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Abstract In many emerging security applications, a system designer frequently needs to
ensure that a certain property of a given system (that may reveal important details about
the system’s operation) be kept secret (opaque) to outside observers (eavesdroppers). Moti-
vated by such applications, several researchers have formalized, analyzed, and described
methods to verify notions of opacity in discrete event systems of interest. This paper intro-
duces and analyzes a notion of opacity in systems that can be modeled as probabilistic finite
automata or hidden Markov models. We consider a setting where a user needs to choose a
specific hidden Markov model (HMM) out of m possible (different) HMMs, but would like
to “hide” the true system from eavesdroppers, by not allowing them to have an arbitrary
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level of confidence as to which system has been chosen. We describe necessary and suffi-
cient conditions (that can be checked with polynomial complexity), under which the intruder
cannot distinguish the true HMM, namely, the intruder cannot achieve a level of certainty
about its decision, which is above a certain threshold that we can a priori compute.

Keywords Privacy · Probabilistic finite automata · Opacity

1 Introduction and motivation

Motivated by the increased reliance of many applications on shared cyber-infrastructures
(ranging from defense and banking to health care and power distribution systems), various
notions of security and privacy have received considerable attention from researchers. A
number of such notions focus on characterizing the information flow from the system to
an eavesdropper (Focardi and Gorrieri 1994). Opacity falls in this category and aims at
determining whether a given system’s secret behavior (i.e., a subset of the behavior of the
system that is considered critical and is usually represented by a predicate) is kept opaque to
outsiders (Bryans et al. 2005; Saboori and Hadjicostis 2007). More specifically, this requires
that the eavesdropper (modeled as a passive observer1 of the system’s behavior) never be
able to establish the truth of the predicate.

Early works that studied notions of opacity in discrete event systems include (Bryans
et al. 2005a, b; Badouel et al. 2006; Dubreil et al. 2008). The authors of Brayans et al.
(2005a, b) focus on finite state Petri nets and define opacity with respect to state-based
predicates. Multiple intruders that are modeled as observers with different observation
capabilities are considered in Badouel et al. (2006), whereas the authors of Dubreil
et al. (2008) consider a single intruder (that might observe different events than the ones
observed/controlled by a supervisor that aims to control the system so as to avoid exposure
of a property of interest) and establish that a minimally restrictive supervisor always exists,
but might not be regular.

In Saboori and Hadjicostis (2007, 2013), the authors consider opacity with respect
to state-based predicates in a discrete event system (DES) that can be modeled as a
non-deterministic finite automaton with partial observation on its transitions. State-based
notions of opacity exemplify the use of observers, and make more explicit the relation-
ship between state-based notions of opacity and their verification with observers. Examples
to motivate the study of current- and initial-state opacity in the context of sensor net-
work coverage and encryption using pseudo-random number generators can be found in
Saboori and Hadjicostis (2013, 2011). The authors in Wu and Lafortune (2013) showed that
there exists a polynomial-time transformation between several notions of opacity, including
language-based and state-based notions.

Motivated by the absence of likelihood information in most earlier work on opacity,
the information-theoretic works in Millen (1987) and Wittbold and Johnson (1990), and
more recently the works in Berard et al. (2010) and Brard et al. (2015), extend notions
of opacity to probabilistic settings. In particular, state-based notions of opacity have been
developed for probabilistic finite automata (PFA’s) in Saboori and Hadjicostis (2014) by

1A passive observer is one that does not have any decision-making authority in the system (i.e., it cannot
influence the operation of the system).
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devising appropriate measures to quantify opacity. The following three notions were defined
and analyzed in Saboori and Hadjicostis (2014):

(i) Step-based almost current-state opacity considers the a priori probability of violating
current-state opacity, following any sequence of events of length k, and requires that
this probability lies below a threshold for all possible sequences of length k (for all k).

(ii) Almost current-state opacity considers the a priori probability of violating current-
state opacity following any sequence of events, and requires that this probability lies
below a threshold.

(iii) Probabilistic current-state opacity requires that, for each possible sequence of obser-
vations, the following property holds: the increase in the conditional probability that
the system current state lies in the set of secret states (conditioned on the given
sequence of observations) compared to the prior probability (that the initial state lied
in the set of secret states before any observation) is smaller than a given threshold.

The above ideas were extended in Keroglou and Hadjicostis (2013) to deal with correspond-
ing notions of initial-state opacity in PFA’s.

In this paper we study probabilistic system opacity. The setting we consider is as follows:
a system is chosen at initialization among m known models, each of which is captured by a
hidden Markov model (HMM). Our goal is to determine whether the true (chosen) system
remains hidden from an intruder (eavesdropper). We assume that the eavesdropper observes
(via a natural projection map) a subset of the events occurring in the system. We allow par-
tial flow of information to the eavesdropper, as long as a strictly positive (nonzero) threshold
of ambiguity holds, even in the worst case. In our setup, the worst case involves an eaves-
dropper who knows exactly the m HMMs and also knows the observation sequence that has
been generated. The question is to determine whether the true (chosen) HMM remains hid-
den from the eavesdropper, for any observation sequence. Here, “remains hidden” should be
interpreted in a probabilistic sense: the eavesdropper cannot have confidence above a cer-
tain threshold (bounded away from unity), even if she/he is willing to wait for an arbitrarily
long sequence of observations.

The main contribution of this work is to provide a polynomial complexity verification
algorithm for the setting of probabilistic system opacity (assuming that the HMMs can start
from any initial state with nonzero probability). The probabilistic system opacity setting was
introduced in our previous work (Keroglou and Hadjicostis 2016) and part of the material
used to establish results in this work, was introduced in Keroglou and Hadjicostis (2014).
In this paper we extend our previous works in two ways:

1) We validate the correctness of a polynomial complexity algorithm for probabilistic sys-
tem opacity. Specifically, we provide complete proofs for Theorem 1 and Theorem 3,
which were not provided in our previous papers (Keroglou and Hadjicostis 2016) and
(Keroglou and Hadjicostis 2014).

2) We discuss (in Section 5) how probabilistic system opacity relates to (is actually a
special case of) probabilistic current-state opacity in Saboori and Hadjicostis (2014).
However, unlike probabilistic current-state opacity which is in general undecidable, we
show that probabilistic system opacity can be verified with polynomial complexity.

The paper is organized as follows. Section 2 reviews the HMM model under considera-
tion, as well as needed concepts and notation. Specifically, we are interested in classification
among HMMs, i.e., the ability of the observer to distinguish between two (or more) HMMs.
Sections 3 and 4 introduce the relevant notion of probabilistic system opacity and develop
the verification algorithm. In some sense, classification can be seen as the opposite of
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opacity. Indeed, we prove later in the paper, that, in our specific setup, classification and
opacity are exactly opposite. Note here that classification characterizes the models, but,
on the other hand, opacity is dependent on the specific sequence of observations; in other
words, classification depends on unconditional probabilities whereas probabilistic sys-
tem opacity depends on conditional probabilities (thus, a priori, their relationship is not
clear). Section 5 makes connections with probabilistic current state opacity and Section 6
summarizes the contribution of this work and briefly discusses possible future extensions.

2 Notation and background

Definition 1 (HMMModel). An HMM is described by a five-tuple S = (Q, E, Δ, Λ, π0),
where Q = {q1, q2, ..., q|Q|} is the finite set of states; E = {e1, e2, ..., e|E|} is the finite
set of outputs; Δ : Q × Q → [0 1] captures the state transition probabilities; Λ : Q ×
E × Q → [0 1] captures the output probabilities associated with transitions; and π0 is the
initial state probability distribution vector. Specifically, for q, q ′ ∈ Q and σ ∈ E, the output
probabilities associated with transitions are given by

Λ(q, σ, q ′) ≡ Pr(q[t + 1] = q ′, E[t + 1] = σ | q[t] = q) ,

and the state transition probabilities are given by

Δ(q, q ′) ≡ Pr(q[t + 1] = q ′ | q[t] = q) ,

where q[t] (E[t]) is the state (output) of the HMM at time step (or epoch) t . The output func-
tion Λ(q, σ, q ′) describes the conditional probability of observing the output σ associated
with the transition to state q ′ from state q. The state transition function needs to satisfy

Δ(q, q ′) =
∑

σ∈E

Λ(q, σ, q ′), ∀q, q ′ ∈ Q (1)

and also
|Q|∑

i=1

Δ(q, qi) = 1, ∀q ∈ Q.

Definition 2 (Markov chain). For any HMM model S = (Q,E,Δ,Λ, π0), there exists an
associated Markov chain MC = (Q,Δ, π0), where Q = {q1, q2, ..., q|Q|} is the finite set
of states; Δ : Q × Q → [0 1] captures the state transition probabilities; and π0 is the initial
state probability distribution vector. We also denote the Markov chain by MC = (Q,A, π0)

where A is a |Q| × |Q| matrix such that A(k, j) = Δ(qj , qk).

Given an HMMmodel S = (Q, E, Δ, Λ, π0), we also define for notational convenience
the |Q| × |Q| matrix Aσ , associated with output σ ∈ E, as follows: the (k, j)th entry of
Aσ captures the probability of a transition from state qj to state qk that produces output
σ , i.e., Aσ (k, j) = Λ(qj , σ, qk). Note that A = ∑

σ∈E Aσ is a column stochastic matrix
whose (k, j)th entry denotes the probability of taking a transition from state qj to state qk ,
without regard to the output produced, i.e., A is the transition matrix of the Markov chain
MC = (Q,A, π0) that corresponds to the given HMM S = (Q, E, Δ, Λ, π0). We denote
an observation sequence of length n as ω = ω[1]ω[2]...ω[n] ∈ E∗, where ω[t] ∈ E. We
say that the observation sequence ω belongs to the language of HMM S (L(S)) iff there
exists q[0], q[1], q[2], ..., q[n] s.t. π0(q[0]) > 0 and Δ(q[t], ω[t + 1], q[t + 1]) > 0, ∀t =
0, 1, 2, ..., n − 1.
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Remark 1 If π [t] is the |Q|-dimensional vector whose j th entry denotes the probability of
being in state qj after t steps (or epochs), then we have π [0] = π0 and π [t + 1] = Aπ [t] =
At+1π0.

Next we recall the properties of irreducibility and aperiodicity for Markov chains.

Definition 3 (Irreducible or Strongly Connected Markov Chain) (Seneta 2006; Cassandras
and Lafortune 2007). A Markov chain MC = (Q,A, π0) is irreducible if for all q, q ′ ∈
Q, there exists some n ∈ N such that An(q ′, q) > 0, where An is the nth power of A.
Equivalently, ∀q ′ ∈ Q, q ′ is reachable from any other state q ∈ Q. In such case, we observe
that the graph2 corresponding to MC is strongly connected.

Definition 4 (Periodic Markov chain) (Seneta 2006; Cassandras and Lafortune 2007). A
state qi ∈ Q of a Markov chain MC = (Q,A, π0) is said to be periodic if the greatest
common divisor d of the set {n > 0 : Pr(q[n] = qi | q[0] = qi) > 0} is d ≥ 2. If d = 1,
state qi is said to be aperiodic. The Markov chain is said to be aperiodic if all states qi ∈ Q

are aperiodic.

Remark 2 (Cassandras and Lafortune 2007) If a Markov chain MC = (Q,A, π0) is irre-
ducible, then all its states have the same period. It follows that if d = 1 for any state of an
irreducible Markov chain, then all states are aperiodic. On the other hand, if any state has
period d ≥ 2, then all states have the same period and the chain is said to be periodic with
period d ≥ 2.

Lemma 1 (Cassandras and Lafortune 2007) (Stationary distribution of a Markov chain). If
the Markov chain is irreducible and aperiodic, then lim

t→∞ π [t] exists and is called the sta-

tionary distribution of the Markov chain denoted by πs = [πs(q1), πs(q2), ..., πs(q|Q|)]T ,
where T denotes matrix/vector transposition.

Definition 5 (Stationary Emission Probabilities of HMM). Given an HMM S =
(Q, E, Δ, Λ, π0), the stationary emission probability πe(ei), ∀ei ∈ E, can be expressed as

πe(ei) = 1T (Aei
πs),

where 1T is the |Q|-dimensional row vector with all entries equal to unity. We denote the
vector of stationary emission probabilities as πe = [πe(e1)...πe(e|E|)]T .

Note that the stationary state probability vector πs for an HMM S is the same as the
stationary state probability vector of its associated Markov chain MC = (Q,A, π0).

2.1 Optimal decision rule (MAP rule)

Suppose that we are given two HMMs, captured by S(1) = (Q(1), E(1), Δ(1), Λ(1), π
(1)
0 )

and S(2) = (Q(2), E(2), Δ(2), Λ(2), π
(2)
0 ), with prior probabilities for each model given

by P1 and P2 = 1 − P1, respectively. Given E(j) =
{
e
(j)

1 , e
(j)

2 , ..., e
(j)

|E(j)|
}
, j = {1, 2},

2The graph corresponding to the Markov chain (Q,A, π0) is the graph G = (Q,E) with vertices Q and
edges E ⊆ Q × Q such that (qk, qj ) ∈ E iff A(k, j) > 0.
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for the two HMMs, we define for notational convenience E = E(1) ∪ E(2) with E =
{e1, e2, ..., e|E|}. A(j)

ei
is the transition matrix for S(j), j = {1, 2}, under the output symbol

ei ∈ E. The matrix A
(j)
ei

, associated with output ei ∈ E(j), is defined as follows: the (k, l)th

entry of A
(j)
ei

captures the probability of a transition from state ql to state qk that produces

output ei , i.e., A
(j)
ei

(k, l) = Λ(j)(ql, ei , qk). We set A
(j)
ei

to zero if ei ∈ E \ E(j). If we
observe a sequence of n outputs ω = ω[1]ω[2]...ω[n], with ω[t] ∈ E, that is generated
by one of the two underlying HMMs, the classifier that minimizes the probability of error
needs to implement the maximum a posteriori probability (MAP) rule. Specifically, the
MAP classifier compares (as done in a classical hypothesis testing problem (Neyman and
Pearson 1992))

Pr(S(1) | ω) >
< Pr(S(2) | ω) ⇒ Pr(ω | S(1))

Pr(ω | S(2))

>
<

P2

P1
,

and decides in favor of S(1) (S(2)) if the left (right) quantity is larger. When we decide
in favor of one or the other model, we incur a probability of error proportional to the
probability of the model that was not selected; with some algebra, it can be shown that
Pr(error, ω) = min{P1 · Pr(ω | S(1)), P2 · Pr(ω | S(2))}.

2.2 Probability of misclassification between HMMs

To calculate the a priori probability of error before any sequence of observations of length
n is observed, we need to consider all possible observation sequences of length n:

Pr(error at n) =
∑

ω∈En

Pr(error, ω), (2)

where En is the set of all sequences of length n with outputs from E. We arbitrarily index
each of the dn (d = |E|) sequences of observations via ω(i), i ∈ {1, 2, ..., dn}, and use
P

(j)
i to denote P

(j)
i = Pr(ω(i)|S(j)), j ∈ {1, 2}. Note that some of these sequences may

have zero probability under one of the two models (or even both models). The probability
of misclassification between the two systems, after n steps, can then be expressed as

Pr(error at n) =
dn∑

i=1

Pr(error, ω(i))

=
dn∑

i=1

min
{
P1 · P

(1)
i , P2 · P

(2)
i

}
. (3)

We can calculate P
(j)
i = Pr(ω(i)|S(j)) with an iterative algorithm, a detailed description of

which can be found in Athanasopoulou and Hadjicostis (2008) and Fu (1982). Specifically,
given sequence ω = ω[1]ω[2]...ω[n] we calculate

ρ
(j)
n = A

(j)
ω[n]A

(j)

ω[n−1]...A
(j)

ω[1]π
(j)

0 ,

which is essentially a vector whose kth entry captures the probability of reaching state qk ∈
Q(j) while generating the sequence of outputs ω (i.e., ρ(j)

n (k) = Pr(q[n] = qk, ω|S(j))). If

we sum up the entries of ρ
(j)
n we obtain P

(j)
ω = Pr(ω | S(j)) = ∑|Q(j)|

k=1 ρ
(j)
n (k).

Utilizing the above algorithm, we can certainly compute the probability of error at n

by explicitly calculating Pj · P
(j)
i for each sequence ω(i). However, the calculation of the

a priori probability of error is computationally difficult for large values of n due to the
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Fig. 1 S(1) (top) and S(2)

(bottom) used in Example 1

exponential number of the possible sequences of observations ω; thus, in this paper, we
are interested in obtaining easily calculable bounds for the a priori probability of error or
misclassification. It is well-known that the MAP classifier described here minimizes the
probability of error (misclassification); thus, any other rule, will be suboptimal in terms of
minimizing the probability of error and can be used to obtain a bound on the probability of
error. The following example is borrowed from Keroglou and Hadjicostis (2014).

Example 1 Suppose we are given the HMMs, S(1) = (Q(1), E(1), Δ(1), Λ(1), π
(1)
0 ) and

S(2) = (Q(2), E(2), Δ(2), Λ(2), π
(2)
0 ) shown in Fig. 1, with E(1) = E(2) = E = {α, β},

π
(1)
0 = π

(2)
0 = [

1 0
]T

, and P1 = P2 = 0.5. The corresponding A
(1)
α , A

(1)
β , A

(2)
α , A

(2)
β are

as follows:

A(1)
α =

[
0 0
0.5 0.5

]
, A(1)

β =
[
0.5 0.25
0 0.25

]
,

A(2)
α =

[
0 0
0.6 0.06

]
, A(2)

β =
[
0.4 0.04
0 0.9

]
.

If the sequence ω(�) = βαβα is observed, we have P
(1)
� =

|Q(1)|∑

k=1

ρ
(1)
4 (k) = 0.0625,

where ρ
(1)
4 = A

(1)
α A

(1)
β A

(1)
α A

(1)
β π

(1)
0 , and P

(2)
� =

|Q(2)|∑

k=1

ρ
(2)
4 (k) = 0.0187, where ρ

(2)
4 =

A
(2)
α A

(2)
β A

(2)
α A

(2)
β π

(2)
0 . Thus, the probability of error between the two models when this

specific sequence is observed is Pr(error, ω(�)) = 0.0094 (i.e., S(1) will be selected and
Pr(error, ω(�)) = P2 · P

(2)
� ).

3 Probabilistic system opacity

Probabilistic system opacity considers the following setting: we are given m HMMs,
denoted by S(i) for i ∈ {1, 2, ..., m}. The prior probability of S(i) is Pi , Pi > 0, with the
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Fig. 2 An HMM is chosen out
of m different HMMs, S(1), S(2),
. . . , S(m); an Eavesdropper
knows the exact structure of
these HMMs and also observes
the observation sequence that is
generated; probabilistic system
opacity holds if the Eavesdropper
is kept confused about which is
the true HMM that generates the
observation

prior probabilities satisfying
m∑

i=1

Pi = 1. A user is supposed to choose one of these mod-

els, say S(i), and would like to keep an observer (eavesdropper) confused about the chosen
HMM, for any behavior that might occur in the chosen HMM, regardless of the sequence of
observations generated by it and regardless of how long the observer is willing to wait (refer
to Fig. 2). This means that for any (arbitrarily long) observation sequence that can be gen-
erated by the chosen HMM, the observer must not be able to determine the chosen HMM,
at least not with absolute certainty or with certainty that tends asymptotically to unity.

Definition 6 (Probabilistic System Opacity). Consider a set of m HMMs, S(i) =(
Q(i), E(i), Δ(i),Λ(i), π

(i)
0

)
, for i ∈ {1, ..., m}, with corresponding Markov chains

MC(i) =
(
Q(i), A(i), π

(i)
0

)
that are irreducible and aperiodic and with initial probability

distribution π
(i)
0 > 0. Probabilistic system opacity holds if there exists an α0 > 0, such that

for any chosen S(i) and for any observation sequence ω that could be generated by S(i), we
have

α(ω) :=

m∑

k=1,k =i

PkP
(k)
ω

m∑

k=1

PkP
(k)
ω

≥ α0 .

Remark 3 Note that in Definition 6, we assume that the initial probability distribution π
(i)
0

is a strictly positive vector (i.e., all initial states are possible among all m HMMs). If this
is the case, we will argue that probabilistic system opacity can be verified with polynomial
complexity. The complexity and the verification algorithm in the more general case, where
π

(i)
0 is not necessarily strictly positive, remains an open problem.

4 Polynomial verification of probabilistic opacity

In the following definition, we discuss the problem of probabilistic opacity for two HMMs.
It will become obvious from the discussions in this section that the conditions for m

HMMs, to be probabilistically opaque are based on the conditions for a pair of HMMs to be
probabilistically opaque, which is defined next.
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Definition 7 (Pairwise Probabilistic Opacity). Two HMMs, S(i) = (Q(i), E, Δ(i), Λ(i),
π

(i)
0 ) for i ∈ {1, 2} and prior probabilities3 P1 and P2 are probabilistically opaque if there

exists α0 (0 < α0 < 1/2) such that for any observation sequence ω

(∀ω ∈ L(S(1)) ∪ L(S(2))) we have α(ω) ≥ α0 ,

with

α(ω) = min

{
P1P

(1)
ω

P1P
(1)
ω + P2P

(2)
ω

,
P2P

(2)
ω

P1P
(1)
ω + P2P

(2)
ω

}
.

[Recall that PiP
(i)
ω , i ∈ {1, 2}, is the probability that observation ω is generated by HMM

S(i).]

To determine whether two HMMs are probabilistically opaque, we will employ tools
from probabilistic equivalence and HMM classification; we introduce some relevant
definitions next.

Definition 8 (Probabilistic Equivalence for HMMs (Tzeng 1989)). Two HMMs, S(i) =
(Q(i), E(i), Δ(i),Λ(i), π

(i)
0 ), i ∈ {1, 2} with E = E(1) = E(2) are probabilistically equiv-

alent iff for any string ω ∈ L(S) (L(S) = L(S(1)) ∪ L(S(2))) the two HMMs, accept the
string with equal probability.

Remark 4 Two HMMs can be tested for probabilistic equivalence with polynomial com-
plexity (Tzeng 1989).

Remark 5 We say that two HMMs are probabilistically equivalent from steady–state iff the
two HMMs S(i) = (Q(i), E(i), Δ(i),Λ(i), π

(i)
s ), for i ∈ {1, 2}, where π

(i)
s is their respective

steady–state probabilities (Definition 1), are probabilistically equivalent.

Theorem 1 (Probability of Error Among Two HMMs Tending to Zero) Consider two
HMMs, S(i) = (Q(i), E(i), Δ(i),Λ(i), π

(i)
0 ), i ∈ {1, 2}, with corresponding Markov chains

MC(i) = (Q(i), A(i), π
(i)
0 ) that are irreducible and aperiodic. If S(1) and S(2) are not

probabilistically equivalent from steady–state, then

(∀ε > 0)(∃n0 ∈ N) such that for n ≥ n0 Pr(error at n) < ε,

where Pr(error at n) is the probability of misclassification for the two HMMs (defined in
Eq. 2).

Proof The proof is provided in Appendix.

In other words, if the two HMMs are not probabilistically equivalent from steady–state,
then the probability of error among the two HMMs tends, when n goes to infinity, to zero.
The proof in Appendix relies on the fact that we are able to discriminate between the two
HMM models using a suboptimal decision rule (Definition 12) based on the empirical fre-
quencies of output symbols, as long as the two systems are characterized, at steady-state,

3Usually P1 + P2 = 1, but in our case we keep the priors as if the two HMMs, were part of a setting
with m HMMs, as it is described in Definition 6. This helps us to avoid notational overhead involving
renormalizations of priors (namely, P ′

i = Pi/(P1 + P2) for i = 1, 2).
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by different statistical properties for the occurrence of output symbols or different statistical
properties of finite sequences of consecutive output symbols (this occurs if and only if the
two HMMs are not probabilistically equivalent from steady–state). The theoretical anal-
ysis in Appendix establishes an upper bound on the misclassification probability, which
is described by a function that decreases exponentially with the length of the observation
sequence (as long as the two systems are characterized, at steady-state, by different statisti-
cal properties for the stationary emission probabilities (Definition 5) or stationary emission
probabilities for a finite number of consecutive output symbols).

Now, we revisit the following theorem, which was introduced and proved in Keroglou
and Hadjicostis (2016). This theorem establishes the necessary and sufficient conditions
needed for two HMMs to be probabilistically opaque.

Theorem 2 (Conditions for Pairwise Probabilistic Opacity (Definition 7)) Consider two

HMMs S(i) =
(
Q(i), E(i), Δ(i),Λ(i), π

(i)
0

)
, i = 1, 2, with corresponding Markov chains

MC(i) =
(
Q(i), A(i), π

(i)
0

)
that are irreducible and aperiodic. These two HMMs are

pairwise probabilistically opaque iff they are probabilistically equivalent from steady-state.

Proof Let us use the following notation:

– ω = ω[1]ω[2]...ω[n], where ω[t] ∈ E for t ∈ {1, ..., n};
– 1T = [1...1] is a row vector with n identical elements equal to 1;
– A

(1)
ω = A

(1)
ω[n] · · · A(1)

ω[1] and A
(2)
ω = A

(2)
ω[n] · · ·A(2)

ω[1];
– For a vector π , min{π} is the minimum element of the vector and max{π} is the

maximum element of the vector;

– α(ω) = min
{

P1P
(1)
ω

P1P
(1)
ω +P2P

(2)
ω

,
P2P

(2)
ω

P1P
(1)
ω +P2P

(2)
ω

}
, where PiP

(i)
ω , i = 1, 2, is the probability

that observation ω is generated by HMM S(i).

(→) Suppose that the two HMMs are probabilistically opaque; we need to show that the
two HMMs are probabilistically equivalent from steady-state. We know that if the proba-
bility of error does not tend to zero, then the two HMMs are probabilistically equivalent
from steady–state according to the contraposition of Theorem 1. It remains to prove that if
the two HMMs are probabilistically opaque, then the probability of error among the two
HMMs does not tend to zero. If the two HMMs are probabilistically opaque, we argue that
the probability of error when trying to classify between S(1) and S(2) based on a sequence
of observations satisfies

(∃ 0 < α′
0 < 1 )(∀n ∈ N){Pr(error at n) ≥ α′

0} .

This is proved easily because we know that (∃α0)(∀ω ∈ L(S(1)) ∪ L(S(2))), we have

min
{

P1P
(1)
ω

P1P
(1)
ω +P2P

(2)
ω

,
P2P

(2)
ω

P1P
(1)
ω +P2P

(2)
ω

}
≥ α0. Therefore, for each n ∈ N

Pr(error at n) =
∑

ω:|ω|=n

(
min

{
P1P

(1)
ω , P2P

(2)
ω

})

≥
∑

ω:|ω|=n

α0

(
P1P

(1)
ω + P2P

(2)
ω

)

= α0

⎛

⎝P1

∑

ω:|ω|=n

P (1)
ω + P2

∑

ω:|ω|=n

P (2)
ω

⎞

⎠ = α0(P1 + P2) = a′
0 .
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This proves that the probability of error does not tend to zero; therefore, the two HMMs
are probabilistically equivalent from steady–state.

(←) Suppose that the two HMMs are probabilistically equivalent from steady–state;
then, for any ω, we have

1T A(1)
ω π(1)

s = 1T A(2)
ω π(2)

s =: πω,s .

We next prove that the two HMMs are Probabilistically Opaque. Four useful inequalities
for i ∈ {1, 2} are the following:

P (i)
ω = 1T A(i)

ω π
(i)
0

≥ 1T A(i)
ω min{π(i)

0 }1
≥ min{π(i)

0 }πω,s ,

P (i)
ω = 1T A(i)

ω π
(i)
0

≤ 1T A(i)
ω max

{
π

(i)
0

}
1

≤
max

{
π

(i)
0

}

min
{
π

(i)
s

} 1T A(i)
ω π(i)

s

≤
max

{
π

(i)
0

}

min
{
π

(i)
s

} πω,s .

In summary, we have

min
{
π

(i)
0

}
πω,s ≤ P (i)

ω ≤
max

{
π

(i)
0

}

min
{
π

(i)
s

} πω,s .

From the previous inequalities we can rewrite α(ω) = min
{

P1P
(1)
ω

P1P
(1)
ω +P2P

(2)
ω

,
P2P

(2)
ω

P1P
(1)
ω +P2P

(2)
ω

}
≥

min{c1, c2}, where c1 < 1 and c2 < 1, with

ci = Pi min{π(i)
0 }

P1
max

{
π

(1)
0

}

min{π(1)
s } + P2

max
{
π

(2)
0

}

min{π(2)
s }

,

which proves that for any ω, of any length n, the observer is uncertain with a threshold of at
least α0 = min{c1, c2}.

Theorem 3 discussed and proven in the remainder of this section, was presented without
proof in Keroglou and Hadjicostis (2016). The following lemmas are useful in proving
Theorem 3.

Lemma 1 If probabilistic system opacity holds then the probability of error among m

HMMs with S(i) as the chosen system, does not tend to zero ((∃0 < ε < 1)(∀n0)(∃n ≥ n0)

(Pr(error at n, S(i)) ≥ ε).
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Proof We have the following statements:

1. From Probabilistic System Opacity we have for any ω ∈ L(S):
m∑

k=1,k =i

PkP
(k)
ω

m∑

k=1

PkP
(k)
ω

≥ α0

2. The set of decisions is {H0, H1}, where H0 : { We accept S(i)} and H1 :
{ We reject S(i)}

3. Using the MAP rule, we decide in favor of H0 when PiP
(i)
ω >

∑

k =i

PkP
(k)
ω and in favor

of H1 when PiP
(i)
ω ≤

∑

k =i

PkP
(k)
ω

4. n = {ω : |ω| = n}

5. n
a =

⎧
⎨

⎩ω : (|ω| = n) ∧
⎛

⎝PiP
(i)
ω >

∑

k =i

PkP
(k)
ω

⎞

⎠

⎫
⎬

⎭

6. n
r =

⎧
⎨

⎩ω : (|ω| = n) ∧
⎛

⎝PiP
(i)
ω ≤

∑

k =i

PkP
(k)
ω

⎞

⎠

⎫
⎬

⎭

7. (∀ω ∈ n)

⎛

⎝
∑

k =i

PkP
(k)
ω ≥ α0

∑
PkP

(k)
ω ≥ α0PiP

(i)
ω (Definition 6)

8. Pr(error at n, S(i)) =
∑

ω∈n
a

∑

k =i

PkP
(k)
ω +

∑

ω∈n
r

PiP
(i)
ω

From 1–8 we have

Pr(error at n, S(i)) ≥ α0

⎛

⎝
∑

ω∈n
a

PiP
(i)
ω +

∑

ω∈n
r

PiP
(i)
ω

⎞

⎠

≥ α0

∑

ω∈n

PiP
(i)
ω = α0Pi = ε

The proof is concluded.

Lemma 2 For a, b1, b2, ..., bm nonnegative real numbers, we have that

min{a, b1 + b2 + ...bm} ≤
m∑

i=1

min{a, bi}

Proof We use mathematical induction:

1. For m = 2, we have to prove that min{a, b1 + b2} ≤ min{a, b1} +min{a, b2}. We take
three cases i) a > b1 ≥ 0 and a > b2 ≥ 0, ii) 0 ≤ a ≤ b1 and 0 ≤ a ≤ b2, iii)
0 ≤ a ≤ b1 and a > b2 ≥ 0.

We prove only the first case, the proofs for the other cases are left to the inter-
ested reader. For the first case, min{a, b1} + min{a, b2} = b1 + b2 which implies that
min{a, b1 + b2} ≤ (b1 + b2) = min{a, b1} + min{a, b2}.
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2. Let us suppose that for k < m, min{a, b1 + b2 + ...bk} ≤
k∑

i=1

min{a, bi}.

3. We want to prove that min{a, b1 + b2 + ... + bk + bk+1} ≤
k+1∑

i=1

min{a, bi}. Indeed,
with Bk = b1 + ...bk we have from 1) and 2) that min{a, Bk + bk+1} ≤ min{a, Bk} +
min{a, bk+1} ≤

k∑

i=1

min{a, bi} + min{a, bk+1} =
k+1∑

i=1

min{a, bi}. The proof is

concluded.

Lemma 3 If the probability of error among m HMMs with S(i) as the chosen system, does
not tend to zero, then there exists at least one S(j), such that S(i) and S(j) are pairwise
probabilistic opaque.

Proof We have the following statements:

1. The pairwise probability of error for S(i) and S(j) is defined below:
Pr(pairwise error at n, S(i), S(j)) =

∑

ω:|ω|=n

min{PiP
(i)
ω , PjP

(j)
ω }

2. The probability of error among m HMMs with S(i) as the chosen system can be
formulated as given below:

Pr(error at n, S(i)) =
∑

ω:|ω|=n

min

⎧
⎨

⎩PiP
(i)
ω ,

∑

k =i

PkP
(k)
ω

⎫
⎬

⎭

We prove this lemma by contraposition. If there does not exist S(j) such that S(i) and S(j)

are pairwise probabilistic opaque, then according to Definition 7 (and from Theorems 1 and
2) for any S(j) the pairwise probability of error for S(i) and S(j) tends to zero. This can be
formulated as:

(∀0 < ε < 1)(∃nij )(∀n ≥ nij )

Pr(pairwise error at n, S(i), S(j)) < ε.

Pr(error at n, S(i))
2)=

∑

ω:|ω|=n

min

⎧
⎨

⎩PiP
(i)
ω ,

∑

k =i

PkP
(k)
ω

⎫
⎬

⎭

Lemma 2≤
∑

ω:|ω|=n

∑

j =i

min
{
PiP

(i)
ω , PjP

(j)
ω

}

1)=
∑

j =i

Pr(pairwise error at n, S(i), S(j)).

From 1), 2) and from Lemma 2 and if we pick n0 = max{nij } we have that
(∀0 < ε′ < 1)(∃n0)(∀n ≥ n0)

Pr(error at n, S(i)) ≤ Pr(pairwise error at n, S(i), S(j)) ≤ (k − 1)ε = ε′.
The proof is concluded.
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Theorem 3 (Necessary and Sufficient Conditions for Probabilistic System Opacity) Con-
sider a set of m HMMs, S(i) = (Q(i), E(i), Δ(i),Λ(i), π

(i)
0 ), i ∈ {1, ..., m}, with

corresponding Markov chainsMC(i) = (Q(i), A(i), π
(i)
0 ) that are irreducible and aperiodic

and with initial probability distribution π
(i)
0 > 0. The following statements are true:

(→) If the property of probabilistic system opacity as described in Definition 6 holds,
then, for any i there exists at least one HMM S(j), j = i, such that S(i) and S(j) are pairwise
probabilistically opaque (Definition 7).

(←) If, for any i, there exists at least one HMM S(j), j = i, such that S(i) and S(j) are
pairwise probabilistically opaque, then the property of probabilistic system opacity holds.

Proof (→) We prove the statement by combining Lemma 1 and Lemma 3.
(←) We need to show that for any system S(i) and for any observation sequence ω that

can be generated by S(i), we have

α(ω) =

m∑

k=1,k =i

PkP
(k)
ω

m∑

k=1

PkP
(k)
ω

≥ α0 .

Suppose S(j) is the HMM that is pairwise probabilistically opaque with S(i). Then,
from Definition 7, there exists an αij , for any observation sequence ω, such that

min

{
PiP

(i)
ω

PiP
(i)
ω +Pj P

(j)
ω

,
Pj P

(j)
ω

PiP
(i)
ω +Pj P

(j)
ω

}
≥ αij . Thus, for any observation sequence ω that could

be generated by S(i), we have

α(ω) =

m∑

k=1,k =i

PkP
(k)
ω

m∑

k=1

PkP
(k)
ω

= 1 − PiP
(i)
ω

m∑

k=1

PkP
(k)
ω

≥ 1 − PiP
(i)
ω

PiP
(i)
ω + PjP

(j)
ω

= PjP
(j)
ω

PiP
(i)
ω + PjP

(j)
ω

≥ αij = α0 .

Therefore, probabilistic system opacity holds if, for any chosen S(i), there exists another
system S(j), such that S(i) and S(j) are pairwise probabilistically opaque (Definition 7).

Remark 6 Note that in the definition of probabilistic system opacity (Definition 7) noth-
ing is stated about the need to have, for each system S(i) another system S(j), such that
S(i) and S(j) are pairwise opaque. This is somewhat surprising, as one might think that we
do not need probabilistically opaque HMMs in order to have probabilistic system opacity
(e.g., we could hide some of the observation sequences generated by S(i), with an HMM
S(k) and other sequences in another HMM S(k′), without S(k) and S(k′) needing to be prob-
abilistically opaque with S(i)). This line of thought is not correct: if two HMMs are not
probabilistically opaque, then the probability of error tends to zero eventually for all obser-
vation sequences that can be generated by S(i) (this is part of the proof of the verification
of two probabilistically opaque HMMs). Thus, if there is no HMM that is probabilistically
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opaque with S(i), then one can always distinguish that the observed sequence is generated
by S(i), with certainty that tends, at least asymptotically, to unity.

Remark 7 Probabilistic system opacity can be verified with polynomial complexity in terms
of the size of the state space of the system. Indeed, according to Theorem 3, to verify
the notion of probabilistic system opacity, we need to check for pairwise probabilistic
opacity for all HMM pairs S(i), S(j), where i, j ∈ {1, ..., m} (m2 pairs). According to
Theorem 2 two HMMs are pairwise probabilistically opaque iff they are probabilistically
equivalent from steady-state. Thus, we need to compute the steady-state, which can be done
with polynomial complexity, and then we need to check for probabilistic equivalence from
steady-state, which can also be done with polynomial complexity (Tzeng 1989).

5 Connections with probabilistic current–state opacity

Probabilistic system opacity can be seen as a special case of probabilistic current–state opac-
ity, as introduced in Saboori and Hadjicostis (2014) for a given HMM (Q, E, Δ, Λ, π0). In
Saboori and Hadjicostis (2014) the authors defined probabilistic current–state opacity in a
general setup, where there exists a secret set of states,Qs ⊆ Q, that need to remain “hidden”
from an eavesdropper in the following (probabilistic) sense: the confidence of the eaves-
dropper, captured by the conditional probability that the system state lies in the set of secret
states Qs after the execution of observation sequence ω should not exceed a threshold θ . In
general, the problem is proven undecidable in Saboori and Hadjicostis (2014). Probabilistic
system opacity (which, as we argue below, is a special case of probabilistic current–state
opacity) is shown not only to be decidable, but also verifiable with polynomial complexity.

To establish the connection between probabilistic system opacity and current–state opac-
ity, we first reproduce the definition of probabilistic current–state opacity, with a little
modification, in order to match the notation used in this paper.

Definition 9 Given an HMM S = (Q, E, Δ, Λ, π0) and a set of secret states Qs ⊆ Q,
HMM S is probabilistically current–state opaque with respect to Qs , and a parameter θ or
(Qs, θ)–probabilistically current–state opaque, if

∀ω ∈ L(S) :
∑

∀qi∈Qs

ρω(i) −
∑

∀qi∈Qs

π0(i) ≤ θ,

where ρω = Aω[n]Aω[n−1]...Aω[1]π0, with ω = ω[1]ω[2]...ω[n].

Our setup (assumed here to have m=2 HMMs with prior probabilities P1 and P2) can be
seen as a special case of probabilistic current–state opacity as follows:4

Let S = (Q, E, Δ, Λ, π0), be the union of two given irreducible HMMs S(1) =
(Q(1), E(1), Δ(1), Λ(1), π

(1)
0 ) and S(2) = (Q(2), E(2), Δ(2), Λ(2), π

(2)
0 ), where

• π0 =
[

P1π
(1)
0

P2π
(2)
0

]
(note π0 > 0)

• any qk ∈ Q(i) : π0(qk)
Pi

= π
(i)
0 (qk)

4For simplicity we describe a case with only two HMMs, but the connection with probabilistic current-state
opacity, can be easily generalised to the case of m HMMs.
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• E = E(1) ∪ E(2)

• Q = Q(1) ∪ Q(2)

• The functions Δ and Λ are defined as follows:

– {For any q1 ∈ Q(1) and q2 ∈ Q(2)}, we have {Δ(q1, q2) = Δ(q2, q1) = 0}
– {For any i ∈ {1, 2} and q

(i)
k , q

(i)

k′ ∈ Q(i)}, we have
{
Δ
(
q

(i)
k , q

(i)

k′
)

= Δ(i)
(
q

(i)
k , q

(i)

k′
)}

– {For any i ∈ {1, 2}, q(i)
k , q

(i)

k′ ∈ Q(i)} and σ ∈ E}, we have
{
Λ
(
q

(i)
k , σ, q

(i)

k′
)

= Λ(i)
(
q

(i)
k , σ, q

(i)

k′
)}

.

In the above setup, the problem can be decomposed, from the system’s perspective, into
two probabilistic current-state opacity problems. This is because we need to protect both
systems (S(1) and S(2)). Thus, we need to take into consideration two cases depending on
the chosen HMM. If we chose S(1) (or S(2)) then the set of secret states is Qs = Q(1) (or
Qs = Q(2)) respectively.

Case 1. If we chose S(1), then Qs = Q(1) and probabilistic current-state opacity implies
that ∀ω ∈ L(S) : α1(ω) − P1 ≤ θ;

Case 2. If we chose S(2), then Qs = Q(2) and probabilistic current-state opacity implies
that ∀ω ∈ L(S) : α2(ω) − P2 ≤ θ.

We can easily prove the following for all ω ∈ L(S):

1. α1(ω) = 1 − α2(ω)

2. α2(ω)
1,Case 1≥ (1 − P1) − θ = P2 − θ

3. α1(ω)
1,Case 2≥ (1 − P2) − θ = P1 − θ

1. If both Case 1 and Case 2 hold with θ < min{P1, P2}, then for i ∈ {1, 2}, we have that
αi(ω)

2,3≥ α0, where α0 = min{P1 − θ, P2 − θ} (0 < α0 < 1). In that case the system
is also probabilistically opaque.

2. If the system is probabilistically opaque, then there exists some 1 > α0 > 0 such that

for all ω ∈ L(S), α1(ω) ≥ α0
1⇒ α2(ω) − P2 ≤ 1 − (α0 + P2) and α2(ω) ≥ α0

1⇒
α1(ω) − P1 ≤ 1 − (α0 + P1). This implies that S is (Qs, θ)–probabilistically current–
state opaque (both Case 1 and Case 2 hold), for θ ≥ max{1− (α0+P1), 1− (α0+P2)}.
In order to have a meaningful θ we want α0 + P1 < 1 and α0 + P2 < 1 equivalently
α0 < 1 − P2 = P1 and α0 < 1 − P1 = P2 or α0 < min{P1, P2}. This is always valid,
because if a system is probabilistically opaque for a threshold α′

0 then the system is also
probabilistically opaque for all α0 ≤ α′

0.

6 Conclusions and future work

In this work, we analyzed and verified a notion of probabilistic opacity related to dis-
tinguishing the true system among a set of possible systems, based on a sequence of
observations. We established necessary and sufficient conditions under which this notion of
probabilistic system opacity can be verified with polynomial complexity. In order to estab-
lish polynomial verification algorithms, we analyzed the specific case of HMMs with all
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initial states possible. There is an interesting feature in this case: despite the fact that the
notion of probabilistic system opacity is concerned with probabilities conditioned on the
observation sequence, probabilistic system opacity turns out to be the exact opposite of the
notion that captures the ability to classify the system (i.e., distinguishing the correct HMM),
which is a notion that relies on the ensemble of observation sequences. An open problem is
to solve the general case starting with an arbitrary initial state distribution in each HMM.
In the described setup, we choose an HMM out of m possible HMMs, which is essentially
a multiple hypothesis testing problem, applied to the HMM setup we have. An interesting
extension of this setup would be to involve a change in the behavior of the chosen HMM
that occurs at an a priori unknown instant of time. In addition to detecting the underlying
HMM (the one that was chosen at the switch time), an additional challenge here is the fact
that the instant at which the switch occurs is also unknown. An interesting approach to over-
come this challenge would be to use sequential methods i.e., repeated sequential probability
ratio test (SPRT) as in Chen and Willett (2000) and Cardenas et al. (2004).

Appendix A: Proof of Theorem 1

In order to simplify the notation, we present a proof that is appropriate for a decision rule
that we introduce. We name this rule, “empirical rule” (A.1) which is based on the total
number of single events. The empirical rule is useful only when we can distinguish statis-
tically the two HMMs, counting only single events. This rule is illustrated for the case of
single events, but can also be applied for (finite) event sequences that can be produced by
at least one of the two HMMs. This is equivalent to the statement “S(1) and S(2) are not
probabilistically equivalent from steady–state” in Theorem 1. The statistical measure that
we use is the distance in variation, which compares the expected frequency of an event,
against the measured frequency. The expected frequency of an event can be computed eas-
ily and is equivalent to what we call “steady-state emission probability” for a single event.
In order to prove the asymptotical tightness of the upper bound on the probability of mis-
classification, we use a generalisation of “Hoeffding’s inequality” (Glynn and Ormoneit
2002), for functions of Markov chains. We apply the generalised Hoeffding’s inequality,
to distinguish two enhanced HMM models defined in 1, and we prove that these enhanced
models, are also irreducible and aperiodic, as long as the given HMMs are irreducible and
aperiodic. The expected frequency for event sequences can be computed without any state
explosion in the enhanced models (compared to the initial HMMs) something that is estab-
lished in Lemma 6. Finally, we use the generalised Hoeffding’s inequality, combined with
the empirical rule, in order to establish Theorem 1. Most of the material in this appendix
was presented in our previous work in Keroglou and Hadjicostis (2014) where we explored
an emprirical frequency rule for stochastic fault diagnosis. The new material in this paper
is related to important proofs that were omitted in our previous work due to space limita-
tions. Specifically, we provide a complete proof in three important Lemmas (Lemmas 4, 5,
and 6), and in Section A.5 that uses Hoeffding’s inequality to obtain an upper bound on the
probability of misclassification.

A.1 Empirical rule

We define a suboptimal rule for HMM classification, which compares the total number
of occurrences of each event (see Definition 10) against their frequencies (Definition 11)
expected in each of the two HMMs.
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Definition 10 (Fraction of times event ei appears (mn(ei))). Suppose we are given an obser-

vation sequence of length n (ω = ω[1] · · ·ω[n]). We define mn(ei) = 1
n

n∑

t=1

gei
(ω[t]),

where

gei
(ω[t]) =

{
1, if ω[t] = ei,

0, otherwise.

In other words, mn(ei) is the fraction of times event ei appears in observation sequence ω.

Definition 11 (Distance in Variation dV (v, v′) Between Two Probability Vectors v, v′). The
distance in variation (Dembo and Zeitouni 1998) between two |E|-dimensional probability
vectors v, v′ is defined as

dV (v, v′) = 1

2

|E|∑

j=1

|v(j) − v′(j)| ≥ 0 ,

where v(j) (v′(j)) is the j th entry of vector v (v′).

Let the stationary emission probabilities in Definition 6 for HMM S(1) (S(2)) be

denoted by the |E|-dimensional vector π
(1)
e =

[
π

(1)
e1 , ..., π

(1)
e|E|
]T

(respectively, by π
(2)
e =

[π(2)
e1 , ..., π

(2)
e|E| ]T ). Then, we have dV (π

(1)
e , π

(2)
e ) = 1

2

|E|∑

j=1

|π(1)
ej

− π(2)
ej

|.

Definition 12 (Empirical Rule). Given two irreducible and aperiodic HMMs, S(1) and S(2),
and a sequence of observations ω = ω[1]ω[2] · · ·ω[n], we perform classification using the
following suboptimal rule.

– We first compute mn = [mn(e1),mn(e2), · · · , mn(e|E|)]T as in Definition 10.

– We then set θ = 1
2dV (π

(1)
e , π

(2)
e ), where π

(j)
e , j ∈ {1, 2}, is the stationary emission

probability vector for S(j), and compare

dV (mn, π
(1)
e )><θ . (4)

– We decide in favor of S(1) (S(2)) if the right (left) quantity is larger.

A.2 Enhanced HMMmodel

In this section we define a function of the states of the underlying Markov chain of the two
HMMs S(1) and S(2), that counts the occurrences of each event ei ∈ E, with which we arrive
at that state. This is not necessarily possible in S(j), j ∈ {1, 2}, because in general we can
reach a state via different events. The reason we need to define a function of the states is so
that we can analyze the empirical rule (Definition 12) using existing techniques for Markov
chain analysis.
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First, we obtain, for each of the given HMMs, an enhanced construction that allows
us to discriminate the transition to the same state but via different events. We prove that
our enhanced construction inherits the properties of irreducibility and aperiodicity (the two
conditions needed to apply Theorem 2) from the corresponding original HMM. The two
enhanced HMMmodels are denoted by S̃(j) = {Q̃(j), E, Δ̃(j), Λ̃(j), π̃0

(j)}, j ∈ {1, 2}. The
enhanced construction creates replicas of each state, depending on the event via which one
reaches this state. Thus, for each state qh ∈ Q(j), we create states qh,ei

∈ Q̃(j), ei ∈ E, to

represent that we reach state qh ∈ Q(j) under the output symbol ei . Clearly, we end up with
at most |Q̃(j)| = |Q| × |E| states.

The following discussion applies to each original HMM and its enhanced model (we
drop j , j ∈ {1, 2}, to simplify notation). In the state probability vectors π [k], π̃ [t], where t

is the current state epoch, states are indexed in the order shown below

π [t] =

⎡

⎢⎢⎢⎣

π [t](q1)
π [t](q2)

...

π [t](q|Q|)

⎤

⎥⎥⎥⎦ , π̃ [t] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π̃ [t](q1,e1)
π̃ [t](q1,e2)

...

π̃ [t](q1,e|E|)
π̃ [t](q2,e1)

...

π̃ [t](q|Q|,e|E|)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix Ãei
, ei ∈ E, satisfies Ãei

(qh,ei
, q ′

h,e′
i

) = Aei
(qh, q

′
h), ∀e′

i ∈ E and ∀qh, q
′
h ∈ Q

(zero otherwise). We also have for, e′
i′ ∈ E and qh,ei

, q ′
h,e′

i

∈ Q̃, Λ̃(q ′
h,e′

i

, ei , qh,ei
) =

Ãei
(qh,ei

, ei , q
′
h,e′

i

) (zero otherwise). We observe that matrix Ãei
is constructed by blocks

of matrix Aei
. If we define row-vector R|E| = [11 · · · 1]︸ ︷︷ ︸

|E|−t imes

and let

Ri,|E| = [0 · · · 0 1 0 · · · 0],︸ ︷︷ ︸
single one at i th position

then the state transition matrix Ã
(j)
ei

for the enhanced model S̃(j) can be written as5

Ã
(j)
ei

= A
(j)
ei

⊗
(
RT

i,|E| ⊗ R|E|
)

.

Example 2 We create the enhanced HMM models S̃(1) (shown in Fig. 3) and S̃(2) for

S(1) and S(2) respectively (shown in Fig. 1). We note that the underlying state tran-
sition matrix, for each enhanced model, is irreducible and aperiodic (as we will see,

5The Kronecker product (Brewer 1978) A ⊗ B of a p × q matrix A with an m × n matrix B is the pm × qn

matrix

A ⊗ B =

⎡

⎢⎢⎢⎣

a11B a12B · · · a1qB

a21B a22B · · · a2qB

.

.

.
.
.
.

.

.

.
.
.
.

ap1B ap2B · · · apqB

⎤

⎥⎥⎥⎦ .
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Fig. 3 Enhanced model S̃(1) for
HMM model S(1) in Fig. 1

S̃(j) will be irreducible and aperiodic as long as S(j) is irreducible and aperiodic). The
corresponding Ã

(1)
α , Ã

(1)
β , Ã

(2)
α , Ã

(2)
β are as follows:

Ã(1)
α =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

0.50 0.50 0.50 0.50
0 0 0 0

⎤

⎥⎥⎦ , Ã(1)
β =

⎡

⎢⎢⎣

0 0 0 0
0.50 0.50 0.25 0.25
0 0 0 0
0 0 0.25 0.25

⎤

⎥⎥⎦ ,

Ã(2)
α =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

0.60 0.60 0.06 0.06
0 0 0 0

⎤

⎥⎥⎦ , Ã(2)
β =

⎡

⎢⎢⎣

0 0 0 0
0.40 0.40 0.04 0.04
0 0 0 0
0 0 0.90 0.90

⎤

⎥⎥⎦ .

A.3 Required conditions for using Hoeffding’s inequality on enhanced models

Proposition 1 (Hoeffding’s Inequality on Enhanced HMM Model) Consider enhanced
HMMs, S̃(j) = {Q̃(j), E, Δ̃(j), Λ̃(j), π̃0

(j)}, j ∈ {1, 2}, with |E| events and transition
matrix Ã(j). Assuming the Markov chains that correspond to the enhanced models S̃(j),
j ∈ {1, 2}, are irreducible and aperiodic, we denote their stationary distributions by
π̃ (j) > 0 and stationary emission distribution for events ei ∈ E by π̃

(j)
e > 0.

Using the enhanced models (S̃(1) and S̃(2)) for each ei ∈ E, we define the indicator
functions fei

(qh,ej
), ∀qh,ej

∈ Q̃, as

fei
(qh,ej

) =
{
1, if ej = ei,

0, otherwise.

Let mn(ei) = 1
n

n∑

t=1

fei
(q[t]), i.e., the |E|-dimensional vector mn = [mn(e1),

mn(e2), ..., mn(e|E|)]T denotes the empirical frequencies with which each event appears
in the given observation window of length n. Let Mj , be the smallest integer such that

(Ã(j))
Mj

> 0, element-wise, and λj = minl,l′
{

(Ã(j))
Mj (l,l′)

π̃ (j)(l)

}
, where π̃ (j)(l) is the station-

ary distribution of S̃(j). As long as the enhanced model S̃(j) is irreducible and aperiodic, it
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can be shown Glynn and Ormoneit (2002) and Hadjicostis (2005) that the following is true

for n >
2Mj

λj ε
, for each event ei (1 ≤ i ≤ |E|), and for F (j)(n) = exp

⎛

⎜⎝−
λj

2
(

nε− 2Mj
λj

)2

2nMj
2

⎞

⎟⎠:

Pr(|mn(ei) − π̃
(j)
e (ei)| ≥ ε) ≤ F (j)(n). (5)

In order to use Eq. 5, we need S̃(j) to correspond to an irreducible (Definition 3) and
aperiodic (Definition 4) Markov chain. We now show that S̃(j) is irreducible and aperiodic
if S(j) is irreducible and aperiodic. Also, we establish that π̃ (j)

e = π
(j)
e .

Lemma 4 If HMM S(j) = (Q(j), E(j),Δ(j), Λ(j), π
(j)

0 ) is irreducible (Definition 3), then
the enhanced HMM S̃(j) = {Q̃(j), E, Δ̃(j), Λ̃(j), π̃0

(j)} is also irreducible.

Proof We prove irreducibility by establishing the property that any state qh,ei
∈ Q̃(j) that

does not belong to a set of strongly connected states (Definition 3), may exhibit outgoing
transitions but will have no incoming transition. Consider in the enhanced model the set of
states

Q̃ss = {qm,e ∈ Q̃|∃qm′ ∈ Q, ∃e ∈ E s.t. Λ(qm′ , e, qm) > 0}.
Since the set of states Q in the original system is strongly connected, we can easily show
that the states in Q̃ss are strongly connected: given qm,e, qm′,e′ ∈ Q̃ we can find a path to
connect them as follows: Let qm′′ be such that Λ(qm′′ , e′, qm′) > 0. Then, we can find a path

qm

ei1−→ qi1

ei2−→ qi2 → · · · eit−→ qit = qm′′ .

(because the original HMM is irreducible). Therefore

qm,e

ei1−→ qi1,e1

ei2−→ qi2,ei2
→ · · · eit−→ qit = qm′′

e′−→ qm′,e′

is a path that connects qm,e ∈ Q̃ to qm′,e′ ∈ Q̃. We finally conclude that the states that do not
belong to the set of strongly connected states, have only outgoing transitions. Therefore, by
choosing an appropriate initial distribution function that excludes all these transient states,6

we can ensure that all of these transient states will never be visited.

Lemma 5 If HMM S(j) = (Q(j), E(j),Δ(j), Λ(j), π
(j)

0 ) is aperiodic (Definition 4), then
the enhanced HMM S̃(j) = {Q̃(j), E, Δ̃(j), Λ̃(j), π̃0

(j)} is also aperiodic.

Proof We show that if the enhanced model S̃(j) is periodic with period k, this contradicts
the fact that S(j) is aperiodic. Suppose that S̃(j) is periodic with period k (Definition 4 and
Lemma 2). This means we can group all possible states of S̃(j) to k groups (C̃1, C̃2, · · · , C̃k)
such that for a state ql,e ∈ C̃m, there exist one-step transitions only to states in C̃m′ , where
m′ = m + 1 mod k.

6We can always do this since subsequent behavior of the enhanced model does not depend on whether we
start from state qh,e or qh,e′ .
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Due to the construction of enhanced models, the outgoing behaviour of ql,e states ∀e ∈ E

are copies of the outgoing behaviour of ql ∈ Q. We can easily see that if there exists
ql,e ∈ Q̃, that belongs to C̃m, then also ql,e′ ∈ Q̃ belongs to C̃m, for all e, e′ ∈ E (due to the
same outgoing behaviour). Thus, we can also group q ∈ Q into Ci , i ∈ {1, 2, ..., k}, classes.
Thus, S(j) is periodic, with period k, which is a contradiction.

A.4 Consistency of stationary emission probabilities for S(j) and ˜S(j)

We now show that in the enhanced model S̃(j), the stationary emission probabilities of each
event are consistent with the original model S(j) for j = 1, 2.

Lemma 6 The computed stationary emission probabilities for symbols in the enhanced
model S̃(j), j ∈ {1, 2} which is denoted respectively by π̃

(j)
e , is identical to π

(j)
e

corresponding to S(j).

Proof Let π̃
(j)
s denote the steady-state distribution vector in the enhanced model j . Then,

we have that under each model

π
(j)
s = (In ⊗ R|E|) × π̃

(j)
s , j ∈ {1, 2}.

For S(j) and ∀ei ∈ E, the stationary emission probability π
(j)
e (ei) can be expressed as

π
(j)
e (ei) = Rn ×

(
A

(j)
ei

× π
(j)
s

)
,

whereas for the enhanced model7 S̃(j).

π̃
(j)
e (ei) = Rn|E| × Ã

(j)
ei

× π̃
(j)
s

= Rn|E| ×
(
A

(j)
ei

⊗
(
RT

i,|E| ⊗ R|E|
))

× π̃
(j)
s

= (Rn ⊗ R|E|) ×
(
A

(j)
ei

⊗
(
RT

i,|E| ⊗ R|E|
))

× π̃
(j)
s

= (Rn × A
(j)
ei

) ⊗
(
R|E| ×

(
RT

i,|E| ⊗ R|E|
))

× π̃
(j)
s

=
((

Rn × A
(j)
ei

)
⊗ R|E|

)
× π̃

(j)
s

=
(
Rn × A

(j)
ei

)
⊗ (R1 × R|E|) × π̃

(j)
s

= Rn ×
(
A

(j)
ei

⊗ R|E|
)

× π̃
(j)
s .

7In performing this analysis, we use the following well known properties of the Kronecker product: 1. (A ⊗
B)(C ⊗ D) = (AC) ⊗ (BD); 2. (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) for matrices A, B, C, D of appropriate
dimensions (Brewer 1978).
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Moreover, we have

π
(j)
e (ei) = Rn ×

(
A

(j)
ei

× π
(j)
s

)

= Rn ×
(
A

(j)
ei

× (In ⊗ R|E|) × π̃
(j)
s

)

= Rn ×
(
A

(j)
ei

⊗ R1

)
× (In ⊗ R|E|) × π̃

(j)
s

= Rn ×
(
A

(j)
ei

× In

)
⊗ (R1 × R|E|) × π̃

(j)
s

= Rn ×
(
A

(j)
ei

⊗ R|E|
)

× π̃
(j)
s

= π̃
(j)
e (ei),

which allows us to conclude that π(j)
e (ei) = π̃

(j)
e (ei), ∀ei ∈ E.

A.5 Upper bound on the probability of error

Given two HMMs S(1) and S(2) (each irreducible and aperiodic), we construct the corre-
sponding enhanced HMM models (S̃(1), S̃(2)) with underlying irreducible and aperiodic

Markov chains M̃C
(1) = (Q̃(1), Ã(1), π̃0

(1)) and M̃C
(2) = (Q̃(2), Ã(2), π̃0

(2)) (i.e., this
means that Ã(1) and Ã(2) are primitive matrices). Suppose we have8 dV (π̃

(1)
e , π̃

(2)
e ) > 0.

Then, if we apply the empirical rule and use Hoeffding’s inequality (Proposition 1), we
obtain the upper bound on the probability of error using the empirical rule where F(n) is
given by

F(n) = max{F (1)(n), F (2)(n)} . (6)

Proof We consider two error cases :

Case 1: Decide S(1) when the system is S(2);
Case 2: Decide S(2) when the system is S(1).

Case 1:
The decision of S(1) is equivalent to the event

H(1) : dV (mn, π
(1)
e ) < θ,

which necessarily implies dV (mn, π
(2)
e ) ≥ θ

(
for θ = 1

2dV

(
π

(1)
e , π

(2)
e

))
. Otherwise, we

reach a contradiction, because dV (mn, π
(2)
e ) < θ and dV (mn, π

(1)
e ) < θ imply

dV

(
π(1)

e , π(2)
e

)
< dV

(
mn, π

(1)
e

)
+ dV

(
mn, π

(2)
e

)

= 2θ

= dV

(
π(1)

e , π(2)
e

)
.

8Equivalently, dV (π
(1)
e , π

(2)
e ) > 0 (Lemma 6).
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Thus, H(1) implies dV (mn, π
(1)
e ) ≥ θ , which implies

H
(1)
k :

{
∃ek ∈ E such that

∣∣∣mn(ek) − π(2)
e (ek)

∣∣∣ >
θ

|E|
}

.

Therefore, we have to consider two different subcases:

a) mn(ek) − π
(2)
e (ek) > 0,

b) mn(ek) − π
(2)
e (ek) < 0.

The probability of error for Case 1 and subcase a), after n observations, is

Pr(error at n, Case 1) = Pr(H (1)|S(2))P (S(2))

≤ Pr
(
H

(1)
k |S(2)

)
P(S(2))

≤ F (2)(n)P (S(2)) ,

where Pr
(
H

(1)
k |S(2)

)
≡ Pr(mn(ek) − π

(2)
e (ek)) > θ

|E| ) ≤ F
(2)
n , for ε = θ

|E| .
In Case 1a) we can immediately apply Eq. 5, but in Case 1b) in order to find a positive

measure we choose to count the number of appearances of all elements in kc = {e ∈
E | s.t. e = ek}, i.e., all possible events except ek ∈ E. Then mn(ekc ) − π

(2)
e (ekc ) =

(1−mn(ek))− (1−π
(2)
e (ek)) > 0, and we can apply (5), which leads us to the same bound.

Case 2:
With the same reasoning as in Case 1, we establish the following inequality

Pr(error at n, Case 2) = Pr(H (2)|S(1))P (S(1))

≤ Pr
(
H

(2)
k′ |S(1)

)
P(S(1)))

≤ F (1)(n)P (S(1)),

where H(2) : dV (mn, π
(1)
e ) > θ , which implies that H(2)

k′ : {There exists at least one ek′ such

that |mn(ek′)−π
(1)
e (ek′)| > θ

|E| , where ek′ ∈ E }. The claim follows using similar arguments
as in Case 1.

Finally, we prove that

Pr(error at n) = Pr(error at n, Case 1) + Pr(error at n, Case 2)

= Pr(H (1)|S(2))P (S(2)) + Pr(H (2)|S(1))P (S(1)))

≤ Pr
(
H

(1)
k |S(2)

)
P(S(2)) + Pr

(
H

(2)
k′ |S(1)

)
P(S(1)))

≤ F(n)(P (S(1)) + P(S(2))) ≡ F(n)

In other words, if two HMMs have different expected frequencies for at least one single
event, this allows to asymptotically distinguish the two HMMs using the empirical rule.
Without loss of generality, we can extend this result to event sequences, that have different
expected frequencies. Knowing that the expected frequency of an event sequence can be
computed as the probability of occurrence of an event sequence, generated by an HMM that
starts at the steady-state, then if there is at least one event sequence with different expected
frequencies, is equivalent to the fact that the two HMMs, are not probabilistically equivalent
from the steady-state. This concludes the proof.
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