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Abstract Fluidization is an appealing relaxation technique based on the removal of inte-
grality constraints in order to ease the analysis of discrete Petri nets. The result of fluidifying
discrete Petri nets are the so called Fluid or Continuous Petri nets. As with any relaxation
technique, discrepancies among the behaviours of the discrete and the relaxed model may
appear. Moreover, such discrepancies may have a comparatively bigger effect when the
population of the system, the marking in Petri net terms, is “relatively” small. This paper
proposes two complementary approaches to obtain a better fluid approximation of discrete
Petri nets. The first one focuses on untimed systems and is based on the addition of places
that are implicit in the untimed discrete system but not in the continuous. The idea is to
cut undesired spurious solutions whose existence worsens the fluidization. The second one
focuses on a particular situation that can severely affect the quality of fluidization in timed
systems. Namely, such a situation arises when the enabling degree of a transition is equal
to 1. This last approach aims to alleviate such a state of affairs, which is termed the bound
reaching problem, on systems under infinite servers semantics.
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1 Introduction

Petri Nets (PN) is a well known family of formalisms for the modelling of Discrete Event
Systems (DES). As any other formalism for DES, they suffer from the well known state
explosion problem. Such a problem appears both during the analysis (e.g., to decide if the
system is bounded or not) and the synthesis (e.g., designing a controller) of the system, and
it affects both the untimed and the timed model.

Many different time interpretations can be adopted for the timing of PN. Nevertheless,
without any doubt, one of the “most basic and classical” interpretation for performance
evaluation and control consists of: (1) associating exponential probability distributions to
the delay of the atomic firing of transitions; and (2) solving conflicts by a race policy (see,
for example, for example, Molloy (1982), Ajmone Marsan et al. (1995), or Balbo and Silva
(1998)). In the sequel, we will assume this time interpretation for discrete models. The
resulting stochastic nets will be referred as Markovian Petri Nets (MPN).

An interesting technique to overcome the above mentioned state explosion problem is
known as fluidization. The fluidization of a transition consists of relaxing its firing amount
(and thus the marking of its neighbour places) to the non-negative real quantities. If all
transitions are fluidized, the result is a fluid or continuous PN (CPN) (David and Alla 2004;
Silva et al. 2011; Silva 2016). By fluidization, more efficient analysis techniques can be
developed at the price of losing some fidelity. In particular, the CPN may not preserve some
qualitative or quantitative properties of the original discrete one (Silva and Recalde 2002;
Silva et al. 2011). In other words, this issue is an instance of the classical trade-off between
“accuracy” and “computational complexity”.

Similarly to the linearization of any continuous nonlinear time-driven dynamical system,
the fluidization of DES (untimed or timed) requires some conditions to be of reasonable
quality; for example, to satisfy the marking homothetic monotonicity property (Fraca et al.
2014b). If such property holds and the marking is large, then the results obtained with
fluidization are frequently very good. With respect to timed net models, some functional
extensions of the law of large numbers lead to the legitimization of the deterministic con-
tinuous PN approximation (see Section 2.3). This last relaxed model can be expressed as
a set of Ordinary Differential Equations (ODEs). If the marking is not large, then some
functional extensions of the Central Limit Theorem can be helpful, leading to Stochastically
Differential Equations (SDEs) (Vazquez and Silva 2012; Beccuti et al. 2014). In the sequel
we limit to deterministic relaxations.

Synchronizations in PN can be expressed with two complementary constructions: (1)
rendez-vous (or joins); and (2) weights in arcs going from places to transitions. At this point
it should be pointed out that if the marking is “very large”, the effect of those weights on arcs
is not “seen” (Silva 2016) (intuitively speaking, if the marking of the place at the origin of
the k-weighted arc is 1000k —i.e, relatively very big— the enabling is 1000, so the continuous
approximation is valid). However, if the marking is not “very large”, the relative errors may
be higher (intuitively speaking, rounding the number 1.5 to 1 lead to a relative error three
orders of magnitude bigger than rounding 1000.5 to 1000). Thus, appropriate fluidization
techniques are required for systems whose marking is “relatively” small (and hence cannot
be fluidified properly), yet large enough to make its study a discrete system computationally
prohibitive.

This paper deals with techniques to improve the fluidization process, what is specially
interesting when the population is “relatively” small, at least in some parts of the system.
We do not consider neither very small populations (in which fluidization is frequently not
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needed) nor very large ones (in which fluidization usually provides a good approximation
of the original PN).

Some of the differences between discrete and continuous systems appear because solu-
tions of the fundamental equation which are spurious in the untimed discrete system (i.e.,
analytical solutions of the fundamental or state-transition equation that are not reachable
on the net model) may become reachable by the continuous relaxation. Therefore, some
transformations on the discrete PN system are firstly proposed. They improve the fluidiza-
tion process for untimed PN, thus potentially for any timed interpretation. In particular,
the steady state throughput of the MPN will be better approximated by the continuous
approximation, i.e., by the timed CPN (TCPN).

These transformations are based on the addition of some places which are implicit in the
discrete system (Silva et al. 1998) but they constraint the behaviour of the continuous one.
In particular, such cutting implicit places (Silva et al. 1998) remove some spurious solu-
tions. The key issue here is that any continuous (possibly integer) spurious deadlock can
be removed (the main differences between the discrete model and the continuous approxi-
mation is caused by spurious deadlocks). The elimination of a given spurious deadlock is a
computational problem of polynomial time complexity. Unfortunately, the number of spuri-
ous deadlocks may be theoretically exponential. Nevertheless, this is not a frequent case in
practice. Let us remark that improvements in both timed and untimed models are obtained
by these techniques.

With respect to timed models, we focus on a particular situation in which the fluidized
system does not approximate certain quantitative properties of the original one. It is the
case of PN systems in which the enabling bound of a transition is equal to 1, and hence the
probability of firing that transition may be very low in the discrete case but not so “difficult”
on the continuous approximation. This problem is denoted as the Bound Reaching Problem
(BRP) (Fraca et al. 2014a). The BRP is a challenging problem that may appear in many
practical cases. It can arise in systems in which relatively small and large populations are
combined in a given model, and also when inhibitor arcs of a bounded system are removed
and simulated with regular arcs and places.

Among the different concerns related to the BRP, in general terms, the approximation
of the throughput of a discrete Markovian PN (MPN) by a Timed Continuous PN (TCPN)
under infinite server semantics (ISS) was considered in Silva et al. (2011). Here we extend
such an approximation to join or rendez-vous transitions by means of some representative
places which implement the concept of linear enabling functions (Teruel et al. 1993; Briz
et al. 1994).

The rest of the paper is organized as follows. Section 2 recalls basic definitions. In
Section 3, we concentrate on the addition of cutting implicit places with the goal of improv-
ing the untimed continuous approximation. The bound reaching problem is introduced in
Section 4. In Section 5, a method derived from ISS, here denoted as p — semantics, is pro-
posed for the firing of transitions involved in the BRP. Section 6 deals with the extension of
previous results to the most frequent class of synchronizations: rendez-vous. A case study
is discussed in Section 7, and Section 8 concludes the paper.

2 Definitions and previous concepts

The main concepts related to discrete and continuous PN are recalled here, both as untimed
and timed formalisms. The relationship between the timed interpretations when the system
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population tends to infinity is also established (see Section 2.3). In the following, it is
assumed that the reader is familiar with Petri nets (see DiCesare et al. (1993) or David and
Alla (2004) for a gentle introduction).

2.1 Discrete Petri nets

A Petri net is a tuple N = (P, T, Pre, Post) where P = {p1,p2, ... pn} and T =
{t1, 12, ..., t,y} are disjoint and finite sets of places and transitions, and Pre, Post are
|P| x |T| sized, natural valued, incidence matrices. The preset and postset of a node
u € PUT are denoted by *u and u®, respectively. A discrete PN system is a tuple (N, Mo)
where A is the net structure and Mg € NLPO‘ is the initial marking (denoted in upper case
M for the discrete system). B

The enabling degree of transition #; at marking M is defined as:

M .
Enab(;. M) = min |11
PjE€®ti Pre[pj, til

M

The firing of #; in a certain natural amount « < Enab(t;, M) leads to a new marking M’,

which is denoted as Ma—t'}M’, and M’ = M + « - C[P, t;], where C = Post — Pre is
the token flow matrix (incidence matrix if A is self-loop free) and C[P, t;] denotes the i th
column in C. Hence, M = My + C - o, the state-transition (or fundamental) equation,
summarizes the marking evolution; where o is the firing count vector associated to the fired
sequence.

Right and left natural annullers of the token flow matrix are called T- and P-semiflows,
respectively. When 3y > 0,y - C = 0, the net is said to be conservative, and when 3x > 0,
C - x = 0, the net is said to be consistent. A nonempty set of places ® is a trap if ®° C *°©O,
while a nonempty set of places X is a siphon if *X C X°.

The set of all the reachable markings of (N, M) is denoted as RSp(N', My). Its lin-
earised reachability set (LRS) contains the markings which fulfill the fundamental equation
(even if they are not reachable) (Silva et al. 1998). In this work, the LRS is defined on the

real numbers (m € R‘:z)‘):

.o eRl) )

A marking M is spurious if it is a non reachable solution of the state-transition equation,
ie, M € LRS(N, M) but M ¢ RSp(N', My). The structural bound of a place p;, and
the structural enabling bound of a transition #; are integer values defined as:

LRSWN, My)={m\m=Mo+C -o,m R

SB(pj) = lmax{M[p;] I M =My+C-0,M,0 > 0}] 3)

SEB(tj) max{e |[Vp € *ti,e < Mip;]

SEB(1;) = Prelp il @)

stM = My+C-0,M,0 >0}]

A Markovian Petri net system (MPN) is a particular time stochastic interpretation
(Molloy 1982; Ajmone Marsan et al. 1995; Balbo and Silva 1998), in which the time to fire
a transition #; follows an exponentially distributed function with parameter X; - Enab(t;, M),
where A; is the firing rate associated to #;. More formally, a MPN is a tuple (N, Mg, 1),
where A € RLTO‘ is the vector of rates associated to the transitions.

Given a bounded and ergodic MPN system, the steady state throughput of a transition
t;, denoted as yppn(t;), provides a meaningful measure for its long-term performance.
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It is defined as the limit of the average number of times #; fires per time unit when time
tends to infinity (Campos and Silva 1992):

&)

. 0i(7)
xmpn(t) = lim =
T—>00 T

where 7 is the time variable and o; () is the firing count of transition #; at time instant t.
2.2 Continuous Petri nets

The main difference between continuous and discrete PN is in the firing amounts and con-
sequently in the marking, which in discrete PN are restricted to be in the naturals, while
in continuous PN are relaxed into the non-negative real numbers. Thus, a continuous PN
system (CPN) is understood as a relaxation of a discrete one.

A continuous PN system is a tuple (N, mo) where A is the net structure (as defined
for discrete PN) and mg € Rfol is the initial marking. The enabling degree of a continuous
transition #; at marking m is defined as:

m[p;]

enab(t;, m) = min {7
Pre([p;, ]

PjE®t;

} > Enab(t;, m) (6)

The firing of #; in a certain real amount & < enab(t;, m) leads to a new marking m’ that
satisfies m’ = m+a - C[ P, t;]. Notice that in contrast to discrete PN, a continuous transition
can fire if all its input places are positively marked, i.e., enab(t;, m) > 0, regardless of
the input arc weights. Its set of reachable markings is denoted as RSc (N, mg) (Silva et al.
2011). And its LRSS coincides with the LRSS of the discrete system. It holds that:

LRS(N, M) 2 RSc(N', M) 2 RSp(N, Mo) @)

As in discrete PN, the equation m = mgy + C - ¢ summarizes the system evolution. The
derivative of this equation with respect to time is it = C - f where f = ¢ is the vector of
instantaneous flows of transitions.

A Timed Continuous Petri Net (TCPN) is a continuous PN together with a vector
A€ ]RLTO‘ defining the speed associated to transitions, denoted as (N, mq, A). One of the
most used semantics is infinite server semantics (ISS) (proved to be specially interesting for
engineering applications (Mahulea et al. 2009)). Moreover, product semantics may be also
considered (Silva and Recalde 2002) for population dynamics or (bio)chemistry, and finite
server semantics has been also considered in some works (David and Alla 2004). Alter-
natively, stochastic time interpretations are proposed in the literature such as Stochastic
Continuous PN (Véazquez and Silva 2012).

In the sequel, ISS is considered. According to ISS, the flow through a continuous timed
transition ¢; is defined as follows:

£ = as - enab(i,m) = A; - min | —"2 (8)
pjest | Prelpj, ]

If there exists a steady state in a TCPN system, the throughput of #;, denoted as
xTcpn (i), is equal to its steady state flow f; (Silva et al. 2011):

xrepn () = lim; o fi(T) 9

where f;(7) is the flow of transition #; at time instant 7.
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2.3 Deterministic limit of MPN

The deterministic limit of a system (Jacod and Shiryaev 2002) describes the trajectory
towards which the population densities of a discrete Markovian system converge as its size

tends to infinity. Let us consider a MPN with initial marking Mo = k - pg € N|>Pol where

Mo € RLPO‘ represents the initial marking density of the system, and k € R. ¢ represents the

relative system size (or volume).

The vector field for place p; is defined as F;(n) = Zt,-e(’ijp,-') Clpj,t]- fi, where
fi = A - enab(t;, p) (notice that F; is a nonnegative function of real arguments on the
system densities). Let F(u) be a vector composed of the vector field functions F;(u) of
every place p;. The two following conditions can be easily checked:

a) F(p) is Lipschitz continuous, i.e., 3H > Os.t. |F(p) — F(v)| < H - |p —v[;
b) ZIiE('PjUPj.) |C[pj7 ti]' : fl(’l') < OQ.

Then, the deterministic limit behaviour of the marking densities u of the MPN when k
tends to infinity is given by the following set of differential equations (Ethier and Kurtz
1986; Jacod and Shiryaev 2002): oo = F(n) =C - f.

Thus, the deterministic limit of a MPN matches with the time evolution defined for
TCPN. Therefore, a TCPN faithfully captures the behaviour of a MPN with “infinitely”
large markings.

3 Transformations on the untimed discrete PN: addition of cutting
implicit places

By fluidization, spurious markings of a discrete PN system may become reachable in the
continuous one (Silva and Recalde 2002). Some transformations of the net system are
proposed here to avoid those markings, thus obtaining a more faithful approximation.

The spurious markings can be either integer or not, and it is specially interesting to avoid
them when they are deadlocks. Two techniques have been proposed in the literature to avoid
integer spurious markings. The first one, considered in Silva et al. (1998) and Silva et al.
(2011), avoids markings in which a trap is emptied by adding a polynomially calculable
implicit place. Because a trap cannot be emptied in a discrete PN system, the avoided mark-
ing is spurious in the discrete system. The second technique (Fraca et al. 2014b) proposes
to avoid a marking that empties a siphon by adding a place. However, it cannot assure that
the avoided marking was spurious (otherwise stated, the added place is implicit). Thus, this
technique can only be applied if it is previously known to be a spurious solution.

Among non-integer spurious markings which can be removed, those which are vertices
of LRS(N, my) are particularly interesting. Some classical works aim to remove the non-
integer vertices of a polytope, such as the Gomory-Chvatal cuts. Given a polytope on the
reals, they cut the markings outside the integer hull of the polytope (Balas et al. 1996;
Cornuejols 2012). This method could be used to remove undesired non integer spurious
markings. Although Gomory cuts are tractable for a given set of equations, finding a good
family of cuts in the general case requires further investigation (Cornuejols 2012).

We propose to implement some polynomial time cuts on the polytope defined by
LRS(N, My), considering the PN structure. Those cuts aim to avoid spurious markings,
and they are obtained by means of implicit places which force some marking relations.
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We propose three different kinds of implicit places to avoid such non-integer vertices of the
polytope: vertex cutting places avoid those vertices which are non-integer; marking trunca-
tion places are a particular case but more efficient to compute; enabling truncation places
do not modify the set of reachable markings, but they can modify the firing amounts of the
transitions.

A place p is said to be an implicit place if it does not constrain the behaviour of the
discrete system.

Definition 1 Given a PN system (N, mg):

— A place p is implicit in (N, mg) if it is never the unique place that prevents the firing
of a transition.
— Anplace p is structural implicit in N if there exists mq for which p is implicit.

A characterization of the structural implicit places is given in Silva et al. (1998):

Proposition 1 Ler N' = (P U{p}, T, Pre, Post). Place p is structurally implicit iff
(equivalently):

1. Ay > 0exists such that C[p, T]1 > yT - C[P, T]
2. Nox > 0 exists such that C[P,T]-x > 0and C[p,T]-x <0

Here, we refer to concurrent implicit places, which preserve not only the firing
sequences, but also the steps (Silva et al. 1998; Garcia-Vallés and Colom 1999). The removal
of a concurrent implicit place allows the timed performance measures to be preserved.

Proposition 2 Given a net system (N', My), and (N", M 6) the same net system without
place p, then p is a concurrent implicit place (Garcia-Vallés and Colom 1999) if Mo[p] >
y — 1, where y can be computed as:

y = min{y" -mj+ pl yl - C' < C[p,T]
2l - Pre'[P', p*1+ u-17 > Pre[p, p*] (10
y>z>0,1<0}

If p is implicit in (N, mg) as a continuous system, then p is also implicit in (N, mq) as
a discrete system. Assume py is not implicit in (A, mo) considered as a discrete system.
Then, there exists a marking m reachable with discrete firings at which py constraints the
enabling of an output transition ¢. Since m is also reachable in the system as continuous, pi
is not implicit in the continuous system either.

3.1 Vertex cutting place

The aim of this technique is to cut non-integer vertices of LRS(N', M), that are not
reachable on the discrete model. Let us explain the technique through an example, before
introducing the method in a formal way.

Consider the example in Fig. 1a without place v. As discrete, it is deadlock-free and it has
four reachable markings: My = (1,0, 1,0,0), M; = (0, 1,0, 3,0), M» = (0,0, 1, 0, 3),
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Fig. 1 (a) The vertex cutting
place v cuts the spurious
deadlock my = (0,0, 1, 1.5, 0).
(b) The marking truncation place
g4 does not cut my

and M3 = (0,0, 1, 1, 1). The polytope defined by LRS(N', M) is the convex set defined
by those vertices and (0, 0, 1, 1.5, 0). As continuous, the deadlock m; = (0,0, 1,1.5,0) €
LRS(N, My) is reachable (by firing t, followed by 1.5t3 from mg). Thus, the deadlock-
freeness property is lost. Marking mg is outside its “integer hull”, so it is not reachable in
the discrete PN (in particular, m; ¢ N 1Py,

Consider the marking m,; which is a vertex and it is not reachable. Then, there exists at
least two other markings which are vertices and in which at least one of the places which are
empty at my (i.e., p1, p2 and ps) are marked (with a marking equal or greater than 1, in the
discrete model), otherwise it would not be a vertex. Hence, we can assure that the following
inequality holds for every discrete reachable marking: m[p1] + m[p2] + m[ps] > 1. This
inequality can be forced by the addition of a place v which is implicit in the discrete (but not
in the continuous) PN: m[p] + m[p>2] + m[ps] — m[v] = 1. From this equation, place v is
defined as C[v, T]1 = C[p1, T1+ Clp2, T1+ Clps, T, and mg[v] = mo[p1] + mo[p2] +
mo[ps] — 1, as depicted in Fig. 1a. Place v, here denoted as vertex cutting place, adds the
invariant m[p1]+ 2 - m[p3] + m[p4] + m[v] = 3 to the net, and m,; becomes not reachable
in the CPN. In this example, the added place v leads to a continuous system which preserves
the deadlock-freeness property of the original discrete one.

Definition 2 Vertex cutting place. Given a non-integer vertex m,, a vertex cutting place v
is the place which forces the following relation:

Y. mipl=l.

ilmy[pi]=0

The obtained vertex cutting place v is implicit in the discrete PN and it cuts the marking
m,, in the continuous system.
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More formally, given a PN system (P, T, Pre, Post; mg) and a marking m,, the system
(P',T', Preé', Post’; mz)) resulting of adding vertex v can be obtained by Algorithm 1.

Algorithm 1 Addition of vertex cutting place v

Input: PN system (P, T, Pre, Post; mg), marking m,

Output: PN system (P', T', Pre’, Post’; m)

1) P =PU{v}

DT =

3) Pre/[P,T] = Pre[P, T]

4 Pre/lv,T1= > Prelp.T]
ilmy[pi]=0

5) Post’'[P,T] = Post[P, T]

6) Post'[v,T1= Y Post[p;,T]
ilmy[pil=0

7y my[P] = my[ P]

8)ymylvl= Y molv]—1

i|my[pi]=0

Checking if a given solution m,, is a vertex of a polytope can be done in polynomial
time (as explained in Appendix A). However, enumerating all the vertices of the polytope
is computationally costly (Avis and Fukuda 1992).

Let us consider a spurious deadlock m, (the continuous enabling degree of all tran-
sitions at my is 0; i.e., my is a deadlock in the continuous PN). If m, is a vertex of
LRS(N, My), it can be removed with the technique presented in this section. If m is not
a vertex of LRS(N, M), it must be a convex combination of two or more vertices of the
LRS(N, My). Notice that the null components of m, are also null in such vertices, and that
at least one of such vertices is not reachable (if every vertex is reachable, then every linear
combination, and in particular mg, is also reachable (Silva and Recalde 2002)). Therefore,
atleast one of such vertices is a spurious deadlock that can be removed with the presented technique.

The repeated execution of this procedure, i.e., the removal of spurious deadlock vertices,
reduces the size of LRS(N', M) and, therefore, produces a better approximation of the
discrete PN.

3.2 Marking truncation places

This subsection introduces a particular class of vertex cutting places, which is called mark-
ing truncation places, that can be computed and added very efficiently. Because a marking
of a discrete PN system belongs to N!'*!, a place p j will never have more tokens than
its structural enabling bound SB(p;). However, this bound can be overlooked by the
continuous system.

The addition of an implicit place g; is proposed, which is a complementary place of p;
which truncates the marking of p; to the highest possible integer, and consequently, it limits
the firing of the transitions in *p; and p;* (in the continuous system) and avoids undesired
markings.

Definition 3 Given a place p;, its marking truncation place g is obtained as: Pre[q;, T] =

Post[pj, T] and Post[q;, T] = Pre[p;, T]. Its initial marking is obtained as: mo[q;] =
SB(pj) —mo[p;].
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Given a PN system (P, T, Pre, Post; mg), their marking truncation places can be
added by Algorithm 2.

Algorithm 2 Addition of marking truncation places

Input: PN system (P, T, Pre, Post; my).

Output: PN system (P', T', Pre’, Post’; m)

DP =P.T =T

2) Pré/[P,T] = Pre[P,T]; Post'[P,T] = Post[P,T]
3) my[P] = my[ P]

4) for every p; € P

5) P'= P'Ug;)

6) Pre'[qj, T]1 = Post[p;, T]

7 Post'[q;, T]1 = Pre[p;, T]

8) m{)[qj] = SB(pj) — mg[p;] where SB(p;) is obtained from (3)

For example, consider the PN in Fig. 2a, which is also deadlock-free as discrete but not
as continuous. The marking truncation place g3 is added, which is complementary to p3,
whose initial marking is Mo[g3] = [1.5] — 0 = 1. It is implicit in the discrete system, but
it modifies the LRS(N, My). It avoids having more than 1 token in p3, hence it avoids the
spurious deadlock m; = (0, 1, 1.5, 0), in which m4[p3] = 1.5 is higher than SB(p3) = 1.
The resulting system is deadlock-free as continuous. Moreover, the addition of g3, with
my[g3] = 1, makes the timed approximation of the original system as MPN more accurate.
The improvement is not significant when A1 = X, (see first column of Table 1), but it is
specially relevant when A; > A, (see the second column of the table), because the steady
state of the TCPN is near to m,.

The addition of every marking truncation place to the system can be done in polynomial
time (because computing SB(p) is polynomial). However, this technique does not always
obtain the “integer hull” of the polytope. For example, consider again the PN system in

B8 , &
pg\w U'é/\% bt

~/

(a) (b)
Fig. 2 (a) The marking truncation place g3 removes the undesired spurious marking my; = (0, 1, 1.5, 0).

(b) With k < g < 2 - k, the enabling truncation place tp improves the throughput approximation, but does
not change RSc (N, mg). If ¢ = k, then 1, suffers the BRP (see Section 4)
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Table 1 x(#;) of the PN in

Fig. 2a, with different A Method x () x ()
A=(551 M=0G1,1)

MPN 0.769 0.492

TCPN 0.833 0.025

TCPN+impl 0.833 0.499

Fig. 1b. The marking truncation place g4 is added to limit the structural bound of p4,
denoted SB(ps4). However, m, is still reachable by the continuous PN by firing 72, 1.513
from my (the rest of places g; would not avoid it either), and the addition of the vertex
cutting place is needed.

3.3 Enabling truncation places

Finally, the enabling truncation places do not modify the LRS(N, M), but they limit the
flow at a given marking if time is considered. They can have an effect on the throughput,
even if all the SB(p) are integer (the marking truncation place would have no effect).

Analogously to the marking of a place, a transition #; will never be fired in an amount
higher than its structural enabling bound SE B(t;). The addition of an implicit place ¢p;
is proposed. It would truncate the maximal possible firing of the transition to the highest
possible integer.

Definition 4 Enabling truncation place. Given a transition ¢;, its enabling truncation place
tp; is a self-loop place of transition #; whose initial marking is mg[tp;] = SE B(t;).

Given a PN system (P, T, Pre, Post; mg), their enabling truncation places can be
added by Algorithm 3.

Algorithm 3 Addition of enabling truncation places

Input: PN system (P, T, Pre, Post; mg).

Output: PN system (P’, T’, Pre’, Post’, mb)

HDP =P, T' =T

2) Pre/[P,T] = Pre[P,T]; Post'[P,T] = Post[P,T]
3) m{[P] = mo[P]

4)foreveryt; € T

5) P’ = P U{tp;}

6) Pré[tp;, T\t;]=0

7 Pre'[tp;, ;1 =1

8) Post'[tp;, T\ t;,]=0

9) Post'[tp;, ;] =1

10) m[tp;] = SE B(1;) where SE B(1;) is obtained from (4)

Consider the PN in Fig. 2b with k = 5, ¢ = 8 and A = (1, 5). The structural enabling
bound of #1 is SEB(t1) = |1.6] = 1. Hence, an enabling truncation place tp; with initial
marking equal to 1 is added (see place tp1, drawn in grey colour). The throughput of #; in
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the discrete PN is xprpn(¢1) = 0.90. The concurrent implicit place tp; forces the continu-
ous system to be more faithful to the original discrete system and produces the throughput
XTCPN-+impi (t1) = 1.00, which is a better approximation than the throughput of the origi-
nal continuous net system xrcpy(t1) = 1.33. Only ¢p; has been added because place 1p»
would not affect to the behaviour of the continuous PN.

4 The bound reaching problem (BRP)

TCPN under ISS approximate reasonably well the behaviour of MPN when the population is
relatively large, as pointed out in Section 2.3. However, the Bound Reaching Problem (BRP)
identifies a particular but important situation in which the quality of the approximation may
be significantly worse (Fraca et al. 2014a).

Definition 5 A transition #; in (N, M) is said to suffer from the BRP if SEB(t;) = 1.
The set of transitions suffering from the BRP in a PN system (A, M) is denoted as Bound
Reaching Transition Set: BRT S = {t; | SEB(t;) = 1}.

The differences between discrete and continuous behaviour are due to the fact that
synchronizations (arc weights and therefore joins) are strongly relaxed when the net sys-
tem is fluidified. Consider transition #; in Fig. 2b with ¢ = k (and without #p1). Thus,
SEB(t1) = 1. Seen as discrete, #1 is only enabled when M[p;] = k. However, as continu-
ous, #1 is enabled for any positive amount of tokens 0 < m[p] < k, regardless of the arc
weight k.

Considering the net system as a MPN, the firing time distribution of #; from m follows
an exponential probability function with parameter A; - L%J. After the first firing of
t1, only 7, can be fired, and it keeps on firing until the k tokens are again at p;. Then, #
becomes enabled again. If k increases, the probability of having k tokens in p; decreases,
and also its steady state throughput. Its average cycletime is obtained from order statistics as
0= )Tll + i . Zle Il and its mean throughput is é i.e., xmpn(t1) = )»2/(2?:1 ll + j\\—f).

Notice that y s pn(f1) is the product of a dimensionless coefficient depending on k and
;—T, multiplied by X, that defines a time scale (time homothecy (Silva and Recalde 2002)).
Thus, we can normalize A, = 1, and the normalized y;pn (f1) depends on k and A;. The
steady state throughput of #; for different values of k is shown in Table 2 for A = (10, 1).

Considered as a TCPN, ¢ is enabled for any marking m[p;] > 0. Moreover, the firing
of t1, and hence the behaviour of the system, is not modified by k. The throughput of #; as a
TCPN is time homothetic (i.e., its steady state flow is proportional to A), and it is equal to:
xrepn () =ha/(1+ 32).

Considering A = (10, 1), xrcpn (1) = 0.909 for any value of k. The continuous
throughput coincides with the discrete one for & = 1, but it provides a bad approximation
for k > 1 (see Table 2), which gets worse when k grows.

In order to overcome this lack of accuracy due to the BRP, different techniques can be
investigated. They can range from fully continuous (Fig. 3a) to hybrid (Fig. 3b). A first
possibility is to modify the flow of the continuous transition. For example, an “ad hoc”

Table 2 Throughput of # in
Fig. 2b, with k = ¢, and Method k=1 k=2 k=4 k=8 k=16

A =(10,1)

xmpn(t) 0.909 0.517 0.420 0.355 0.287
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enab(t;) enab(t;)
1 . 1
| |
0 k mlpd O k'k  mlp;]
(a) ISS (b) Hybrid PN
enab(t;)
1
—
0 k-p k  milp4]

(c) p-semantics

Fig. 3 Enabling degree of #; in Fig. 2b with ¢ = k. (a) TCPN under ISS (continuous and differentiable
flow); (b) Hybrid PN (see Fig.4a), t; discrete and approximately scaled arcs; (¢) p-semantics (piecewise
function, based on ISS)

continuous flow estimation is explained in Fraca et al. (2014a) as an alternative to ISS.
However, it has some disadvantages such as no time homothecy.

5 A new semantics to approach the bound reaching problem

The aim of this section is to propose an alternative fluidization technique to tackle the BRP.
The resulting method will be a deterministic approach based on ISS.

Consider again the PN in Fig. 2b, with ¢ = k. A key difference between the behaviour
of the MPN and the TCPN under ISS is that in the MPN, 7 can fire only when the k tokens
are in pp; while in the continuous case, it is not needed to “wait until the k tokens” are in
p1 to fire ¢;.

In a TCPN, waiting until p; has k tokens would take infinite time. Hence, it makes sense
to wait until some other smaller value, such as k — p (where p comes from “the rest”). This
behaviour can be obtained by transforming p1-11 (see Fig. 2b) to a subnet composed of p,
t{, Das Pbs timm (see Fig. 4b), such that t{ is not enabled for “the first” k — p tokens, and it
is enabled for higher amounts.

Fig. 4 (a) Hybrid PN system in
which 7| is discrete (black 1ty
transition) and t is continuous, D2
arc weights are modified to k/, Q
(b)Transformation of the PN in i pll O
Fig. 2b, with ¢ = k. Transitions ty timm + P2
t1 and 1, are continuous under l?l
ISS, and f; ., 1S immediate (thin
black transition) @

i k
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Immediate transitions are difficult to handle in TCPN (Recalde et al. 2006). A first
approximation can be to consider immediate transitions as timed ones which are sev-
eral orders of magnitude faster than the other transitions (for example, Ajp,;, = 10000 if
A = (10, 1)). However, this has some disadvantages: If A;,,,, is relatively not very high, then
the steady state might not be the desired one; while for very high relative values of A;;;,
stiffness problems would appear.

In this particular construction, we can abstract the structure given by pi, t{, pa, Db,
timm DY a unique transition which compacts the desired behaviour, resulting in the denoted
p —semantics, based on ISS (see Fraca et al. (2014a) and Fig. 3c for more details). Its flow
is given by:

if m[p1] < Pre[p1,t1]-p
otherwise

(1)

J1=A1 - { mIpi-(Prelpi,hil-0)
P

The transient flow of #; is still a continuous function but piecewise defined, which intro-
duces certain “hybridization” in the behaviour of the transition (see Fig. 3c). If p tends to
0, the flow tends to a step function of values from O to A1, while if p tends to Pre[py, 1],
the flow tends to ISS. The computation done by this approach is local to transition #; (the
transition in BRT'S), and it is simple and fast to calculate. It inherits some basic properties
of ISS, such as homothetic monotonicity w.r.t. the firing rates.

With the proposed p-semantics, the throughput of the system can be “tuned” from O
(when p ~ 0) to the throughput of the TCPN (when p is “equal” to Pre[pi,t1]). The
challenge is how to select p to approximate the steady state throughput of the MPN.

Let us first compute p for the PN in Fig. 2b with ¢ = k, and then apply that heuristics
on any PN system with a similar structure. The throughput of #; at the steady stated can
be symbolically computed, considering p-semantics for the flow of #; (i.e., Eq. 11, with
p as a parameter), and ISS for 7, (i.e., Eq. 8). Because of its p-semiflow, it holds m[p] +
m[p2] = k. At the steady state, the equality C - f,, = 0 must be satisfied, and hence
Xp(t2) = k - x,(t1). From these equalities, the value of x,(#1) for the PN in Fig. 2b with
q = kis:

0
A2

P (12)
k+,0'ﬂ

Xp(t1) = A2 -

Forcing xmpn(t1) = xp(t1), an analytical formula for the value of p is obtained, that
fortunately depends only on k (not on A):

L. 13)
P=F 1
Zi:l i
The PN model in Fig. 2b can be seen as a simplification of any net system with analogous
structure. Hence, it will be possible to use the heuristic formula (13) in other transitions
suffering from the BRP such that |*#| = 1.

6 Generalization of the p-semantics to join transitions
As introduced in Section 5, the p-semantics has been designed for transitions with a unique

input arc. The aim of this section is to generalize it to transitions with more than one input
place (rendez-vous or join transitions).
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First, linear enabling functions for join transitions are presented. Then, the addition of
the representative places is introduced. Finally, the application of the p-semantics to join
transitions is proposed.

6.1 Linear enabling functions

Linear Enabling Functions (LEF) were introduced for discrete PN in Teruel et al. (1993) and
Briz et al. (1994) to characterize the enabling of a transition by a single linear expression.

The enabling of a transition #; can be represented with a single LEF if every p € °f
except at most one (denoted as ), satisfies the equality SB(p) = Pre[p, t;], i.e,

dm € *n st.Vp e {*; \ 7}, SB(p) = Pre[p, t;] (14)
A particular case appears if every place p € °f; satisties SB(p) = Prelp, t;]. If SB(p) >
Pre[p, t;] holds for more than one of its input places p, its enabling cannot be directly
represented by a single LEF, and some previous transformations of the PN should be done

(see (Teruel et al. 1993)).
Given a transition #; which holds Eq. 14 it will be enabled when:

M(z]+ SB(n) - Z M(p] = Pre[z.t;]+ SB(m)- > Pre[p.]  (I5)
{*t;\m} pe{*ti\r}
Consider the PN in Fig. 5a (without the grey place, r1). Transition #; holds Eq. 14 with
= pe (because SB(ps) = 5 > Pre[ps,t1] = 2, {*t1 \ m} = {ps}, and SB(py) =
Pre[ps, t1] = 2). The enabling of ¢ (in the discrete system) is given by: M[pe] + SB(ps) -
M(ps] = Pre[pes, t1]1+ SB(ps) - Pre[ps, t1].

6.2 Representative places for join transitions

The LEF of a discrete transition can be represented in the PN system with an implicit place
which is representative of its enabling (Briz et al. 1994).

Method x(t1)

2
t1 ¢,
\5 MPN 0.396
12 pG
TCPN 0.484

p-semantics 0.410

]
Qm w (O
L&)

wj .

Fig. 5 (a)The grey place r; is the representative place of transition t;. The p-semantics is applied to
transition 71. (b) Steady state throughput of 71, with A = (10,1, 1, 1, 1)
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Given a PN system (A, M) which satisfies (14), a representative place r; can be added
to the system, which is computed as a linear non-negative combination of the places in °#;.
Place 7; is built as:

Clri, T]=C[n,T]+ SB(w) - Z Clp,T] (16)
peftti\m}

And its initial marking is computed as:

Molr;] = Moz + SB(x)- Y Molp] (17)
pef*ti\m}

Consider again #; in Fig. 5a. The representative place ri is added, computed as
Clr1,T] = Clps, T1+ SB(p¢) - Clpa, T], where SB(ps) = 5 (see the grey place r; in
Fig.5a). Its initial marking is computed as Mo[r1] = Mol[pe] + SB(pe) - Mo[ps] = 0.
In general, the added place r; (the marking of r;) is a non-negative linear combination of
the places in °#; (their markings). Hence, r; will never be the unique place constraining the
enabling degree of #;, and it is implicit in the discrete and the continuous systems.

The original places in °#; become implicit in the discrete PN system when r; is added.
However, they do not become implicit in the continuous one. For example, once the implicit
place r; has been added in Fig. 5a, p4 and pg become implicit in the discrete net system.
However, m’1 =(3,0,0,0, 1, 1, 0) is reachable in (N, m), and the enabling degree of 7] is
restricted by p4 at m) (and not by r1). Analogously, place ps does not constrain the enabling
degree of t; in the reachable marking m/2 =(2,0,0,1,3,0,5). Hence, p4 is not implicit in
the continuous system and p4, pe cannot be removed.

6.3 Generalization of the p-semantics

The flow of the join transition ¢#; is defined by using the p-semantics for place r;, and ISS
for the rest of the places in *#;.

The value of p; is computed from p as defined in Eq. 13. If place r; was obtained as
a linear combination of those in °f;, then p; is obtained with the same linear combination
of p(Pre[p;, t;]) for the places p; € °t;, where p(Pre[p;, t;]) is computed from Eq. 13,
with k = Pre[p;, t;].

Given a representative place r; which has been obtained as C[r;, T] = C[n, T]+SB(w)-
Zpe{.,i\n}[p, T, then p; is obtained as follows:

pi = p(Prelm. )+ SB(w)- Y p(Prelp.1]) =

pel*ti\m}
Pre[n, t;] Pre[p, t;]
Pre[m,t;] 1 +SB(7) - Z Pre[p,ti] 1° (18)
Zn:l n pe{*ti\n} Zn:l n

The flow of the transition (defined in Eq. 11) is generalized below to join transitions, in
which an analogous term is used for the representative place, and ISS is used for the rest of
the places in °#;:

0 if m[r;] < Prelr;, t;]-p;

fi=Ai- min{m[fi]-(P’;[l’iJi]-pi)

19

: m[p] :
, Zlel-’?,-{””[l’”i]}} otherwise
For example, consider transition #; in the PN in Fig. 5a. In this case, *f; = {p1, p2},

so |*f1] > 1 and the p-semantics cannot be directly applied. The first step is to add
the representative place ry (see Section 6.2). Then, the value of p; can be obtained from
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Eq. 18. Finally, the p-semantics proposed in Eq. 19 can be applied to #;. Consider-
ing A = (10,1,1,1,1), the p-semantics (x,(t;) = 0.41, see the Table in Fig. 5b)
gives a better approximation than the TCPN (xrcpn (1) = 0.484) to the original MPN
(xmpn(t1) =0.396).

The p-semantics has been presented here for join transitions, eventually with weights
in the arcs. However, the behaviour of those transitions in which joins and choices are
combined requires further investigation.

7 Case study

The aim of this section is to apply the techniques presented in this paper to an example from
the literature. The Petri net example shown in Fig. 6 is obtained from Bordbar et al. (2000).
It represents a supervisory control system for a distributed manufacturing process.

In Bordbar et al. (2000), the system is modelled with UML, and then a discrete PN sys-
tem is derived. The system represents a production line process, in which two components
interact. The left part of the Petri net (with places and transitions labelled by B) represents
a belt, while the right part represents some film. Both parts are mutually synchronized.

In this work, we modify the production line, allowing the system to produce k jobs at
the same time. In order to obtain that, we allow the belt to hold k jobs, so we modify the
initial marking of B, to k. These jobs will be synchronized in transition By, SO also
the weight of the arcs around this transition are modified to k. Moreover, k jobs will be
wrapped by using the film (right part of the figure) at the same time. The k tokens in Fout
are synchronized in transition Fj,ey,.

Fig. 6 Case study. Petri net which models a supervisory control system (obtained from Bordbar et al. (2000))
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Table 3 Steady state throughput

of transition Fjy in the PN in Method XSPN XISs Xp error
Fig. 6
k=3 0.356 0.714 0.398 11.8%
k=10 0.860 2.381 0.839 2.4%
k=100 6.010 23.810 4.774 20.6%

Let us consider the computation of the steady state throughput of transition By, . It can
be efficiently done for low values of k for the discrete PN, however, the state explosion
problem raises for bigger values of k. For example, the Markov chain obtained for k = 1
has 16 states, for k = 3 it has 673 states, and for k = 5 it grows to 7322 states. It grows
exponentially for bigger values of k. Hence, the fluidization of the system is interesting in
this case.

Consider a small value of k suchask =3,and A = (1,1,1,1, 10,1, 1, 1, 1, 10). In this
case, xspN (Bnew) = 0.356 for the MPN. This value is not well approximated by the con-
tinuous PN, x755(Bnew) = 0.714, but it is well approximated by applying the p-semantics
to transitions By, in which the obtained throughput is ), (Bpew) = 0.398. A relative error
(computed as |xspy — Xpl/xspn) of 11.8% is obtained. This result was obtained in 3.32
seconds.

Moreover, it is not only a good approximation of small populations, but also when
the parameter k grows, dealing to ’relatively small’ populations. Consider for example
k = 100, in which xspn(Bpew) = 6.010. The approximation given by the p-semantics
(Xp (Bpew) = 4.774) is much better than the value obtained by the continuous PN under ISS
(X155 (Bnew) = 23.810). See Table 3 for an overview of results for the case study.

8 Conclusions

Fluidization aims to reduce the analysis complexity of discrete PN models. Unfortunately,
some logical and performance properties of the discrete PN may be lost by fluidization, spe-
cially when the system population is “relatively” small. In this paper, two sorts of techniques
have been proposed to improve the fluid approximation of the discrete model.

The relaxation of the formalism entails the reachability of some spurious markings (i.e.,
non reachable in the discrete PN) in the continuous model. The removal of spurious mark-
ings, and in particular the removal of spurious deadlocks, in the fluidified model has been
proposed. The technique is based on the addition of cutting places which are implicit in the
discrete PN (they do not modify the behaviour of the original discrete system) but not in the
continuous one. This yields a more faithful approximation to the original discrete system,
for both the untimed and timed interpretations.

Moreover, we have studied the Bound Reaching Problem (BRP), which may appear in
timed systems, and that causes the throughput of the original discrete PN system and the
continuous approximation to be particularly different. A new method based on ISS, which is
denoted p-semantics, has been proposed to tackle the BRP. Such novel semantics inherits
basic properties from ISS such as time homothecy, but not marking homothecy. It is specially
accurate when it is applied to transitions with a single input place. Moreover, the technique
has been generalized to join transitions by means of representative places.
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Appendix A: Checking if a marking is a vertex of the potential
reachability set

A marking m, € LRS(N, M) is said to be a vertex if it is not a linear combination of
markings in LRS(N, My), i.e. Am|,my € LRS(N', My) withm| # my and o, B > 0
such that m, = am| + fm;.

A polynomial time method is presented below to check if a given solution of the state
equation is a vertex. Let us define W as a subset of linearly independent places in P such
that rank(C[V¥, T)) = rank(C[P, T]).

Proposition 3 A solution m, € LRS(N, my) is a vertex iff Vp; € W, v; is equal to 0,
where v; is defined by the following Linear Programming Problem (LPP):

v; = max (my[p;] —my[p;))
st. m=my+C-01,m,o;>0
m;=my+C-02,my,62>0
my, =05-m; +0.5 -mp (20)

Proof (=) Assume m,, is a vertex. Thus, Am, m; such that m; #* my and m, = 0.5 -
m; + 0.5 - m,. Therefore, Vp; € P,m; = m; = m, and v; = 0. Hence,Vp; € ¥, v; = 0.
(<) Assume m, is not a vertex. Then, there exist two interchangeable solutions m, my €
LRS(\N, mg) such that my, € LRS(N, mg) withm| # m> and m, = 0.5 -m; + 0.5 - m».
Hence, there exists at least a place p; € P suchthatm[p;] < my[p;] < ma[p;]. If p; €
W, directly v; > 0. Otherwise, and because rank(C[V, T]) = rank(C[P,T]),3p; € ¥
which linearly depends on pj, such that m[p;] # m,[p;] # m[p;] # my[p;] # m>[p;].
And hence, v; > 0.

Proposition 3 can be checked in polynomial time. Because (A.1) is a LPP, it is of poly-
nomial complexity. The decision procedure is based in the solution of |W| LPP, from which
the first phase of the classical simplex approach is common (observe that only the objective
function changes).

If \V is consistent, the number of variables and constraints can be reduced, by replacing
my =mo+ C -0x by B-my = B - my, for k = {1, 2}, where B is a basis of p- flows of
N (Silva et al. 1998). Then, v; is defined as:

v; = max (my[p;] —m[p;])
sit. B-mi =B -my,m >0
B-my=B-my,m, >0
my, =0.5-m +0.5 -my 21
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