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Abstract
This paper studies an optimal ON-OFF control problem for a class of discrete event systems
with real-time constraints. Our goal is to minimize the overall costs, including the operating
cost and the wake-up cost, while still guaranteeing the deadline of each individual task. In
particular, we consider the homogeneous case in which it takes the same amount of time to
serve each task and each task needs to be served by d seconds upon arrival. The problem
involves two subproblems: (i) finding the best time to wake up the system and (ii) finding
the best time to let the system go to sleep. We study the two subproblems in both off-line and
on-line settings. In the off-line case that all task information is known a priori, we combine
sample path analysis and dynamic programming to come up with the optimal solution. In
the on-line scenario where future task information is completely unknown, we show that the
optimal time to wake up the system can be obtained without relying on future task arrivals.
We also perform competitive analysis for on-line control and derive the competitive ratios
for both deterministic and random controllers.
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1 Introduction

There exists a large amount of Discrete Event Systems (DESs) that involve allocation of
resources to satisfy real-time constraints. One commonality of these DESs is that cer-
tain tasks must be completed by their deadlines in order to guarantee Quality-of-Service
(QoS). Examples arise in wireless networks and computing systems, where communica-
tion and computing tasks must be transmitted/processed before the information they contain
becomes obsolete (Miao et al. 2017; Liu 2000), and in manufacturing systems, where man-
ufacturing tasks must be completed before the specified time in the production schedule
(Pepyne and Cassandras 2000). Another commonality of these DESs is that they all require
the minimization of cost (e.g., energy). An interesting question then arises naturally: how
can we allocate resources to such DESs so that the cost is minimized and the real-time
constraints are also satisfied? To answer this question, one often has to study the trade-off
between minimizing the cost and satisfying the real-time constraints: processing the tasks
at a higher speed makes it easier to satisfy the real-time constraints but harder to reduce
the cost; conversely, processing the tasks at a lower speed makes it harder to satisfy the
real-time constraints but easier to reduce the cost. This trade-off is often referred to as the
energy-latency trade-off and has been widely studied in the literature (Miao et al. 2017;
Gamal et al. 2002; Zafer and Modiano 2009a).

In this paper, our objective is to utilize the energy-latency trade-off to minimize the
cost while guaranteeing the real-time constraint for each task. Different from most existing
papers that assume the system’s service rate (the control variable) is a continuous function
of time, we assume that the DES only operates at one of the two states: ON and OFF. One
motivating example of such DES is wireless sensor networks, in which operation simplic-
ity must be maintained. For example, the radio of a ZigBee wireless device can be either
completely off or transmitting at a fixed-rate, e.g., 250kb/s in the 2.4GHz band. Another
difference between this paper and others is that we assume that a wake-up cost is incurred
whenever the system transits from the OFF state to the ON state.

We solve both off-line and on-line optimal ON-OFF control problems. Our main con-
tributions are two-fold: (i) We combine sample path analysis and Dynamic Programming
(DP) to obtain the optimal off-line solution and (ii) We perform competitive analysis
and derive the competitive ratios of both deterministic and random on-line controllers.
Some results of this paper are previously shown in two conference papers: Miao and Xu
(2015) and (Miao 2017), which primarily focus on off-line control. One new contribu-
tion of this paper is the competitive analysis for on-line control. Another new contribution
is that we introduce an idling cost in the system model. We point out that the addi-
tion of this idling cost makes our problem formulation more realistic because it often
exists in real-world applications. For example, energy is consumed when a motor is spin-
ning without any load attached and when a sensor is turned on, but not actively processing
information.

Due to page limitation, we do not include the results and discussions that are avail-
able in the conference papers and all the proofs; instead, we let the readers refer to Miao
et al. (2018) for all these details. The organization of the rest of the paper is as follows: in
Section 2, we discuss related work; we introduce the system model and formulate our opti-
mization problem in Section 3; the off-line and on-line results are presented in Sections 4
and 5, respectively; finally, we conclude in Section 6.
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2 Related work

There are two lines of work that are closely related to this paper. One is transmission
scheduling for wireless networks, in which the transmission rate of a wireless device is
adjusted so as to minimize the transmission cost and satisfy real-time constraints. This line
of work is initially studied in Uysal-Biyikoglu et al. (2002) with follow-up work in Gamal
et al. (2002) where a homogeneous case is considered for a convex optimization problem,
assuming all packets have the same deadline and number of bits. The rate of convergence of
the proposed “MoveRight” algorithm is obtainable for a special case of the problem when
all packets have identical energy functions. Zafer and Modiano (2009b) study an optimal
rate control problem over a time-varying wireless channel, in which the channel state was
modeled as a Markov process. In particular, they consider the scenario that B units of data
must be transmitted by a common deadline T , and they obtain an optimal rate-control policy
that minimizes the total energy expenditure subject to short-term average power constraints.
In Zafer and Modiano (2007, 2008), the case of identical arrival time and individual dead-
line is studied by Zafer et. al. In Chen et al. (2007), the case of identical packet size and
identical delay constraint is studied by Neely et. al. They extend the result for the case of
individual packet size and identical delay constraint in Chen et al. (2009). In Zafer and
Modiano (2009a), Zafer et. al. use a graphical approach to analyze the case that each packet
has its own arrival time and deadline. However, there are certain restrictions in their setting;
for example, the packet that arrives later must have later deadlines. Wang and Li (2013) ana-
lyze scheduling problems for bursty packets with strict deadlines over a single time-varying
wireless channel. Assuming slotted transmission and changeable packet transmission order,
they are able to exploit structural properties of the problem to come up with an algorithm
that solves the off-line problem. In Poulakis et al. (2013), Poulakis et. al. also study energy
efficient scheduling problems for a single time-varying wireless channel. They consider a
finite-horizon problem where each packet must be transmitted before Dmax. Optimal stop-
ping theory is used to find the optimal start transmission time between [0, Dmax] so as to
minimize the expected energy consumption and the average energy consumption per unit
of time. Zhong and Xu (2008) formulated optimization problems that minimize the energy
consumption of a set of tasks with task-dependent energy functions and packet lengths. In
their problem formulation, the energy functions include both transmission energy and circuit
power consumption. To obtain the optimal solution for the off-line case with backlogged
tasks only, they develop an iterative algorithm RADB whose complexity is O(n2) (n is the
number of tasks). The authors show via simulation that the RADB algorithm achieves good
performance when used in on-line scheduling. Miao et al. (2017) studies a transmission
control problem for task-dependent cost functions and arbitrary task arrival time, deadline,
and number of bits. They propose a GCTDA algorithm that solves the off-line problem effi-
ciently by identifying certain critical tasks. The GCTDA algorithm is an extension to the
CTDA algorithm (Mao et al. 2007) designed by Mao and Cassandras for dynamic voltage
scaling related applications. They extend the CTDA algorithm to multilayer scenarios in
Mao and Cassandras (2014). Our model is different from all the above works by letting the
system operate in one of the discrete modes and also including a wake-up cost at each time
instant that the system transitions from OFF to ON state.

The other line of research studies On-OFF scheduling in Wireless Sensor Networks
(WSNs). Solutions in the Medium Access Control (MAC) layer, such as the S-MAC pro-
tocol (Ye et al. 2004), have been developed to coordinate neighboring sensors’ ON-OFF
schedule in order to reduce both energy consumption and packet delay. These approaches
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do not provide specific end-to-end latency guarantee. In Lai and Paschalidis (2006), rout-
ing problems are considered in WSNs where each sensor switches between ON and OFF
states. The authors formulate an optimization problem to pick the best path that minimizes
the weighted sum of the expected energy cost and the exponent of the latency probability.
In another work in Ning and Cassandras (2006), Ning and Cassandras formulate a dynamic
sleep control problem in order to reduce the energy consumed in listening to an idle channel.
The idea is to sample the channel more frequently when it is likely to have traffic and less
frequently when it is not. The authors extend their work in Ning and Cassandras (2008), by
formulating an optimization problem with the goal of minimizing the expected total energy
consumption at the transmitter and the receiver. Dynamic programming is used to come
up with an optimal policy that is shown to be more effective in cost saving than the fixed
sleep time. Cohen and Kapchits (2009) studies the ON-OFF scheduling in wireless mesh
networks. By assuming a fixed routing tree topology used for task transmission, each child
in the tree knows exactly when its parents will wake up, and the traffic is only generated by
the leaves of the tree, the authors formulate and solve an optimization problem that mini-
mizes the total transmission energy cost while satisfying the latency and maximum energy
constraints on each individual node. The major difference between this paper and the exist-
ing ones in this line of research is that we study a system with a real-time constraint for
each individual task. To the best of our knowledge, ON-OFF scheduling with a real-time
constraint for each individual task has not been studied extensively.

It is worth noting that there also exists papers related to the service rate control problem,
in which the optimal service rate policy of either single-server or multi-server queueing
systems are derived in order to minimize an average cost. A recent representative work along
this line can be found in Xia et al. (2017) where Xia et al. study the service rate problem
for tandem queues with power constraints. They formulate the model as a Markov decision
process with constrained action space and use sensitivity-based optimization techniques to
derive the conditions of optimal service rates, the optimality of the vertexes of the feasible
domain for linear and concave operating cost, and an iterative algorithm that provides the
optimal solution. Our problem formulation is different from these works in two aspects: (i)
We consider tasks with real-time constraints and (ii) We include system wake-up cost on
top of the service cost.

3 Systemmodel and problem formulation

We consider a finite horizon scenario that a DES processes N tasks with real-time con-
straints. In particular, task i, i = 1, . . . , N, has arrival time ai (generally random), deadline
di = ai + d, and B number of operations. Both d and B are constants. In the off-line set-
ting, we assume that the task arrival time ai is known to the controller a priori. The DES
can only operate in one of the two modes: ON and OFF. When it is in the OFF mode, there
is no operating cost associated. When it is in the ON or active mode, the system can either
be busy or idling. When the system is busy, it processes the tasks at a constant rate R with
fixed operating cost CB per unit time. When the system is idling, no tasks are waiting to
be served, and the system cost is CI (CI ≤ CB ) per unit time. Furthermore, we assume
that whenever a transition from the OFF mode to the ON mode occurs, a fixed wake-up
cost CW is incurred; examples of such costs include: the large amount of current (known as
inrush current) required when a motor is turned on, the energy needed to initialize electric
circuits when RF radio is turned on in a wireless device, and so on. Note that the wake-up
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cost may also include system wearout cost, if the system can only be turned on for certain
number of times during its lifetime. In our previous work in Miao and Xu (2015) and Miao
(2017), CI = CB . As we will show later, when CI is different from CB , it does not make the
analysis significantly harder, and the off-line optimal solution can still be obtained by DP.

As we mentioned earlier, the task information is known to the controller a priori in the
off-line setting. Our objective is to find the optimal ON and OFF time periods so as to (i)
finish all the tasks by their deadlines and (ii) minimize the cost.

Definition 1 Suppose the system is woken up at t1, put to sleep at t2 (t1 < t2), and kept
active from t1 to t2. Then, we call the time interval [t1, t2] an Active Period (AP).

Definition 2 In any AP, the periods during which the system is actively serving tasks are
known as Busy Periods (BPs). The rest of the time periods in that AP are known as Idle
Periods (IPs).

Let r(t) be the rate that the system is capable of serving tasks at time t . It is piecewise
constant and at any given time t , it can only be either 0 (when the system is OFF) or R

(when the system is ON). Note that r(t) is the potential service rate, instead of the the actual
service rate, since the system is only serving tasks during the BPs, not the IPs.

We now introduce the control variables. Our first control variable is α, the number of
APs. The second control variable is a α×2 array t that contains 2α time instants. These time
instants satisfy: ti,1 < ti,2 < tj,1 < tj,2, ∀i, j ∈ {1, . . . , α}, i < j and define α number of
APs. The off-line problem Q(1, N) can then be formulated:

min
α,t

J = αCW +
α∑

i=1

[CI (ti,2 − ti,1 − τi,B) + CBτi,B ]

s.t.
∫ xj

max(aj ,xj−1)

r(t)dt = B,

xj ≤ dj , x0 = 0, j = 1, . . . , N

r(t) = R

α∑

i=1

[u(t − ti,1) − u(t − ti,2)]

where xj is the departure time of task j , u(t) is the unit step function, and τi,B is the length
of the busy periods in the i-th AP. The first constraint ensures that exactly B number of
operations are executed for each task. The second one is the real-time constraint. The third
one makes sure that the processing rate isR only during each AP. Note that τi,B is dependent
on the number of tasks served in APi . To represent τi,B , we use NS

i and NE
i to denote the

first (starting) task and the last (ending) task in APi , respectively:NE
i = argmax

j∈{1,...,N}
(dj ≤

ti,2), NS
i = argmin

j∈{1,...,N}
(aj ≥ ti,1), and τi,B = max((NE

i − NS
i + 1)B

R
, 0).

Notice that Q(1, N) above may not always be feasible. In this paper, we only consider
the case that Q(1, N) is indeed feasible. See Assumption 1 and Lemma 1 in Miao et al.
(2018) for the assumption that guarantees feasibility.

Q(1, N) is a hard optimization problem, due to the nondifferentiable terms in the con-
straints and the objective function. It cannot be easily solved by standard optimization
software. In what follows, we will first discuss optimal off-line control, using which we will
then establish the results for on-line control.
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4 Off-line control

In this section, we focus on the off-line control problem, in which all task arrivals are known
to us a priori.We need to find out when the system should wake up and start to serve the first
task in an AP. Similar to the “just-in-time” idea exploited in Gamal et al. (2002) for adaptive
modulation, the system should wake up as late as possible so that it may potentially reduce
the active time. The question is how late the system should wake up. This is answered by
Lemmas 2-4 in Miao et al. (2018).

We now find out when the system should go to sleep. Lemma 5 in Miao et al. (2018)
provides a sufficient but not necessary condition of ending an AP on the optimal sample
path. Let d0 = −∞ and aN+1 = ∞. We introduce the following definition.

Definition 3 Consecutive tasks {k, . . . , n}, 1 ≤ k ≤ n ≤ N, belong to a super active
period (SAP) in problem Q(1, N) if dk−1 + CW /CI < ak, dn + CW /CI < an+1, and
dj + CW /CI ≥ aj+1, ∀j ∈ {k + 1, . . . , n − 1}.

Each SAP contains one or more APs. SAPs can be easily identified by simply examining
all the task deadlines and arrival times and applying Lemma 5 in Miao et al. (2018). It
implies that instead of working on the original problemQ(1, N), we now only need to focus
on each SAP, which is essentially a subproblem Q(k, n).

We now define our decision points in each SAP. A decision point xt , t ∈ {k, . . . , n − 1},
is the departure time of task t satisfies xt < at+1. If xt ≥ at+1,0 then xt is not a decision
point because the system should stay active at xt and process task t + 1. At each decision
point, the control is letting the system either go to sleep or stay awake, and the optimal
control depends on future task arrivals. A first look at the problem seems to suggest that the
problem is intractable; however, a closer look indicates that the off-line optimal ON-OFF
control problem can be solved by DP, which has been widely used to solve a large class of
problems with special structural properties. In the context of DES, however, its usage has
been very limited to date. For example, in Mao et al. (2007) andMiao et al. (2017) where the
problem formulation is similar to the one in this paper, both CTDA and GCTDA algorithms
are not DP-based. We will show next that for the DES studied by this paper, DP and sample
path analysis can be used together to obtain the optimal solution. In particular, it is done by
introducing two types of tasks: starting and following.

Definition 4 In problem Q(k, n), where tasks {k, . . . , n} form an SAP, the first task of any
AP is called a starting task. Tasks that are not starting tasks are known as following tasks.

For any task i ∈ {k, . . . , n}, it must either be a starting task or a following one. We use
QS(i, n) and QF (i, n) to denote the optimization problems of serving tasks {i, . . . , n} when
task i is a starting and following task, respective. Let J S

i and JF
i be the minimum cost of

QS(i, n) and QF (i, n), respectively.

Theorem 1 J S
k is the optimal cost of problem Q(k, n).

This theorem shows that when the algorithm in Table 1 in Miao et al. (2018) stops, J S
k

is the optimal cost of problem Q(k, n). The corresponding optimal control, i.e., the starting
time and ending time of each AP, can be traced back iteratively by identifying the J S

l or JF
l

that each J S
i−1 or JF

i−1 points to. The procedure is provided in Table 4 in Miao et al. (2018).
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Next, we use simulation results to show how the optimal solution performs compared
with a naive approach, in which the controller simply goes to sleep when there is no backlog
and wakes up when a new task arrives. Let optimal to naive ratio be the ratio between
the optimal cost and the cost of the naive controller. Figure 1 shows how the optimal to
naive ratio varies when the task arrival process and the wake-up cost CW change. In the
simulation, we have 100 runs that correspond to 100 maximum interarrival time from 1ms

to 100ms with step size 1ms. For the purpose of statistical regularity, each run has 1000
tasks. The interarrival time between two adjacent tasks is uniformly distributed between 0
and the maximum interarrival time in each run. The values of the other parameters are as
follows: d = 20ms, CB=30mW, CI=100μW, and β = 1ms.

We have a couple of observations. First, the cost saving of the optimal solution is greater
when CW is larger. Second, the maximum cost saving occurs when the interarrival time is
not too small or too large: when it is too small, a single AP will be sufficient to complete
all the tasks, and the optimal and the naive solutions are essentially the same; when it is too
large, many APs are needed, and the advantage of the optimal controller gets smaller. As
we can see from the result, the cost saving of the DP algorithm in the CW = 28mJ case is
as large as 50%, and it will be ever greater when CW is higher.

5 On-line control

In this section, we study on-line control where future task arrival information is unknown to
the controller. Essentially, the controller needs to decide the starting time and ending time
for each AP. When to start an AP has been previously studied and see Lemma 6 in Miao
et al. (2018) for details. We now focus on ending an AP in on-line control.

When all backlogged tasks have been served in an on-line setting, the controller needs
to decide when to end an AP and put the system to sleep. This decision depends on future
task information and the values of idling cost CI and wake-up cost CW . For example, if the
next task t + 1 arrives very soon, the optimal control at decision point xt might be letting

Fig. 1 Optimal to naive ratio under various wake-up cost and interarrival time
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the system stay active; conversely, if the next task t + 1 arrives after a long time, then the
system perhaps should go to sleep at decision point xt .

When some future task information is known, techniques such as Receding Horizon
Control (RHC) can be utilized to make decisions. In this paper, we focus on the scenario
that no future task information is available at all.

In general, the control at each decision point is the following: let the system stay awake
for another θt seconds. If no task arrives within the θt seconds, then put the system to sleep
after θt seconds; o.w., serve the newly arrived tasks and wait for the next decision point.
Note that the subscript t indicates θt could be different at each decision point.

Let J ∗ be the optimal cost of the off-line problem Q(1, N) and J̃ be the cost of the
on-line controller. Our objective is to develop competitive on-line controllers which can
quantify their worst-case performance deviation from the optimal off-line solution.

One challenge of competitive analysis is to find out the worst-case scenario. In our prob-
lem, the unnecessary cost in on-line control occurs when the system is idling: the controller
must decide if and when to sleep. Therefore, the worst case occurs when each AP contains
only one task so that the decision has to be made over and over again for every single task.
This property actually simplifies our analysis, and in particular, we tackle the competitive
ratio problem from two different aspects: a deterministic controller and a randomized one.

5.1 Deterministic controller

We first consider a deterministic controller in which θt is a fixed constant value θ . The on-
line controller is c-competitive if J̃ (I, θ) ≤ cJ ∗,∀I ∈ I , where I is the set of all possible
task arrival instances and I is one task arrival instance. c is called the competitive ratio of
the deterministic on-line controller and is essentially the upper-bound (i.e., worst case) of
the ratio between the on-line cost J̃ and the off-line optimal cost J ∗.

Lemma 1 The best competitive ratio c∗ of a deterministic controller is obtained when θ =
CW /CI , and limN→∞ c∗ = (2 + γ )/(1 + γ ), where N is the number of tasks and γ =
CBβ/CW .

Lemma 1 shows that the competition ratio of a deterministic algorithm depends on the
ratio between CBβ, the cost of serving one task, and CW , the cost of waking up the system.
If this ratio is very small, then the competitive ratio is close to 2; if the ratio is very large,
then the competitive ratio is close to 1.

5.2 Randomized controller

In a different methodology, we assume that θt is determined by a randomized algorithm
that returns a value based on certain probability distribution P . During on-line control, the
controller essentially is playing a game with an adversary (i.e., the task arrival process).
Our job is to find the optimal probability distribution and the corresponding competitive
ratio. We point out that the competitive ratio of a randomized on-line algorithm A is defined
with respect to a specific type of adversary. In this paper, we assume an oblivious adversary
(Ben-David et al. 1994), in which the worst instance for the randomized algorithm A is
chosen without the the knowledge of the realization of the random variable used by A.
We say randomized algorithm A is c-competitive if EP [J̃ (A, I )] ≤ cJ ∗(I ),∀I ∈ I ,
where J̃ (A, I ) is the cost of algorithm A under task arrival instance I in on-line control and
J ∗(I ) is the corresponding off-line optimal cost. Note that the task arrival instance I must



Discrete Event Dynamic Systems (2019) 29:79–90 87

be fixed before the expectation is taken. The competition ratio of randomized algorithm

AP (algorithm A using probability distribution P ) is: c(AP ) = sup
I∈I

EP [J̃ (AP ,I )]
J ∗(I )

. Our goal

is to find the best possible probability distribution that yields the best competitive ratio

c∗ = inf
P

sup
I∈I

EP [J̃ (AP ,I )]
J ∗(I )

. This is essentially a minimax problem, and one way of solving it

is to use Yao’s minimax principle (Yao 1977), which states: a randomized algorithm may be
viewed as a random choice between deterministic algorithms; in particular, the competitive
ratio of a randomized algorithm against any oblivious adversary is the same as that of the
best deterministic algorithm under the worst-case distribution of the adversary’s input. In
our case, the adversary’s input is the task arrival instance after each AP. Let its probability
distribution be G. Using Yao’s principle and von Neumann minimax theorem, we get: c∗ =
sup
G

inf
A∈A

EG[J̃ (A,IG)]
J ∗(IG)

, where A is the set of all randomized algorithms, IG is a specific task

arrival instance under probability distribution G, and the expectation is now performed with
respect to G. We now use the following lemma to find c∗.

Lemma 2 The best competitive ratio c∗ of a randomized controller is obtained when θt is
a random variable X, whose probability density function is

fX(x) =
{ 1

CW
CI

(e−1)
ex/(CW /CI ), if x ≤ CW /CI

0, if x > CW /CI

When this controller is used, limN→∞ c∗ = (γ + 1.58)/(γ + 1), where γ = CBβ/CW .

Lemma 2 shows that the competition ratio of a random controller also depends on the
ratio between CBβ and CW . If this ratio is very small, then the competitive ratio is close to
1.58; if the ratio is very large, then the competitive ratio is close to 1.

6 Conclusions

In this paper, we study the optimal ON-OFF control problem for a class of DESs with real-
time constraints. The DESs have operating costs CB and CI per unit time and wake-up cost
CW . Our goal is to switch the system between the ON and the OFF states so as to minimize
cost and satisfy real-time constraints. In particular, we consider a homogeneous case that
all tasks have the same number of operations and each one’s deadline is d seconds after the
arrival time. For the off-line scenario that all task information is known to the controller a
priori, we show that the optimal solution can be obtained via a two-fold decomposition: (i)
super active periods that contain one or more active periods can be identified easily using
the task arrival times and deadlines and (ii) the optimal solution to each super active period
can be solved using dynamic programming. Simulation results show that compared with a
simple heuristic, the cost saving of the DP algorithm can be 50% or more.

In on-line control, we show that the best time to start an AP can be obtained via an iter-
ative algorithm and is guaranteed to be the same as the off-line problem. To decide the best
time to end an AP in the on-line setting where no future task arrival information is avail-
able, we evaluate both deterministic and random controllers and derive their competitive
ratios; these results quantify the worst-case on-line performance deviation from the optimal
off-line solution.
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