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Abstract In this paper, we study the variance minimization problem of Markov decision
processes (MDPs) in which the policy is parameterized by action selection probabilities or
other general parameters. Different from the average or discounted criterion mostly used
in the traditional MDP theory, the variance criterion is difficult to handle because of the
non-Markovian property caused by the nonlinear (quadratic) structure of variance function.
With the basic idea of sensitivity-based optimization, we derive a difference formula of the
reward variance under any two parametric policies. A variance derivative formula is also
obtained. With these sensitivity formulas, we obtain a necessary condition of the optimal
policy with the minimal variance. We also prove that the optimal policy with the minimal
variance can be found in the deterministic policy space. An iterative algorithm is further
developed to efficiently reduce the reward variance and this algorithm can converge to the
local optimal policy. Finally, we conduct some numerical experiments to demonstrate the
main results of this paper.
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1 Introduction

Markov decision processes (MDPs) are very important for the performance analysis and
optimization of stochastic dynamic decision problems. The goal of MDPs is to find the
optimal policy such that the expectation of system performance can be maximized, where
the Bellman optimality equation plays a key role in developing the theory of MDPs.

In the literature, most of the studies on the MDP theory focus on the average or dis-
counted criteria (Bertsekas 2012; Feinberg and Schwartz 2002; Guo and Hernandez-Lerma
2009; Puterman 1994). Much less attention has been paid to the variance criterion. The
variance criterion is also an important performance metric in many practical problems. For
example, in financial engineering, the variance criterion usually reflects the risk related fac-
tors. Portfolio management is a very important topic in financial engineering and it aims to
reduce the variance of asset returns, thus to control the risk of assets. A key formulation for
this problem is called the mean-variance optimization, which is proposed by H. Markowitz,
the 1990 Nobel Laureate in Economics (Markowitz 1952). In the mean-variance optimiza-
tion, there are two objectives that are considered together, one is the mean of rewards,
and the other is the variance of rewards. The goal is to find an optimal policy such that
the mean performance is maximized while the variance is lower than a given value, or
the variance is minimized while the mean performance is larger than a given value. The
Pareto optimal solutions to the mean-variance optimization compose a curve called efficient
frontier, which gives an intuitive guide to balance the return and risk of assets from the
economic viewpoint.

There are many studies on the mean-variance optimization. One of the main threads is
the policy gradient approach, which is widely used by the researchers from the community
of computer science while its root can be originated from the idea of perturbation analysis
in Markov systems (Cao 2007; Cao and Chen 1997). The key idea of policy gradient is to
derive a formula for the performance derivative with respect to (w.r.t.) the policy or system
parameters (Marbach and Tsitsiklis 2001). Then the value of derivatives or gradients can
be numerically computed or estimated from the system sample path (Mannor and Tsitsiklis
2011; Tamar et al. 2012). Finally, a gradient descent algorithm or stochastic approxima-
tion algorithm can follow to approach to the local optimal solution in the policy space or
the parameter space. The gradient-based approach is easy to adopt in practice. However, it
suffers from some intrinsic deficiencies, such as the trap of local optimum, the difficulty
of selecting proper step-size, and the sensitivity to the initial point. There are also other
works studying this problem from other perspectives. For example, some works study this
problem by formulating it as a mathematical programming problem, where the techniques
of linear and quadratic programming are used to study the problem structure (Chung 1994;
Sobel 1994). Another main thread to study this problem is based on the traditional theory
of MDPs. Although the variance criterion is not Markovian, we can convert the variance
minimization problem into an equivalent MDP with a new performance function, at the con-
dition that the average or discounted performance metric of the system is already maximized
(Guo et al. 2012; Hernandez-Lerma et al. 1999). For other general cases, such as unbounded
transition rates and state-dependent discount factors, there also exist many works to study
the mean-variance optimization from the framework of MDPs (Guo et al. 2015; Huo et al.
2017).

In this paper, we study the optimization of MDPs under the variance criterion, where
the policy is parameterized by some system parameters. Our goal is to find the optimal
parameters such that the variance of system rewards can be minimized. Different from
the mean-variance optimization introduced above, the average or discounted performance
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metric is not considered in our problem. The variance minimization problem has practical
meanings in engineering systems. For example, for a wind farm with energy storage sys-
tem illustrated in Fig. 1, we aim to schedule the power output of the whole system such that
the power variation can be reduced. The power stability is very important to keep the safety
of electricity grid (Ummels et al. 2007). In this problem, the reduction of power variation
is more important than the improvement of utilization ratio of wind power. The stochastic
process of wind power can be modeled by a Markov chain (Luh et al. 2014). The schedul-
ing algorithm has to determine a series of values of output power to the grid at different
energy storage level or wind power level. This series of values can be viewed a paramet-
ric policy and this decision problem can be modeled as a parameterized MDP. If we use
the variance criterion to quantify the power variation, we can formulate this problem as a
variance minimization problem of parameterized MDPs.

There exist some difficulties in this problem. The main difficulty is caused by the non-
linear property of the variance function. In a standard MDP model, we require that the cost
function and the state transition probability should be Markovian. That is, the cost at the
current stage should not be affected by the actions in future stages (see page 20 in Put-
erman’s book (Puterman 1994)). However, in our problem, since the variance function is
quadratic and it is also related to the mean performance, the associated cost function of
MDPs under the variance criterion is dependent on the action selection in future stages (Xia
2016a, b). Thus, the variance function is not additive and it does not have Markovian prop-
erty. The traditional approaches in MDP theory cannot be applied to our problem. Although
the gradient-based approach is valid for this problem (Mannor and Tsitsiklis 2011; Tamar
et al. 2012), it suffers from the intrinsic deficiencies as we discussed above. The other diffi-
culty comes from the parametric policy that is parameterized by some parameters (Xia and
Jia 2015). In a standard MDP model, the policy is a mapping from the state space to the
action space. However, in a parameterized MDP, the policy is controlled by one or multi-
ple parameters. We may not freely adjust the parameters at every state. For example, in an
M/M/1 queue, we control the value of service rate μ to maximize the average performance
of the system. The service rate μ has the same value at different system state n (queue
length). This service rate control problem is a parameterized MDP. The correlation of the
policy at different states makes the traditional approaches in MDP theory inapplicable to
this problem. In summary, our problem is not a standard MDP and it suffers from the diffi-
culties caused by the variance function and the parametric policy. The Bellman optimality
equation does not hold for this problem. We have to resort to other approaches.

In this paper, we use the sensitivity-based optimization theory of Markov systems to
study this variance minimization problem in parameterized MDPs. We discuss two types of
parametric policies. The first one is to control the selection probability of every action at
every state. The second one is a set of general parameters that have effects on the transition
probabilities and reward functions. The first type of parametric policies is easy to handle

Fig. 1 Power variation reduction for wind farms and energy storage systems
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since we can freely change the value of parameters at every state (no correlation among
different states). The second one is difficult and we give some discussions under proper
conditions. Our goal is to find the optimal values of parameters to minimize the reward vari-
ance of the Markov system. The key idea of the sensitivity-based optimization theory is the
difference formula that quantifies the performance difference of Markov systems under any
two different policies or parameters (Cao 2007; Cao and Chen 1997). This theory does not
depend on the Bellman optimality equation and it may remain valid for a general controlled
Markov system, even the problem does not fit a standard MDP model. For the parametric
policy of action selecting probability, we derive a variance difference formula under any two
different policies, where a nonnegative term plays an important role to alleviate the difficul-
ties mentioned above. A derivative formula of the reward variance w.r.t. the parameter is also
obtained. With these sensitivity formulas, we derive a necessary condition of the optimal
policy. We also prove that the optimal policy with the minimal variance can be found in the
deterministic policy space. We further develop an iterative algorithm to strictly reduce the
variance of Markov systems. For the general parametric policy, we also derive the similar
results as above. Compared with our previous work (Xia 2016b), this paper mainly studies
the parametric policy and the reward function can be varied under different policies, which
makes our results more general for parameterized MDPs.

The rest of the paper is organized as follows. Section 2 gives a mathematical formulation
for the variance minimization problem of parameterized MDPs. In Section 3, we apply the
sensitivity-based optimization theory to study this problem in which the parameters are the
action selection probabilities. The main results of this paper are derived in this section. In
Section 4, we further extend our study to a case where the parameters can be general ones.
In Section 5, we conduct numerical experiments to demonstrate the main results. Finally,
we conclude this paper in Section 6.

2 Problem formulation

Consider a discrete timeMarkov chainX := {X0, X1, · · · , Xt , · · · }, whereXt is the system
state at time t , t = 0, 1, · · · . The state space is S := {1, 2, · · · , S} and its size is S.
When the system is at state i, we can select an action a from the action space A(i), where
i ∈ S . For simplicity, we assume A(i) = A for all i ∈ S. The main results in this
paper remain valid when A(i)’s are different. The action space is finite and we define it as
A := {a1, a2, · · · , aA}, where A is the size of A. When an action a is adopted at state i,
the system will receive a reward denoted as r(i, a) and the system state will transit to the
next state j with a transition probability p(j |i, a), where i, j ∈ S , a ∈ A. Obviously, we
have p(j |i, a) ≥ 0 and

∑
j p(j |i, a) = 1. We assume that the Markov chain is ergodic and

the long-run average performance of the Markov chain is defined as below.

η := lim
T →∞

1

T
E

{
T −1∑

t=0

r(Xt , At )

}

, (1)

where At is the action adopted at time t . The steady state distribution π is denoted as an
S-dimensional row vector as follows.

π := (π(1), π(2), · · · , π(S)). (2)
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The reward function r is denoted as an S-by-A matrix defined as below.

r :=

⎛

⎜
⎜
⎜
⎝

r(1, a1), r(1, a2), · · · , r(1, aA)

r(2, a1), r(2, a2), · · · , r(2, aA)
...

...
. . .

...

r(S, a1), r(S, a2), · · · , r(S, aA)

⎞

⎟
⎟
⎟
⎠

. (3)

The steady state variance of the Markov chain is defined as below.

ησ := lim
T →∞

1

T
E

{
T −1∑

t=0

[r(Xt , At ) − η]2
}

(4)

According to the terminology of MDPs, a policy of MDP is a sequence of action selec-
tion rules that are mapping functions from the state space (or more generally, the historical
trajectory of states and actions) to the action space. However, the policy of many practical
decision problems is controlled by system parameters, which is easy to adopt by practi-
tioners. In this paper, we limit our discussion on such parametric policies and we call such
decision problems parameterized MDPs.

There are different types of parametric policies in practice. First, we study a special case
in which the controlled parameters are action selection probabilities θ i,a , i ∈ S, a ∈ A.
That is, we choose the action a at state i with probability θi,a that satisfies θi,a ≥ 0 and∑

a θi,a = 1 for all i. The policy is further characterized by an S-by-A matrix θ that is
defined as below.

θ :=

⎛

⎜
⎜
⎜
⎝

θ1,a1 , θ1,a2 , · · · , θ1,aA

θ2,a1 , θ2,a2 , · · · , θ2,aA

...
...

. . .
...

θS,a1 , θS,a2 , · · · , θS,aA

⎞

⎟
⎟
⎟
⎠

. (5)

Therefore, different θ represents different policy and we use the superscript θ to denotes the
corresponding notations of the Markov chain with policy θ , such as πθ , ηθ , ηθ

σ , etc. Under
policy θ , the state transition probability can be written as

pθ (i, j) :=
∑

a∈A
θi,ap(j |i, a). (6)

The transition probability matrix of the Markov chain under policy θ is defined as below.

P θ :=

⎛

⎜
⎜
⎜
⎝

pθ (1, 1), pθ (1, 2), · · · , pθ (1, S)

pθ (2, 1), pθ (2, 2), · · · , pθ (2, S)
...

...
. . .

...

pθ (S, 1), pθ (S, 2), · · · , pθ (S, S)

⎞

⎟
⎟
⎟
⎠

. (7)

The value domain of θ is a high dimensional real number space R
S×A, with the con-

straints θ ≥ 0 and θ1 = 1, where 1 is a proper dimension column vector with all elements
as 1. We denote the valid value domain of θ as � that is an S-by-A dimensional polyhedron
in the real number space. That is, we define

� := {all θ : θ ≥ 0, θ1 = 1}. (8)
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It is easy to verify that � is a convex set. Our goal is to find the optimal parameter θ∗ from
the solution space � to minimize the reward variance of the Markov chain. That is, the
variance minimization problem for such parametric policies is formulated as below.

θ∗ = argmin
θ∈�

{
ηθ

σ

}

= argmin
θ∈�

{

lim
T →∞

1

T
Eθ

[
T −1∑

t=0

[
r(Xt , At ) − ηθ

]2
]}

, (9)

where Eθ [·] indicates the mathematical expectation of the Markov chain under the policy θ .

3 Main results

As we discussed above, the optimization problem described by Eq. 9 does not fit the
standard model of MDPs since the variance function is quadratic. Therefore, we use the
sensitivity-based optimization theory that is valid for the performance optimization of any
Markov systems (Cao 2007; Cao and Chen 1997). According to the terminology of MDPs,
we define the cost function of Eq. 9 under the variance criterion as below.

fσ (i) :=
∑

a∈A
θ i,a(r(i, a) − η)2

=
∑

a∈A
θ i,ar

2(i, a) − 2η
∑

a∈A
θ i,ar(i, a) + η2. (10)

For simplicity, we further define the following notations

r̃2(i) :=
∑

a∈A
θ i,ar

2(i, a),

r̄(i) :=
∑

a∈A
θ i,ar(i, a). (11)

In an S-dimensional column vector form, we can rewrite the above definitions as below.

r̃2 := (θ � r2�)1,

r̄ := (θ � r)1, (12)

where θ and r are S-by-A matrices defined in Eqs., 5 and 3 respectively, 1 is an
A-dimensional column vector with element 1, � denotes the Hadamard product (compo-
nentwisely) of two vectors or matrices, i.e., for any vectors a and b with the same dimension,
we define

a � b := (a1b1, a2b2, · · · ),
a2� := a � a := (a21, a

2
2, · · · ). (13)

Therefore, we have the variance function as below.

fσ (i) = r̃2(i) − 2ηr̄(i) + η2,

f σ = r̃2 − 2ηr̄ + η21, (14)

where f σ is an S-dimensional column vector whose element is fσ (i), i ∈ S . Obviously,
we have

ησ = πf σ ,

η = πr̄. (15)
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The state transition probability of this Markov chain under parameter θ is written as
pθ (i, j) in Eq. 6. The transition probability matrix is written asP θ in Eq. 7. Note that in some
places of this paper, we omit the superscript θ by default and denote it as P for simplicity.

The performance potential is a fundamental quantity defined in the sensitivity-based
optimization theory. It quantifies the contribution of an initial state to the average per-
formance of Markov systems (Cao 2007). For the variance minimization problem (9),
the optimization performance is the system reward variance. Similar to the concept of
performance potential, we define a quantity called variance potential as below.

gσ (i) := E

{ ∞∑

t=0

[fσ (Xt ) − ησ ] |X0 = i

}

, i ∈ S. (16)

The above definition can be further rewritten as below.

gσ (i) := E

{ ∞∑

t=0

[(r(Xt , At ) − η)2 − ησ ] |X0 = i

}

, i ∈ S. (17)

By extending the first summation at t = 0 in Eq. 16, we can further rewrite it in a matrix
form as below.

gσ = f σ − ησ 1 + Pgσ (18)

We can numerically solve the above equation to compute the value of gσ . We can also
estimate the value of gσ based on the definition (17) or other variations from a single sample
path of the Markov chain. The basic idea of estimation or computation of gσ is similar to
the discussion of performance potentials and the details can be referred to chapter 3 of Cao’s
book (Cao 2007).

Suppose the parametric policy is changed from θ to θ ′. The corresponding transi-
tion probability matrix and the variance function are changed from P ,f σ to P ′,f ′

σ ,
respectively. That is, the state transition probability under the new parameter θ ′ is

P ′(i, j) =
∑

a∈A
θ ′
i,ap(j |i, a), i, j ∈ S. (19)

The cost function of the Markov system under the variance criterion with the new parameter
θ ′ is

f ′
σ = r̃ ′

2 − 2η′r̄ ′ + η′21, (20)

where

r̃ ′
2 = (θ ′ � r2�)1,

r̄ ′ = (θ ′ � r)1, (21)

and η′ is the long-run average performance under the new parameter θ ′. Obviously, we have
η′

σ = π ′f ′
σ ,

η′ = π ′r̄ ′, (22)

where π ′ is the steady state distribution of the Markov chain under the new parameter θ ′.
Right-multiplying π ′ on both sides of Eq. 18 and utilizing Eq. 22 and π ′P ′ = π ′, we

can derive the difference formula of the variance of Markov systems under these two sets
of parameters as follows.

η′
σ − ησ = π ′ [(P ′ − P )gσ + (f ′

σ − f σ )
]
. (23)

The above formula can also be viewed as a direct result by applying the difference for-
mula of the sensitivity-based optimization theory to our problem formulated in Eq. 9. To



70 Discrete Event Dyn Syst (2018) 28:63–81

apply the above difference formula, we have to know the values of P ′ and f ′
σ under any

new parameter θ ′. The value of P ′ can be directly obtained with Eq. 19. However, it is dif-
ficult to directly compute the value of f ′

σ with Eq. 20, because the value of η′ in Eq. 20
is unknown. If we compute the value of η′ under every possible θ ′, the computational
complexity is exhaustive and it is equivalent to a brute-force enumeration for the original
optimization problem (9).

Remark 1 Since the value of f ′
σ is unknown, the associated optimization problem (9) is

not a standard MDP. We cannot directly use the difference formula (23) or traditional MDP
approaches to solve this problem.

Fortunately, we find new results that can avoid the above difficulty. With Eqs. 14 and 20,
we have

π ′(f ′
σ − f σ ) = π ′ [r̃ ′

2 − 2η′r̄ ′ + η′21 − r̃2 + 2ηr̄ − η21
]

= π ′r̃ ′
2 − 2η′η′ + η′2 − π ′ r̃2 + π ′2ηr̄ − η2

= π ′ r̃ ′
2 − 2ηη′ − π ′r̃2 + π ′2ηr̄ − η2 − η′2 + 2ηη′

= π ′ [r̃ ′
2 − 2ηr̄ ′ − r̃ ′

2 + 2ηr̄
] − (η′ − η)2, (24)

where we utilize the equality η′ = π ′r̄ ′ and π ′1 = 1.
Substituting Eq. 24 into Eq. 23, we derive the following variance difference formula for

the Markov system under any two different parametric policies θ and θ ′

η′
σ − ησ = π ′ [(P ′ − P )gσ + r̃ ′

2 − 2ηr̄ ′ − r̃2 + 2ηr̄
] − (η′ − η)2. (25)

The above difference formula is of a general matrix form. We can further obtain a more
specific form with parameters θ and θ ′. Substituting Eqs. 6, 12, 19, and 21 into Eq. 25, we
have

η′
σ −ησ =

∑

i∈S
π ′(i)

⎡

⎣
∑

j∈S
(pθ ′

(i, j) − pθ (i, j))gσ (j) + r̃ ′
2(i) − 2ηr̄ ′(i) − r̃2(i) + 2ηr̄(i)

⎤

⎦

−(η′ − η)2

=
∑

i∈S
π ′(i)

⎡

⎣
∑

j∈S

(
∑

a∈A
θ ′
i,ap(j |i, a) −

∑

a∈A
θi,ap(j |i, a)

)

gσ (j)

+
∑

a∈A
θ ′
i,ar

2(i, a) − 2η
∑

a∈A
θ ′
i,ar(i, a) −

∑

a∈A
θi,ar

2(i, a) + 2η
∑

a∈A
θi,ar(i, a)

]

−(η′ − η)2

=
∑

i∈S
π ′(i)

∑

a∈A

(
θ ′
i,a−θi,a

)
⎡

⎣
∑

j∈S
p(j |i, a)gσ (j) + r2(i,a) − 2ηr(i,a)

⎤

⎦−(η′−η)2.

(26)

We further define the quantity in the square bracket of the above equation as G(i, a), i.e.,

G(i, a) :=
∑

j∈S
p(j |i, a)gσ (j) + r2(i, a) − 2ηr(i, a). (27)
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Note that p(j |i, a) and r(i, a) are given parameters, gσ (j) and η can be computed or esti-
mated based the system sample path with the current policy θ . Therefore, the value of
G(i, a) can be computed or estimated from the sample path of the current system with θ .
Actually, it should be denoted as Gθ (i, a) and we omit the superscript θ in most of situa-
tions for simplicity. Substituting Eq. 27 into Eq. 26, we obtain a specific form of variance
difference formula for the Markov system under θ and θ ′ as below.

η′
σ − ησ =

∑

i∈S
π ′(i)

∑

a∈A
(θ ′

i,a − θi,a)G(i, a) − (η′ − η)2. (28)

The difference formulas (25) and (28) are fundamental for the analysis of the variance
minimization problem (9). We can derive useful insights and construct optimization algo-
rithms to solve this problem. With Eq. 28 as an instance, we see that θ and θ ′ are given
parameters and G(i, a) is computable or estimatable based on the system sample path.
Although the value of η′ is unknown and computationally cumbersome under every possi-
ble θ ′, the term (η′ − η)2 is always nonnegative. Since the element of π ′ is always positive,
we only have to choose a proper θ ′ that makes the value of

∑
a∈A(θ ′

i,a − θi,a)G(i, a) neg-

ative. We will directly have η′
σ − ησ < 0 − (η′ − η)2 ≤ 0 and the reward variance of the

Markov system under the new parametric policy θ ′ is reduced. This is the basic idea to per-
form an iterative algorithm to reduce the variance of Markov systems. We will give more
detailed discussions in the next section.

Remark 2 The key advantage of variance difference formulas (25) and (28) is the nonneg-
ative term (η′ − η)2, which avoids the enumerative computation of η′ under every possible
policy.

The quadratic term (η′−η)2 in Eqs. 25 and 28 is important since it is always nonnegative
despite of the exact value of η′. With Eqs. 25 and 28, we can make further studies for
the optimization problem (9) and derive some results that are difficult to obtain with the
traditional approach in the literature. One of the direct results is the following necessary
condition of the optimal policy of this problem.

Theorem 1 If θ∗ is the optimal parametric policy of optimization problem (9), then it has
to satisfy the following necessary condition

P ′g∗
σ + r̃ ′

2 − 2η∗r̄ ′ 
 P ∗g∗
σ + r̃∗

2 − 2η∗r̄∗, ∀ θ ′ ∈ �, (29)

where g∗
σ , η∗, P ∗, r̃∗

2 , and r̄∗ are the corresponding quantities of Markov system under
the policy θ∗, 
 means ≥ componentwisely for a vector.

Proof We give the proof by contradiction. Suppose the inequality (29) does not hold, i.e.,
for some state, say state i, there exists parameter θ ′

i,a , a ∈ A, which makes

P ′(i, :)g∗
σ +

∑

a∈A
θ ′
i,ar

2(i, a) − 2η∗ ∑

a∈A
θ ′
i,ar(i, a)

< P ∗(i, :)g∗
σ +

∑

a∈A
θ∗
i,ar

2(i, a) − 2η∗ ∑

a∈A
θ∗
i,ar(i, a). (30)

Therefore, we construct a new policy denoted as θ ′ that selects the parameter value as θ∗
i,a

for states j �= i and selects θ ′
i,a for state i, a ∈ A. According to the variance difference
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formula (25), the variance difference of Markov systems under the policy θ ′ and θ∗ can be
written as below.

η′
σ − η∗

σ = π ′ [(P ′ − P ∗)g∗
σ + r̃ ′

2 − 2η∗r̄ ′ − r̃∗
2 + 2η∗r̄∗] − (η′ − η∗)2

= π ′(i)
[

(P ′(i, :) − P ∗(i, :))g∗
σ +

∑

a∈A
θ ′
i,ar

2(i, a)

−2η∗ ∑

a∈A
θ ′
i,ar(i, a) −

∑

a∈A
θ∗
i,ar

2(i, a) + 2η∗ ∑

a∈A
θ∗
i,ar(i, a)

]

− (η′ − η∗)2,

(31)

where the second equality holds since the parameter value θj,a of policy θ∗ is the same
as that of policy θ ′, j �= i, and the corresponding elements are eliminated. Since π ′(i) is
always positive, we substitute Eq. 30 into the above equation and have

η′
σ − η∗

σ < −(η′ − η∗)2 ≤ 0. (32)

Therefore, η′
σ < η∗

σ and it contradicts the assumption that θ∗ is the optimal policy. The
theorem is proved.

Remark 3 With Eq. 28, the necessary condition (29) can be specifically rewritten as below.

∑

a∈A
θ ′
i,aG

∗(i, a) ≥
∑

a∈A
θ∗
i,aG

∗(i, a), ∀ θ ′ ∈ �, i ∈ S, (33)

where G∗(i, a) is the definition (27) under the optimal parameter θ∗, i.e., G∗(i, a) =∑
j∈S p(j |i, a)g∗

σ (j) +r2(i, a) − 2η∗r(i, a).
Compared with Eq. 29, condition (33) is simpler and easy to validate in practice. The

variance difference formulas (25) and (28) are the most general cases of sensitivity formula
for the variance minimization problem in MDPs. Some other analogous results for this
problem can be viewed as a special case of Eq. 25. Below, we discuss three different cases
to introduce the analogous form of this sensitivity formula and its variations.

Case 1, deterministic policy: We consider two deterministic policies L and L′, the cor-
responding reward functions are denoted as r and r ′, respectively. With a little abuse of
notations, r and r ′ are S-dimensional column vectors in this situation. It is easy to verify
that r̃2 = r2�, r̄ = r , r̃ ′

2 = r ′2�, r̄ ′ = r ′. Substituting them to Eq. 25, we obtain

η′
σ − ησ = π ′ [(P ′ − P )gσ + r ′2� − 2ηr ′ − r2� + 2ηr

]
− (η′ − η)2

= π ′ [(P ′ − P )gσ + (r ′ − η1)2� − (r − η1)2�
]

− (η′ − η)2. (34)

This formula is exactly the same as the variance difference formula for deterministic policies
in MDPs, which can be referred to Eq. 32 in our previous study (Xia 2016b).

Case 2, randomized policy:We consider a randomized policyLδ
L′ that adopts determin-

istic policy L′ with probability δ and adopts deterministic policy L with probability 1 − δ,
where 0 ≤ δ ≤ 1. Such a policy is also called a mixed policy. With Eq. 12, we can verify
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that r̃2 = r2�, r̄ = r , r̃δ
2 = δr ′2� + (1 − δ)r2�, r̄δ = δr ′ + (1 − δ)r , where r and r ′ are

S-dimensional column vectors that are the same as those in Case 1. Substituting them to
Eq. 25, we obtain

ηδ
σ −ησ = π ′[(P δ − P )gσ + r̃δ

2 − 2ηr̄δ − r̃2 + 2ηr̄
]

− (ηδ − η)2

= π ′[δ(P ′ −P)gσ + δr ′2� + (1− δ)r2� − 2η(δr ′ + (1− δ)r)− r2� + 2ηr
]
− (ηδ−η)2

= δπ ′[(P ′ − P )gσ + r ′2� − r2� − 2η(r ′ − r)
]

− (ηδ − η)2

= δπ ′[(P ′ − P )gσ + (r ′ − η1)2� − (r − η1)2�
]

− (ηδ − η)2. (35)

Taking the derivative operation with respect to δ and letting δ go to 0, we obtain the
following derivative formula

dησ

dδ
= π

[
(P ′ − P )gσ + (r ′ − η1)2� − (r − η1)2�

]
. (36)

Remark 4 Comparing Eqs. 36 and 34, we see that these two formulas are similar except
that the term −(ηδ − η)2 disappears and π ′ is replaced by π in Eq. 36.

Case 3, parametric randomized policy with particular parameters: We consider a para-
metric randomized policy θ in which only the parameters at a particular state, say state
k, have changes. We similarly obtain the corresponding difference formula and derivative
formula for the reward variance of Markov systems. Suppose that the parameters θk,a are
changed to θ ′

k,a , a ∈ A and other parameters θi,a′ are fixed, i �= k and a′ ∈ A. With Eq. 25,
the variance difference of Markov systems in this situation is

η′
σ −ησ = π ′(k)

⎡

⎣
∑

j∈S

∑

a∈A
(θ ′

k,a − θk,a)p(j |k, a)gσ (j) +
∑

a∈A
(θ ′

k,a − θk,a)r
2(k, a)

−2η
∑

a∈A
(θ ′

k,a − θk,a)r(k, a)

]

− (η′ − η)2

= π ′(k)
∑

a∈A
(θ ′

k,a − θk,a)

⎡

⎣
∑

j∈S
p(j |k,a)gσ (j) + r2(k, a) − 2ηr(k, a)

⎤

⎦− (η′ − η)2,

(37)

where the term of square bracket can also be represented by G(k, a) defined in Eq. 27. With
the above difference formula, we can further derive the derivative formula of the reward
variance with respect to parameter θk,a as below.

dησ

dθk,a

= π(k)

⎡

⎣
∑

j∈S
p(j |k, a)gσ (j) + r2(k, a) − 2ηr(k, a)

⎤

⎦

= π(k)G(k, a). (38)

Note that when the reward function is independent of the action, i.e., r(i, a) = r(i), ∀a ∈ A,
we can simplify the above derivative formula (38) as below.

dησ

dθk,a

= π(k)
∑

j∈S
p(j |k, a)gσ (j), (39)
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where the term r2(k, a) − 2ηr(k, a) disappears because this term has a fixed value for
different actions and it can be eliminated in Eq. 37 since

∑

a∈A
(θ ′

k,a − θk,a) = 0.

Remark 5 The derivative formula (39) is the same as the result (45) in our previous paper
(Xia 2016b) at the condition that the reward function r is unvaried under different parame-
ters θ . Therefore, Eq. 38 is more general than the result in (Xia 2016b) and it quantifies the
system derivatives when r is varied under different parameters or policies.

Therefore, with the difference formula (37) and the derivative formula (38), we can opti-
mize the parameter θ and reduce the reward variance of Markov systems. With Eq. 37, we
observe that in order to reduce the reward variance, we have to choose θ ′

k,a’s that make

the value of
∑

a∈A
θ ′
k,a

[
∑

j∈S
p(j |k, a)gσ (j) + r2(k, a) − 2ηr(k, a)

]

, i.e.,
∑

a∈A
θ ′
k,aG(k, a),

as small as possible. Since (η′ − η)2 is always nonnegative and π ′(k) is always positive,
the above selection rule of θ ′

k,a’s will effectively reduce the variance of Markov systems.
With a further analysis, we can directly derive the following theorem about this variance
minimization problem in parameterized Markov systems.

Theorem 2 For the variance minimization problem of Markov systems formulated in Eq. 9,
the optimal policy can be found in the deterministic policy space.

Proof Since the parametric randomized policy is more general than the deterministic pol-
icy, we only have to prove that the optimal parametric randomized policy can be found in
the deterministic policy space. Therefore, we focus on the optimization of the parametric
randomized policy. We study a situation in which the parameters θk,a’s on a particular state
k are to be optimized. With the variance difference formula (37) and the necessary condi-
tion in Theorem 1, we can directly have the following result. If θ∗

k := (θ∗
k,a1

, · · · , θ∗
k,aA

) is
optimal, it has to satisfy the following necessary condition

θ∗
k ∈

⎧
⎨

⎩

argmin
θk

∑

a∈A
θk,aG

∗(k, a),

s.t.
∑

a∈A
θk,a = 1, θk,a ≥ 0, ∀a ∈ A.

(40)

In the above problem, the values of all the parameters are known except θk,a’s. Obviously,
the above problem is a linear program with optimization variables θk,a’s, a ∈ A. According
to the theory of linear programming, it is well known that the optimal solution θ∗

k,a can be
found on the vertex of the multidimensional polyhedron of feasible solution θk,a’s. From
the constraints in Eq. 40, we can see that the value domain of θk,a is [0, 1]. Therefore, the
optimal solution θ∗

k,a can be either 0 or 1, for all k ∈ S and a ∈ A, which means that the
optimal policy can be deterministic. The theorem is proved.

Remark 6 The optimality of deterministic policy for the variance minimization problem
of MDPs is similar to the analogous result in a standard MDP with discounted or average
criterion.

Note that for the mean-variance optimization problem in MDPs, the optimal policy can-
not be guaranteed as a deterministic policy (Chung 1994; Mannor and Tsitsiklis 2011). The
mean-variance optimization problem can be viewed as a constrained optimization problem
that minimizes the reward variance with a constraint of mean performance. The optimal
policy may be randomized in many situations. However, as we proved in Theorem 2, the
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optimal policy of our problem (9) can be deterministic. This result lets us focus the opti-
mization attention on the deterministic policy space, which greatly reduces the optimization
complexity.

With the variance difference formula (28) and Theorems 1 and 2, we can further develop
an iterative algorithm to reduce the reward variance of the parameterized MDP problem (9).

The main procedure of Algorithm 1 is similar to the policy iteration in the traditional
MDP theory. The policy improvement step (41) can be further written as below.

θ
(l+1)
i = (0, · · · , 0, 1, 0, · · · , 0), where θ

(l+1)
i,a∗ = 1 with a∗ = argmin

a∈A
{G(i, a)} . (42)

The above formula means that the updated policy is deterministic, which is in accordance
with Theorem 2.

In Algorithm 1, we can see that the key step is to compute the value of G(i, a)’s at
every iteration. The variance of the Markov chain will be reduced after every iteration. With
Theorem 2 or Eq. 42, we know that the policies derived by Algorithm 1 are deterministic.
Based on these facts, we can further prove that Algorithm 1 will converge to a local optimum
that is defined in the randomized policy space. The similar result can also be found in
our previous paper (Xia 2016b), although the targeted problem models in these two papers
are different (in this paper we study the parameterized MDPs with varied reward function,
while in Xia (2016b) we study deterministic policies with unvaried reward functions). The
main idea to prove the local optimum can be partly motivated by Eq. 40. When Algorithm
1 stops, it indicates that θ∗

k,a∗ = 1 for a∗ = argmin
a∈A

{G(k, a)} and θ∗
k,a = 0 for other actions

a �= a∗. With the derivative formula (38), it is easy to verify that the total derivative will
be positive if we change the values of θ∗

k,a’s in a small enough neighborhood, which means
that the convergence point is a local optimum in the randomized policy space. We omit the
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proof details as the space limitation. Interested readers can refer to the proof of Theorem 5
in our previous paper (Xia 2016b).

Although currently we cannot give a specific analysis for the algorithmic complexity
of Algorithm 1, we can refer to the existing results of complexity analysis for the clas-
sical policy iteration since Algorithm 1 is similar to that. For the steps 2-3 in Algorithm
1, the time-complexity for computing η, ησ , gσ , and G(i, a)’s is of complexity O(S3)

approximately, since it involves solving linear equations such as Eqs. 15 and 18. The time-
complexity for executing Eq. 41 is of complexity O(SA), since we need S ×A comparisons
at most if we use Eq. 42. The iterative-complexity of the classical policy iteration is still an
open question (Littman et al. 1995). It has been showed with counter examples that a sim-
ple policy iteration (update actions at only one state per iteration) may require exponential
times of iterations to find the optimal policy (Melekopoglou and Condon 1990). However,
the classical policy iteration usually shows a very fast convergence rate for most of small-
scale problems. It is reasonable to argue that Algorithm 1 also has a good performance of
convergence for many small-scale problems. For large-scale problems, we may resort to
approximation techniques to reconstruct Algorithm 1, such as approximate dynamic pro-
gramming (Powell 2007), neuro-dynamic programming (Bertsekas and Tsitsiklis 1996),
deep neural networks (Silver et al. 2016), and other data-driven learning techniques.

4 Extension

In the previous section, we study the parametric policy in which θi,a is the probability of
selecting action a at state i, i ∈ S and a ∈ A. In this section, we study a general case in
which θ is a set of parameters that will affect the value of P and r .

First, we give a problem formulation for such general parameterized MDPs. With a little
abuse of notations, we denote θ as an N -dimensional vector as below.

θ := (θ1, θ2, · · · , θN ). (43)

The change of the value of θn will change the values of the transition probabilities p(i, :)’s
and the rewards r(i)’s for some states i’s, n = 1, 2, · · · , N , i ∈ S. Therefore, the whole
state space S can be partitioned based on the following definition.

Definition 1 Sn is defined as the set of states i whose transition probabilities p(i, :) and
reward r(i) are affected by θn, n = 1, 2, · · · , N .

Different parameters θn’s have different Sn’s. For simplicity, we consider a special case
that the state sets Sn’s are mutually exclusive. That is, we have the following assumption

Assumption 1 The set of states Sn’s are mutually exclusive, i.e., Sn ∩Sm = ∅ if n �= m.

With this assumption, we can see that the state space S can be partitioned by the param-
eter θ and every state’s transition probabilities p(i, :) and reward r(i) are controlled by only
one parameter θn, where i ∈ Sn. With Assumption 1, we can partition the state space S
into a series of subsets Sn’s according to θn’s. That is, we have

S = S0 ∪ S1 ∪ · · · ∪ SN, (44)
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where S0 is the set of states whose p(i, :) and r(i) are not affected by θ , where i ∈ S0. In
special cases, we may have S0 = ∅. Below, we give an example of admission control in
queueing networks to illustrate the above definitions.

Example 1 Consider an open Jackson network with 3 servers. The system state is n :=
(n1, n2, n3), where nk is the number of customers at server k. We assume that the whole
network has a capacity N = 4, i.e., the number of total customers cannot exceed 4. We
conduct admission control at the entrance of the network. In specific, the newly arriving
customers are admitted to enter the network with an admission probability an, where n is
the number of total customers observed by the arriving customer, n = 0, 1, · · · , 4, and
an ∈ R[0, 1]. Obviously, we always have a4 = 0. Therefore, this optimization problem is
a parameterized MDP and the optimization parameter is θ = (a0, a1, a2, a3). If we change
the value of parameter a1, then the transition probability and reward at the state subset
S1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}will be affected. We can easily verify that this admission
control problem satisfies the above assumptions. More details about this admission control
problem can be referred to our previous work (Xia 2014; Xia and Jia 2015).

Similar to the notations in Section 3, we also use P θ and rθ to denote the effect of θ on
the dynamics of Markov systems. The long-run average performance of the Markov system
under the parameter θ is

ηθ := lim
T →∞

1

T
E

{
T −1∑

t=0

rθ (Xt )

}

. (45)

The reward variance of the Markov system is

ηθ
σ := lim

T →∞
1

T
E

{
T −1∑

t=0

[
rθ (Xt ) − ηθ

]2
}

. (46)

The value domain of the parameter θ is an N -dimensional polyhedron in real number space
and we denote it as �, � ∈ R

N . Our goal is to find the optimal parameter θ∗ such that the
reward variance is minimized, i.e.,

θ∗ = argmin
θ∈�

{

lim
T →∞

1

T
E

[
T −1∑

t=0

(
rθ (Xt ) − ηθ

)2
]}

. (47)

In Section 3, we define the parametric policy θi,a with which the action selection is
randomized, so the system reward is also randomized and we define the variance function
as Eq. 14. In this section, the parameter is θ and the system reward is deterministic and we
denote it as rθ (i). Therefore, we define the variance function in this parameterized MDPs
as below.

f θ
σ (i) = (rθ (i) − ηθ )2. (48)

For notation simplicity, we also omit the superscript “θ” by default and use P ′, r ′, η′, η′
σ

to replace P θ ′, rθ ′, ηθ ′, ηθ ′
σ respectively. Similar to the analysis in Section 3, we can apply

the sensitivity-based optimization theory to this problem and derive the variance difference
formula for this parameterized MDP when the parameter is changed from θ to θ ′.

η′
σ − ησ = π ′[(P ′ − P )gσ + (f ′

σ − f σ )]
= π ′[(P ′ − P )gσ + (r ′ − η′1)2� − (r − η1)2�]
= π ′[(P ′ − P )gσ + (r ′ − η1)2� − (r − η1)2�] − (η′ − η)2. (49)
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The above formula has the same form as Eq. 34 in which we study deterministic policies.
With Assumption 1, we can further rewrite the above formula as below.

η′
σ−ησ =

N∑

n=1

∑

i∈Sn

π ′(i)

⎡

⎣
∑

j∈S
(p′(i,j)−p(i,j))gσ(j) + (r ′(i)−η)2−(r(i)−η)2

⎤

⎦−(η′−η)2.

(50)

Note that in the above formula, p′(i, j) and r ′(i) are affected only by the value of θ ′
n for

i ∈ Sn, but π ′(i) and η′ are affected by the value of the whole parameter vector θ ′.
With the variance difference formula (50), we further study the performance derivatives.

Suppose that the parameter θk is changed to θ ′
k , while other parameters θn remain unvaried,

n = 1, 2, · · · , N and n �= k. The above difference formula (50) becomes

η′
σ −ησ =

∑

i∈Sk

π ′(i)

⎡

⎣
∑

j∈S
(p′(i, j) − p(i,j))gσ (j) + (r ′(i) − η)2 − (r(i) − η)2

⎤

⎦−(η′−η)2.

(51)
Taking the derivative operation w.r.t. θk on the above formula, we can obtain

dησ

dθk

=
∑

i∈Sk

π(i)

⎡

⎣
∑

j∈S

dp(i, j)

dθk

gσ (j) + 2(r(i) − η)
dr(i)

dθk

⎤

⎦ , k = 1, 2, · · · , N. (52)

In the above analysis, we assume that the parameterized MDP has the special structure
defined in Assumption 1. For a general case in which the problem does not have such
structures, we can conduct similar analysis and obtain the following derivative formula in a
matrix form

dησ

dθ
= π

[
dP

dθ
gσ + 2(r − η1) � dr

dθ

]

, (53)

where θ is a scalar parameter, dP
dθ and dr

dθ are matrix and vector derivatives w.r.t. θ ,
respectively.

5 Numerical experiments

In this section, we conduct numerical experiments to verify the main results of this paper.
Consider a Markov chain with state space S = {1, 2, 3} and action spaceA = {a1, a2, a3}.
The transition probabilities are different under different actions. For state i = 1, we have
p(: |1, a1) = (0.6, 0.2, 0.2), p(: |1, a2) = (0.2, 0.5, 0.3), p(: |1, a3) = (0.1, 0.2, 0.7);
For state i = 2, we have p(: |2, a1) = (0.5, 0.3, 0.2), p(: |2, a2) = (0.2, 0.7, 0.1), p(:
|2, a3) = (0.1, 0.1, 0.8); For state i = 3, we have p(: |3, a1) = (0.4, 0.2, 0.4), p(: |3, a2) =
(0.1, 0.6, 0.3), p(: |3, a3) = (0.2, 0.1, 0.7). The system reward is varied under different
actions adopted, which is different from the unvaried reward function used in our previous
work (Xia 2016b). For state i = 1, we have r(1, a1) = 1, r(1, a2) = 2, r(1, a3) = 3;
For state i = 2, we have r(2, a1) = 5, r(2, a2) = 1, r(2, a3) = 3; For state i = 3, we
have r(3, a1) = 6, r(3, a2) = 4, r(3, a3) = 2. The optimization parameters are the action
selection probabilities at every state, as defined in Eq. 5. The goal is to find the optimal
parameter θ∗ that minimizes the variance of the system rewards of this Markov chain.

By applying Algorithm 1, we conduct the policy iteration type algorithm to reduce the
reward variance. We compute the value of η, ησ , and gσ under the current policy, thus we
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Table 1 4 different local optima
to which Algorithm 1 may
converge

L (a2, a3, a3) (a3, a3, a2) (a2, a2, a3) (a1, a2, a3)

η 2.1731 3.5267 1.5500 1.3333

ησ 0.1431 0.2493 0.2475 0.2222

obtain the value ofG(i, a)’s using Eq. 27. Then we use the policy improvement formula (41)
or (42) to find a new policy improved. As stated in Theorem 2, the optimal policy can be
found in the deterministic policy space. Therefore, we can simplify the form of parametric
policy from a 3× 3 matrix θ to a vectorL. For example,L = (a2, a3, a1) indicates that we
choose action a2 at state 1, action a3 at state 2, and action a1 at state 3. If in a matrix form
as (5), it indicates

θ =
⎛

⎝
0, 1, 0
0, 0, 1
1, 0, 0

⎞

⎠ .

We enumerate all the initial policies and find that Algorithm 1 typically converges within
1 or 2 iterations. There are 4 different policies to which Algorithm 1 may converge, as we
illustrate in Table 1. These 4 policies are the local minima of this variance minimization
problem. If Algorithm 1 starts with different initial policies, it may converge to different
local optimum policies. The first column in Table 1, L = (a2, a3, a3) and ησ = 0.1431, is
the global minimum of this variance minimization problem.

Since this Markov chain is a small example and it only has 33 = 27 different determin-
istic policies, we enumerate all these policies and obtain their mean and variance of system
rewards. Plotting them in a 2-dimension plane, we obtain Fig. 2, where the star-point is the
global optimum and the triangle-points are the local optimum. If our goal is to maximize the
mean while minimize the variance, we can obtain the efficient frontier of this 2-objective
optimization problem, as illustrated in Fig. 2. For these 4 solutions listed in Table 1, we
can see that the first solution is dominant over the third and fourth solutions both in mean
and variance.

The mean of rewards 
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Fig. 2 The mean and variance of different policies and the efficient frontier
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6 Conclusion

In this paper, we study the optimization of parameterized MDPs under the variance cri-
terion. The variance difference formulas (25) and (28) are the key findings of this paper
and the nonnegative term (η′ − η)2 is the key term of the variance difference formula. The
sensitivity-based optimization theory provides a new perspective to study this parameterized
MDP, which is different from the traditional gradient-based approach. Based on the above
results, we further derive a necessary condition for the optimal parametric policy. The opti-
mality of deterministic policy for this variance minimization problem is also proved, which
can be utilized to greatly reduce the optimization complexity. Finally, we develop an itera-
tive algorithm to efficiently reduce the variance of Markov systems and conduct numerical
experiments to demonstrate the main results of this paper.

During the implementation of the optimization algorithm, one of the key problems is
to efficiently compute or estimate the quantity gσ or G(i, a)’s. This problem is similar to
the computation or estimation of value functions or Q-factors in the classical MDP the-
ory. The similar ideas, such as the approximate dynamic programming or other function
approximation techniques (Bertsekas 2012), can also be considered to handle the curse of
dimensionality issue in our problem. On the other hand, we consider only the variance cri-
terion in this paper, regardless of the average criterion. How to extend our approach to the
mean-variance optimization is another important topic deserving future investigations.
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