
On controlling prioritized discrete event systems
with real-time constraints

Lei Miao1

Abstract We study a class of prioritized Discrete Event Systems (DESs) that involve the
control of resources allocated to tasks under real-time constraints. Our work is motivated
by applications in communication systems, computing systems, and manufacturing systems
where the objective is to minimize energy consumption while guaranteeing that task dead-
lines are always met. In the off-line setting, we discover several structural properties of
the optimal sample path of such DESs. Using the structural properties, we also propose a
greedy algorithm which is shown numerically near optimal. For on-line control, we design
a Receding Horizon (RH) controller. Using worst-case estimation, the RH control is able to
guarantee feasibility (when the off-line problem is feasible) and achieve good performance.

Keywords Optimization · Energy-efficiency · Real-time systems · Receding horizon
control · Discrete event systems

1 Introduction

A number of Discrete Event Systems (DESs) with real-time constraints have been stud-
ied recently. This is motivated by applications in power-limited systems where a trade-off
between resource efficiency and system performance exists. Examples include Dynamic
Voltage Scaling (Mao et al. 2007) and Dynamic Transmission Scheduling (Uysal-Biyikoglu
et al. 2002; Miao and Cassandras 2017). In those motivating applications, the system cost,
i.e., energy, is highly related to the speed at which the system is operating at. The goal is
to conserve energy by adjusting the control (processing/transmission rate) and also main-
tain satisfactory system performance in terms of latency. The basic modeling block for such

� Lei Miao
lei.miao@mtsu.edu

1 Mechatronics Engineering, 1301 East Main Street, Box 19, Murfreesboro, TN 37132-0001, USA

Discrete Event Dyn Syst (2018) 28:427–447
https://doi.org/10.1007/s10626-018-0269-x

Received: 14 July 2017 / Accepted: 12 April 2018 / Published online: 26 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-018-0269-x&domain=pdf
http://orcid.org/0000-0002-9901-4108
mailto: lei.miao@mtsu.edu


DESs is a single-server queueing system operating on a first-come-first-served (FCFS)
basis, whose dynamics are given by the well-known max-plus equation

xi = max(xi−1, ai) + si (1)

where ai is the arrival time of task i = 1, 2, . . . , xi is the time when task i completes
serve, and si is its (generally random) service time. Under the system dynamics specified in
Eq. (1) and a real-time constraint that must be met for each task, the objective of the control
and optimization problem is to minimize the total energy consumed over some given N

tasks. Note that although our model is similar to that of a single-server queueing system,
there are differences between the DESs we study in this paper and queueing systems: (i)
In our analysis, we do not rely on stochastic models, which are often used by traditional
queueing theoretic techniques and (ii) Our main goal is to perform optimal control whereas
in queueing theory, the main goal is often to determine the system’s performance under
certain operating conditions.

The optimization problem in the single-node case has been studied in Mao et al.
(2007), and it turns out that although the constraints contain nondifferentiable max-plus
equations, the problem can be solved efficiently using the Critical Task Decomposi-
tion Algorithm (CTDA) (Mao et al. 2007), as long as the cost function is strictly
convex, differentiable, and monotonically increasing (or decreasing, depending on the
control variable). CTDA is very suitable for power-limited devices because it only
requires solving a set of simple linear equations. Note that CTDA only works when
the optimization problem is feasible. When it is infeasible, an admission control prob-
lem is studied in Mao and Cassandras (2010), in which certain tasks are dropped
in order to maximize the number of remaining tasks that have guaranteed real-time
constraints.

While CTDA is developed for a single-node case, other work has been done in a network
setting where multiple nodes are involved. In Gamal et al. (2002) and Miao and Cassan-
dras (2017), a Downlink Transmission Scheduling problem is formulated and studied. DTS
involves a single transmitter and multiple receivers, and the cost function at the transmitter
is task-dependent. Using the Generalized Critical Task Decomposition Algorithm (GCTDA)
algorithm developed in Miao and Cassandras (2017), the original complex nonlinear opti-
mization problem in DTS boils down to solving a sequence of nonlinear algebraic equations.
In Uysal-Biyikoglu and Gamal (2004), an uplink transmission scheduling problem is formu-
lated and the “Flow Right” algorithm is proposed to solve the problem iteratively. The uplink
scheduling problem is revisited in Miao and Cassandras (2006) where a number of struc-
tural properties of the optimal sample path is revealed. Mao and Cassandras further extend
the work in Mao et al. (2007) to multiple stages, and the “Virtual Deadline Algorithm”
(Mao and Cassandras 2009) is developed to provide a recursive solution that converges
to the optimal control. The work in Mao and Cassandras (2009) is further extended to a
multi-layer network where each layer also contains multiple nodes with multiple inputs and
outputs (Mao 2014). The idea of “virtual deadline” is used again in Mao (2014) to develop
a multilayer virtual deadline algorithm (MLVDA) that guarantees end-to-end real-time
constraints.

In this paper, we consider the optimal scheduling problem for prioritized parallel queues
in the general setting of Eq. (1). Scheduling for parallel queues has been studied in Tassiu-
las and Ephremides (1993), Sethuraman and Squillante (1999), Squillante et al. (2001), Xie
and Lu (2015), and Xie et al. (2016). The major difference between our model and the exist-
ing ones is that in our formulation, each task has a real-time constraint associated with it.

428 Discrete Event Dyn Syst (2018) 28:427–447



Real-time scheduling has been widely studied in various contexts for both preemptive and
nonpreemptive policies, and for various task arrival scenarios (Li et al. 2007; Aydin et al.
2004; Hong et al. 1999; Kim et al. 2002; Yao et al. 1995; Anderson et al. 2016). In this
work, we consider a model that involves prioritized parallel queues with queue-dependent
real-time constraints, and each queue is FCFS. Our model differs from the existing ones in
the literature and has applications in computing, communications, and manufacturing. The
contributions of this paper include: (i) We discover several structural properties of the opti-
mal sample paths, (ii) We show that these structural properties can reduce the search space
of the brute-force search; (iii) We propose a greedy algorithm which is shown near optimal
numerically; and (iv) We design a receding horizon controller with good performance for
on-line control. Some results of this paper are previously published in a conference paper
(Miao 2010). What is new in this journal version is that we improve the proofs and also
discuss on-line controller design.

The organization of this paper is as follows: in Section 2, we show the system model
and formulate the optimization problem; Section 3 contains the structural properties of the
optimal sample path; a greedy algorithm for off-line control is presented in Section 4; in
Section 5, we study on-line controller design; finally, we conclude and discuss future work
in Section 6.

2 System model and problem formulation

We consider DESs that contain a single server serving two prioritized queueing systems. See
Fig. 1 for an illustration. Let aij , vij , and xij be the arrival time, number of bits, and depar-
ture time of task j in queue i respectively (i = 1 or 2). For applications which must maintain
operational simplicity, we assume a FCFS and nonpreemptive queueing model for each
queue. We also assume that the server can only serve one task at a time. Each task is served
at a constant and yet controllable rate. Although our model is applicable to various scenarios
in computing, manufacturing, and material handling, our assumptions are especially valid in
computer communication applications due to the following three reasons: (i) In communi-
cation networks, it is often required to keep the sequence of the incoming packets and send
them out in the same order, (ii) It is very costly or simply impossible to preempt and suspend
a packet on the fly, and (iii) Communication tasks are usually transmitted one at a time and
the transmission rate of each task often needs to be predetermined before the transmission
starts.

We consider the queues are prioritized and the priority of each queue is reflected on task
deadlines. Specifically, we assume each task j in queue i has a hard deadline aij + di, i.e.,
task j must depart the system di seconds after its arrival. The queue with higher priority has

Fig. 1 System Model

Discrete Event Dyn Syst (2018) 28:427–447 429



a smaller di , which means tasks in a higher priority queue have tighter deadlines. We assume
that d1 ≤ d2, i.e., queue 1 has higher priority than queue 2. The prioritized queueing systems
studied by this paper are widely used in communication networks. For instance, in Avaya’s
Ethernet Routing Swich 8600, prioritized queues are used on each Egress (outgoing) port to
differentiate critical network control traffic and high priority data traffic from low-priority
data traffic.

Assume that we have totally N tasks in both queues. Let us order all the tasks by their
arrival time. In order to ease our analysis, we introduce an imaginary data source (shown in
dashed lines in Fig. 1). We can then imagine that the ordered sequence of N tasks from the
imaginary data source are assigned to either queue 1 or queue 2, depending on their task
priorities.

Let ak , k = 1, ..., N, be the arrival time of the kth task from the imaginary data source.
Each ak also corresponds to a task arrival time, aij , as illustrated in Fig. 2. Again, the
deadline of each task aij is aij + di, i = 1 or 2. We use pk ∈ {0, 1} to indicate the priority
of task k (0 means lower priority and 1 means higher priority). If all the tasks are served
based on the order they arrive from the imaginary data source, then we can formulate the
following optimization problem:

P1 : J ∗
1,N (a,D,p, v,θ) = min

τ1,...,τN

N∑

k=1

vkθ(τk)

s.t. τk ≥ τmin, k = 1, . . . , N

xk = max(xk−1, ak) + τkvk ≤ Dk,

Dk = ak + 1{pk = 1}d1 + 1{pk = 0}d2, k = 1, . . . , N, x0 = 0

where a is the arrival times,D is the deadlines, p is the task priorities, v is the tasks’ sizes (for
communication tasks, the size is the number of bits), τk , defined as the amount of service
time per bit, is the control over task k, 1{·} is the indicator function, xk is the departure time
of task k, and θ(τk) is the cost per bit associated with control τk . Note that τmin is the lower
bound of the control, and the first constraint essentially is about the maximum rate at which
the tasks can be served. When the above problem is infeasible, we let J ∗

1,N (a,D,p, v,θ) be
∞.

Assumption 1 θ(τ ) is nonnegative, strictly convex, monotonically decreasing, differen-
tiable and θ̇ (τ ) −→ −∞ as τ −→ 0.

Assumption 1 is justified in Gamal et al. (2002) for wireless applications, and channel
coding schemes supporting this assumption can be found in Uysal-Biyikoglu et al. (2002).

Fig. 2 Illustration for the arrival process

430 Discrete Event Dyn Syst (2018) 28:427–447



This assumption is also justified in Mao et al. (2007) for DVS applications. Note that in
P1, we set the control of each task, τk, to be static during the entire service process of task
k. This is based on the fact that under Assumption 1, there is no benefit of dynamically
adjusting the control τk when serving task k (Miao and Cassandras 2005). In addition, there
exists applications (e.g., wireless communications) in which the service rate of each task
must be constant.

Problem P1 above is essentially a special case of the problems studied in Mao et al.
(2007) and Miao and Cassandras (2017). Therefore, CTDA developed in Mao et al. (2007)
can be readily applied here to solve it. Because CTDA is extremely efficient, P1 can be
solved quickly without incurring high computational overhead. Note that Assumption 1 is
the key assumption of CTDA, and the optimal solution to P1 is independent of the exact
forms of the cost function θ(τ ) (Mao et al. 2007).

At each time instance, the server essentially needs to decide which queue to serve and
what rate it should use. Our goal is to minimize the total cost of serving N tasks in the
setting shown in Fig. 1 and also guarantee the real-time constraint for each task. The correct
order that the server uses to serve these tasks is crucial. This is because once the order is
known, the original problem can then be reduced to something similiar to P1 and solved
by CTDA. Let P be the set of all permutations of the original N tasks and qz be the s-th
permutation, z = 1, 2, . . . , 2N−1. For the k-th task in the z-th permutation, let gz

k be the
task that it corresponds to in the original task arrival sequence. We formulate the following
optimization problem:

P2 : min
qz∈P,z=1,2,...,2N−1

J ∗
1,N (az, D

z
, pz, vz, θ)

where az, D
z
, pz, and vz are the arrival times, deadlines, priorities, and the sizes,

respectively, of the reordered tasks; in particular,

az
k = max

(
az

k−1, agz
k

)
, az

0 = 0

pz
k = pgz

k

D
z

k = agz
k
+ 1{pgz

k
= 1}d1 + 1{pgz

k
= 0}d2

vz
k = vgz

k
, k = 1, . . . , N

Note that in the reordered sequence, a task’s deadline, priority, and the number of bits are
unchanged. The only thing that may change is the arrival time: we manipulate the arrival
time so that in the reordered sequence, the task arrival time is non-decreasing with the
task’s sequence number. This is to maintain the FCFS nature of the DESs so that CTDA
works on the reordered sequence; it does not have any effect on the optimal solution.
In P2 above, superscript z is used to denote the z-th permutation. For notation ease, we
drop the superscript in subsequent analysis when it is clear what task sequence is being
discussed.

Although the tasks in each queue are FCFS, the optimal order they leave the server may
not be the same as the one they come from the imaginary data source. In other words, the
optimal sequence may not be the original task sequence. Take the tasks in Fig. 2 as an
example. Because a21 and a11 are very close, and task 1 has a much longer deadline than
that of task 2, it may be more beneficial not to serve task 1 immediately when it arrives;
instead, the optimal control may need to keep the server remain idling until task 2 arrives.

Discrete Event Dyn Syst (2018) 28:427–447 431



Then, the optimal order of serving these tasks would be 2, 1, 3, · · ·, instead of the original
order 1,2,3,· · · .

Our goal is now clear: find the optimal order of tasks such that the total cost is minimized.
Specifically, we are interested in minimizing the total cost of serving N tasks that arrive at
both queues while satisfying the real-time constraint associated with each individual task.
We will first focus on the off-line optimal control problem where all the task information
is known to us a priori. We use Q1 and Q2 to denote the sets of tasks that arrive at queue 1
and queue 2, respectively. Let N1 be the cardinality of Q1 and N2 be the cardinality of Q2.

3 Structural properties of some optimal sample paths

Our first observation is that the optimal solution to P2 is not unique. Consider a simple
example that the system only has one low priority task and one high-priority task, and the
two tasks have the same size. In addition, a1 = a21 = 0, d2 = 15, a2 = a11 = 5, and
d1 = 5. Suppose that the problem is feasible, the following two orders are both optimal as
the same constant control τ is used on both tasks for a total duration of 10s in each case:
(i) Start serving the low-priority task at t = 0 and complete serving the high-priority task at
time t = 10 and (ii) Start serving the high-priority task at t = 5 and complete serving the
low priority task at time t = 15.

Looking at P2 above, the number of possible permutations of the given N tasks increases
exponentially with N − 1. This means that the brute-force search will not scale well, espe-
cially when N is large. This raises two questions: i) is it possible that we may improve the
brute-force approach by confining the search space and ii) are there any alternatives to the
brute-force approach?

Assuming that P2 is feasible, we will answering the above two questions by discovering
the structural properties of the optimal sample path of P2.

We first introduce the concept of busy period.

Definition 1 A busy period (BP) is a segment of an optimal sample path that contains a
contiguous set of tasks {s, ..., n} and satisfies the following three conditions: x∗

s−1 < as ,
x∗

n < an+1, and x∗
k ≥ ak+1, for every k = s, . . . , n − 1.

As shown in Mao et al. (2007) and Miao and Cassandras (2017), the concept of BP
defined above can often decompose the original complex problem into a number of simpler
problems, one for each BP. Due to the complex nature of P2, however, busy periods of
P2 are not unique and cannot be easily identified as in Mao et al. (2007) and Miao and
Cassandras (2017).

Definition 2 A super busy period (SBP) is a segment of an optimal sample path that
contains one or more BPs.

Similar to BPs, SBPs are not unique and may vary from one optimal sample path to
another. However, the following lemma shows that SBPs can be helpful.

Lemma 1 For task s = 2, ..., N in the original task arrival sequence, let

k1 = argmax
k∈ {1,...,s−1}∩Q1

{ak}, k2 = argmax
k∈ {1,...,s−1}∩Q2

{ak}.

432 Discrete Event Dyn Syst (2018) 28:427–447



If
Dk1 = ak1 + d1 < as and Dk2 = ak2 + d2 < as, (2)

then task s and the tasks that arrive before it must belong to different SBPs on any optimal
sample path.

Proof Dk1 = ak1 + d1 < as and Dk2 = ak2 + d2 < as mean that the deadlines of tasks k1
and k2 are before the arrival of task s. Therefore, tasks k1 and k2 must be completed before
as . Because tasks k1 and k2 are the latest tasks that arrive earlier than task s in queue 1 and
queue 2 respectively, all tasks arrive before task s must also be served before as .

Lemma 1 shows that although we cannot tell exactly how the SBPs look like, we are
able to figure out what tasks are included in some common SBPs among all optimal sample
paths (by identifying all the tasks that satisfy (2)). In turn, solving P2 boils down to finding
out the optimal task sequence within each of these SBPs, which is a simpler problem since
the number of tasks within each SBP is less than N . After the optimal solutions to all such
SBPs are available, we combine them to obtain the final optimal solution to the original
problem P2.

In what follows, we will introduce a few other important structural properties of the
optimal sample paths.

Lemma 2 There exists an optimal sample path on which high priority task a is served
earlier than all tasks that arrive later in the original task arrival sequence.

Proof Suppose that on optimal sample path p, there exists a set of tasks that arrive later than
a, but are served earlier than a. Let task b be the one served right before a in this set. We use
a1,i and ak,j , k ∈ {1, 2}, to denote the arrival times of tasks a and b, respectively. Note that
k = 1 and k = 2 correspond to the cases that task b’s priority is high and low, respectively.
By assumption, we have a1,i < ak,j . We will next show that there exists another optimal
sample path p′, on which task a is served before task b.

Let us assume that task a is served between ta1 and ta2 and task b is served between tb1
and tb2 on optimal sample path p. We have

a1,i ≤ ta1 < ta2 ≤ a1,i + d1 (3)

and
ak,j ≤ tb1 < tb2 ≤ ak,j + dk (4)

Because task b is served first on this optimal sample path, we have

tb1 < tb2 ≤ ta1 < ta2 (5)

Combing (3), (4), and (5) above, we obtain

a1,i < ak,j ≤ tb1 < tb2 ≤ ta1 < ta2 ≤ a1,i + d1 < ak,j + dk (6)

Note that the last inequality in Eq. 6 holds because d1 ≤ dk . Let n-tuple T be an ordered list
of n, n ≥ 0, tasks served between tb2 and ta1 on the optimal sample path p. On optimal sam-
ple path p, tasks are executed in the order of (b,T, a) from time tb1 to ta2. Consider another
sample path p′, on which everything, including the serving rate (control) of each task, is
identical to p, except that the order of task execution between tb1 and ta2 is: (T1,a, b,T2),
where tuple T1 includes the set of tasks in T whose arrival times are no later than ak,j (the
arrival time of task b), tuple T2 includes the set of remaining tasks in T, and tasks in T1 and

Discrete Event Dyn Syst (2018) 28:427–447 433



T2 have the same order as the one in T. Next, we show that sample path p′ is feasible, i.e.,
both causality and real-time constraints are satisfied for tasks (T1,a, b,T2) on sample path
p′:

(i) Causality. Using (6), task a arrives before tb1, and by assumption, all tasks in tuple T1
arrive no later than ak,j and tb1. Therefore, causality is met for these tasks. The start
execution time of task b and all tasks in T2 on sample path p′ is later than that on
sample path p; therefore, causality is also satisfied for those tasks.

(ii) Real-time constraints. The start execution time of task a and tasks in T1 are earlier on
sample path p′ than that on sample path p. Since the controls are the same, their real-
time constraints are met. The deadlines of task b and tasks in T2 are later than a1,i+d1,
and all of them are finished before ta2, which is no later than a1,i + d1 according to
Eq. 6. Therefore, their real-time constraints are also met.

We now conclude that sample path p′ is feasible. Since its controls are identical to those
of optimal sample path p, p′ must be an optimal sample path. In case that there are other
tasks on sample path p′ that arrive later than a, but are served earlier than a, we repeat the
above procedure over and over again, until we come up with an optimal sample path on
which all tasks that arrive after task a are also served after it.

Lemma 2 indicates that a high-priority task should be served before all tasks that arrive
after it, regardless of their priorities and sizes. As we will see later, this property is very
important and can be used to reduce the possible reorderings for the brute-force search.

Lemma 3 Suppose that the k-th task in the original task arrival sequence is a low-priority
one. If there are no task arrivals in the high priority queue within time interval [ak, ak +d2],
then there exists an optimal sample path on which (i) all low-priority tasks that arrive before
task k in the original task arrival sequence are served before task k and (ii) all low-priority
tasks that arrive after task k in the original task arrival sequence are served after task k.

Proof Suppose that the arrival time of the k-th task in the original task arrival sequence is
a2,j . We first prove Part (i) of the lemma. Suppose that on optimal sample path p, there
exists a set of low-priority tasks that arrive before k, but are served after k. Let task a be the
one served right after task k in this set.

Let a2,i be the arrival time of task a. By assumption, we have a2,i < a2,j = ak . We will
show that there exists another optimal sample path p′, on which task a is served before task
k.

Let us assume that task a is served between ta1 and ta2 and task k is served between tk1
and tk2 on optimal sample path p. We have

a2,i ≤ ta1 < ta2 ≤ a2,i + d2 (7)

and

a2,j ≤ tk1 < tk2 ≤ a2,j + d2 (8)

Because task k is served first on this optimal sample path, we have

tk1 < tk2 ≤ ta1 < ta2 (9)

Combing (7), (8), and (9) above, we obtain

a2,i < a2,j = ak ≤ tk1 < tk2 ≤ ta1 < ta2 ≤ a2,i + d2 < a2,j + d2 (10)

434 Discrete Event Dyn Syst (2018) 28:427–447



Let n-tuple T be an ordered list of n, n ≥ 0, tasks served between tk2 and ta1 on the optimal
sample path p. On optimal sample path p, tasks are executed in the order of (k,T, a) from
time tk1 to ta2. Consider another sample path p′, on which everything, including the serving
rate (control) of each task, is identical to p, except that the order of task execution between
tk1 and ta2 is: (T1,a, k,T2), where tuple T1 includes the set of tasks in T whose arrival
times are no later than tk1, tuple T2 includes the set of remaining tasks in T, and tasks in T1
and T2 have the same order as the one in T. Next, we show that same path p′ is feasible,
i.e., both causality and real-time constraints are satisfied for tasks (T1,a, k,T2) on sample
path p′:

(i) Causality. Using (10), task a arrives before tk1, and by assumption, all tasks in tuple T1
arrive no later than tk1. Therefore, causality is met for these tasks. The start execution
time of task k and all tasks in T2 on sample path p′ is later than that on sample path
p; therefore, causality is also satisfied for those tasks.

(ii) Real-time constraints. The start execution time of task a and tasks in T1 are earlier
on sample path p′ than that on sample path p. Since the controls are the same, their
real-time constraints are met. Because all tasks in T2 arrive between [tk1, ta2], which
is within [a2,j , a2,j + d2], i.e., [ak, ak + d2], according to Eq. (10), it follows by
assumption that all these tasks are low-priority ones. It then yields that the deadlines
of task k and tasks in T2 are later than a2,i + d2. Because all of them are actually
finished before ta2, which is no later than a2,i+d2 according to Eq. (10), their real-time
constraints are also met.

We now conclude that sample path p′ is feasible. Since its controls are identical to those
of optimal sample path p, p′ must be an optimal sample path. In case that there are other
tasks on sample path p′ that arrive earlier than k, but are served after k, we repeat the above
procedure over and over again, until we come up with an optimal sample path on which all
tasks that arrive before task k are also served before it.

We now prove Part (ii) of the lemma. First, we assume that there exists an optimal sample
path q on which all low-priority tasks that arrive before task k are served before k. Such an
optimal sample path can be constructed by following the procedures above for proving Part
(i) of the lemma. Suppose that on optimal sample path q, there exists a set of low-priority
tasks that arrive after k, but are served before k. Let task b be the one served right before k

in this set. Let a2,m be the arrival time of task b. By assumption, we have ak = a2,j < a2,m.
We will show that there exists another optimal sample path q ′, on which task b is served
after task k.

Let us assume that task b is served between tb1 and tb2 and task k is served between tk1
and tk2 on optimal sample path q. We have

a2,m ≤ tb1 < tb2 ≤ a2,m + d2 (11)

and

a2,j ≤ tk1 < tk2 ≤ a2,j + d2 (12)

Because task b is served first on this optimal sample path, we have

tb1 < tb2 ≤ tk1 < tk2 (13)

Combing (11), (12), and (13) above, we obtain

ak = a2,j < a2,m ≤ tb1 < tb2 ≤ tk1 < tk2 ≤ a2,j + d2 < a2,m + d2 (14)

Discrete Event Dyn Syst (2018) 28:427–447 435



Let n-tuple T be an ordered list of n, n ≥ 0, tasks served between tb2 and tk1 on optimal
sample path q. On optimal sample path q, tasks are executed in the order of (b,T, k) from
time tb1 to tk2. Consider another sample path q ′, on which everything, including the serving
rate (control) of each task, is identical to q, except that the order of task execution between
tb1 and tk2 is: (T1, k, b,T2), where tuple T1 includes the set of tasks in T whose arrival
times are no later than tb1, tuple T2 includes the set of remaining tasks in T, and tasks in T1
and T2 have the same order as the one in T. Next, we show that same path q ′ is feasible,
i.e., both causality and real-time constraints are satisfied for tasks (T1, k, b,T2) on sample
path q ′:

(i) Causality. Using (14), task k arrives before tb1, and by assumption, all tasks in tuple T1
arrive no later than tb1. Therefore, causality is met for these tasks. The start execution
time of task b and all tasks in T2 on sample path q ′ is later than that on sample path q;
therefore, causality is also satisfied for those tasks.

(ii) Real-time constraints. The start execution time of task k and tasks in T1 are earlier
on sample path q ′ than that on sample path q. Since the controls are the same, their
real-time constraints are met. Because all tasks in T2 arrive between [tb1, tk2], which
is within [a2,j , a2,j + d2], i.e., [ak, ak + d2], according to Eq. (14), it follows by
assumption that all these tasks are low-priority ones. It then yields that the deadlines
of task b and tasks in T2 are later than a2,j + d2. Because all of them are actually
finished before tk2, which is no later than a2,j+d2 according to Eq. (14), their real-time
constraints are also met.

We now conclude that sample path q ′ is feasible. Since its controls are identical to those
of optimal sample path q, q ′ must be an optimal sample path. We also need to show that on
optimal sample path q ′, all low-priority tasks that arrive before task b are still served before
task k. Looking at two sample paths q and q ′, the only tasks whose execution orders are
changed are k, b, and the ones in T. According to Eq. (14), the tasks that arrive before ak

must also arrive before tb1. This implies that all the tasks that arrive before task k (if exist)
can only be in T1, which is served before task k on sample path q ′. Therefore, sample path
q ′ still ensures that all tasks arrive before task k are served before task k. In case that there
are other tasks on sample path q ′ that arrive later than k, but are served before k, we repeat
the above procedure for Part (ii) over and over again, until we come up with an optimal
sample path on which all tasks that arrive after task k are also served after it.

Lemma 3 shows that if there is no high-priority arrivals within a low-priority task k’s
arrival time and deadline, then task k does not have to switch order with any other low-
priority ones on the optimal sample path.

Lemma 4 Suppose that the k-th task in the original task arrival sequence is a low-priority
one. If there are no task arrivals in the high-priority queue within time interval [ak, ak +d2],
then there exists an optimal sample path on which this task is the k-th task.

Proof Invoking Lemma 3, there exists an optimal sameple path p on which all low-priority
tasks that arrive before the k-th task are served before it and all low-priority ones that arrive
after it are served after it. Suppose that this optimal sample path p contains a set of high-
priority tasks that arrive before task k, but are served after task k. We invoke Lemma 2 to

436 Discrete Event Dyn Syst (2018) 28:427–447



find another optimal sample path on which all these high-priority tasks are served before
task k. The process is very similar to the one stated in the proof for Lemma 2, where task
b in essentially task k in this lemma. Therefore, we omit the details here. Nonetheless, we
need to point out that the process does not affect the order of the low-priority tasks before
and after task k; in particular, the ones arrive before k are still served before it, and the ones
arrive after k are still served after it. This can be seen by looking at the place where T1 is
introduced in the proof of Lemma 2: it contains all the tasks arriving before task b and is
also served before b. Finally, because the arrival times of all high-priority tasks that arrive
after the task k are beyond its the deadline, task k must be served before these tasks to
guarantee feasibility. Combining all the results above, there exists an optimal sample path
on which all tasks arrive before task k are served before it and all tasks arrive after task k

are served after it, i.e., the k-th task in the original task arrival sequence is also the k-th task
on this optimal sample path.

Lemma 4 shows that under some conditions, a task’s order in an optimal sample path is
exactly the same as the one in the original task arrival sequence. This gives hope that we
may decompose each SBP into smaller chunks separated by these special tasks. The next
lemma shows another result that can be used to further reduce the search space of possible
task reorderings.

Lemma 5 Suppose that the k-th task in the original task arrival sequence is a low-priority
one. If the l-th task in the original task sequence is a high-priority task, and it arrives within
time interval [ak +d2 −d1, ak +d2], then there exists an optimal sample path on which task
k is served before l.

Proof Suppose that the arrival time of k-th task in the original task arrival sequence is a2,i .
Let a1,j be the arrival time of task b, which is a high-priority one arriving within time
interval [ak + d2 − d1, ak + d2] By assumption, we have ak = a2,i ≤ a1,j = al . Suppose
that task b is served before task k in an optimal sample path p. We will show that there
exists another optimal sample path p′, on which task k is served before task b. Because
a1,j ≥ ak + d2 − d1, we have

a1,j + d1 ≥ ak + d2 = a2,i + d2 (15)

Let us assume that task k is served between tk1 and tk2 and task l is served between tl1
and tl2 on optimal sample path p. We have

a2,i ≤ tk1 < tk2 ≤ a2,i + d2 (16)

and

a1,j ≤ tl1 < tl2 ≤ a1,j + d1 (17)

Because task l is served first on this optimal sample path, we have

tl1 < tl2 ≤ tk1 < tk2 (18)

Combing (15), (16), (17), and (18) above, we obtain

ak = a2,i ≤ a1,j = al ≤ tl1 < tl2 ≤ tk1 < tk2 ≤ a2,i + d2 ≤ a1,j + d1 (19)

Discrete Event Dyn Syst (2018) 28:427–447 437



Let n-tuple T be an ordered list of n, n ≥ 0, tasks served between tl2 and tk1 on the optimal
sample path p. On optimal sample path p, tasks are executed in the order of (l,T, k) from
time tl1 to tk2. Consider another sample path p′, on which everything, including the serving
rate (control) of each task, is identical to p, except that the order of task execution between
tl2 and tk1 is: (T1, k, l,T2), where tuple T1 includes the set of tasks in T whose arrival
times are no later than tl1, tuple T2 includes the set of remaining tasks in T, and tasks in T1
and T2 have the same order as the one in T. Next, we show that sample path p′ is feasible,
i.e., both causality and real-time constraints are satisfied for tasks (T1, k, l,T2) on sample
path p′:

(i) Causality. Using (19), task k arrives before tl1, and by assumption, all tasks in tuple T1
arrive no later than tl1. Therefore, causality is met for these tasks. The start execution
time of task l and all tasks in T2 on sample path p′ is later than that on sample path p;
therefore, causality is also satisfied for those tasks.

(ii) Real-time constraints. The start execution time of task k and tasks in T1 are earlier
on sample path p′ than that on sample path p. Since the controls are the same, their
real-time constraints are met. Because all tasks in T2 arrive between [tl1, tk2], which is
within [a1,j , a1,j + d1] according to Eq. (19), it follows that all these tasks’ deadlines
are not earlier than a1,j + d1, regardless of their priorities. Because all of them are
actually finished before tk2, which is not later than a1,j + d1 according to Eq. (19),
their real-time constraints are also met.

We now conclude that sample path p′ is feasible. Since its controls are identical to those
of optimal sample path p, p′ must be an optimal sample path.

Lemmas 4 and 5 show that there exists an optimal sample path on which a low-priority
task k does not have to be served after high-priority arrivals that occur after ak + d2 −
d1. It also implies that high-priority tasks, whose deadlines are after a low-priority task’s
deadline, do not have to be executed before the low-priority task. This, however, does not
mean Earliest Deadline First (EDF) provides the optimal sequence to P2: one can come
up with cases that a low-priority task needs to be served before a high-priority task whose
deadline is earlier.

With the help of the above lemmas, when we search for an optimal reordering of the
original task arrival sequence, we only need to consider the order of a low priority task k

and the high-priority arrivals between ak and ak + d2 − d1 : there exists an optimal sample
path on which task k only possibly needs to switch order with these high-priority ones.

Proposition 1 When both queues have equal priority, i.e., d1 = d2, the original task arrival
sequence is an optimal solution to P2, i.e., FCFS guarantees optimality.

Proof Setting d1 = d2 in Lemma 5, we obtain that for any task l in queue 1 that
arrives after task k in queue 2, there exists an optimal sample path in which k is served
before l. Since the two queues have equal priority, we can achieve the same result for
the other case: for any task l in queue 2 that arrives after task k in queue 1, there
exists an optimal sample path in which k is served before l. Therefore, there exists
an optimal sample path in which the optimal task order is simply the order the tasks
arrive.

438 Discrete Event Dyn Syst (2018) 28:427–447



Table 1 Results of bursty arrivals

Optimal Original arrival sequence Greedy algorithm % greedy is optimal

1 1.2753 1.0146 47%

The above proposition shows that when the tasks in each queue have equal priority, FCFS
guarantees optimality. In this case, the size of the search space for an optimal task reordering
is reduced to 1.

4 A greedy algorithm for off-line control

The structural properties of the optimal sample path help us reduce the total number of
possible reorderings that contain the optimal task sequence. In this section, we propose
a greedy algorithm to overcome the above shortcoming of the brute-force approach. This
greedy algorithm takes advantage of the structural properties of the optimal sample paths,
and our goal is to find a balance between the system cost and the speed of the algorithm.
Since it is a greedy algorithm, we try to minimize the cost at each immediate step. In partic-
ular, the algorithm determines the order of each low-priority task at a time, by only allowing
it to switch order with high-priority tasks, which arrive between its arrival time and d2 − d1
seconds later, and finding the order that incurs minimal cost; all the following low-priority
tasks’ orders are not finalized yet and will be decided at later steps. When the greedy algo-
rithm is used, the k-th low-priority task’s order is determined at the end of step k, and the
incurred cost is no more than that of the previous step. Step by step, we determine the order
of all tasks eventually after N2 steps, where N2 is the number of low-priority tasks.

Lemma 6 The greedy algorithm needs to compare no more than N2(N1 + 1) different task
sequences.

Proof Consider the case that all the high-priority tasks arrive after all the low-priority ones,
and the optimal sequence is the original task arrival sequence. In this worst case, we need
to compare N1 + 1 different task sequences at each step of the greedy algorithm. There are
totally N2 steps. Therefore, the maximum number of task sequences the greedy algorithm
need to compare is N2(N1 + 1).

Simulation has been done to compare the costs incurred by the optimal task sequence
(found by the brute-force approach), the original task arrival sequence, and the task
sequence returned by the greedy algorithm. In particular, we first normalize the costs and
then average them over the number of simulation runs. The results are shown in the first
three columns of Tables 1 and 2. The last column of each table is the percentage of
simulation runs in which the greedy algorithm returns the optimal solution.

Table 2 Results of uniform arrivals

Optimal Original arrival sequence Greedy algorithm % greedy is optimal

1 1.0658 1.0065 50%

Discrete Event Dyn Syst (2018) 28:427–447 439



In Table 1, the results are obtained from 100 simulation runs of bursty arrivals. In each
simulation run, there are five bursts, with 2-8 tasks per burst. Each burst has equal probabil-
ity to be either high priority burst or low priority burst. The time interval between adjacent
bursts is uniformly distributed between 10s and 20s, and the inter-arrival time between two
tasks within a burst is uniformly distributed between 0s and 0.2s. We set d1=5s for high-
priority tasks and d2=15s for low-priority tasks. Table 2’s setting is different from that
of Table 1: in each simulation run, 25 task arrivals are uniformly distributed between 0s
and 200s, and each task has equal chance to be either high-priority task or low priority
task.

As we can see that in both tables, the solution returned by the greedy algorithm is close
to the optimal solution, and the greedy algorithm returns the optimal solution in nearly 50%
of the total simulation runs.

5 Receding horizon on-line control

In this section, we turn our attention to the on-line control for the prioritized DESs described
in earlier sections. Different from off-line control, where all task information is known to
the controller a priori, on-line controllers do not have full future task information. This
creates two problems in on-line control: (i) Feasibility is hard to be guaranteed and (ii)
Optimization is hard to be carried out. We propose a Receding Horizon Controller (RHC)
for the on-line control of the class of prioritized DESs discussed in this paper. Such a RHC
has been used for single-queue DESs with real-time constraints (Miao 2007), and it has
been shown that RHC is very effective in on-line control scenarios where the stochastic
information of the task arrival process is unknown. The list of properties of RHC and its
performance evaluation results can be found in Miao (2007). Some new results of using
RHC for real-time single-queue DESs can be found in Miao (2016).

Let us first briefly explain the idea of RHC. In a nutshell, RHC works recursively and is
applied at each decision point. A decision point in RHC could be either the departure time
or the arrival time of a task. In this paper, we let the decision point be the departure time of
each task on the RH sample path. There is one exception though: if a task ends a BP on the
RH sample path, then the next decision point is the arrival time of the next task (since the
RHC does not have to act until then). In particular, we assume that the RH controller knows
task arrival information within a RH window of H seconds from each decision point and
nothing beyond the window. This RH window is often referred to as the planning horizon.
The RH controller solves a smaller scale optimization problem over the planning horizon
at each decision point and applies the control to the action horizon. The action horizon
usually is smaller than the planning horizon, and in this paper, we let it contain the next task
only.

Whereas the task sequence on the RH sample path is the same as the original task arrival
sequence in Miao (2007), things are quite different in this paper. Specifically, the i-th task
on the RH sample path may not be the i-th task in Problem P1. This is due to the fact
that some low-priority tasks may be executed after the high-priority ones which arrive after
them. For the i-th task on the RH sample path, let us use g̃i to denote its original index in P1.

We now introduce some notations and formally describe the proposed RHC. Let x̃i

denote the departure time of the i-th task evaluated by the RH controller on the RH sample
path when the planning horizon contains this task. Once again, this task may not be the i-th
one in P1. If x̃t is the actual departure time of task t on the RH sample path, then it is also
a decision point. When task t + 1 starts a new BP (i.e., ag̃t+1 > x̃t ), then the RH controller

440 Discrete Event Dyn Syst (2018) 28:427–447



does not need to act until ag̃t+1 rather than x̃t ; for notational simplicity, we will still use x̃t

to represent the decision point for task t + 1 . Let ht denote the last task included in the RH
window that starts at the current decision point x̃t , i.e.,

ht = argmax r≥t {ag̃r : ag̃r ≤ x̃t + H }

Let τ̃i be the control associated with task i which is determined by the RH controller for
all i = t + 1, . . . , ht . The values of x̃i and τ̃i are initially undefined, and are updated at
each decision point x̃t for all i = t + 1, . . . , ht . Control is applied to task t + 1 only. That
control and the corresponding departure time are the ones shown in the final RH sample
path. In other words, for any given task i, x̃i and τ̃i may vary at different decision points,
since optimization is performed based on different available information. It is only when
task i is the next one at some decision point that its control and departure time become final.

If ht = N , then the optimization procedure will be finished. In what follows, we
consider the more interesting case when ht < N . In this case, our action horizon at
decision point x̃t only contains task t + 1, i.e., the RH controller only applies control to
task t + 1.

We now define the optimization problem that the RHC solves at each decision point x̃t .
Let Pt be the set of all permutations of the tasks available in the planning horizon and qz

be the s-th permutation, z = 1, 2, . . . , 2ht−t−1. For the i-th task in the z-th permutation, let
g̃z

i be the task that it corresponds to in the original task arrival sequence. We formulate the
following optimization problem:

Q̃(t + 1, ht ) : min
qz∈Pt ,z=1,2,...,2ht −t−1

J ∗
t+1,ht

(̃az, D̃z, p̃z,̃vz, θ)

where ãz,D̃z,̃pz, and ṽz are the arrival times, deadlines, priorities, and the sizes, respectively,
of the reordered tasks within the planning horizon:

ãz
i = max(̃az

i−1, ag̃z
i
), ãz

t = x̃t (20)

p̃z
i = pg̃z

i
(21)

D̃z
i = min(̃xt + H, ag̃z

i
+ 1{p̃z

i = 1}d1 + 1{p̃z
i = 0}d2) (22)

ṽz
i = vg̃z

i
, i = t + 1, . . . , ht (23)

Although Q̃(t + 1, ht ) is similar to P2, there are two major differences. First, Q̃(t +
1, ht ) is a smaller scale optimization problem on the planning horizon only, whereas P2
is the off-line problem that involves all the tasks {1, · · · , N}. Second, the task deadlines
in Q̃(t + 1, ht ) are capped by xt + H , the boundary of the RH window. This is to ensure
feasibility (when the off-line problem P1 is feasible) in the worst case: task ht + 1 arrives
at xt + H and needs to be served using the maximum speed; as a result, all tasks prior to
task ht + 1 must be completed by xt + H . See Miao (2007) for details about worst-case
estimation.

We point out that the major difference between the RHC in this paper and the one in
Miao (2007) is that we allow the change of task execution sequence in this paper. Thus, the
results obtained in Miao (2007) cannot be applied to the settings here directly. Note that
Q̃(t + 1, ht ) may be infeasible due to worst-case estimation. In this case, the RHC uses
the FCFS policy and applies the maximum speed control to the next task. We point out that

Discrete Event Dyn Syst (2018) 28:427–447 441



when this happens, it does not mean that RHC will definitely return infeasible solution:
at future decision points, the optimization problem may become feasible again as the RH
window rolling forward. We actually will show next that RHC guarantees feasibility, one of
the properties of the proposed RHC for prioritized DESs.

Lemma 7 If the off-line problem P1 is feasible, then the control returned by the RHC is
also feasible.

Proof We use induction to prove it.

Step 1: We consider the first decision point x̃0. There are two cases:
Case 1.1: Problem Q̃(1, h0) is feasible. In this case, we have x̃1 ≤ D̃1 ≤ D̄1.
Case 1.2: Problem Q̃(1, h0) is infeasible. In this case, the RHC will apply the fastest

control to task t + 1. Because the off-line problem P1 is feasible, we also
have x̃1 ≤ D̃1 ≤ D̄1.

Step 2: Suppose that x̃t+1 ≤ D̃t+1 ≤ D̄t+1, we show x̃t+2 ≤ D̃t+2 ≤ D̄t+2. Note
that x̃t+1 and x̃t+2 are finalized at decision points x̃t and x̃t+1, respectively.
We consider two cases at decision point x̃t+1.

Case 2.1: Problem Q̃(t + 2, ht+1) is feasible. In this case, we have x̃t+2 ≤ D̃t+2 ≤
D̄t+2.

Case 2.2: Problem Q̃(t + 2, ht+1) is infeasible. We consider two subcases.
Case 2.2.1: All Q̃ problems are infeasible at previous decision points. This means that

the RHC has to apply the maximum speed control for all tasks in {1, · · · , t+
2}. Since the off-line problem P1 is feasible, x̃t+2 ≤ D̄t+2.

Case 2.2.2: Before x̃t+1, there exists at least one decision point at which the Q̃ prob-
lem is feasible. Let us assume that the last such decision point is x̃i ,
i ∈ {0, · · · , t}. We once again consider two subcases.

Case 2.2.2.1: t + 2 ≤ hi . In this case, task t + 2 is within the planning horizon at decision
point x̃i . Since Q̃(i + 1, hi) is feasible and the maximum speed control has
been applied to tasks {i + 2, · · · , t + 2}, we have x̃t+2 ≤ D̄t+2.

Case 2.2.2.1: t +2 > hi . In this case, task t +2 is beyond the planning horizon at decision
point x̃i . Since Q̃(i + 1, hi) is feasible and the maximum speed control is
applied to tasks {i + 2, · · · , hi}, all tasks in {i + 1, · · · , hi} are finished
before D̃hi

. Because the arrival time of task hi +1 is greater than D̃hi
, RHC

applies maximum speed control to tasks {hi +1, · · · , t +2}, and the off-line
problem P1 is feasible, it follows that x̃t+2 ≤ D̄t+2.

We point out that finding the optimal reordering of tasks t + 1, . . . , ht at each decision
point xt is non-trivial. The reason is that the tasks in the RH planning horizon may have
more than two different deadlines: (i) The backlogged tasks may have deadlines shorter than
the original ones and (ii) The deadlines of the tasks arrive in the planning horizon may be
shortened due to the restriction of RH window size H . Essentially, the RH control problem
at each decision point x̃t can be considered as a smaller scale off-line problem with multiple
priority levels. In on-line settings where the speed of the controller is crucial, our strategies
in response to the added complexity are two-fold: (i)We establish a result next to show that
some tasks’ execution order in the planning horizon can be easily determined and (ii) We
modify the greedy algorithm introduced in the previous section to make it work for the RH
control.

442 Discrete Event Dyn Syst (2018) 28:427–447



Lemma 8 Suppose that at decision point x̃t , there exists a set of tasks {t + 1, . . . , ht } in
the planning horizon, ordered by their arrival times. For i ∈ {t + 1, . . . , ht } and j ∈
{t + 1, . . . , ht }, if i < j and D̃j = x̃t + H , then task i is executed before task j in the
optimal reordering of Q̃(t + 1, ht ).

Proof We consider three cases:

Case 1: D̃i − ãi < D̃j − ãj . In this case, task i’s priority is higher than that of task j .
Since task i also arrives before task j , we invoke Lemma 2 and conclude that
task i is executed before task j in the planning horizon.

Case 2: D̃i − ãi = D̃j − ãj . This corresponds to the case that the priorities of tasks i

and j are the same. We consider two subcases.
Case 2.1: Theyare bothhigh-priority tasks. Since task i arrives earlier than task j , we invoke

Lemma 2 and obtain that task i is executed before task j in the planning horizon.
Case 2.2: They are both low-priority tasks. Since task j is the last one in the planning

horizon and does not have any high priority ones following it, we invoke Lemma
3 to get that task i is served before j .

Case 3: D̃i − ãi > D̃j − ãj . This corresponds to the scenario that task i’s priority is
lower than task j ’s. We evaluate two subcases.

Case 3.1: ãj ≥ D̃i . Task i must be executed before task j .
Case 3.2: ãj < D̃i . Because D̃i ≤ D̃j = x̃t + H , we have

D̃i − D̃j + ãj ≤ ãj ≤ D̃i , which is equivalent to

ãi + D̃i − ãi − D̃j + ãj ≤ ãj ≤ ãi + D̃i − ãi .

Let d̃i = D̃i − ãi and d̃j = D̃j − ãj , we can rewrite the above inequality into:

ãi + d̃i − d̃j ≤ ãj ≤ ãi + d̃i

Invoking Lemma 5, it yields that task i is executed before task j in the planning horizon.

Lemma 8 has the following corollaries.

Corollary 1 Suppose that at decision point x̃t , there exists a set of tasks {t + 1, . . . , ht } in
the planning horizon. If a set of consecutive tasks {i, . . . , ht }, t + 1 ≤ i ≤ ht , exists such
that ∀ task j ∈ {i, . . . , ht }, D̃j = x̃t + H, then task j is also the j -th task in the optimal
reordering at this decision point.

Proof Invoking Lemma 8, all other tasks that arrive earlier than task j should be executed
before task j . Therefore, tasks {i, . . . ht } conserve their orders in the optimal reordering at
this decision point.

Corollary 2 If H ≤ d1, then the original task arrival sequence is optimal in RHC.

Proof Suppose that task i arrives in the planning horizon, i.e., ãi > x̃t . Using the definition
of D̃i , we get

D̃i = x̃t + H

Invoking Lemma 8, none of the tasks that arrive before task i are executed after task i.
Therefore, the original task arrival sequence is optimal at each decision point.

The corollary above shows that when the RH windows size H is small (not greater than
d1), the future information does not really help much, and the RHC should serve the tasks

Discrete Event Dyn Syst (2018) 28:427–447 443



1 2 3 4 5 6 7 8 9 10

RH window size H (s)

-2

-1

0

1

2

3

4

5

Lo
ga

rit
hm

 o
f r

el
at

iv
e 

co
st

 d
iff

er
en

ce
s

Performance of the RH controller

Accurate task info
Inaccurate task info (maximum 0.5s offset)
Inaccurate task info (maximum 2s offset)

Fig. 3 The performance of the RH controller with uniform arrivals

based on their original order. When this happens, the optimization problem at each decision
point becomes trivial: a constant speed that finishes all tasks within the planning horizon by
xt + H is optimal.

The modified greedy algorithm for RHC is presented in Algorithm 1. At each RH deci-
sion point, the controller solves a series of smaller scale optimization problems to select the
next task to execute while the relative order of the rest of the tasks in the planning horizon
is kept unchanged. In the worst-case, all N tasks are in the planning horizon, and the com-
plexity of the RHC is O(N2). In what follows, we present some simulation results of the
RH on-line controller. To quantify the deviation of the RH cost from the optimal off-line

1 2 3 4 5 6 7 8 9 10

RH window size H (s)

-1

0

1

2

3

4

5

6

Lo
ga

rit
hm

 o
f r

el
at

iv
e 

co
st

 d
iff

er
en

ce
s

Performance of the RH controller

Accurate task info
Inaccurate task info (maximum 0.1s offset)
Inaccurate task info (maximum 0.2s offset)

Fig. 4 The performance of the RH controller with bursty arrivals

444 Discrete Event Dyn Syst (2018) 28:427–447



cost, we define the relative cost difference as: (RH cost - optimal off-line cost) / optimal off-
line cost. In our simulation, we consider both uniform (Fig. 3) and bursty (Fig. 4) arrivals
where the settings are the same as those in Section 4. In both figures, we plot the logarithm
of the relative cost difference against various RH windows sizes. There are three curves in
each figure: one is obtained with accurate task information in the planning horizon, and the
other two are the results of adding a random offset (up to a certain amount) to each task
arrival in the planning horizon. RHC is known to have the ability to correct itself when the
information used for optimization is deviated from the actual one; this is verified in our
simulation results: all three curves in each figure match with each other closely, especially
when the RH window size is large. It can be seen that in both scenarios, the RH cost is pretty
close to the optimal cost when the RH window size H is close to 10s. For uniform arrivals
in Fig. 3, the RH controller always performs better when H is larger. For bursty arrivals in
Fig. 4, the RH controller performs much better when H is greater than 4s. However, when
H is smaller than 4s, a larger RH window size does not really help. This is caused by the
fact that when H is between 2s and 4s, it is more likely to include a burst of tasks arriving
near the boundary of the RH window; as a result, the worst-case estimation makes the RH
controller use a high processing rate in order to finish all the tasks by xt + H .

6 Conclusions and future work

In this paper, we study a class of prioritized discrete event systems with real-time con-
straints. For off-line control, we discover structural properties of the optimal sample path
of such DESs. Using the structural properties, we are able to reduce the search space of
the optimal task execution sequence; a greedy algorithm is developed and shown to be near
optimal numerically. For on-line control, we come up with a receding horizon controller
and show that it is always feasible when the original task arrival sequence is feasible in the
off-line setting. We also identify some properties of the RHC, which can be used to reduce
the overhead of on-line computation. Finally, we modify the greedy algorithm for RHC and

Discrete Event Dyn Syst (2018) 28:427–447 445



show via simulation that it is robust when the task information available in the planning
horizon is deviated from the actual arrival time; it also has good performance when the RH
window size is large.

Our future work includes studying the scenario that more than two prioritized queues
exist. We believe that some structural properties of the optimal sample paths (e.g., Lemma
2) in Section 3 can be readily extended to the multi-queue case. Utilizing the structural
properties, we think it is possible to come up with greedy algorithms that work well for the
multi-queue case.

References

Anderson JH, Erickson JP, Devi UC, Casses BN (2016) Optimal semi-partitioned scheduling in soft real-time
systems. J Signal Process Syst 84(1):3–23

Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2004) Power-aware scheduling for periodic real-time tasks.
IEEE Trans Comput 53:584–600

Gamal AE, Nair C, Prabhakar B, Uysal-Biyikoglu E, Zahedi S (2002) Energy-efficient scheduling of packet
transmissions over wireless networks. In: Proceedings of IEEE INFOCOM, vol 3, 23–27. New York
City, pp 1773–1782

Hong I, Kirovski D, Qu G, Potkonjak M, Srivastava M (1999) Power optimization of variable-voltage core-
based systems. IEEE Trans Comput-Aided Des Integr Circ Syst 18(12):1702–1714

Kim W, Shin D, Yun H, Kim J, Min SL (2002) Performance comparison of dynamic voltage scaling algo-
rithms for hard real-time systems. In: Real-Time and embedded technology and applications symposium,
pp 219–228

Li W, Kavi K, Akl R (2007) A non-preemptive scheduling algorithm for soft real-time systems. Comput
Electr Eng 33:12–29

Mao J (2014) Optimal control of multilayer discrete event systems with real-time constraint guarantees. IEEE
Trans Syst Man Cybern Syst 44(10):1425–1434

Mao J, Cassandras CG (2009) Optimal control of multi-stage discrete event systems with real-time
constraints. IEEE Trans Autom Control 54:108–123

Mao J, Cassandras CG (2010) Optimal admission control of discrete event systems with real-time constraints.
Discret Event Dyn Syst 20(1):37–62

Mao J, Cassandras CG, Zhao Q (2007) Optimal dynamic voltage scaling in energy-limited nonpreemptive
systems with real-time constraints. IEEE Trans Mob Comput 6(6):678–688

Miao L (2007) Receding horizon control for a class of discrete-event systems with real-time constraints.
IEEE Trans Autom Control 52:825–839

Miao L (2010) Structural properties of optimal scheduling in prioritized discrete event systems with real-time
constraints. In: 2010 49th IEEE Conference on decision and control (CDC). IEEE, pp 6747–6752

Miao L (2016) Receding horizon control with two planning horizons for a class of discrete event systems
with real-time constraints. In: 2016 IEEE 55th Conference on decision and control (CDC). IEEE, pp
1939–1944

Miao L, Cassandras CG (2005) Optimality of static control policies in some discrete event systems. IEEE
Trans Autom Control 50:1427–1431

Miao L, Cassandras CG (2006) Structural properties of optimal uplink transmission scheduling in energy-
efficient wireless networks with real-time constraints. In: Proceedings of the 45th IEEE conference on
decision and control and european control conference. San Diego, pp 2997–3002

Miao L, Cassandras CG (2017) Optimal energy-efficient downlink transmission scheduling for real-time
wireless networks. IEEE Trans Control Net Syst 4(4):692–706

Sethuraman J, Squillante MS (1999) Optimal stochastic scheduling in multiclass parallel queues. ACM
SIGMETRICS Perform Eval Rev 27:93–102

Squillante MS, Xia CH, Yao DD, Zhang L (2001) Threshold-based priority policies for parallel-server sys-
tems with affinity scheduling. In: Proceedings of the American control conference, vol 4, Arlington, pp
2992–2999

Tassiulas L, Ephremides A (1993) Dynamic server allocation to parallel queues with randomly varying
connectivity. IEEE Trans Inf Theory 39:466–478

Uysal-Biyikoglu E, Gamal AE (2004) On adaptive transmission for energy efficiency in wireless data
networks. IEEE Trans Inf Theory 50:3081–3094

446 Discrete Event Dyn Syst (2018) 28:427–447



Uysal-Biyikoglu E, Prabhakar B, Gamal AE (2002) Energy-efficient packet transmission over a wireless
link. IEEE/ACM Trans Network 10:487–499

Xie Q, Lu Y (2015) Priority algorithm for near-data scheduling: throughput and heavy-traffic optimality. In:
2015 IEEE Conference on computer communications (INFOCOM). IEEE, pp 963–972

Xie Q, Yekkehkhany A, Lu Y (2016) Scheduling with multi-level data locality: throughput and heavy-traffic
optimality. In: IEEE INFOCOM 2016-The 35th Annual IEEE international conference on computer
communications. IEEE, pp 1–9

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced cpu energy. In: Proceedings of the 36th
annual symposium on foundations of computer Science, pp 374–382

Lei Miao received the B.S. and M.S. degrees from Northeastern University, Shenyang, Liaoning, China, and
the Ph.D. degree from Boston University, Boston, MA, in 1998, 2001, and 2006, respectively. From 2006 to
2009, he was with Nortel Networks in Billerica, MA. From 2009 to 2011, he was visiting professor at the
University of Cincinnati. From 2011 to 2014, he was with NuVo Technologies/Legrand North America in
Hebron, KY. From 2014 to 2015, he was a faculty member at State University of New York Farmingdale.
Currently, he is Assistant Professor of Mechatronics Engineering at Middle Tennessee State University. His
research interests include control and optimization for Discrete Event Systems and hybrid systems, with
applications to communication networks, wireless networks, and cyber-physical systems.

Discrete Event Dyn Syst (2018) 28:427–447 447


	On controlling prioritized discrete event systems with real-time constraints 
	Abstract
	Introduction
	System model and problem formulation
	Structural properties of some optimal sample paths
	A greedy algorithm for off-line control
	Receding horizon on-line control
	Conclusions and future work
	References


