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Abstract Inference-based decentralized diagnosis is a framework introduced in the
authors’ former work, where inferencing over the ambiguities of the self and the others is
used to issue diagnosis decisions. The implementation of the framework requires the online
computation of the ambiguity levels by each of the local decision makers, following each of
their local observations. This in turn requires knowing the delay bound of diagnosis, which
needs to be computed offline, prior to the online monitoring for fault detection. The paper
presents the offline computation of the delay bound of diagnosis, along with a certain set of
languages, which together aid the online computation of the ambiguity levels.
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1 Introduction

There exists a long history of research on fault diagnosis of discrete event systems (DESs)
(see for example Sampath et al. 1995; Zaytoon and Lafortune 2013). The notion of diag-
nosability requires detection of any fault within a uniformly bounded delay, which in turn
requires that within that bounded delay, the post fault-behaviors generate observations that
are distinguished from the pre-fault ones (Sampath et al. 1995).

For large, physically distributed systems, decentralized diagnosis is employed, where
multiple local diagnosers that rely on their own subsets of accessible sensors make local
diagnosis decisions that are pooled together to deduce a global one. See for example
(Debouk et al. 2000; Su and Wonham 2005; Qiu and Kumar 2006, 2008; Wang et al.
2007, 2010, 2011; Qiu et al. 2009; Kumar and Takai 2009; Schmidt 2010; Takai and Ushio
2012; Cassez 2012; Chakib and Khoumsi 2012; Yamamoto and Takai 2014, 2015; Yin and
Lafortune 2015; Yokota et al. 2017). The notion of codiagnosability that captures the prop-
erty that a fault can be detected by at least one of the local diagnosers within a uniformly
bounded delay was formally introduced in Qiu and Kumar (2006). This scheme, where at
least one diagnoser issues a failure decision unambiguously, is “disjunctive” in nature. In
contrast, a dual “conjunctive” scheme, which is incomparable to the disjunctive one, was
later proposed in Wang et al. (2007), where a nonfailure decision is issued by a diagnoser
when it is unambiguous about it and a fault is detected when none of the diagnosers issue a
nonfailure decision.

In the disjunctive and conjunctive schemes mentioned above, each diagnoser makes a
local diagnosis decision on the basis of the own knowledge. The process of utilizing the
own knowledge as well as the inferred others’ knowledge for the sake of decision-making
was referred to as “inferencing” (where local diagnosers know each other’s observation
masks). A general framework for inference-based decentralized decision-making was intro-
duced by the authors of the present paper in Kumar and Takai (2007) and adopted to the
cases of diagnosis in Kumar and Takai (2009) and prognosis in Takai and Kumar (2011). In
the inference-based setting, each diagnoser uses not only its own knowledge of the system
behaviors, but also the inference about the possible knowledge of the system behaviors of
other diagnosers to arrive at its own local decision. The “winning” local decision (namely,
the one needing the least levels of inferencing) is set as the global decision. While the gen-
eral framework of Kumar and Takai (2009) supports arbitrary levels of inferencing, the
work of Kumar and Takai (2009) employs only the disjunctive scheme. Our recent work
Takai and Kumar (2017) supports both the disjunctive and conjunctive schemes, along with
multiple levels of inferencing. To achieve such generality over (Kumar and Takai 2009),
the main new insight lies in identifying the seed pair of failure and nonfailure behaviors
that must be disambiguated through inferencing. In Kumar and Takai (2009), this seed pair
was simply taken to be all failure versus all nonfailure behaviors. However, this is unnec-
essarily strong, and instead, only those failure behaviors that have allowed the execution of
post-fault behaviors to a certain minimum number of steps (equaling the uniformly bounded
delay of detection) must be disambiguated from the nonfailure behaviors to capture both
disjunctive and conjunctive decision-making. The inference-based framework of Takai and
Kumar (2017) is general enough to subsume the disjunctive and conjunctive frameworks of
Qiu and Kumar (2006) and Wang et al. (2007), respectively, which do not involve inferenc-
ing, and the conditional disjunctive and conditional conjunctive frameworks of Wang et al.
(2007), which involve a single-level of inferencing. Furthermore, as the levels of inferencing
are increased, a larger class of diagnosable systems are obtained (Takai and Kumar 2017).
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Local supervisors (respectively, diagnosers) with conditional decisions involving a
single-level inferencing were developed in Yoo and Lafortune (2007) (respectively, Yokota
et al. 2017). The current paper presents the online implementation of the inference-
based decentralized diagnosers in the generalized framework of Takai and Kumar (2017)
supporting both conjunctive and disjunctive decision-making (different from the earlier ver-
sion (Kumar and Takai 2009), which used only disjunctive decision-making, omitting the
conjunctive one). The implementation requires the online computation of the diagnosis deci-
sions and the associated ambiguity levels by each of the local decision makers, following
each of their local observations. This in turn requires knowing the delay bound of diagno-
sis, which must be computed offline, prior to the online monitoring for fault detection. The
paper presents the computation of the delay bound of diagnosis, and also a certain set of
languages, which together aid the recursive online computation of the diagnosis decisions.
Complexity analysis for the required offline as well as online computations is provided.
The paper also shows that as the number of inferencing levels increases, the delay bound
of diagnosis decreases and a larger class of systems become diagnosable. So there exists a
tradeoff between the complexity versus the ability and delay of diagnosis.

Note that knowing the delay bound is also important to execute mitigation actions in a
timely manner, and is a figure of merit of a diagnosis scheme. Algorithms for computing
the delay bound are reported in the literature for various earlier schemes: disjunctive (Qiu
and Kumar 2006), conjunctive (Yamamoto and Takai 2014), and conditional disjunctive and
conjunctive (Yokota et al. 2017). The results on the computation of the delay bound were
first reported at the authors’ conference papers (Takai and Kumar 2016) but without proofs.
This paper provides additional results on the online computation of the ambiguity levels and
additionally includes all the correctness proofs, and new examples.

2 Notation and preliminaries

A deterministic automaton is a five-tuple G = (Q, �, δ, q0,Qmark), where Q is the set
of states, � is the finite set of events, δ : Q × � → Q is the partial transition function,
q0 ∈ Q is the initial state, and Qmark ⊆ Q is the set of marked states.1 Let �∗ be the
set of all finite traces of elements of �, including the empty trace ε. The function δ can be
extended to δ : Q × �∗ → Q in the usual manner. The generated and marked languages of
G, denoted by L(G) and Lm(G), respectively, are defined as L(G) = {s ∈ �∗ | δ(q0, s)!}
and Lm(G) = {s ∈ �∗ | δ(q0, s) ∈ Qmark}, where δ(q, s)! denotes that δ(q, s) is defined
for each q ∈ Q and each s ∈ �∗.

Let K ⊆ �∗ be a language. The set of all prefixes of traces in K is denoted by pr(K).
If K = pr(K), then K is said to be (prefix-)closed. A closed language K is said to be
deadlock-free if, for any s ∈ K , {s}�∩K �= ∅. For each trace s ∈ �∗, |s| denotes its length.
For any m ∈ N, where N denotes the set of all nonnegative integers, let �≥m := {s ∈ �∗ |
|s| ≥ m} and �≤m := {s ∈ �∗ | |s| ≤ m}.

Let I = {1, 2, . . . , n} denote the index set of local diagnosers that perform the task of
diagnosis. We assume that the limited sensing capabilities of the ith local diagnoser Di

(i ∈ I ) can be represented by the local observation mask, Mi : � → �i ∪ {ε}, where
�i is the set of locally observed symbols. An event σ ∈ � with Mi(σ) = ε is said to

1In this paper, an automaton is deterministic, unless otherwise stated.
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be unobservable under Mi . The local observation mask Mi is extended to Mi : �∗ →
�∗

i in the usual manner. Two traces s, s′ ∈ �∗ with Mi(s) = Mi(s
′) are said to be Mi-

indistinguishable. In addition, the inverse map of Mi , denoted by M−1
i : �∗

i → 2�∗
, is

defined asM−1
i (t) = {s ∈ �∗ | Mi(s) = t} for each t ∈ �∗

i . For any languagesL ⊆ �∗ and
L′ ⊆ �∗

i , Mi(L) ⊆ �∗
i and M−1

i (L′) ⊆ �∗ are defined as Mi(L) = {Mi(s) ∈ �∗
i | s ∈ L}

and M−1
i (L′) = {s ∈ �∗ | Mi(s) ∈ L′}, respectively. For any subset Q′ ⊆ Q of the state

set Q of G, the unobservable reach set URG,i(Q
′) ∈ 2Q is defined as

URG,i(Q
′) = {q ′ ∈ Q | ∃q ∈ Q′, ∃s ∈ M−1

i (ε) ∩ L(G) : δ(q, s) = q ′}. (1)

Let L �= ∅ be a closed language that represents the generated language of a plant (system
to be diagnosed) modeled as a finite automaton G = (Q, �, δ, q0, Q), and K ⊆ L be a
nonempty closed language that represents a nonfailure specification. Traces in L − K are
considered as failure traces and the task of diagnosis is to determine the execution of any
trace in L − K within an additional bounded number of system executions. Without loss of
generality, the plant language L can be taken to be deadlock-free (Kumar and Takai 2009).

In what follows, we need a finite acceptor of the post-fault traces in which a fault
occurred at least m steps in the past, i.e., traces in F0(m) := L∩(L−K)�≥m. When m cor-
responds to the delay bound of diagnosis, F0(m) corresponds to the set of traces for which
a failure decision can be issued. Also, when m = 0, F0(m) simply corresponds to the set of
all failure traces.

To construct a finite acceptor of the language F0(m) = L∩ (L−K)�≥m for any m ∈ N,
we augment a finite generator GK = (QK, �, δK, qK,0,QK) of the nonfailure specifica-
tion language K ⊆ L by adding m + 1 dump states d0, d1, . . . , dm �∈ QK . Formally, the
augmented automaton is defined as

G̃Km = (Q̃Km,�, δ̃Km, qK,0, {dm}),
where Q̃Km = QK ∪ {dj | j ∈ {0, 1, . . . , m}}, and the state transition function δ̃Km :
Q̃Km ×� → Q̃Km is defined as follows (Yamamoto and Takai 2015): For each q̃Km ∈ Q̃Km

and each σ ∈ �,

δ̃Km(q̃Km, σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

δK(q̃Km, σ ), if q̃Km ∈ QK ∧ δK(q̃Km, σ )!
d0, if q̃Km ∈ QK ∧ ¬δK(q̃Km, σ )!
dl+1, if q̃K = dl(m ≥ 1 ∧ 0 ≤ l ≤ m − 1)
dm, if q̃Km = dm,

where ¬δK(q̃Km, σ )! denotes the negation of δK(q̃Km, σ )! It follows from the definition of
G̃Km that L(G̃Km) = �∗ and Lm(G̃Km) = �∗ − K�≤m.

We construct the synchronous product G ‖ G̃Km (Kumar and Garg 1995) of the finite
plant model G = (Q, �, δ, q0,Q) and G̃Km , which is denoted by

G ‖ G̃Km = (Q × Q̃Km, �, ξm, (q0, qK,0),Q × {dm}).
Then we have L(G ‖ G̃Km) = L(G) ∩ L(G̃Km) = L and Lm(G ‖ G̃Km) =
Lm(G) ∩ Lm(G̃Km) = L ∩ (L − K)�≥m = F0(m), i.e., G ‖ G̃Km can be used as
a finite accepter of F0(m). For simplicity of notation, in the case of m = 0, we drop
the subscript m in the notation, i.e., G̃K0 = (Q̃K0 , �, δ̃K0 , qK,0, {d0}) and G ‖ G̃K0 =
(Q × Q̃K0 , �, ξ0, (q0, qK,0),Q × {d0}) are also denoted by G̃K = (Q̃K, �, δ̃K, qK,0, {d})
and G ‖ G̃K = (Q × Q̃K,�, ξ, (q0, qK,0),Q × {d}), respectively.
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3 Inference-based diagnosis framework

The material in this section summarizes our earlier work reported in Takai and Kumar
(2017) that introduced the inference-based diagnosis framework, along with the notion of
N -inference diagnosability and its verification test.

3.1 Existence condition of N -inferring diagnosers

Let C = {0, 1, φ} be the set of diagnosis decisions, where “0” represents a nonfailure
decision, “1” represents a failure decision, and “φ” represents an unsure decision. Each
inference-based local diagnoser Di is defined as a map Di : Mi(L) → C × N (Kumar and
Takai 2009), where for each s ∈ L,Di(Mi(s)) = (ci(Mi(s)), ni(Mi(s))). Here ci(Mi(s)) ∈
C denotes the diagnosis decision of Di following an observation Mi(s) ∈ Mi(L), and
ni(Mi(s)) ∈ N denotes the ambiguity level of the diagnosis decision of Di . Let n(s) be
the minimum ambiguity level of local decisions (Kumar and Takai 2009), i.e., n(s) :=
mini∈I ni(Mi(s)).

The decentralized diagnoser {Di}i∈I that consists of local diagnosers Di (i ∈ I ) issues
the global diagnosis decision. Formally, {Di}i∈I is defined as a map {Di}i∈I : L → C. For
each s ∈ L, the diagnosis decision {Di}i∈I (s) is given as follows (Kumar and Takai 2009):

{Di}i∈I (s) =
⎧
⎨

⎩

1, if ∀i ∈ I : ni(Mi(s)) = n(s) ⇒ ci(Mi(s)) = 1
0, if ∀i ∈ I : ni(Mi(s)) = n(s) ⇒ ci(Mi(s)) = 0
φ, otherwise.

(2)

The global diagnosis decision is taken to be the same as a local diagnosis decision
possessing the minimum level of ambiguity.

A useful notion of a decentralized diagnoser is the boundedness of the ambiguity level
of its decisions. Let N ∈ N be a given nonnegative integer. A decentralized diagnoser
{Di}i∈I : L → C is said to be N -inferring (Takai and Kumar 2017) if the following two
conditions hold:

1. Either
∀s ∈ L − K : {Di}i∈I (s) = 1 ⇒ n(s) ≤ N, (3)

or
∀s ∈ K : {Di}i∈I (s) �= 1 ⇒ n(s) ≤ N. (4)

2. There exists m ∈ N such that
∀s ∈ (L ∩ (L − K)�≥m) ∪ K : n(s) ≤ N ⇒ {Di}i∈I (s) �= φ. (5)

Given a plant language L, a nonfailure specification language K ⊆ L, and a non-
negative integer m ∈ N, we inductively define a monotonically decreasing sequence
{(Fk(m), Hk(m))}k≥0 of language pairs as follows (Takai and Kumar 2017):

– Base step:
F0(m) := L ∩ (L − K)�≥m, H0(m) := K.

– Induction step:

Fk+1(m) := Fk(m) ∩
(

⋂

i∈I

M−1
i Mi(Hk(m))

)

,

Hk+1(m) := Hk(m) ∩
(

⋂

i∈I

M−1
i Mi(Fk(m))

)

.
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In the base step, F0(m) = L ∩ (L − K)�≥m is the set of failure traces for which at least m
events occurred after the occurrence of the failure, and H0(m) = K is the set of nonfailure
traces. In the induction step, Fk+1(m) (respectively, Hk+1(m)) is a sublanguage of Fk(m)

(respectively, Hk(m)) consisting of traces for which there exists an Mi-indistinguishable
trace in Hk(m) (respectively, Fk(m)) for each i ∈ I .

Then we have the following definition of N -inference diagnosability.

Definition 1 (Takai and Kumar 2017) The pair (L,K) of regular languages is said to be
N -inference diagnosable if there exists m ∈ N such that FN+1(m) = ∅ or HN+1(m) = ∅.

Remark 1 A relation among various notions of diagnosability for decentralized diagnosis is
shown in Fig. 1, and shows that the framework analyzed here is most general.

Example 1 We consider a plant modeled by the finite automaton G shown in Fig. 2a. Let
�1 = {a, a′, c, d, e}, �2 = {b, b′, c, d, e}, and

M1(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

a, if σ ∈ {a1, a2}
a′, if σ ∈ {a′

1, a
′
2}

σ, if σ ∈ {c, d, e}
ε, otherwise,

M2(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

b, if σ ∈ {b1, b2}
b′, if σ ∈ {b′

1, b
′
2}

σ, if σ ∈ {c, d, e}
ε, otherwise.

In addition, let K ⊆ L be a closed regular language generated by the finite automaton
GK shown in Fig. 2b. In this example, the failure is modeled by the occurrence of the
event f .

Fig. 1 A relation among notions of diagnosability for decentralized diagnosis
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Fig. 2 Automata G and GK of Example 1

We show that (L,K) is 2-inference diagnosable but not 1-inference diagnosable. We
consider any m ∈ N such that m ≥ 1. Initially, we have

F0(m) = d(a1f cmc∗ + b1f cmc∗) + e(f cmc∗ + a2f b′
2c

m−1c∗ + b2f a′
2c

m−1c∗),
H0(m) = pr(d(c+ + a1b

′
1c

+ + b1a
′
1c

+) + e(a2c
+ + b2c

+)).

Since

M1(F0(m)) = d(acmc∗ + cmc∗) + e(cmc∗ + acm−1c∗ + a′cm−1c∗),
M2(F0(m)) = d(cmc∗ + bcmc∗) + e(cmc∗ + b′cm−1c∗ + bcm−1c∗),
M1(H0(m)) = pr(d(c+ + ac+ + a′c+) + e(ac+ + c+)),

M2(H0(m)) = pr(d(c+ + b′c+ + bc+) + e(c+ + bc+)),

we have

F1(m) = F0(m) ∩
(

⋂

i∈I

M−1
i Mi(H0(m))

)

= d(a1f cmc∗ + b1f cmc∗) + ef cmc∗,

H1(m) = H0(m) ∩
(

⋂

i∈I

M−1
i Mi(F0(m))

)

= dcmc∗ + e(a2c
mc∗ + b2c

mc∗).
Moreover, by the iterative computation, we obtain

F2(m) = ef cmc∗,
H2(m) = dcmc∗,

and finally, we have F3(m) = H3(m) = ∅, which implies that (L,K) is 2-inference diag-
nosable. However, since F2(m) �= ∅ and H2(m) �= ∅ for any m ∈ N, it is not 1-inference
diagnosable.
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The following theorem shows that N -inference diagnosability is a necessary and suffi-
cient condition for the existence of an N -inferring decentralized diagnoser with no missed
and incorrect detections.

Theorem 1 (Takai and Kumar 2017) There exists an N -inferring decentralized diagnoser
{Di}i∈I : L → C that satisfies

∃m ∈ N,∀s ∈ L ∩ (L − K)�≥m : {Di}i∈I (s) = 1, (6)

∀s ∈ K : {Di}i∈I (s) �= 1 (7)

if and only if the pair (L,K) of regular languages is N -inference diagnosable.

3.2 Online computation of local diagnosis decisions and ambiguity levels

For the pair (L,K) of regular languages that is N -inference diagnosable (so that there exists
m ∈ N such that FN+1(m) = ∅ or HN+1(m) = ∅), a local diagnoser can compute its
diagnosis decision and associate a level of ambiguity as follows: For each s ∈ L, the ith
local diagnoser Di computes

n
f
i (Mi(s)) := min{k ∈ N | Mi(s) /∈ Mi(Hk(m))}, (8)

nh
i (Mi(s)) := min{k ∈ N | Mi(s) /∈ Mi(Fk(m))}. (9)

Here n
f
i (Mi(s)) represents the ambiguity level of a failure decision contemplated by

the ith diagnoser following the observation Mi(s). Similarly, nh
i (Mi(s)) represents the

ambiguity level of a nonfailure decision contemplated by the ith diagnoser following the
observation Mi(s). Since FN+1(m) = ∅ and HN+1(m) = ∅ imply HN+2(m) = ∅ and
FN+2(m) = ∅, respectively, both n

f
i (Mi(s)) and nh

i (Mi(s)) are bounded above by N + 2.
For a local diagnoser Di : Mi(L) → C × N, its diagnosis decision and ambiguity level

following an observation Mi(s) ∈ Mi(L), i.e.,

Di(Mi(s)) = (ci(Mi(s)), ni(Mi(s))),

is determined as follows (Kumar and Takai 2009):

ci(Mi(s)) =

⎧
⎪⎨

⎪⎩

1, if n
f
i (Mi(s)) < nh

i (Mi(s))

0, if nh
i (Mi(s)) < n

f
i (Mi(s))

φ, if n
f
i (Mi(s)) = nh

i (Mi(s)),

(10)

ni(Mi(s)) = min{nf
i (Mi(s)), n

h
i (Mi(s))}. (11)

It was shown in Takai and Kumar (2017) that the decentralized diagnoser {Di}i∈I : L →
C for which the local diagnosers are given by Eqs. 8–11 is N -inferring and satisfies

∀s ∈ L ∩ (L − K)�≥m : {Di}i∈I (s) = 1 (12)

and Eq. 7, i.e., any failure can be correctly detected by the decentralized diagnoser {Di}i∈I :
L → C within m steps.

Remark 2 In summary, the decentralized diagnosis scheme for an N -inference diagnosable
pair (L,K) of regular languages can be implemented as follows. When the plant executes
a trace s ∈ L, it is observed as the trace Mi(s) at the ith local site. Using Eqs. 8 and 9,
the ith local diagnoser computes the values n

f
i (Mi(s)) and nh

i (Mi(s)). When n
f
i (Mi(s))

(respectively, nh
i (Mi(s))) is smaller, the ith local diagnoser issues a failure (respectively,
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nonfailure) decision with the ambiguity level nf
i (Mi(s)) (respectively, nh

i (Mi(s))), whereas

when the two values are the same, the unsure decision with the ambiguity level nf
i (Mi(s)) =

nh
i (Mi(s)) is issued, as shown in Eqs. 10 and 11. All local decisions are collected at a central

decision fusion unit, where, according to Eq. 2, a global decision is always taken to be a
winning local decision, i.e., a local decision possessing the minimum ambiguity level.

To compute the diagnosis decision ci(Mi(s)) and the ambiguity level ni(Mi(s)) using
Eqs. 8–11, we first need to compute the set {(Fk(m),Hk(m))}0≤k≤N+1 of language pairs.
However in order to do that, we need to know m ∈ N (a delay bound) for which it holds that
FN+1(m) = ∅ ∨ HN+1(m) = ∅. These computations rely on the various constructions and
the theoretical results used for verifying N -inference diagnosability, which we summarize
in the subsection below.

3.3 Verification of N -inference diagnosability

For simplicity of presentation, we consider the case of two local diagnosers, i.e., I = {1, 2},
as in Takai and Kumar (2017). The results continue to hold for an arbitrary number of local
diagnosers. We also consider the case of N ≥ 1 since inferencing is not involved in the case
of N = 0.

Violation of N -inference diagnosability of (L,K) requires that, for any m ∈ N,
FN+1(m) �= ∅ and HN+1(m) �= ∅. As shown in the following proposition, which can be
proved in the same way as Proposition 1 of Takai and Kumar (2017), the nonemptiness of
Fk(m) and Hk(m) (1 ≤ k ≤ N + 1) can be characterized as the existence of certain 2k + 1
traces in L.

Proposition 1 Consider the pair (L,K) of regular languages and any m ∈ N.

1. For any s0 ∈ L and any k ∈ N such that 1 ≤ k ≤ N + 1, s0 ∈ Fk(m) if and only
if s0 ∈ F0(m) and there exist 2k traces s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈ L

such that

– ∀i ∈ I, ∀i′ ∈ {0, 1, . . . , k − 1}:

sii′ ∈
{

H0(m), if i′ is an even number
F0(m), if i′ is an odd number,

– ∀i ∈ I : Mi(s0) = Mi(si0),
– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:

{
M2(s1i′) = M2(s1(i′+1)), if i′ is an even number
M1(s1i′) = M1(s1(i′+1)), if i′ is an odd number,

– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:
{

M1(s2i′) = M1(s2(i′+1)), if i′ is an even number
M2(s2i′) = M2(s2(i′+1)), if i′ is an odd number.

2. For any s0 ∈ L and any k ∈ N such that 1 ≤ k ≤ N + 1, s0 ∈ Hk(m) if and only
if s0 ∈ H0(m) and there exist 2k traces s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈ L

such that



324 Discrete Event Dyn Syst (2018) 28:315–348

– ∀i ∈ I, ∀i′ ∈ {0, 1, . . . , k − 1}:

sii′ ∈
{

F0(m), if i′ is an even number
H0(m), if i′ is an odd number,

– ∀i ∈ I : Mi(s0) = Mi(si0),
– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:

{
M2(s1i′) = M2(s1(i′+1)), if i′ is an even number
M1(s1i′) = M1(s1(i′+1)), if i′ is an odd number,

– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:
{

M1(s2i′) = M1(s2(i′+1)), if i′ is an even number
M2(s2i′) = M2(s2(i′+1)), if i′ is an odd number.

Employing Proposition 1, we first provide a construction to test the nonemptiness of
FN+1(m) for any m ∈ N. To begin, for any m ∈ N and any k ∈ {1, 2, . . . , N + 1},
we build a generator TFkm of all traces s0, s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈
L that satisfy the last three conditions of the first part of Proposition 1. For this,
in the case of k = N + 1, we define the index set IN of (2N + 3) traces
s0, s10, s11, . . . , s1N, s20, s21, . . . , s2N ∈ L of Proposition 1 and IFN of among those that
are failure traces s0, s11, s13, . . . , s1l , s21, s23, . . . , s2l ∈ L − K , where

l =
{

N − 1, if N is an even number
N, if N is an odd number,

as follows:

IN = {0, 10, 11, . . . , 1N, 20, 21, . . . , 2N},
IFN = {0, 11, 13, . . . , 1l, 21, 23, . . . , 2l}.

Using the notation IFN , we define a finite automaton

TFkm = (RFkm, �Fk, αFkm, rFkm,0, RFkm,mark)

as follows:

• The state set RFkm is defined as

RFkm

= (Q × Q̃Km) × Q10 × Q11 × · · · × Q1(k−1) × Q20 × Q21 × · · · × Q2(k−1),

where

Qii′ =
{

QK, if i′ is an even number
Q × Q̃Km, if i′ is an odd number

for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.
• The initial state rFkm,0 ∈ RFkm is given as

rFkm,0 = ((q0, qK,0), q10,0, q11,0, . . . , q1(k−1),0, q20,0, q21,0, . . . , q2(k−1),0),

where

qii′,0 =
{

qK,0, if i′ is an even number
(q0, qK,0), if i′ is an odd number

for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.
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• The set RFkm,mark of marked states is defined as

RFkm,mark = {rFkm ∈ RFkm | [rFkm(0) ∈ Q × {dm}]
∧[∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} :

ii′ ∈ IFN ⇒ rFkm(ii′) ∈ Q × {dm}]},
where, for each rFkm = ((q, q̃Km), q10, q11, . . . , q1(k−1), q20, q21, . . . , q2(k−1)) ∈
RFkm , we let rFkm(0) = (q, q̃Km) and rFkm(ii′) = qii′ for each i ∈ I and each
i′ ∈ {0, 1, . . . , k − 1}.

• The event set �Fk is defined as

�Fk = (� ∪ {ε}) × (� ∪ {ε}) × · · · × (� ∪ {ε})
︸ ︷︷ ︸

(2k+1) times

− {(ε, ε, . . . , ε)}.

• For each

rFkm = ((q, q̃Km), q10, q11, . . . , q1(k−1), q20, q21, . . . , q2(k−1)) ∈ RFkm

and each

σFk = (σ, σ10, σ11, . . . , σ1(k−1), σ20, σ21, . . . , σ2(k−1)) ∈ �Fk,

αFkm(rFkm, σFk)! if the following five conditions are satisfied:
– σ �= ε ⇒ ξm((q, q̃Km), σ )!,
– ∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} :

σii′ �= ε ⇒
{

δK(qii′ , σii′)!, if i′ is an even number
ξm(qii′ , σii′)!, if i′ is an odd number,

– ∀i ∈ I : Mi(σ) = Mi(σi0),
– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:

{
M2(σ1i′) = M2(σ1(i′+1)), if i′ is an even number
M1(σ1i′) = M1(σ1(i′+1)), if i′ is an odd number,

– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:
{

M1(σ2i′) = M1(σ2(i′+1)), if i′ is an even number
M2(σ2i′) = M2(σ2(i′+1)), if i′ is an odd number.

If αFkm(rFkm, σFk)!, then
αFkm(rFkm, σFk) = ((q ′, q̃ ′

Km
), q ′

10, q
′
11, . . . , q

′
1(k−1), q

′
20, q

′
21, . . . , q

′
2(k−1)),

where

(q ′, q̃ ′
Km

) =
{

ξm((q, q̃Km), σ ), if σ �= ε

(q, q̃Km), otherwise

and

q ′
ii′ =

⎧
⎨

⎩

δK(qii′ , σii′), if σii′ �= ε ∧ [i′ is an even number]
ξm(qii′ , σii′), if σii′ �= ε ∧ [i′ is an odd number]
qii′ , otherwise.

For each σFk = (σ, σ10, σ11, . . . , σ1(k−1), σ20, σ21, . . . , σ2(k−1)) in �Fk , we let
σFk(0) = σ and σFk(ii

′) = σii′ for each i ∈ I and each i′ ∈ {0, 1, . . . , k − 1}.
In addition, for a nonempty trace sFk = σFk,1σFk,2 · · · σFk,l ∈ �∗

Fk − {ε}, we let
sFk(0) = σFk,1(0)σFk,2(0) · · · σFk,l(0) and sFk(ii

′) = σFk,1(ii
′)σFk,2(ii

′) · · · σFk,l(ii
′)

for each i ∈ I and each i′ ∈ {0, 1, . . . , k −1}. For the empty trace ε ∈ �∗
Fk , we let ε(0) = ε

and ε(ii′) = ε for each i ∈ I and each i′ ∈ {0, 1, . . . , k − 1}.



326 Discrete Event Dyn Syst (2018) 28:315–348

From the construction of TFkm , the following proposition is obtained in the same way as
Proposition 2 of Takai and Kumar (2017).

Proposition 2 For any m ∈ N and any k ∈ {1, 2, . . . , N +1}, consider any (2k+1) traces
s0, s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈ L such that

∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} : ii′ ∈ IN − IFN ⇒ sii′ ∈ K.

Then these (2k + 1) traces satisfy the last three of the four conditions of the first part
of Proposition 1 if and only if there exists sFk ∈ L(TFkm) such that sFk(0) = s0 and
sFk(ii

′) = sii′ for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.

For the case of m = 0, we drop the subscript m in TFkm for simplicity of notation, i.e.,
TFk := TFk0 . It then follows from the definition of the state transition function αF(N+1) of
TF(N+1) that TF(N+1) generates all (2N + 3) traces that satisfy the last three of the four
conditions of the first part of Proposition 1.

To establish non-N -inference diagnosability, we must check FN+1(m) �= ∅ for any
m ∈ N, which represents the number of steps of post-fault executions. To allow an arbi-
trary number of post-fault executions (equivalently, an arbitrary value of m), the post-fault
extensions in TF(N+1) must visit cycles leading to an arbitrary growth in the number m of
post-fault executions. Note that a single cycle may not elongate all (2l + 1) failure traces
siFN

(iFN = 0, 11, 13, . . . , 1l, 21, 23, . . . , 2l) because some of these trace elements may
witness only ε-transitions along that cycle. Hence a multitude of cycles may need to be
executed sequentially to elongate all the (2l + 1) failure trace elements. To keep track
of which cycles elongate which of the trace elements (by executing at least one non-ε-
transition), we collapse all the maximal strongly connected components (max-SCCs) of
TF(N+1) into individual nodes, labeling those nodes with the trace elements that witness
at least one non-ε-transition in the corresponding max-SCCs, and build a nondeterministic
acyclic automaton over the node set of max-SCCs as follows (Takai and Kumar 2017):

TF(N+1) = (VF(N+1), �F(N+1), βF(N+1), VF(N+1),0, VF(N+1),mark),

where

– The state set VF(N+1) is defined as

VF(N+1) = {VF(N+1),0, VF(N+1),1, . . . , VF(N+1),|VF(N+1)|−1},
where, for any k ∈ {0, 1, . . . , |VF(N+1)| − 1}, VF(N+1),k is a max-SCC of TF(N+1).
Without loss of generality, we assume that rF(N+1),0 ∈ VF(N+1),0.

– The set VF(N+1),mark of marked states is defined as

VF(N+1),mark = {VF(N+1),k ∈ VF(N+1) | VF(N+1),k ∩ RF(N+1),mark �= ∅}.
– The nondeterministic state transition function βF(N+1) : VF(N+1) × �F(N+1) →

2VF(N+1) is defined as

βF(N+1)(VF(N+1),k, σF(N+1))

= {VF(N+1),k′ ∈ VF(N+1) | k �= k′

∧[∃rF(N+1) ∈ VF(N+1),k, ∃r ′
F(N+1) ∈ VF(N+1),k′ :

αF(N+1)(rF (N+1), σF(N+1)) = r ′
F(N+1)]}

for each VF(N+1),k ∈ VF(N+1) and each σF(N+1) ∈ �F(N+1).
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A labeling function JFN : VF(N+1) → 2IFN is defined as

JFN(VF(N+1),k)

= {iFN ∈ IFN | [∃rF(N+1) ∈ VF(N+1),k : rF(N+1)(iFN) ∈ Q × {d}]
∧[∃rF(N+1), r

′
F(N+1) ∈ VF(N+1),k, ∃σF(N+1) ∈ �F(N+1) :

αF(N+1)(rF (N+1), σF(N+1)) = r ′
F(N+1) ∧ σF(N+1)(iFN ) �= ε]}

for each VF(N+1),k ∈ VF(N+1). Then, by the construction, iFN ∈ JFN(VF(N+1),k) means
that siFN

can be extended to an arbitrarily long failure trace in a max-SCC VF(N+1),k .
Therefore, we can test whether FN+1(m) �= ∅ for any m ∈ N as shown in the following
proposition.

Proposition 3 (Takai and Kumar 2017, Proposition 3) Consider the pair (L,K) of regular
languages. Then, FN+1(m) �= ∅ for anym ∈ N if and only if there exists a path VF(N+1),0 =

VF(N+1),k0

σ
(k0)

F (N+1)−−−−→ VF(N+1),k1

σ
(k1)

F (N+1)−−−−→ · · · σ
(kh−1)

F (N+1)−−−−→ VF(N+1),kh
∈ VF(N+1),mark in the

acyclic automaton TF(N+1) such that
⋃

k∈{k0,k1,...,kh}
JFN(VF(N+1),k) = IFN . (13)

Dually, to check the nonemptiness of HN+1(m) for any m ∈ N, we construct
TH(N+1) and TH(N+1) that are dual to TF(N+1) and TF(N+1), respectively. Among the
(2N + 3) traces of the second part of Proposition 1 in the case of k = N + 1,
s10, s12, . . . , s1l , s20, s22, . . . , s2l ∈ L − K are failure traces, where

l =
{

N, if N is an even number
N − 1, if N is an odd number,

and their index set is denoted by

IHN = {10, 12, . . . , 1l, 20, 22, . . . , 2l}.
For any m ∈ N and any k ∈ {1, 2, . . . , N + 1}, we define a finite automaton

THkm = (RHkm,�Hk, αHkm, rHkm,0, RHkm,mark)

as follows:

• The state set RHkm is defined as

RHkm

= QK × Q10 × Q11 × · · · × Q1(k−1) × Q20 × Q21 × · · · × Q2(k−1),

where

Qii′ =
{

Q × Q̃Km, if i′ is an even number
QK, if i′ is an odd number

for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.
• The initial state rHkm,0 ∈ RHkm is given as

rHkm,0 = (qK,0, q10,0, q11,0, . . . , q1(k−1),0, q20,0, q21,0, . . . , q2(k−1),0),

where

qii′,0 =
{

(q0, qK,0), if i′ is an even number
qK,0, if i′ is an odd number

for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.
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• The set RHkm,mark of marked states is defined as

RHkm,mark = {rHkm ∈ RHkm | ∀i ∈ I, ∀i′ ∈ {0, 1, . . . , k − 1} :
ii′ ∈ IHN ⇒ rHkm(ii′) ∈ Q × {dm}},

where, for each rHkm ∈ RHkm , rHkm(0) and rHkm(ii′) (i ∈ I , i′ ∈ {0, 1, . . . , k − 1}) are
defined in the same way as rFkm(0) and rFkm(ii′), respectively, where rFkm ∈ RFkm .• The event set �Hk is defined as �Hk = �Fk .

• For each

rHkm = (qK, q10, q11, . . . , q1(k−1), q20, q21, . . . , q2(k−1)) ∈ RHkm

and each

σHk = (σ, σ10, σ11, . . . , σ1(k−1), σ20, σ21, . . . , σ2(k−1)) ∈ �Hk,

αHkm(rHkm, σHk)! if the following five conditions are satisfied:
– σ �= ε ⇒ δK(qK, σ )!,
– ∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} :

σii′ �= ε ⇒
{

ξm(qii′ , σii′)!, if i′ is an even number
δK(qii′ , σii′)!, if i′ is an odd number,

– ∀i ∈ I : Mi(σ) = Mi(σi0),
– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:

{
M2(σ1i′) = M2(σ1(i′+1)), if i′ is an even number
M1(σ1i′) = M1(σ1(i′+1)), if i′ is an odd number,

– k ≥ 2 ⇒ ∀i′ ∈ {0, 1, . . . , k − 2}:
{

M1(σ2i′) = M1(σ2(i′+1)), if i′ is an even number
M2(σ2i′) = M2(σ2(i′+1)), if i′ is an odd number.

If αHkm(rHkm, σHk)!, then
αHkm(rHkm, σHk) = (q ′

K, q ′
10, q

′
11, . . . , q

′
1(k−1), q

′
20, q

′
21, . . . , q

′
2(k−1)),

where

q ′
K =

{
δK(qk, σ ), if σ �= ε

qK, otherwise

and

q ′
ii′ =

⎧
⎨

⎩

ξm(qii′ , σii′), if σii′ �= ε ∧ [i′ is an even number]
δK(qii′ , σii′), if σii′ �= ε ∧ [i′ is an odd number]
qii′ , otherwise.

For each σHk ∈ �Hk and each sHk ∈ �∗
Hk , σHk(0), sHk(0), σHk(ii

′), and sHk(ii
′)

(i ∈ I , i′ ∈ {1, 2, . . . , k − 1}) are defined in the same way as σFk(0), sFk(0), σFk(ii
′), and

sFk(ii
′), respectively, where σFk ∈ �Fk and sFk ∈ �∗

Fk .
The following proposition can be obtained in a similar way to Proposition 2.

Proposition 4 For any m ∈ N and any k ∈ {1, 2, . . . , N +1}, consider any (2k+1) traces
s, s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈ L such that s0 ∈ K and

∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} : ii′ ∈ IN − IHN ⇒ sii′ ∈ K.



Discrete Event Dyn Syst (2018) 28:315–348 329

Then these (2k + 1) traces satisfy the last three of the four conditions of the second part
of Proposition 1 if and only if there exists sHk ∈ L(THkm) such that sHk(0) = s and
sHk(ii

′) = sii′ for any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}.

For the case of m = 0 and k = N + 1, we use the notation TH(N+1), dropping the
subscript m = 0 for simplicity, and as with TF(N+1) versus TF(N+1), using TH(N+1), we
construct a nondeterministic acyclic automaton

TH(N+1) = (VH(N+1), �H(N+1), βH(N+1), VH(N+1),0, VH(N+1),mark)

over the set of max-SCCs of TH(N+1) as follows (Takai and Kumar 2017):

– The state set VH(N+1) is defined as

VH(N+1) = {VH(N+1),0, VH(N+1),1, . . . , VH(N+1),|VH(N+1)|−1},
where, for any k ∈ {0, 1, . . . , |VH(N+1)| − 1}, VH(N+1),k is a max-SCC of TH(N+1).
Without loss of generality, we assume that rH(N+1),0 ∈ VH(N+1),0.

– The set VH(N+1),mark of marked states is defined as

VH(N+1),mark = {VH(N+1),k ∈ VH(N+1) | VH(N+1),k ∩ RH(N+1),mark �= ∅}.
– The nondeterministic state transition function βH(N+1) : VH(N+1) × �H(N+1) →

2VH(N+1) is defined as

βH(N+1)(VH(N+1),k, σH(N+1))

= {VH(N+1),k′ ∈ VH(N+1) | k �= k′

∧[∃rH(N+1) ∈ VH(N+1),k, ∃r ′
H(N+1) ∈ VH(N+1),k′ :

αH(N+1)(rH(N+1), σH(N+1)) = r ′
H(N+1)]}

for each VH(N+1),k ∈ VH(N+1) and each σH(N+1) ∈ �H(N+1).

A labeling function JHN : VH(N+1) → 2IHN is defined as

JHN(VH(N+1),k)

= {iHN ∈ IHN | [∃rH(N+1) ∈ VH(N+1),k : rH(N+1)(iHN) ∈ Q × {d}]
∧[∃rH(N+1), r

′
H(N+1) ∈ VH(N+1),k, ∃σH(N+1) ∈ �H(N+1) :

αH(N+1)(rH(N+1), σH(N+1)) = r ′
H(N+1) ∧ σH(N+1)(iHN) �= ε]}

for each VH(N+1),k ∈ VH(N+1).
Similar to Proposition 3, we have the following result.

Proposition 5 (Takai and Kumar 2017, Proposition 5) Consider the pair (L,K) of reg-
ular languages. Then, HN+1(m) �= ∅ for any m ∈ N if and only if there exists a path

VH(N+1),0 = VH(N+1),k0

σ
(k0)

H(N+1)−−−−→ VH(N+1),k1

σ
(k1)

H(N+1)−−−−→ · · · σ
(kh−1)

H(N+1)−−−−→ VH(N+1),kh
∈

VH(N+1),mark in the acyclic automaton TH(N+1) such that
⋃

k∈{k0,k1,...,kh}
JHN(VH(N+1),k) = IHN . (14)

Then the following theorem is obtained, which can be used to verify N -inference
diagnosability.
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Theorem 2 (Takai and Kumar 2017, Theorem 8) The pair (L,K) of regular languages is
not N -inference diagnosable if and only if

– there exists a path VF(N+1),0 = VF(N+1),k0

σ
(k0)

F (N+1)−−−−→ VF(N+1),k1

σ
(k1)

F (N+1)−−−−→ · · · σ
(kh−1)

F (N+1)−−−−→
VF(N+1),kh

∈ VF(N+1),mark in the acyclic automaton TF(N+1) that satisfies (13), and

– there exists a path VH(N+1),0 = VH(N+1),k0

σ
(k0)

H(N+1)−−−−→ VH(N+1),k1

σ
(k1)

H(N+1)−−−−→ · · · σ
(kh−1)

H(N+1)−−−−→
VH(N+1),kh

∈ VH(N+1),mark in the acyclic automaton TH(N+1) that satisfies (14).

Remark 3 Two different finite automata TF(N+1) and TH(N+1) are used above to test
whether FN+1(m) �= ∅ and HN+1(m) �= ∅, respectively, for any m ∈ N. It is possible to
construct a single more general automaton to do the same, as follows, but with a higher
complexity. To generate a nonfailure trace s ∈ K in TF(N+1) and TH(N+1), we used the
generator GK of the nonfailure specification language K ⊆ L. Instead of GK , the syn-
chronous product G ‖ G̃K can be used by noting that, for any s ∈ L, s ∈ K if and only
if ξ((q0, qK,0), s) ∈ Q × QK , i.e., the second element of ξ((q0, qK,0), s) is not the dump
state d. With this observation, we can define the following finite automaton:

TN+1 = (RN+1, �N+1, αN+1, rN+1,0, RN+1),

whose various elements are defined as follows:

• The state set RN+1 is defined as

RN+1 = (Q × Q̃K) × (Q × Q̃K) × · · · × (Q × Q̃K)
︸ ︷︷ ︸

(2N+3) times

.

• The initial state rN+1,0 ∈ RN+1 is given as

rN+1,0 = ((q0, qK,0), (q0, qK,0), . . . , (q0, qK,0)).

• The event set �N+1 is defined as

�N+1 = (� ∪ {ε}) × (� ∪ {ε}) × · · · × (� ∪ {ε})
︸ ︷︷ ︸

(2N+3) times

− {(ε, ε, . . . , ε)}.

• For each

rN+1 = ((q, q̃K), q10, q11, . . . , q1N, q20, q21, . . . , q2N) ∈ RN+1

and each

σN+1 = (σ, σ10, σ11, . . . , σ1N, σ20, σ21, . . . , σ2N) ∈ �N+1,

αN+1(rN+1, σN+1)! if the following five conditions are satisfied:
– σ �= ε ⇒ ξ((q, q̃K), σ )!,
– ∀i ∈ I,∀i′ ∈ {0, 1, . . . , k − 1} : σii′ �= ε ⇒ ξ(qii′ , σii′)!,
– ∀i ∈ I : Mi(σ) = Mi(σi0),
– ∀i′ ∈ {0, 1, . . . , N − 1}:

{
M2(σ1i′) = M2(σ1(i′+1)), if i′ is an even number
M1(σ1i′) = M1(σ1(i′+1)), if i′ is an odd number,

– ∀i′ ∈ {0, 1, . . . , N − 1}:
{

M1(σ2i′) = M1(σ2(i′+1)), if i′ is an even number
M2(σ2i′) = M2(σ2(i′+1)), if i′ is an odd number.
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If αN+1(rN+1, σN+1)!, then
αN+1(rN+1, σN+1) = ((q ′, q̃ ′

K), q ′
10, q

′
11, . . . , q

′
1N, q ′

20, q
′
21, . . . , q

′
2N),

where

(q ′, q̃ ′
K) =

{
ξ((q, q̃K), σ ), if σ �= ε

(q, q̃K), otherwise

and

q ′
ii′ =

{
ξ(qii′ , σii′), if σii′ �= ε

qii′ , otherwise.

Then both the conditions Fm+1(m) �= ∅ and Hm+1(m) �= ∅ for any m ∈ N can be described
using the single automaton TN+1. However, since |QK | ≤ |Q × Q̃K | = |Q| × (|QK | + 1),
we have |RF(N+1)| ≤ |RN+1| and |RH(N+1)| ≤ |RN+1|, i.e., TN+1 will have a larger state
space than TF(N+1) and TH(N+1).

4 Computation of delay bound

As in Section 3.3, we assume that I = {1, 2} and N ≥ 1. For the pair (L,K) of regular
languages that is N -inference diagnosable (so there exists m ∈ N such that FN+1(m) = ∅
or HN+1(m) = ∅), let m∗

N be a minimum integer m:

m∗
N = min{m ∈ N | FN+1(m) = ∅ ∨ HN+1(m) = ∅}.

For any m ≥ m∗
N , the decentralized diagnoser {Di}i∈I : L → C for which the local

diagnosers are given by Eqs. 8–11 can detect any failure within m steps. Hence, m∗
N can

be considered as the delay bound. Let NFN and NHN be the sets of delays under which
(L,K) is “N -inference disjunctive diagnosable” and “N -inference conjunctive diagnos-
able”, respectively, i.e., NFN = {m ∈ N | FN+1(m) = ∅} and NHN = {m ∈ N |
HN+1(m) = ∅}. Then we can define the minimum delays for the disjunctive and conjunctive
cases, respectively, as

m∗
FN =

{
minNFN , if NFN �= ∅
undefined, otherwise,

m∗
HN =

{
minNHN, if NHN �= ∅
undefined, otherwise,

while the overall minimum delay as

m∗
N =

⎧
⎨

⎩

min{m∗
FN,m∗

HN }, if NFN �= ∅ ∧ NHN �= ∅
m∗

FN , if NFN �= ∅ ∧ NHN = ∅
m∗

HN, if NFN = ∅ ∧ NHN �= ∅.

To compute m∗
N , we first develop methods for computing m∗

FN and m∗
HN when NFN �= ∅

and NHN �= ∅, respectively.
Note that m∗

FN is the minimum number of post-fault events the system must execute
for a fault to be detected. We use the acyclic automaton TF(N+1) for computing m∗

FN

when NFN �= ∅. Under this condition, we have FN+1(m
∗
FN) = ∅. Then from the inverse

of Proposition 3, it holds for any path in the set PF(N+1) of all paths from the initial

state to marked states of the form VF(N+1),0 = VF(N+1),k0

σ
(k0)

F (N+1)−−−−→ VF(N+1),k1

σ
(k1)

F (N+1)−−−−→

· · · σ
(kh−1)

F (N+1)−−−−→ VF(N+1),kh
∈ VF(N+1),mark , that

⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k) �= IFN .
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Then for a corresponding index iFN ∈ IFN − ⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k), it holds that

only the inter-max-SCC transitions in TF(N+1) (that are also the transitions of TF(N+1))
witness a post-fault event, whereas the intra-max-SCC transitions in TF(N+1) (max-SCCs
of TF(N+1) are states in TF(N+1)) are simply ε-transitions (otherwise that index would
already be included in

⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k) by the definition of JFN ). Then

for each such index, each transition along a path pF(N+1) ∈ PF(N+1) may contribute to
a post-fault event count depending on whether or not that transition is a non-ε-transition

for that index. Accordingly, for each path pF(N+1) : VF(N+1),0 = VF(N+1),k0

σ
(k0)

F (N+1)−−−−→

VF(N+1),k1

σ
(k1)

F (N+1)−−−−→ · · · σ
(kh−1)

F (N+1)−−−−→ VF(N+1),kh
∈ VF(N+1),mark in PF(N+1) and each index

iFN ∈ IFN − ⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k), we define an index-specific post-fault event

count of each transition of the path as follows: For each j ∈ {1, 2, . . . , h},
wFN,iFN

(VF(N+1),kj−1 , σ
(kj−1)

F (N+1), VF(N+1),kj
)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if [σ (kj−1)

F (N+1)(iFN) �= ε]
∧[∃rF(N+1) ∈ VF(N+1),kj−1 , ∃r ′

F(N+1) ∈ VF(N+1),kj
:

αF(N+1)(rF (N+1), σ
(kj−1)

F (N+1)) = r ′
F(N+1) ∧ r ′

F(N+1)(iFN ) ∈ Q × {d}]
0, otherwise.

Using the index-specific post-fault event count of transitions, we define an index-specific
post-fault event count for the path pF(N+1) by simply adding the index-specific counts along
the transitions of pF(N+1):

wFN,iFN
(pF(N+1)) :=

h∑

j=1

wFN,iFN
(VF(N+1),kj−1 , σ

(kj−1)

F (N+1), VF(N+1),kj
).

Next, a minimum among all indices in IFN − ⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k) is taken to

determine the post-fault event count across all such indices for the path pF(N+1):

wFN(pF(N+1)) := min
iFN∈IFN−∪k∈{k0,...,kh}JFN (VF(N+1),k)

wFN,iFN
(pF(N+1)).

Finally a maximum of the counts along all paths in PF(N+1) is taken to obtain the required
delay bound of diagnosis:

wFN :=
{
maxpF(N+1)∈PF(N+1) wFN(pF(N+1)), if PF(N+1) �= ∅
0, otherwise.

Since PF(N+1) is finite, wFN is effectively computable.
The following theorem shows that the value m∗

FN can be computed as m∗
FN = wFN .

Theorem 3 For the pair (L,K) of regular languages that is N -inference diagnosable, if
NFN �= ∅ then m∗

FN = wFN .

Proof First, we show that m∗
FN ≤ wFN . For the sake of contradiction, we suppose

that wFN < m∗
FN . Since m∗

FN = minNFN , we have wFN /∈ NFN , which implies
FN+1(wFN) �= ∅. We consider any s0 ∈ FN+1(wFN). By Proposition 1, there exist 2(N+1)
traces s10, s11, . . . , s1N, s20, s21, . . . , s2N ∈ L such that the four conditions of the first part
of Proposition 1 are satisfied for m = wFN and k = N + 1. Furthermore, by Proposition
2, there exists sF(N+1) := σ

(0)
F (N+1)σ

(1)
F (N+1) · · · σ (l−1)

F (N+1) ∈ L(TF(N+1)) (l ≥ 1) such that
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sF(N+1)(iN ) = siN for each iN ∈ IN . We consider the path rF(N+1),0 = r
(0)
F (N+1)

σ
(0)
F (N+1)−−−−→

r
(1)
F (N+1)

σ
(1)
F (N+1)−−−−→ · · · σ

(l−1)
F (N+1)−−−−→ r

(l)
F (N+1) in TF(N+1) obtained by executing sF(N+1). For

each iFN ∈ IFN , if iFN = 0, then sF(N+1)(0) = s0 ∈ FN+1(wFN) ⊆ L − K . If
iFN �= 0, then we have by the second condition of the first part of Proposition 1 that
sF(N+1)(iFN) ∈ F0(wFN) ⊆ L − K . Thus, we have r

(l)
F (N+1)(iFN) ∈ Q × {d} for each

iFN ∈ IFN , i.e., r(l)
F (N+1) ∈ RF(N+1),mark .

For some a0, a1, . . . , ah−1 ∈ {0, 1, . . . , l} (h ≥ 1) such that a0 < a1 < · · · < ah−1,

there exists a path pF(N+1) : VF(N+1),0 = VF(N+1),k0

σ
(a0)

F (N+1)−−−−→ VF(N+1),k1

σ
(a1)

F (N+1)−−−−→

· · · σ
(ah−1)

F (N+1)−−−−→ VF(N+1),kh
∈ VF(N+1),mark that satisfies {r(0)

F (N+1), . . . , r
(a0)
F (N+1)} ⊆

VF(N+1),k0 , {r(a0+1)
F (N+1), . . . , r

(a1)
F (N+1)} ⊆ VF(N+1),k1 , . . . , {r(ah−1+1)

F (N+1) , . . . , r
(l)
F (N+1)} ⊆

VF(N+1),kh
in the acyclic automaton TF(N+1). Since pF(N+1) ∈ PF(N+1) �= ∅, the count

wFN(pF(N+1)) of pF(N+1) satisfies wFN(pF(N+1)) ≤ wFN . Then there exists iFN ∈
IFN − ⋃

k∈{k0,k1,...,kh} JFN(VF(N+1),k) such that wFN,iFN
(pF(N+1)) = wFN(pF(N+1)).

By the definition of wFN,iFN
(pF(N+1)), there exists a ∈ {0, 1, . . . , l − 1} such that

r
(a)
F (N+1)(iFN) /∈ Q × {d}, r(a+1)

F (N+1)(iFN) ∈ Q × {d}, and
|σ (a)

F (N+1)(iFN)σ
(a+1)
F (N+1)(iFN) . . . σ

(l−1)
F (N+1)(iFN)| = wFN(pF(N+1)).

Since r
(a)
F (N+1)(iFN) /∈ Q × {d}, we have sF(N+1)(iFN) ∈ K�≤wFN (pF(N+1)) ⊆ K�≤wFN .

This contradicts sF(N+1)(iFN) ∈ F0(wFN) = L ∩ (L − K)�≥wFN .
Next, we prove that m∗

FN ≥ wFN . For the sake of contradiction, we suppose that
m∗

FN < wFN . Since 0 ≤ m∗
FN , we have 0 < wFN , which implies PF(N+1) �=

∅. In the acyclic automaton TF(N+1), there exists a path pF(N+1) : VF(N+1),0 =

VF(N+1),k0

σ
(k0)

F (N+1)−−−−→ VF(N+1),k1

σ
(k1)

F (N+1)−−−−→ · · · σ
(kh−1)

F (N+1)−−−−→ VF(N+1),kh
∈ VF(N+1),mark

(h ≥ 1) whose count wFN(pF(N+1)) satisfies wFN(pF(N+1)) = wFN . For any iFN ∈⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k), there exists VF(N+1),kjiFN

(jiFN
∈ {0, 1, . . . , h}) such that

[∃rF(N+1) ∈ VF(N+1),kjiFN
: rF(N+1)(iFN) ∈ Q × {d}]

∧[∃rF(N+1), r
′
F(N+1) ∈ VF(N+1),kjiFN

, ∃σF(N+1) ∈ �F(N+1) :
αF(N+1)(rF (N+1), σF(N+1)) = r ′

F(N+1) ∧ σF(N+1)(iFN) �= ε]. (15)

Then there exists a path rF(N+1),0 = r
(0)
F (N+1)

σ
(0)
F (N+1)−−−−→ r

(1)
F (N+1)

σ
(1)
F (N+1)−−−−→ · · · σ

(l−1)
F (N+1)−−−−→

r
(l)
F (N+1) (l ≥ 1) in TF(N+1) such that, for some a0, a1, . . . , ah−1 with a0 <

a1 < · · · < ah−1, {r(0)
F (N+1), . . . , r

(a0)
F (N+1)} ⊆ VF(N+1),k0 , {r(a0+1)

F (N+1), . . . , r
(a1)
F (N+1)} ⊆

VF(N+1),k1 , . . . , {r(ah−1+1)
F (N+1) , . . . , r

(l)
F (N+1)} ⊆ VF(N+1),kh

, σ
(ap)

F (N+1) = σ
(kp)

F (N+1) (p ∈
{0, 1, . . . , h − 1}), and for iFN ∈ ⋃

k∈{k0,k1,...,kh} JFN(VF(N+1),k),

r
(ajiFN

−1+1)

F (N+1) (iFN) ∈ Q × {d}, (16)

and

|σ (ajiFN
−1+1)

F (N+1) (iFN)σ
(ajiFN

−1+2)

F (N+1) (iFN) . . . σ
(l−1)
F (N+1)(iFN)| ≥ wFN − 1. (17)



334 Discrete Event Dyn Syst (2018) 28:315–348

In addition, for any iFN ∈ IFN − ⋃
k∈{k0,k1,...,kh} JFN(VF(N+1),k), since wFN(pF(N+1)) =

wFN , we have wFN,iFN
(pF(N+1)) ≥ wFN . Thus, there exists jiFN

∈ {0, 1, . . . , h} such that
Eqs. 16 and 17 hold.

Let sF(N+1) = σ
(0)
F (N+1)σ

(1)
F (N+1) · · · σ (l−1)

F (N+1) ∈ L(TF(N+1)). Since Eqs. 16 and 17
hold for each iFN ∈ IFN , it follows from wFN − 1 ≥ m∗

FN that sF(N+1)(iFN) ∈
L ∩ (L − K)�≥wFN−1 ⊆ L ∩ (L − K)�≥m∗

FN = F0(m
∗
FN). In addition, for each

iN ∈ IN − IFN , we have sF(N+1)(iN ) ∈ K . Then, by Propositions 1 and 2, we have
sF(N+1)(0) ∈ FN+1(m

∗
FN) �= ∅, i.e., m∗

FN /∈ NFN . This contradicts the definition of
m∗

FN .

Dually we use TH(N+1) to compute m∗
HN when NHN �= ∅. For each pH(N+1) :

VH(N+1),0 = VH(N+1),k0

σ
(k0)

H(N+1)−−−−→ VH(N+1),k1

σ
(k1)

H(N+1)−−−−→ · · · σ
(kh−1)

H(N+1)−−−−→ VH(N+1),kh
∈

VH(N+1),mark in the set PH(N+1) of all paths from the initial state to marked states and each
index iHN ∈ IHN −⋃

k∈{k0,k1,...,kh} JHN(VH(N+1),k), we define an index-specific post-fault
event count of each transition of the path as follows: For each j ∈ {1, 2, . . . , h},

wHN,iHN
(VH(N+1),kj−1 , σ

(kj−1)

H(N+1), VH(N+1),kj
)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if [σ (kj−1)

H(N+1)(iHN) �= ε]
∧[∃rH(N+1) ∈ VH(N+1),kj−1 , ∃r ′

H(N+1) ∈ VH(N+1),kj
:

αH(N+1)(rH(N+1), σ
(kj−1)

H(N+1)) = r ′
H(N+1) ∧ r ′

H(N+1)(iHN) ∈ Q × {d}]
0, otherwise.

Then an index-specific post-fault event count for the path pH(N+1) is defined as

wHN,iHN
(pH(N+1)) :=

h∑

j=1

wHN,iHN
(VH(N+1),kj−1 , σ

(kj−1)

H(N+1), VH(N+1),kj
).

Next, a minimum among all indices in IHN − ⋃
k∈{k0,k1,...,kh} JHN(VH(N+1),k) is taken as

the post-fault event count for the path pH(N+1):

wHN(pH(N+1)) := min
iHN∈IHN−∪k∈{k0,...,kh}JHN (VH(N+1),k)

wHN,iHN
(pH(N+1)).

Finally a maximum of the counts along all paths in PH(N+1) is taken as

wHN :=
{
maxpH(N+1)∈PH(N+1) wHN(pH(N+1)), if PH(N+1) �= ∅
0, otherwise.

Since PH(N+1) is finite, wHN is effectively computable.
Similar to Theorem 3, the following theorem holds, which shows that the value m∗

HN can
be computed as m∗

HN = wHN .

Theorem 4 For the pair (L,K) of regular languages that is N -inference diagnosable, if
NHN �= ∅ then m∗

HN = wHN .

Remark 4 The result of Theorem 3 (respectively, Theorem 4) on computing the delay bound
is reduced to that of Section IV of Qiu and Kumar (2006) (respectively, Theorem 2 of
Yamamoto and Takai 2014) in the case of N = 0 and reduced to Theorem 3 (respectively,
Theorem 4) of Yokota et al. (2017) in the case of N = 1.
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Remark 5 In this remark, we discuss the complexity of computing the delay bound. To
compute the delay bound m∗

N using Theorems 3 and 4, we first need to construct the finite
automata TF(N+1) and TH(N+1), whose complexity is exponential with respect to the num-
ber n of local diagnosers and doubly exponential with respect to the levels N of inferencing,
as shown in Table 1. Next, we construct the nondeterministic acyclic automata TF(N+1)
and TH(N+1) by identifying all max-SCCs of TF(N+1) and TH(N+1). This complexity is

O((|RF(N+1)| + |RH(N+1)|) × |�|1+
∑N

k=0 n(n−1)k ), where

|RF(N+1)|

=
{

O(|Q|1+
∑N/2

k=1 n(n−1)2k−1 · |QK |1+
∑N

k=0 n(n−1)k ), if N is an even number

O(|Q|1+
∑(N+1)/2

k=1 n(n−1)2k−1 · |QK |1+
∑N

k=0 n(n−1)k ), if N is an odd number,

|RH(N+1)|

=
{

O(|Q|
∑N/2

k=0 n(n−1)2k · |QK |1+
∑N

k=0 n(n−1)k ), if N is an even number

O(|Q|
∑(N−1)/2

k=0 n(n−1)2k · |QK |1+
∑N

k=0 n(n−1)k ), if N is an odd number,

and it is exponential with respect to the number n of local diagnosers and doubly exponen-
tial with respect to the levels N of inferencing. Then m∗

N can be obtained by exploring all
paths of TF(N+1) and TH(N+1) that end with marked states. It turns out that the complex-
ity of the delay bound computation is of the same order as that of verifying N -inference
diagnosability—the former computes an exact delay bound while the latter checks only the
existence of a finite delay bound.

Remark 6 Since the finite automaton TF(N+1) is acyclic, the number of transitions of a path
in PF(N+1) is bounded by |VF(N+1)| − 1, where VF(N+1) is the state set of TF(N+1). By
Theorem 3,m∗

FN is bounded by |VF(N+1)|−1. Similarly,m∗
HN is bounded by |VH(N+1)|−1,

where VH(N+1) is the state set of TH(N+1).

The following example illustrates the results on computing the delay bound.

Table 1 Complexity for constructing automata TF(N+1) and TH(N+1) (Takai and Kumar 2017)

Complexity of constructing TF(N+1)

Arbitrary even N O(|Q|1+
∑N/2

k=1 n(n−1)2k−1 · (|QK | · |�|)1+
∑N

k=0 n(n−1)k )

= O(|Q|O(n(n−1)N−1) · (|QK | · |�|)O(n(n−1)N ))

Arbitrary odd N O(|Q|1+
∑(N+1)/2

k=1 n(n−1)2k−1 · (|QK | · |�|)1+
∑N

k=0 n(n−1)k )

= O((|Q| · |QK | · |�|)O(n(n−1)N ))

N = 1 O(|Q|n2−n+1 · (|QK | · |�|)n2+1)

N = 2 O(|Q|n2−n+1 · (|QK | · |�|)n2+n(n−1)2+1)

Complexity of constructing TH(N+1)

Arbitrary even N O(|Q|
∑N/2

k=0 n(n−1)2k · (|QK | · |�|)1+
∑N

k=0 n(n−1)k )

= O((|Q| · |QK | · |�|)O(n(n−1)N ))

Arbitrary odd N O(|Q|
∑(N−1)/2

k=0 n(n−1)2k · (|QK | · |�|)1+
∑N

k=0 n(n−1)k )

= O(|Q|O(n(n−1)N−1) · (|QK | · |�|)O(n(n−1)N ))

N = 1 O(|Q|n · (|QK | · |�|)n2+1)

N = 2 O(|Q|n+n(n−1)2 · (|QK | · |�|)n2+n(n−1)2+1)
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Example 2 We consider the setting of Example 1, where (L,K) is 2-inference diagnosable.
As shown in Example 1, we have F3(m) = H3(m) = ∅ for any m ∈ N with m ≥ 1, which
implies NF2 �= ∅ and NH2 �= ∅.

We compute the delay bound m∗
2 = min{m∗

F2,m
∗
H2} using Theorems 3 and 4. We

construct the acyclic automaton TF3 to compute m∗
F2. A part of TF3, which includes a

path from the initial state to a marked state in VF3,mark , is shown in Fig. 3. (By the def-
inition of TF3, each state of TF3 is a set of states of TF3. Note that this example is a
special case where each state of TF3 is a singleton.) Since PF3 �= ∅, we need to compute
wF2(pF3) for all paths pF3 in PF3. For example, we consider the path pF3 : VF3,0 =
VF3,k0

(e,e,e,e,e,e,e)−−−−−−−−→ VF3,k1
(f,b2,b2,b2,a2,a2,a2)−−−−−−−−−−−−→ VF3,k2

(ε,ε,f,ε,ε,f,ε)−−−−−−−−→ VF3,k3 , shown in
Fig. 3. Since JF2(VF3,k0)∪JF2(VF3,k1)∪JF2(VF3,k2)∪JF2(VF3,k3) = ∅, the count of pF3
is given as

wF2(pF3) = min
iF2∈IF2={0,11,21} wF2,iF2(pF3).

Since wF2,iF2(pF3) = 1 for each iF2 ∈ IF2, we have wF2(pF3) = 1. For other paths in
PF3, their counts are computed in the same way. Then, by Theorem 3, we have m∗

F2 =
wF2 = 1. Similarly, by applying Theorem 4, we have m∗

H2 = wH2 = 1. Consequently, the
delay bound m∗

2 is obtained as m∗
2 = min{m∗

F2,m
∗
H2} = 1.

Remark 7 As shown in Example 1, this example is not 1-inference diagnosable, i.e., it is
neither disjunctive-codiagnosable nor conjunctive-codiagnosable, and also it is nether con-
ditionally disjunctive-codiagnosable nor conditionally conjunctive-codiagnosable, meaning
that the delay bound for diagnosis in those schemes is not even defined (or may be consid-
ered to be infinity). In contrast the delay bound of 2-inference diagnosability is bounded,
and in fact just 1.

We next show the following expected anti-monotonicity property that, for anN -inference
diagnosable system, as the levels N of inferencing are increased, the delay bounds become
smaller.

Theorem 5 For any N ∈ N such that the pair (L,K) of regular languages is N -inference
diagnosable, it holds that m∗

N+1 ≤ m∗
N .

Proof Since (L,K) is N -inference diagnosable, FN+1(m
∗
N) = ∅ ∨ HN+1(m

∗
N) = ∅ holds,

which implies FN+2(m
∗
N) = ∅ ∨ HN+2(m

∗
N) = ∅. Then, (L,K) is (N + 1)-inference

Fig. 3 A part of the automaton TF3
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diagnosable and m∗
N ∈ {m ∈ N | FN+2(m) = ∅ ∨ HN+2(m) = ∅}, which implies

m∗
N+1 ≤ m∗

N .

As shown in the following example, the converse relation of Theorem 5 need not hold.

Example 3 We consider a plant modeled by the finite automaton G shown in Fig. 4a, which
is obtained by slightly modifying the automaton of Fig. 2a. Let �1 = {a, a′, c, c′, d, e},
�2 = {b, b′, c, c′, d, e}, and

M1(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

a, if σ ∈ {a1, a2}
a′, if σ ∈ {a′

1, a
′
2}

σ, if σ ∈ {c, c′, d, e}
ε, otherwise,

M2(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

b, if σ ∈ {b1, b2}
b′, if σ ∈ {b′

1, b
′
2}

σ, if σ ∈ {c, c′, d, e}
ε, otherwise.

In addition, let K ⊆ L be a closed regular language generated by the finite automaton GK

shown in Fig. 4b. We can verify that (L,K) is 1-inference diagnosable and that NF1 �= ∅
and NH1 �= ∅. Then it is also 2-inference diagnosable.

Similar to Example 2, we can obtain the delay bound m∗
2 = 1 in the case of N = 2. We

show that the delay bound m∗
1 in the case of N = 1 is larger than m∗

2. To compute m∗
F1

and m∗
H1, the acyclic automata TF2 and TH2 are constructed. A part of TF2 shown in Fig. 5

Fig. 4 Automata G and GK of Example 3
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Fig. 5 A part of the automaton TF2

includes a path pF2 : VF2,0 = VF2,k0
(e,e,e,e,e)−−−−−−→ VF2,k1

(f,b2,b2,a2,a2)−−−−−−−−→ VF2,k2
(ε,ε,f,ε,f )−−−−−−→

VF2,k3

(ε,ε,a′
2,ε,b

′
2)−−−−−−−→ VF2,k4

(c,c,c,c,c)−−−−−−→ VF2,k5 in PF2. For this path pF2, since JF1(VF2,k0) ∪
JF1(VF2,k1) ∪ JF1(VF2,k2) ∪ JF1(VF2,k3) ∪ JF1(VF2,k4) ∪ JF1(VF2,k5) = ∅, the count of
pF2 is given as

wF1(pF2) = min
iF1∈IF1={0,11,21} wF1,iF1(pF2).

Since wF1,0(pF2) = 2 and wF1,11(pF1) = wF1,21(pF2) = 3, we have wF1(pF2) = 2.
For other paths in PF2, their counts are computed in the same way. Then, by Theorem 3,
we have m∗

F1 = wF1 = 2. Similarly, by applying Theorem 4, we have m∗
H1 = wH1 = 2.

Consequently, the delay bound m∗
1 is obtained as m∗

1 = min{m∗
F1,m

∗
H1} = 2, which is

larger than the delay bound m∗
2(= 1) in the case of N = 2.

For example, we consider a situation where the event c is executed after a failure trace
ef ∈ L − K . The first diagnoser D1 cannot distinguish ef c ∈ L − K from a nonfailure
trace eb2c ∈ K . In addition, the second diagnoser D2 cannot distinguish eb2c ∈ K from a
failure trace eb2f a′

2c ∈ L − K . Thus, D1 cannot detect the occurrence of the failure event
f using a single-level of inferencing. Analogously, D2 cannot detect the occurrence of f

using a single-level of inferencing.
On the other hand, if the plant executes eb2f a′

2c ∈ L − K , then D1 can detect the
occurrence of f unambiguously and can issue a failure decision with the ambiguity 0. Then,
for eb2c ∈ K , D2 can issue a nonfailure decision with the ambiguity level 1 and, for ef c ∈
L − K , D1 can issue a failure decision with the ambiguity level 2. Similarly, D2 can issue a
failure decision with the ambiguity level 2 for ef c ∈ L − K . Using 2 levels of inferencing,
the occurrence of f is detected after c is executed, i.e., within one step delay.
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5 Computation of ambiguity levels

Online diagnosis requires the computation of the ambiguity levels n
f
i (Mi(s)) and nh

i (Mi(s))

of the local failure and nonfailure decisions, respectively, in accordance with Eqs. 8 and 9.
(As before we continue to assume that I = {1, 2}). To compute the languageHk(m) for each
m ∈ N and each k ∈ {1, 2, . . . , N+1}, we use the finite automaton THkm defined in Section
3.3, but replace each transition label σHk ∈ �Hk with its first element σHk(0) ∈ � ∪ {ε}
to obtain a nondeterministic finite automaton

T̂Hkm = (RHkm,�, α̂Hkm, rHkm,0, RHkm,mark)

over �, where the nondeterministic transition function α̂Hkm : RHkm × (� ∪ {ε}) → 2RHkm

is defined as follows: For each rHkm ∈ RHkm and each σ ∈ � ∪ {ε},
α̂Hkm(rHkm, σ ) = {r ′

Hkm
∈ RHkm | ∃σHk ∈ �Hk :

σHk(0) = σ ∧ αHkm(rHkm, σHk) = r ′
Hkm

}.
In addition, for k = 0, we regard GK = (QK, �, δK, qK,0,QK) as a nondeterministic
automaton

T̂H0m = (RH0m,�, α̂H0m, rH0m,0, RH0m,mark),

i.e., the transition function α̂H0m : RH0m × (� ∪ {ε}) → 2RH0m is defined as

α̂H0m(qK, σ ) =
{ {δK(qK, σ )}, if σ �= ε ∧ δK(qK, σ )!

∅, otherwise

for each qK ∈ RH0m = QK and each σ ∈ � ∪ {ε}.
The following proposition shows that the nondeterministic automaton T̂Hkm accepts the

language Hk(m).

Proposition 6 For any m ∈ N and any k ∈ N such that 0 ≤ k ≤ N + 1, Lm(T̂Hkm) =
Hk(m).

Proof First, we prove that Lm(T̂Hkm) ⊆ Hk(m). We consider any s ∈ Lm(T̂Hkm). If k = 0,
then s ∈ Lm(GK) = L(GK) = K = H0(m) by the definition of T̂H0m . We consider the
case of 0 < k ≤ N + 1. By the definition of T̂Hkm , there exists sHk ∈ Lm(THkm) such that
sHk(0) = s. Let rHkm = αHkm(rHkm,0, sHk) and sii′ = sHk(ii

′) for each i ∈ I and each
i′ ∈ {0, 1, . . . , k − 1}. Since rHkm(0) = δK(qK,0, s) ∈ QK , we have s ∈ K = H0(m).
By Proposition 1, it suffices to show that the four conditions of the second part of Proposition 1
hold.

For each i ∈ I and each i′ ∈ {0, 1, . . . , k − 1}, if i′ is an even number, then ii′ ∈
IHN . By the definition of the marked state set RHkm,mark of THkm , we have rHkm(ii′) =
ξm((q0, qK,0), sii′) ∈ Q × {dm}, which implies sii′ ∈ Lm(G ‖ G̃Km) = F0(m). If i′ is an
odd number, then rHkm(ii′) = δK(qK,0, sii′) ∈ QK , which implies sii′ ∈ K = H0(m).
It follows that the first condition of the second part of Proposition 1 holds. In addition, by
Proposition 4, the last three of the four conditions of the second part of Proposition 1 are
satisfied.

Next, we prove that Hk(m) ⊆ Lm(T̂Hkm). We consider any s ∈ Hk(m). If k = 0,
then s ∈ H0(m) = K = L(GK) = Lm(GK) = Lm(T̂H0m). We consider the
case of 0 < k ≤ N + 1. By Proposition 1, s ∈ H0(m) holds and there exist
s10, s11, . . . , s1(k−1), s20, s21, . . . , s2(k−1) ∈ L that satisfy the four conditions of the sec-
ond part of Proposition 1. Then, by Proposition 4, there exists sHk ∈ L(THkm) such that
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sHk(0) = s and sHk(ii
′) = sii′ for each i ∈ I and each i′ ∈ {0, 1, . . . , k − 1}. Let

rHkm = αHkm(rHkm,0, sHk). For any i ∈ I and any i′ ∈ {0, 1, . . . , k − 1}, if ii′ ∈ IHN , then
i′ is an even number, so we have sHk(ii

′) = sii′ ∈ F0(m) = Lm(G ‖ G̃Km). It follows that
rHkm(ii′) = ξm((q0, qK,0), sHk(ii

′)) ∈ Q × {dm}. By the definition of the marked state set
RHkm,mark , we have rHkm ∈ RHkm,mark and sHk ∈ Lm(THkm). Since sHk(0) = s, we have
s ∈ Lm(T̂Hkm).

Dually to T̂Hkm , we obtain a nondeterministic finite automaton T̂Fkm from TFkm as
follows:

T̂Fkm = (RFkm,�, α̂Fkm, rFkm,0, RFkm,mark),

where the nondeterministic transition function α̂Fkm : RFkm ×(�∪{ε}) → 2RFkm is defined
as follows: For each rFkm ∈ RFkm and each σ ∈ � ∪ {ε},

α̂Fkm(rFkm, σ ) = {r ′
Fkm

∈ RFkm | ∃σFk ∈ �Fk :
σFk(0) = σ ∧ αFkm(rFkm, σFk) = r ′

Fkm
}.

In addition, for k = 0, we regard G ‖ G̃Km = (Q × Q̃Km,�, ξm, (q0, qK,0),Q × {dm}) as
a nondeterministic automaton

T̂F0m = (RF0m, �, α̂F0m, rF0m,0, RF0m,mark),

i.e., the transition function α̂F0m : RF0m × (� ∪ {ε}) → 2RF0m is defined as

α̂F0m((q, q̃Km), σ ) =
{ {ξm((q, q̃Km), σ )}, if σ �= ε ∧ ξm((q, q̃Km), σ )!

∅, otherwise

for each (q, q̃Km) ∈ RF0m = Q × Q̃Km and each σ ∈ � ∪ {ε}.
Similar to Proposition 6, the following proposition is obtained, which shows that the

nondeterministic automaton T̂Fkm accepts the language Fk(m).

Proposition 7 For anym ∈ N and any k ∈ N such that 0 ≤ k ≤ N+1,Lm(T̂Fkm) = Fk(m).

For the online computation of the ambiguity level nf
i (Mi(s)) of the local failure decision

for each Mi(s) ∈ Mi(L), we define a state estimate function EHkm,i : �∗
i → 2RHkm for

each i ∈ I and each k ∈ {0, 1, . . . , N + 1} as follows:
– EHkm,i(ε) = UR

T̂Hkm ,i
({rHkm,0}), and

– ∀t ∈ �∗
i ,∀σMi

∈ �i :
EHkm,i(tσMi

)

= UR
T̂Hkm ,i

⎛

⎜
⎝

⋃

rHkm∈EHkm,i (t)

⋃

σ∈�∩M−1
i (σMi

)

α̂Hkm(rHkm, σ )

⎞

⎟
⎠ .

Similarly, for the online computation of the ambiguity level nh
i (Mi(s)) of the nonfailure

decision for eachMi(s) ∈ Mi(L), a state estimate functionEFkm,i : �∗
i → 2RFkm is defined

for each i ∈ I and each k ∈ {0, 1, . . . , N + 1} as follows:
– EFkm,i(ε) = UR

T̂Fkm ,i
({rFkm,0}), and
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– ∀t ∈ �∗
i ,∀σMi

∈ �i :
EFkm,i(tσMi

)

= UR
T̂Fkm ,i

⎛

⎜
⎝

⋃

rFkm∈EFkm,i (t)

⋃

σ∈�∩M−1
i (σMi

)

α̂Fkm(rFkm, σ )

⎞

⎟
⎠ .

Then it holds that

EHkm,i(t) = {rHkm ∈ RHkm | ∃s ∈ M−1
i (t) ∩ L(T̂Hkm) : rHkm ∈ α̂Hkm(rHkm,0, s)},

EFkm,i(t) = {rFkm ∈ RFkm | ∃s ∈ M−1
i (t) ∩ L(T̂Fkm) : rFkm ∈ α̂Fkm(rFkm,0, s)},

t /∈ Mi(Hk(m)) ⇔ EHkm,i(t) ∩ RHkm,mark = ∅,

and
t /∈ Mi(Fk(m)) ⇔ EFkm,i(t) ∩ RFkm,mark = ∅

for each t ∈ �∗
i . Accordingly, the following result on the online computation of the

ambiguity levels n
f
i (Mi(s)) and nh

i (Mi(s)) is obtained.

Theorem 6 Consider any m ∈ N such that FN+1(m) = ∅ or HN+1(m) = ∅.
1. For each s ∈ L and each i ∈ I , if {k ∈ {0, 1, . . . , N + 1} | EHkm,i(Mi(s)) ∩

RHkm,mark = ∅} �= ∅, then
n

f
i (Mi(s)) = min{k ∈ {0, 1, . . . , N + 1} | EHkm,i(Mi(s)) ∩ RHkm,mark = ∅};

otherwise n
f
i (Mi(s)) = N + 2.

2. For each s ∈ L and each i ∈ I , if {k ∈ {0, 1, . . . , N + 1} | EFkm,i(Mi(s)) ∩
RFkm,mark = ∅} �= ∅, then

nh
i (Mi(s)) = min{k ∈ {0, 1, . . . , N + 1} | EFkm,i(Mi(s)) ∩ RFkm,mark = ∅};

otherwise nh
i (Mi(s)) = N + 2.

Remark 8 In this remark we discuss the complexity of computing the ambiguity levels.
This requires us to construct the finite automata TFkm and THkm (k = 1, 2, . . . , N + 1).
The complexity of their construction is exponential with respect to the number n of local
diagnosers and doubly exponential with respect to the levels k of inferencing, as shown in
Table 2. Next, we construct the nondeterministic automata T̂Fkm and T̂Hkm by replacing each
event of the form (σ, σ10, σ11, . . . , σ1(k−1), σ20, σ21, . . . , σ2(k−1)) in TFkm and THkm with
its first element σ . Note that the sizes of T̂Fkm and T̂Hkm are the same as those of TFkm and
THkm , respectively. In addition, for k = 0, T̂F0m and T̂H0m are the same as G ‖ G̃Km and
GK , respectively, and the complexity of constructing G ‖ G̃Km is O(|Q| · (|QK | + m) · �).

In online diagnosis, the ambiguity levels n
f
i (Mi(s)) and nh

i (Mi(s)) of the local
failure and nonfailure decisions are computed by updating the values of the state esti-
mates EHkm,i(Mi(s)) and EFkm,i(Mi(s)), respectively, upon each local event observa-
tion. The complexities of updating EHkm,i(Mi(s)) and EFkm,i(Mi(s)) are O(|RHkm | ·
|�|1+

∑k
l=1 n(n−1)l−1

) and O(|RFkm | · |�|1+
∑k

l=1 n(n−1)l−1
), i.e., linear in the sizes of TFkm

and THkm , respectively.

Remark 9 Note that if m∗
N = m∗

FN (respectively, m∗
N = m∗

HN ), then FN+1(m
∗
N) = ∅

(respectively, HN+1(m
∗
N) = ∅), which implies t /∈ Mi(FN+1(m

∗
N)) (respectively, t /∈
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Table 2 Complexity for constructing automata TFkm and THkm

Complexity of constructing TFkm

Arbitrary even k O((|Q| · (|QK | + m))1+
∑k/2

l=1 n(n−1)2l−1 · |QK |
∑k/2

l=1 n(n−1)2l−2

·|�|1+
∑k

l=1 n(n−1)l−1
)

= O((|Q| · (|QK | + m))O(n(n−1)k−1) · |QK |O(n(n−1)k−2)

·|�|O(n(n−1)k−1))

Arbitrary odd k O((|Q| · (|QK | + m))1+
∑(k−1)/2

l=1 n(n−1)2l−1 · |QK |
∑(k+1)/2

l=1 n(n−1)2l−2

(k ≥ 3) ·|�|1+
∑k

l=1 n(n−1)l−1
)

= O((|Q| · (|QK | + m))O(n(n−1)k−2) · |QK |O(n(n−1)k−1)

·|�|O(n(n−1)k−1))

k = 1 O(|Q| · (|QK | + m) · |QK |n · |�|n+1)

k = 2 O((|Q| · (|QK | + m))n
2−n+1 · |QK |n · |�|n2+1)

Complexity of constructing THkm

Arbitrary even k O((|Q| · (|QK | + m))
∑k/2

l=1 n(n−1)2l−2 · |QK |1+
∑k/2

l=1 n(n−1)2l−1

·|�|1+
∑k

l=1 n(n−1)l−1
)

= O((|Q| · (|QK | + m))O(n(n−1)k−2) · |QK |O(n(n−1)k−1)

·|�|O(n(n−1)k−1))

Arbitrary odd k O((|Q| · (|QK | + m))
∑(k+1)/2

l=1 n(n−1)2l−2 · |QK |1+
∑(k−1)/2

l=1 n(n−1)2l−1

(k ≥ 3) ·|�|1+
∑k

l=1 n(n−1)l−1
)

= O((|Q| · (|QK | + m))O(n(n−1)k−1) · |QK |O(n(n−1)k−2)

·|�|O(n(n−1)k−1))

k = 1 O((|Q| · (|QK | + m))n · |QK | · |�|n+1)

k = 2 O((|Q| · (|QK | + m))n · |QK |n2−n+1 · |�|n2+1)

Mi(HN+1(m
∗
N))) for any i ∈ I and any t ∈ Mi(L). Thus, if m∗

N = m∗
HN , then n

f
i (Mi(s))

can be computed for each s ∈ L as follows: If {k ∈ {0, 1, . . . , N} | EHkm,i(Mi(s)) ∩
RHkm,mark = ∅} �= ∅, then

n
f
i (Mi(s)) = min{k ∈ {0, 1, . . . , N} | EHkm,i(Mi(s)) ∩ RHkm,mark = ∅};

otherwise n
f
i (Mi(s)) = N + 1, i.e., we do not need to construct T̂H(N+1)m for k = N + 1.

Similarly, if m∗
N = m∗

FN , then nh
i (Mi(s)) can be computed for each s ∈ L as follows: If

{k ∈ {0, 1, . . . , N} | EFkm,i(Mi(s)) ∩ RFkm,mark = ∅} �= ∅, then
nh

i (Mi(s)) = min{k ∈ {0, 1, . . . , N} | EFkm,i(Mi(s)) ∩ RFkm,mark = ∅};
otherwise nh

i (Mi(s)) = N + 1.

Remark 10 It would appear that to construct a local diagnoser at the ith local site, we
may not need to take the information of the ith local diagnoser into account in the finite
automata T̂Fkm and T̂Hkm (k = 1, 2, . . . , N + 1). But this does not really help in reducing
the complexity. To see this, we consider any s ∈ L such that Mi(s) ∈ Mi(Fk(m)) and
Mi(s) ∈ Mi(Hk(m)), where k ∈ {0, 1, . . . , N}. We can verify that

Mi(s) /∈ Mi(Hk+1(m)) ⇔ Mi(s) /∈ Mi(Hk(m) ∩ M−1
j Mj (Fk(m))), (18)

Mi(s) /∈ Mi(Fk+1(m)) ⇔ Mi(s) /∈ Mi(Fk(m) ∩ M−1
j Mj (Hk(m))), (19)
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where {j} = I−{i}. By Eqs. 18 and 19, acceptors of the languagesHk(m)∩M−1
j Mj (Fk(m))

and Fk(m)∩M−1
j Mj (Hk(m)) can be used, instead of, T̂H(k+1)m and T̂F (k+1)m , respectively,

for computing the ambiguity levels using Eqs. 8 and 9. In the case of k = 0, for H0(m) ∩
M−1

j Mj (F0(m)) and F0(m) ∩ M−1
j Mj (H0(m)), there exist their acceptors whose state sets

are QK × (Q × Q̃Km). Since RH1m = QK × (Q × Q̃Km) × (Q × Q̃Km) and RF1m = (Q ×
Q̃Km) × QK × QK , such acceptors have smaller state sets than T̂H1m and T̂F1m . However,
for k = 1, if we construct an acceptor for H1(m) ∩ M−1

j Mj (F1(m)) by composing T̂H1m

and T̂F1m , then the state space (QK ×(Q×Q̃Km)×(Q×Q̃Km))×((Q×Q̃Km)×QK ×QK)

of this acceptor is larger than the state space QK × (Q × Q̃Km) × QK × (Q × Q̃Km) × QK

of T̂H2m , i.e., there is an increase in the size of the state space. For this reason, we chose the
construction as reported above in this section.

Example 4 We consider the setting of Example 1, where (L,K) is 2-inference diagnosable.
As shown in Example 2, the delay bound is computed as m∗

2 = m∗
F2 = m∗

H2 = 1.

We present an example of computing the ambiguity level n
f
i (Mi(s)) of the failure

decision using Theorem 6. (The ambiguity level nh
i (Mi(s)) of the nonfailure decision is

computed in a similar way.) We assume that the plant G executes a failure trace s :=
ef c ∈ L − K . For computing n

f
i (Mi(s)), we need to construct T̂Hkm for k = 0, 1, 2 and

m = m∗
2 = 1. By the definition of T̂H01 , it is the same as GK shown in Fig. 2b. A part of

TH11 and its corresponding part T̂H11 are shown in Fig. 6a and b, respectively. In addition,
a part of TH21 and its corresponding part T̂H21 are shown in Fig. 7a and b, respectively.

For k = 0, we have by Fig. 2b that

EH01,1(M1(s)) ∩ RH01,mark = EH01,1(ec) ∩ QK

= {qK,11}
�= ∅

and

EH01,2(M2(s)) ∩ RH01,mark = EH01,2(ec) ∩ QK

= {qK,10}
�= ∅.

For k = 1, we have by Fig. 6b that

((qK,11, (q11, d1), (q18, d1)) ∈ EH11,1(M1(s)) ∩ RH11,mark

= EH11,1(ec) ∩ RH11,mark

�= ∅

and

((qK,10, (q17, d1), (q11, d1)) ∈ EH11,2(M2(s)) ∩ RH11,mark

= EH11,2(ec) ∩ RH11,mark

�= ∅.
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Fig. 6 A part of the automaton TH11 and its corresponding part of T̂H11

Furthermore, for k = 2, we have by Fig. 7b that

EH21,1(M1(s)) = EH21,1(ec)

= {(qK,11, (q15, qK,11), qK,11, (q15, qK,11), qK,11),

(qK,11, (q11, d1), qK,10, (q15, qK,11), qK,11)}
and

EH21,2(M2(s)) = EH21,2(ec)

= {(qK,10, (q14, qK,10), qK,10, (q14, qK,10), qK,10),

(qK,10, (q14, qK,10), qK,10, (q11, d1), qK,11)}.
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Fig. 7 A part of the automaton TH21 and its corresponding part of T̂H21

It follows that
EH21,1(M1(s)) ∩ RH21,mark = ∅

and
EH21,2(M2(s)) ∩ RH21,mark = ∅.

By Remark 9, the ambiguity level nf
i (Mi(s)) is computed as

n
f
i (Mi(s)) = min{k ∈ {0, 1, 2} | EHk1,i (Mi(s)) ∩ RHk1,mark = ∅}

= 2

for each i ∈ I .

6 Conclusion

In Takai and Kumar (2017), we presented a framework for inference-based decentralized
diagnosis, supporting multi-level inferencing for disjunctive as well as conjunctive decision
making schemes, and introduced the notion of N -inference diagnosability to characterize
the class of diagnosable systems. This paper presents results towards the implementation of
the inference-based diagnosis scheme of Takai and Kumar (2017). To this end, a method
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for computing the delay bound of diagnosis was developed for N -inference diagnosable
systems. This delay bound is smaller than the one achieved under any other framework
subsumed by the N -inference diagnosability (such as disjunctive-codiagnosability and/or
conjunctive-codiagnosability with or without conditional decisions). This delay bound was
then used to identify a certain set of languages using which the local diagnosers can compute
the ambiguity levels of their failure and nonfailure decisions online. The computation of the
said set of languages was obtained, and a method for computing the ambiguity levels of local
decisions was also reported in the paper. The complexity of offline computations (of the
delay bound and the required set of languages) as well as of online diagnosis was discussed.
The complexity increases with the levels of inferencing, but that also increases the class of
diagnosable systems while decreases the delay of diagnosis. The complexity of the offline
computations could be made more efficient through their structured representations (e.g.,
BDDs and symbolic computations), and can be a subject of future research.
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