∫ t
s

∫
A |δc(xv,a)|πv(da|xv)dvφ′(t, xt )

≤ δ‖c‖eT ‖c‖‖φ‖ + CeT δ‖c‖V0(xt )

which, together with Lemma 3.1(b), implies that the second part of Eq. 3.2 is finite.
Thus, (c) follows.

Next we derive an extension of Dynkin’s formula by Lemma 3.2. To do so, we introduce
the following condition and notation.

Assumption 3.2 There exist a Borel measurable function V1 ≥ 1 on S, and positive
constants ρ1, b1, and M1, such that

(i)
∫
S

V 2
1 (y)q(dy|x, a) ≤ ρ1V

2
1 (x) + b1 for all (x, a) ∈ K;

(ii) V 2
0 (x) ≤ M1V1(x) for all x ∈ S, with the V0(x) as the Assumption 3.1(i).

Assumption 3.2 is used to give a domain for the Dynkin’s formula below, and it is obvi-
ously satisfied when the transition rates are bounded (Ghosh and Saha 2014; Kumar and
Chandan 2013, 2015; Yushkevich 1977).

Given the Vk(k = 0, 1) as in Assumption 3.2 and any Borel set Z, a real-valued
function ϕ on Z × S is called Vk-bounded if the Vk-weighted norm of ϕ, ‖ϕ‖Vk

:=
sup(z,x)∈Z×S

|ϕ(z,x)|
Vk(x)

, is finite. We denote by BVk
(Z×S) the Banach space of all Vk-bounded

functions on Z × S. When Vk(x) ≡ 1, B1(Z × S) is the space of all bounded functions. In
particular, take Z = � × [0, T ] or [0, T ], we define

B
1
V0,V1

(� × [0, T ] × S) := {ϕ ∈ BV0 (� × [0, T ] × S) ∩ BP (� × [0, T ] × S) | ϕ′ ∈ BV1 (� × [0, T ] × S)},
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and then

B
1
V0,V1

([0, T ] × S) := {ϕ ∈ BV0([0, T ] × S) ∩ BP ([0, T ] × S) | ϕ′ ∈ BV1([0, T ] × S)}.
Theorem 3.1 below is an extension of Theorem 3.1 in Guo et al. (2015b) and Theorem

3.1 inWei (2016) from the forms of functions ϕ(t, x) to the more general forms of ϕ(ω, t, x)

with the additional variable ω, and the extension is needed for the following arguments over
history-dependent policies. The proof of Theorem 3.1 is based on Lemma 3.2, which is
different from those in Guo et al. (2015b) and Wei (2016) for Markov policies only.

Theorem 3.1 Suppose Assumptions 3.1 and 3.2 are satisfied. Then, for each (s, x) ∈
[0, T ] × S, the following assertions hold.

(a) (The extension of Dynkin’s formula): For every π ∈ 
 and ϕ ∈ B
1
V0,V1

(�×[0, T ]×S),

E
π
x

[∫ T

0

(

ϕ′(ω, t, xt ) +
∫

A

∫

S

ϕ(ω, t, y)q(dy|xt , a)π(da|ω, t)

)

dt

]

= E
π
x ϕ(ω, T , xT ) − E

π
x ϕ(ω, 0, x),

where {xt , t ≥ 0} may be not Markovian since the policy π may depend on histories.
(b) (The Dynkin’s formula): For each π ∈ 
r

m, and ϕ ∈ B
1
V0,V1

([0, T ] × S),

E
π
γ

[∫ T

s

((
e
∫ t
s δc(xv,πv)dvϕ(t, xt )

)′ +
∫

S

e
∫ t
s δc(xv,πv)dvϕ(t, y)q(dy|xt , πt )

)

dt |xs = x

]

= E
π
γ

[
e
∫ T
s δc(xt ,πt )dtϕ(T , xT )|xs = x

]
− ϕ(s, x).

Proof (a) By the definition B1
V0,V1

(� × [0, T ] × S) and ϕ ∈ B
1
V0,V1

(� × [0, T ] × S), we
have

|ϕ(ω, t, x)| ≤ ‖ϕ‖V0V0(x), |ϕ′(ω, t, z)| ≤ ‖ϕ′‖V1V1(x) ∀ (ω, t, x) ∈ � × [0, T ] × S. (3.5)

Thus, by Assumptions 3.1(i,ii) and 3.2 we have, for (ω, t, z) ∈ � × [0, T ] × S

∫

A

∫

S

|ϕ(ω, t, y)||q|(dy|z, a)π(da|ω, t) ≤ ‖ϕ‖V0

[∫

A

∫

S

V0(y)|q|(dy|z, a)π(da|ω, t)

]

≤ ‖ϕ‖V0 [ρ0V0(z) + b0 + 2M ′
0V

2
0 (z)]

≤ ‖ϕ‖V0 [ρ0M1 + b0 + 2M ′
0M1]V1(z). (3.6)

Moreover, by Eq. 3.5 we have
∫ T

0
|ϕ′(ω, t, xt )|dt ≤ ‖ϕ′‖V1

∫ T

0
V1(xt )dt ≤ ‖ϕ′‖V1

∫ T

0
V 2
1 (xt )dt,

which, together with Lemma 3.1(b), gives

E
π
x

[∫ T

0
|ϕ′(ω, t, xt )|dt

]

≤ ‖ϕ′‖V1E
π
x

[∫ T

0
V 2
1 (xt )dt

]

≤ ‖ϕ′‖V1T eρ1T

[
V 2
1 (x)

Tρ1
+ b1

ρ1

]

< ∞. (3.7)

Discrete Event Dynamic Systems (2019) 29:445–471 457



Thus, by Eqs. 3.6–3.7 and Lemma 3.1(b) we have

E
π
x

[∫ T

0

∫

A

∫

S

|ϕ(ω, t, y)||q|(dy|xt , a)π(da|ω, t)dt

]

≤ T ‖ϕ‖V0 [ρ0M1 + b0 + 2M ′
0M1]eρ1T

[
V 2
1 (x)

Tρ1
+ b1

ρ1

]

,

which, together with Eq. 3.7 and Lemma 3.2(a), implies (a).
(b) For any fixed x ∈ S, a.e. t ∈ [0, T ] (depending on ω), and 0 ≤ s ≤ t , since

(
e
∫ t
s δc(xv,πv)dvϕ(t, x)

)′ = δc(xt , πt )e
∫ t
s δc(xv,πv)dvϕ(t, x) + e

∫ t
s δc(xv,πv)dvϕ′(t, x),

by ϕ ∈ B
1
V0,V1

([0, T ] × S) and T δ|c(x, a)| ≤ M0V0(x) (using Assumption 3.1(iii))
we have

∣
∣
∣
∣

(
e
∫ t
s δc(xv,πv)dvϕ(t, x)

)′∣∣
∣
∣ ≤ M0

T
‖ϕ‖V0V0(x)e

∫ t
s |δc(xv,πv)|dvV0(x)

+‖ϕ′‖V1e
∫ t
s |δc(xv,πv)|dvV1(x),

≤
(‖ϕ‖V0M0M1

T
+ ‖ϕ′‖V1

)

e
∫ t
s |δc(xv,πv)|dvV1(x).

which, together with the same arguments for Eq. 3.3, gives
∣
∣
∣
∣

(
e
∫ t
s δc(xv(ω),πv)dvϕ(t, xt (ω))

)′∣∣
∣
∣

≤
(‖ϕ‖V0M0M1

T
+ ‖ϕ′‖V1

)

e
∫ t
s |δc(xv(ω),πv)|dvV1(xt (ω)) (3.8)

for a.s. ω ∈ � with respect to P
π
x , and a.e. t ∈ [0, T ](depending on give ω).

On the other hand, by the Hölder inequality we have

E
π
γ

[
e
∫ t
s |δc(xv,πv)|dvV1(xt )|xs = x

]

≤
√

Eπ
γ

[
e2

∫ t
s |δc(xv,πv)|dv|xs = x

]
Eπ

γ

[
V 2
1 (xt )|xs = x

]

≤ E
π
γ

[
e2

∫ t
s |δc(xv,πv)|dv|xs = x

]
E

π
γ

[
V 2
1 (xt )|xs = x

]
. (3.9)

Furthermore, by the arguments similar to the proof of Eq. 3.1, we also have

E
π
γ

[
e2

∫ t
s |δc(xv,πv)|dv|xs = x

]
≤ LV0(x), (3.10)

which, together with Lemma 3.1(b) and Eq. 3.9, implies
∫ T

s

E
π
γ

[
e
∫ t
s |δc(xv,πv)|dvV1(xt )|xs = x

]
dt

≤ LV0(x)

∫ T

s

E
π
γ

[
V 2
1 (xt )|xs = x

]
dt

≤ T LV0(x)eρ1T

[

V 2
1 (x) + b1

ρ1

]

< ∞. (3.11)
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Also, by Assumptions 3.1 and 3.2, we have
∫

S

e
∫ t
s |δc(xv,πv)|dv|ϕ(t, y)||q|(dy|xt , πt )

≤ ‖ϕ‖V0 [ρ0V0(xt ) + b0 + 2M ′
0V

2
0 (xt )]e

∫ t
s |δc(xv,πv)|dv

≤ ‖ϕ‖V0

[
ρ0M1 + b0 + 2M ′

0M1
]
e
∫ t
s |δc(xv,πv)|dvV1(xt ). (3.12)

Thus, by Eqs. 3.8–3.12 we have

E
π
γ

[∫ T

s

(∣∣
∣
∣

(
e
∫ t
s δc(xv,πv)dvϕ(t, xt )

)′∣∣
∣
∣ +

∫

S

e
∫ t
s δc(xv,πv)dv |ϕ(t, y)||q|(dy|xt , πt )

)

dt |xs = x

]

≤ L
[‖ϕ‖V0M0M1 + T ‖ϕ′‖V1 + T ‖ϕ‖V0 (ρ0M1 + b0 + 2M ′

0M1)
]
V0(x)eρ1T

[

V 2
1 (x)+ b1

ρ1

]

< ∞,

which, together with Lemma 3.2, verifies (b).

Theorem 3.2 Under Assumptions 3.1 and 3.2, the following assertions hold.

(a) If there exists ϕ ∈ B
1
V0,V1

([0, T ] × S) such that
{

ϕ′(t, x) + infa∈A(x)

[
δc(x, a)ϕ(t, x) + ∫

S
ϕ(t, y)q(dy|x, a)

] = 0,
ϕ(T , x) ≡ 1,

(3.13)

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0, then

(a1) J (π, 0, x) ≥ ϕ(0, x), for all π ∈ 
 and x ∈ S, and
(a2) J (π, t, x) ≥ ϕ(t, x), for all π ∈ 
r

m and (t, x) ∈ [0, T ] × S.

(b) For any randomized Markov policy π ∈ 
r
m, J (π, t, x) is a unique solution in

B
1
V0,V1

([0, T ] × S) of the following equation
{

ϕ′(t, x) + δc(x, πt )ϕ(t, x) + ∫
S

ϕ(t, y)q(dy|x, πt ) = 0
ϕ(T , x) = 1

(3.14)

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0.

Proof (a) For each ω ∈ �, under the conditions for (a) we have

ϕ′(t, x)+
∫

A

δc(x, a)π(da|ω, t)ϕ(t, x)+
∫

S

∫

A

ϕ(t, y)q(dy|x, a)π(da|ω, t)≥0 (3.15)

for all x ∈ S and t ∈ E(ϕ,x).
On the other hand, for a.s. ω ∈ � (with respect to P

π
x ), since {xt (ω), t ∈ [0, T ]} =:

{x0, . . . , xk}(xi ∈ S, 0 ≤ i ≤ k) for some a finite k (depending on ω) determined by
Tk(ω) ≤ T < Tk+1(ω) and mL(Ec

(ϕ,xi )
) = 0, by Eq. 3.15 we have

ϕ′(t, xt )+
∫

A

δc(xt , a)π(da|ω, t)ϕ(t, xt )+
∫

S

∫

A

ϕ(t, y)q(dy|xt , a)π(da|ω, t)≥0 (3.16)

for a.s. ω ∈ � and a.e. t ∈ [0, T ] (because of mL(∪k
i=0E

c
(ϕ,xi )

) = 0).
Let c̄(ω, t, x, π) := ∫

A
δc(xt , a)π(da|ω, t). Then, we have, for any 0 ≤ s ≤ T ,

∫ T

s

[(
e
∫ t
s c̄(ω,v,x,π)dvϕ(t, xt )

)′+
∫

S

∫

A

q(dy|xt , a)π(da|ω, t)e
∫ t
s c̄(ω,v,x,π)dvϕ(t, y)

]

dt ≥0.
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The proof of (a1): For each π ∈ 
 and x ∈ S, since ϕ(T , y) = 1 for all y ∈ S, by Theorem
3.1(a) and Eq. 3.16 we have

E
π
x

(
e
∫ T
0

∫
A δc(xv,a)π(da|ω,v)dv)

)
− ϕ(0, x)

= E
π
x

(
e
∫ T
0

∫
A δc(xv,a)π(da|ω,v)dvϕ(T , xT )

)
− ϕ(0, x)

= E
π
x

(
e
∫ T
0

∫
A δc(xv,a)π(da|ω,v)dvϕ(T , xT )

)
− E

π
x

(
e
∫ 0
0

∫
A δc(xv,a)π(da|ω,v)dvϕ(0, x0)

)
≥ 0

and so

J (π, 0, x) = E
π
x

(
e
∫ T
0

∫
A δc(xv,a)π(da|ω,v)dv

)
≥ ϕ(0, x),

which implies (a1).
Similarly, by Theorem 3.1(b) we see that (a2) is also true.

(b) If there exists a ϕ ∈ B
1
V0,V1

([0, T ] × S) satisfying (3.14), by (a2) and ϕ(T , x) ≡ 1, we
have

ϕ(s, x) = E
π
γ

[
e
∫ T
s

∫
A δc(xv,a)πv(da|xv)dv|xs = x

]
= J (π, s, x), s ∈ [0, T ],

and so (b) follows. Thus, to complete the proof of (b), it suffices to show the existence
of ϕ ∈ B

1
V0,V1

(I × S) satisfying (3.14), while the proof of which is very long and thus
will be postponed to Section 4; see Remark 4.2 below.

To establish the existence of ϕ ∈ B
1
V0,V1

([0, T ] × S) satisfying (3.13), we need Lemma
3.3 below. To state it, we recall some concepts. A subset of a Borel space X is analytic (by
Proposition 7.41 in Bertsekas and Shreve 1996) if it is a projection into X of a Borel subset
of X × Y for some uncountable Borel space Y . Then, a function u(·) on X is called upper
semianalytic if {x ∈ X : u(x) > r} is an analytic set for each r ∈ (−∞,∞). It is known
that each Bore-measurable function is upper semianalytic; see more details in Chapter 7
of Bertsekas and Shreve (1996). Hence, each Borel measurable function such as c(x, a) is
upper semianalytic on K .

Lemma 3.3 Suppose that Assumption 3.1 holds. For any u(t, x) ∈ BV0([0, T ] × S), define
a corresponding function u∗(t, x) : [0, T ] × S −→ (−∞,∞) by

u∗(t, x) := inf
a∈A(x)

{

δc(x, a)u(t, x) +
∫

S

u(t, y)q(dy|x, a)

}

.

Then, the following assertions hold.

(a) The function u∗(t, x) is upper semianalytic (and hence universally measurable).
(b) For every ε > 0, there exists a deterministic Markov policy fε ∈ 
d

m (depending on
ε) such that

δc(x, fε(t, x))u(t, x) +
∫

S

u(t, y)q(dy|x, fε(t, x))

≤ u∗(t, x) + ε ∀ (t, x) ∈ [0, ∞) × S.

Proof See Lemma 3.3 in Guo et al. (2015b) or (Bertsekas and Shreve 1996, Propositions
7.47 and 7.50).
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4 The existence of optimal Markov policies

In this section, we prove the existence of an optimal Markov policy and a solution to the
following optimality equation (4.1) for the finite horizon CTMDPs with the risk-sensitive
criterion. The proofs are shown in three steps as follows: 1) consider the case of bounded
transition and cost rates, 2) deal with the case of unbounded transition rates but nonnegative
costs, and 3) study the case of unbounded transition and cost rates.

Suppose that f (x) is defined on X. Denote ‖f ‖ := supx∈X |f (x)|. The following results
are for the case of the bounded transition and bounded cost rates.

Proposition 4.1 If ‖q‖ and ‖c‖ are finite, then the following assertions hold.

(a) There exists a unique ϕ in B
1
1,1([0, T ] × S) (that is, V0(x) = V1(x) ≡ 1, x ∈ S) sat-

isfying the following optimality equation for the risk-sensitive criterion of CTMDPs
on the finite horizon:

{
ϕ′(t, x) + infa∈A(x)[δc(x, a)ϕ(t, x) + ∫

S
ϕ(t, y)q(dy|x, a)] = 0,

ϕ(T , x) = 1,
(4.1)

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0.

(b) ϕ(t, x) = J∗(t, x) = inff ∈
d
m

J (f, t, x) for all (t, x) ∈ [0, T ] × S, with ϕ(t, x) as in
(a).

(c) For any ε > 0, there exists fε ∈ 
d
m such that J (fε, t, x) ≤ ϕ(t, x) + ε for all

(t, x) ∈ [0, T ] × S.

Proof (a) Define the following operator B on B1([0, T ] × S) (actually the space of all
bounded functions) by

Bψ(t, x) := 1 +
∫ T

t

inf
a∈A(x)

[

δc(x, a)ψ(s, x) +
∫

S

ψ(s, y)q(dy|x, a)

]

ds (4.2)

for any (t, x) ∈ [0, T ] × S and ψ ∈ B1([0, T ] × S).
Then, for each (t, x) ∈ [0, T ] × S, and any ψ1, ψ2 ∈ B1([0, T ] × S), from Eq. 4.2 and

q({x}|x, a) + q(S \ {x})|x, a) ≡ 0 we obtain

|Bψ1(t, x) − Bψ2(t, x)| ≤
∫ T

t

sup
a∈A(x)

[

δ‖c‖‖ψ1 − ψ2‖ +
∫

S

|q|(dy|x, a)‖ψ1 − ψ2‖
]

ds

≤ (δ‖c‖ + 2‖q‖)
∫ T

t

‖ψ1 − ψ2‖ds

= L̃(T − t)‖ψ1 − ψ2‖
where L̃ := δ‖c‖+2‖q‖ < ∞. Furthermore, by induction we can prove the following fact:

|Bnψ1(t, x) −Bnψ2(t, x)|≤ L̃n (T − t)n

n! ‖ψ1−ψ2‖ ∀ (t, x) ∈ [0, T ]×S, n ≥ 1. (4.3)

Since
∑∞

n=1 L̃n T n

n! ‖ψ1 − ψ2‖ < ∞, there exists some integer k such that the constant

β := L̃k T k

k! < 1. Thus, by Eq. 4.3 we have ‖Bkψ1 − Bkψ2‖ ≤ β‖ψ1 − ψ2‖. Therefore,
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B is a k-step contract operator. Thus, there exists a function ϕ ∈ B1([0, T ] × S) such that
Bϕ = ϕ, that is

ϕ(t, x) := 1 +
∫ T

t

inf
a∈A(x)

[

δc(x, a)ϕ(s, x) +
∫

S

ϕ(s, y)q(dy|x, a)

]

ds ∀ (t, x) ∈ [0, T ] × S. (4.4)

Since ‖q‖ and ‖c‖ are finite, by Eq. 4.4 we see that ϕ ∈ B
1
1,1([0, T ] × S), and thus (a)

follows.

(b-c) We are going to prove (b) and (c) together. Since ‖q‖ < ∞ and ‖c‖ < ∞, Assump-
tions 3.1 and 3.2 are satisfied by taking V0 = V1 ≡ 1. Thus, it follows from Eq. 4.1
and Theorem 3.2(a) that

J (π, t, x) ≥ ϕ(t, x) for all π ∈ 
r
m. (4.5)

Moreover, for any ε > 0, since ϕ ∈ B1([0, T ]×S), Lemma 3.3 together with Eq. 4.1
gives the existence of fε ∈ 
d

m, such that, for each x ∈ S and t ∈ E(ϕ,x),
{

ϕ′(t, x) + δc(x, fε(t, x))ϕ(t, x) + ∫
S

ϕ(t, y)q(dy|x, fε(t, x)) ≤ ε
T

e−T δ‖c‖,
ϕ(T , x) = 1.

(4.6)

Then, as the arguments for Eq. 3.16, by |c(x, a)| ≤ ‖c‖ and Eq. 4.6 we have
(
e
∫ t
s δc(xv,fε(v,xv))dvϕ(t, xt )

)′+
∫

S

q(dy|xt , fε(t, xt ))
(
e
∫ t
s δc(xv,fε(v,xv)))ϕ(t, y)

)
≤ ε

T

for every 0 ≤ s ≤ t . Thus, by Theorem 3.1(a) we have

E
fε
x

(
e
∫ T
s δc(xv,fε(v,xv))dv)

)
− ϕ(s, x)

= E
fε
x

(
e
∫ T
s δc(xv,fε(v,xv))dvϕ(T , xT )

)
− ϕ(s, x) ≤ ε

and so

J (fε, s, x) ≤ ϕ(s, x) + ε for all (s, x) ∈ [0, T ] × S. (4.7)

Therefore, since ε can be arbitrary, by Eqs. 4.5 and 4.7 we have

inf
π∈
r

m

J (π, t, x) = ϕ(t, x) = inf
f ∈
d

m

J (f, t, x), and J (fε, t, x) ≤ ϕ(t, x) + ε,

for all (t, x) ∈ [0, T ] × S, and by Eq. 2.6 so (b) and (c) follow.

Proposition 4.1 shows the existence of a solution to the optimality equation for the
bounded transition and cost rates. To further establish the existence of an optimal Markov
policy, we need some conditions below.

Assumption 4.1 (i) For each x ∈ S, A(x) is compact;
(ii) For each x ∈ S and D ∈ B(S), the function q(D|x, a) is continuous in a ∈ A(x);
(iii) For each x ∈ S, the functions c(x, a) and

∫
S

V0(y)q(dy|x, a) are continuous in a ∈
A(x), with V0 as in Assumption 3.1.

Remark 4.1 Assumption 4.1 is used for the existence of the minimum points in the
optimality equation (4.1).

Discrete Event Dynamic Systems (2019) 29:445–471462



By Lemma 8.3.7(a) in Hernández-Lerma and Lasserre (1999), under Assumption 4.1 we
have the following lemma.

Lemma 4.1 Under Assumptions 4.1(ii,iii), the function
∫
S

q(dy|x, a)u(t, y) is continuous
in a ∈ A(x), for every fixed (t, x) ∈ [0, T ] × S and u ∈ BV0([0, T ] × S).

Proposition 4.2 Under Assumption 4.1, if ‖q‖ < ∞ and ‖c‖ < ∞, that is, transition and
cost rates are bounded, then the following assertions hold.

(a) There exists a unique ϕ(t, x) in B
1
V0,V1

([0, T ] × S) satisfying the optimality equation
(4.1).

(b) ϕ(t, x) = J∗(t, x) = inff ∈
d
m

J (f, t, x) for all (t, x) ∈ [0, T ] × S, with ϕ(t, x) as in
(a).

(c) There exists a deterministic Markov policy f ∗ ∈ 
d
m such that

ϕ′(t, x) + δc(x, f ∗(t, x))ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, f ∗(t, x)) = 0

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0.

(d) If, in addition, c(x, a) ≥ 0 for all (x, a) ∈ K , then J∗(x, t) (and also ϕ(t, x)) is
decreasing in t ∈ [0, T ] for each fixed x ∈ S.

Proof We only need to prove (c) and (d) since (a) and (b) follow from Proposition 4.1. For
the function ϕ(t, x) from (a), when ϕ′(t, x) does not exist for some (t, x), we define

ϕ′(t, x) := − inf
a∈A(x)

[δc(x, a)ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, a)], (4.8)

which, together with Eq. 4.1, implies that Eq. 4.8 holds for each (t, x) ∈ [0, T ] × S.
Hence, Proposition 7.50 in Bertsekas and Shreve (1996) together with Lemma 4.1 ensures
the existence of a Markov policy f ∗ ∈ 
d

m such that
{

ϕ′(t, x)+δc(x, f ∗(t, x))ϕ(t, x)+∫
S

ϕ(t, y)q(dy|x, f ∗(t, x)]=0 ∀ (t, x)∈[0, T ] × S,

ϕ(T , x) = 1.

Then, as the proofs of (b) and (c) in Proposition 4.1, we see that (c) is true.
(d) Fix any s, t ∈ [0, T ] with s < t . Then, for any Markov policy f ∈ 
d

m , we define
the corresponding Markov policy f t

s as follows: for each x ∈ S,

f t
s (v, x) =

{
f (v + t − s, x) v ≥ s,

f (v, x) otherwise.
(4.9)

Then, we have, for each (v, x) ∈ [s, s + T − t] × S,

q(dy|x, f t
s (v, x)) = q(dy|x, f (v + t − s, x)), c(x, f t

s (v, x)) = c(x, f (v + t − s, x)).

Let

J (f, s ∼ t, x) := E
π
γ

[
e
∫ t
s

∫
A δc(xv,f (v,xv))dv|xs = x

]
,

J∗(s ∼ t, x) := inf
f ∈
d

m

J (f, s ∼ t, x). (4.10)

By the Markov property of {xt , t ≥ 0} under any Markov policy f and Eqs. 4.9–4.10,
we have J (f, t ∼ T , x) = J (f t

s , s ∼ T + s − t, x), and thus J∗(t ∼ T , x) ≥ J∗(s ∼
T + s − t, x); Similarly, we can prove that J∗(s ∼ T + s − t, x) ≥ J∗(t ∼ T , x). Thus, we
have J∗(t ∼ T , x) = J∗(s ∼ T + s − t, x). Moreover, since c(x, a) ≥ 0 on K , by Eq. 4.10
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and t > s, we have J∗(t ∼ T , x) = J∗(s ∼ T + s − t, x) ≤ J∗(s ∼ T , x), which, together
with J∗(t ∼ T , x) = J∗(t, x), gives (d).

Proposition 4.2 shows the existence of an optimal policy under the bounded transition
and cost rates. We next extend the results in Proposition 4.2 to the case of unbounded transi-
tion rates by approximations from bounded transition and cost rates to unbounded transition
rates and nonnegative costs.

Proposition 4.3 Under Assumptions 3.1, 3.2 and 4.1, if in addition c(x, a) ≥ 0 for all
(x, a) ∈ K , then the following assertions hold.

(a) There exists a unique ϕ(t, x) in B
1
V0,V1

([0, T ] × S) satisfying the optimality equation
(4.1).

(b) ϕ(t, x) = J∗(t, x) = inff ∈
d
m

J (f, t, x) for all (t, x) ∈ [0, T ] × S, with ϕ(t, x) as in
(a).

(c) There exists a Markov policy f ∗ ∈ 
d
m such that

ϕ′(t, x) + δc(x, f ∗(t, x))ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, f ∗(t, x)) = 0

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0.

Proof We only proof (a). This is because (b) and (c) can be proved as the same arguments
of (b)-(c) of Proposition 4.2.

The main thread of our proof is as follows.
First, we construct a series of models M+

n which the transition rates and costs are all
bounded. By Proposition 4.2, there exists a decreasing (with respect to t) function ϕn(t, x) ∈
B
1
1,1([0, T ] × S) which is the value function ofM+

n .
Second, we prove that the limit of ϕn(t, x) exists, denoted by ϕ(t, x).
Third, we prove that ϕ(t, x) is the value function of the original model.
Now, we constructM+

n first. under Assumption 3.1 (iii), we have

1 ≤ e2T δc(x,a) ≤ M0V0(x), (i.e., 0 ≤ c(x, a) ≤ 1

T δ
ln
√

M0V0(x)) for all (x, a) ∈ K .

For each n ≥ 1, let An(x) := A(x) for x ∈ S, Kn := {(x, a)|x ∈ S, a ∈ An(x)}, and
Sn := {x ∈ S|V0(x) ≤ n}. Moreover, for each x ∈ S, a ∈ An(x), let

qn(dy|x, a) :=
{

q(dy|x, a) if x ∈ Sn,

0 if x �∈ Sn; (4.11)

c+
n (x, a) :=

{
c(x, a) ∧ min{n, 1

T δ
ln

√
M0V0(x)} if x ∈ Sn,

0 if x �∈ Sn.
(4.12)

Fix any n ≥ 1. By Eq. 4.11, it is obvious that the qn(dy|t, x, a) denotes indeed transition
rates on S, which are conservative and stable. By Eq. 4.12, recall T > 0, δ > 0,M0 ≥
1, V0(x) ≥ 1 and c(x, a) ≥ 0, c+

n (x, a) ≥ 0 for n ≥ 1. Then, we obtain a sequence of
models {M+

n }:
M+

n := {
S,A, (An(x), x ∈ S), c+

n (x, a), qn(·|x, a)
}
,

for which the transition rates qn(dy|x, a) and costs c+
n (x, a) are all bounded (by Assumption

3.1 and Eqs. 4.11–4.12). In the following arguments, any quality with respect to M+
n is

labeled by a lower n, such as the risk-sensitive criterion Jn(f, t, x) of a Markov policy f

and the value function Jn(t, x) := inff ∈
d
m

Jn(f, t, x).
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Obviously, Assumptions 3.1, 3.2 and 4.1 still hold for each model M+
n . Thus, for each

n ≥ 1, it follows from Proposition 4.2 that there exists ϕn(t, x) ∈ B
1
1,1([0, T ]×S) satisfying

(4.1) for the correspondingM+
n , that is,

{
ϕ′

n(t, x) + infa∈An(x)[δc+
n (x, a)ϕn(t, x) + ∫

S
ϕn(t, y)qn(dy|x, a)] = 0,

ϕn(T , x) = 1.
(4.13)

for all x ∈ S and t ∈ E(ϕn,x) with mL(Ec
(ϕn,x)) = 0. Furthermore, since c+

n (x, a) ≥ 0, by
Proposition 4.2 (d), ϕn(t, x)) is decreasing in t ∈ [0, T ] for each fixed x ∈ S.

Then, Proposition 7.50 in Bertsekas and Shreve (1996) together with Lemma 4.1 and
Eq. 4.13 gives the existence of a Markov policy fn ∈ 
d

m such that,

{
ϕ′

n(t, x)+ δc+
n (x, fn(t, x))ϕn(t, x)+∫

S
ϕn(t, y)qn(dy|x, fn(t, x)=0 ∀ x ∈ S,

ϕn(T , x) = 1
(4.14)

for all x ∈ S and t ∈ E(ϕn,x) with mL(Ec
(ϕn,x)) = 0.

Also, by Eq. 4.12 we have e2T δc+
n (x,a) ≤ M0V0(x) for all x ∈ S and n ≥ 1. Then, using

Lemma 3.1 and Theorem 3.2(a2) with V0 = V1 ≡ 1 and Lemma 3.1, from Eq. 4.14 we have

e−LV0(x) ≤ ϕn(t, x) = Jn(fn, t, x) ≤ LV0(x) ∀ n ≥ 1. (4.15)

Moreover, since ϕn(t, x) ≥ 0 and c+
n (x, a) ≥ c+

n−1(x, a) for all (x, a) ∈ K , by Eqs. 4.11
and 4.14 as well as Proposition 4.2(d), we have, for all x ∈ S, t ∈ E(ϕn,x) and n ≥ 2

⎧
⎨

⎩

ϕ′
n(t, x) + δc+

n−1(x, fn(t, x))ϕn(t, x) + ∫
S

ϕn(t, y)qn−1(dy|x, fn(t, x)) ≤ 0, x ∈ Sn−1,

ϕ′
n(t, x) + δc+

n−1(x, fn(t, x))ϕn(t, x) + ∫
S

ϕn(t, y)qn−1(dy|x, fn(t, x)) = ϕ′
n(t, x) ≤ 0, x �∈ Sn−1

ϕn(T , x) = 1,

which, together with Theorem 3.2(a2) with V0 = V1 ≡ 1 , implies that Jn−1(fn, t, x) ≤
ϕn(t, x) for all (x, t) ∈ [0, T ] × S. Therefore, we have ϕn−1(t, x) ≤ Jn−1(fn, t, x) ≤
ϕn(t, x), that is, the sequence {ϕn, n ≥ 1} is nondecreasing in n ≥ 1, and thus the limit

ϕ(t, x) := lim
n→∞ ϕn(t, x) (4.16)

exists for each (t, x) ∈ [0, T ] × S.
Since ϕn(t, x) is decreasing in t ∈ [0, T ], ϕ(t, x) is decreasing in t ∈ [0, T ], for each

fixed x ∈ S. Therefore, ϕ(t, x) is differential in a.e. t ∈ [0, T ] (for each fixed x ∈ S).
Let, for every n ≥ 1 and (t, x) ∈ [0, T ] × S,

Hn(t, x) := inf
a∈A(x)

[

δc+
n (x, a)ϕn(t, x) +

∫

S

ϕn(t, y)qn(dy|x, a)

]

,

H(t, x) := inf
a∈A(x)

[

δc(x, a)ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, a)

]

.

We next show that limn→∞ Hn(t, x) = H(t, x) for each (t, x) ∈ [0, T ] × S.
Indeed, for any fixed (t, x) ∈ [0, T ] × S, there exists n0 ≥ 1 such that (t, x) ∈ [0, T ] ×

Sn0 , and then qn(dy|x, a) = q(dy|x, a) for all n ≥ n0 and limn→∞ c+
n (x, a) = c(x, a) for
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all a ∈ A(x). Thus, by Lemma 8.3.7 in Hernández-Lerma and Lasserre (1999) and Eq. 4.15
we have

lim sup
n→∞

Hn(t, x)

≤ lim sup
n→∞

[

δc+
n (x, a)ϕn(t, x) +

∫

S

ϕn(t, y)q(dy|x, a)

]

≤ δc(x, a)ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, a), for all a ∈ A(x).

Hence,

lim sup
n→∞

Hn(t, x) ≤ inf
a∈A(x)

[

δc(x, a)ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, a)

]

. (4.17)

On the other hand, note that lim infn→∞ Hn(t, x) = limm→∞ Hnm(t, x) for some sub-
sequence {nm, m ≥ 1} of {n, n ≥ 1}. For each m ≥ 1, under Assumption 4.1, the
measurable selection theorem (e.g. Proposition 7.50 in Bertsekas and Shreve 1996) together
with Lemma 4.1 ensures the existence of fnm ∈ 
d

m such that

Hnm(t, x) = inf
a∈A(x)

[δc+
nm

(x, a)ϕnm(t, x) +
∫

S

ϕnm(t, y)q(dy|x, a)]

= δc+
nm

(x, fnm(t, x))ϕnm(t, x) +
∫

S

ϕnm(t, y)q(dy|x, fnm(t, x)). (4.18)

Since fnm(t, x) ∈ A(x) for all m ≥ 1 and A(x) is compact, there exists a subsequence
{fnmk

(t, x), k ≥ 1} of {fnm(t, x),m ≥ 1} and a(t, x) ∈ A(x) (depending on (t, x)) such that
fnmk

(t, x) → a(t, x) as k → ∞. Thus, since limm→∞ Hnm(t, x) = limk→∞ Hnmk
(t, x),

using Assumption 4.1, by Lemma 8.3.7 in Hernández-Lerma and Lasserre (1999) and
Eq. 4.18 we have

lim inf
n→∞ Hn(t, x) = lim

k→∞ Hnmk
(t, x)

= lim
k→∞

[

δc+
nmk

(x, fnmk
(t, x))ϕnmk

(t, x)+
∫

S

ϕnmk
(t, y)q(dy|x, fnmk

(t, x))

]

= δc(x, a(t, x))ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|t, x, a(t, x))

≥ inf
a∈A(x)

[

δc(x, a)ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, a)

]

,

which, together with Eq. 4.17, implies that limn→∞ Hn(t, x) = H(t, x). Thus, by Eq. 4.13
we have

ϕ(t, x) = 1 +
∫ T

t

inf
a∈A(x)

[

δc(x, a)ϕ(s, x) +
∫

S

ϕ(s, y)q(dy|x, a)

]

ds. (4.19)

Since ϕ(t, x) is the integral of a measurable function, it is a absolutely continuous function.
Therefore, we prove that ϕ(t, x) is differential in a.e. t ∈ [0, T ] (for each fixed x ∈ S)
again. We can verify that ϕ(t, x) satisfies (4.1). To show ϕ(t, x) ∈ B

1
V0,V1

([0, T ]×S), since
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ϕ(t, x) ∈ BV0([0, T ] × S) (by Eqs. 4.15–4.16), the rest verifies that ϕ′(t, x) is V1-bounded.
Indeed, since T |δc(x, a)| ≤ eT δ|c(x,a)| ≤ M0V0(x), from Eq. 4.19 we have

|ϕ′(t, x)| ≤ M0

T
‖ϕ‖V0V0(x)V0(x) + ‖ϕ‖V0 [ρ0V0(x) + b0 + 2V0(x)q∗(x)]

≤ ‖ϕ‖V0

[
M0

T
V 2
0 (x) + ρ0V0(x) + b0 + 2M ′

0V
2
0 (x)

]

≤ ‖ϕ‖V0

[
M1M0

T
+ ρ0M1 + b0 + 2M ′

0M1

]

V1(x)

which implies that ϕ(t, x) is in B
1
V0,V1

([0, T ] × S), and thus (a) is proved.

Next, we use Proposition 4.3 to prove our main results by approximation from non-
negative cost rates to the cost rates that may be unbounded from above and from
below.

Theorem 4.1 Under Assumptions 3.1, 3.2 and 4.1, the following assertions hold.

(a) There exists a unique ϕ(t, x) in B
1
V0,V1

([0, T ] × S) satisfying the optimality equation
(4.1).

(b) ϕ(t, x) = infπ∈
r
m

J (π, t, x) = inff ∈
d
m

J (f, t, x) for all (t, x) ∈ [0, T ] × S, with
ϕ(t, x) as in (a).

(c) There exists a Markov policy f ∗ ∈ 
d
m such that

ϕ′(t, x) + δc(x, f ∗(t, x))ϕ(t, x) +
∫

S

ϕ(t, y)q(dy|x, f ∗(t, x)) = 0

for each x ∈ S and t ∈ E(ϕ,x) with mL(Ec
(ϕ,x)) = 0, and f ∗ is optimal.

Proof We only prove (a) and the optimality of the policy f ∗ since the others can be proved
as (b) and (c) of Proposition 4.3. For each n ≥ 1, define cn on K as follows: for each
(x, a) ∈ K,

cn(x, a) := max{−n, c(x, a)},
which implies that limn→∞ cn(x, a) = c(x, a) and kn(x, a) := cn(x, a) + n ≥ 0 for each
(x, a) ∈ K and n ≥ 1. Moreover, it follows from Assumption 3.1(iii) that

− 1

T δ
ln
√

M0V0(x) ≤ max{−n, − 1

T δ
ln
√

M0V0(x)} ≤ cn(x, a) ≤ 1

T δ
ln
√

M0V0(x).

(4.20)
Thus, e2T δkn(x,a) ≤ e2T nδM0V0(x) for all (x, a) ∈ K for all n ≥ 1, and so Assumptions 3.1
(with M0 replaced by e2T nδM0), 3.2 and 4.1 still hold for each modelNn defined by

Nn := {S, (A(x), x ∈ S), kn(x, a), q(·|x, a)} .
For any real-valued Borel measurable function u on K , let

Ju(x, t) := inf
f ∈
d

m

E
π
γ

[
eδ

∫ T
t

∫
A u(xt ,f (t,xt ))dt |xt = x

]

provided the integral exists. Then, for each n ≥ 1, since kn(x, a) ≥ 0, by Proposition 4.3(b)
we have Jkn is in B

1
V0,V1

([0, T ] × S) and satisfies
{

J ′
kn

(t, x) + infa∈A(x)[δkn(x, a)Jkn(t, x) + ∫
S

Jkn(t, y)q(dy|x, a)] = 0
Jkn(T , x) = 1.

(4.21)
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for all x ∈ S and t ∈ E(Jkn ,x).
Moreover, since Jkn(t, x) = Jcn+n(t, x) = Jcn(t, x)eδ(T −t)n, by Eq. 4.21 we derive that

{
J ′

cn
(t, x) + infa∈A(x)[δcn(x, a)Jcn(t, x) + ∫

S
Jcn(t, y)q(dy|x, a)] = 0

Jcn(T , x) = 1.

This is

Jcn(t, x) = 1 +
∫ T

t

inf
a∈A(x)

[δcn(x, a)Jcn(s, x) +
∫

S

Jcn(s, y)q(dy|x, a)]ds. (4.22)

On the other hand, for each (t, x) ∈ [0, T ] × S, it follows from Eq. 4.20 and Lemma 3.1(d)
that

|Jcn(t, x)| ≤ LV0(x), n ≥ 1. (4.23)

Since cn(x, a) is decreasing in n ≥ 1, and so is the corresponding value functions Jcn(t, x).
Therefore, the limit ϕ(t, x) := limn→∞ Jcn(t, x) exists for each (t, x) ∈ [0, T ]×S. Then, as
the arguments for Proposition 4.3 with ϕn(t, x) replaced with Jcn(t, x) here, from Eqs. 4.22
and 4.23 we can see that (a) is also true.

Moreover, by Eq. 4.1 and (c), using Theorem 3.2 we see that f ∗ is optimal.

Remark 4.2 For the given πt (da|x) ∈ 
r
m, to show the existence of a ϕ ∈ B

1
V0,V1

([0, T ]×S)

satisfying (3.14), we modify the operator B in Eq. 4.2 as the following Bπ :

Bπψ(t, x) := 1 +
∫ T

t

[

δc(x, πs)ψ(s, x) +
∫

S

ψ(s, y)q(dy|x, πs)

]

ds

for all (t, x) ∈ [0, T ] × S. Then, a similar argument as in the proof of Proposition 4.3(a)
gives the existence of a ϕ ∈ B

1
V0,V1

([0, T ] × S) satisfying (3.14).

5 An example

Recall that Assumptions 3.1 and 4.1 above are the generalization of the corresponding
ones in Guo and Hernández-Lerma (2009), Guo et al. (2012), Guo and Piunovskiy (2011),
Piunovskiy and Zhang (2011), and Prieto-Rumeau and Hernández-Lerma (2012). Hence,
they are satisfied for all the examples and hypotheses in these references. To further illus-
trate the main results here, we next consider the risk-sensitive optimality problem of case
flow in Guo et al. (2015a) for CTMDPs on the mean-variance criteria.

Example 5.1 (Risk-sensitive controlled problems of cash flow) Consider a continuous-time
controlled problem of cash flow in an economic market with an amount of the cash as a
state, and thus the corresponding state space is S := (−∞,+∞). When the current state of
cash flow is at x ∈ S, a decision-maker withdraws money with the amount −a (if a < 0) or
takes a supply of money with the amount a for a ≥ 0, where a is regarded an action. When
the current state is at x ∈ S and an action a ∈ A(x) is chosen, the two things happen: 1) a
cost is incurred at rate c(x, a); and 2) the amount x of cash is assumed to keep invariable
for an exponential-distributed random time with parameter λ(x, a) ≥ 0, and then jump to
other states with the normal distribution N(x, σ 2) for some constant σ > 0. Therefore, the
transition rates of cash flow is represented by

q(D|x, a) := λ(x, a)

[
1√
2πσ

∫

D

e
− (y−x)2

2σ2 dy − δx(D)

]

for each D ∈ B(S). (5.1)
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For this cash flow model, the decision maker wishes to minimize the risk-sensitive costs on
a given T horizon over all policies.

To ensure the existence of an optimal policy for the cash flow model, we consider the
following hypotheses:

(A1) λ(x, a) ≤ M(x2 + 1) and |c(x, a)| ≤ 1
2δT [M + ln(x2 + 1)] for all x ∈ S, a ∈ A(x)

with some positive constant M , where the constants δ and T are as before;
(A2) A(x) is assumed to be a compact set of a Borel space A for each x ∈ S;
(A3) λ(x, a) and c(x, a) are Borel measurable on K and continuous in a ∈ A(x) for each

fixed x ∈ S.

Under the above conditions, we have the following fact.

Proposition 5.1 Under the hypotheses A1–A3, Example 5.1 satisfies the Assumptions 3.1,
3.2 and 4.1, and hence (by Theorem 4.1) there exists an optimal Markov policy.

To verify the conditions required in Theorem 4.1, let

V0(x) := 1 + x2, V1(x) := 1 + x4 ∀ x ∈ S.

Since 1√
2πσ

∫
S
(y−x)2k+1e

− (y−x)2

2σ2 dy = 0 and 1√
2πσ

∫
S
(y−x)2ke

− (y−x)2

2σ2 dy = 1·3 · · · (2k−
1)σ 2k for all k = 0, 1, . . ., using (5.1) and hypothesis A1, a directive calculation gives

∫

S

V0(y)q(dy|x, a) = λ(x, a)

[
1√
2πσ

∫ +∞

−∞
(y2 + 1)e− (y−x)2

2σ2 dy − (x2 + 1)

]

= λ(x, a)σ 2 ≤ Mσ 2V0(x);
∫

S

V 2
1 (y)q(dy|x, a) = λ(x, a)

[
1√
2πσ

∫ +∞

−∞
(y4 + 1)2e− (y−x)2

2σ2 dy − (x4 + 1)2
]

= λ(x, a)
(
105σ 8+420x2σ 6+210x4σ 4 + 6σ 4 + 12σ 2x2 + 28x6σ 2

)

≤ 420λ(x, a)
(
σ 8 + σ 6 + σ 4 + σ 2

) (
x6 + x4 + x2 + 1

)
;

≤ 420λ(x, a)
(
σ 8 + σ 6 + σ 4 + σ 2

) (
3x6 + 3

)
;

≤ 1260M
(
σ 8 + σ 6 + σ 4 + σ 2

) (
x6 + 1

)
(1 + x2);

≤ 3780M
(
σ 8 + σ 6 + σ 4 + σ 2

) (
x4 + 1

)2 ;
= 3780M

(
σ 8 + σ 6 + σ 4 + σ 2

)
V 2
1 (x).

Thus, the hypotheses A1–A3 imply the Assumptions 3.1, 3.2 and 4.1, and then Theorem 4.1
gives the existence of an optimal Markov policy.

Remark 5.1 In this example, the cost c(x, a) are allowed to be unbounded from above and
below, and the transition rates q(dy|x, a) can be unbounded. Thus, some of the conditions
in Ghosh and Saha (2014), Jaskiewicz (2007), Kumar and Chandan (2015), Kumar and
Chandan (2013), and Wei (2016) for CTMDPs on the risk-sensitive criteria fails to hold for
this example because the transition and cost rates are all bounded in Ghosh and Saha (2014),
Jaskiewicz (2007), Kumar and Chandan (2013, 2015) and Wei (2016).
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